National Technical University Of Athens
School of Rural and Surveying Engineering

LADM-based Crowdsourced 3D Cadastral Surveying – Potential and Perspectives

Maria Gkeli, Surveying Engineer, PhD student
Dr. Chryssy Potsiou, Professor
Dr. Charalabos Ioannidis, Professor

Introduction

- **Current Situation:**
 - Vertically growing cities
 - Complex infrastructure
 - Subdivision of three-dimensional (3D) space
 - Overlapping property rights

- **Land Administration Domain Model (LADM ISO 19152)**
 - Spatial domain standard
 - Flexible conceptual schema for 2D/3D Cadastres
 - Based on a Model Driven Architecture (MDA)

The identification of the acceptable 3D geometries and representations for the 3D cadastral objects is still challenging
3D Aspect of LADM

- **3D LADM-based country profiles:**
 - Russian Federation
 - Poland
 - Korea
 - Greece
 - Malaysia

- **Linking LADM with physical models:**

High demand of required time and cost

- **Legislation**
- **Cadastral background**

Legal data model

- **Application schemas**
- **Technical models**
 - CityGML, IndoorGML, BIM/IFC, LandXML, InfraGML, etc.
The potential use of crowdsourcing for 3D cadastral surveys

- **Current research trends:**
 - Low-cost equipment & IT tools
 - Crowdsourcing techniques
 - Mobile services (m-services) & Web services
 - Open-source software (OSS)

- **Crowdsourcing in 3D cadastral surveys:**
 - Parametric modelling methods (Model-driven) – *Best Fitted Solution*
 - high robustness, maintenance of topology
 - can be adopted by parties without specific photogrammetric skills

A fit-for-purpose 3D crowdsourced cadastral surveying approach based on standardized data model as LADM, might be of significant value to speed up processes for establishing 3D cadastres
Proposed Framework

Technical Aspects

Server-side

LADM-based DBMS

Client-side

Open-sourced mobile application for Android

Crowdsourcing Procedure

- Cost-effective LADM-based technical solution
 - Acquisition
 - Registration
 - 3D modelling
 - Visualization
Database Management System (DBMS) (2/2)

3D – Crowdsourcing Self-developed Mobile Application (1/2)

- **Self-developed open-sourced** Mobile Application
 - 3D cadastral data acquisition
 - 3D modelling of real properties (LoD1)
 - Land Parcel & Property Unit → Model-driven approach
 - 3D visualization above & below the terrain

- **Software tools:**
 - Visual Studio 2013 (IDE)
 - Oracle JDK 8 (Java Development Kit)
 - Android SDK Manager (for API level 19),
 - add-in ArcGIS Runtime SDK for .NET (100.0.0) of ESRI
 - add-in Xamarin 4.5.0
 - the SharpKML library
 - the programming language of C#
 - the Server of ArcGIS Online (Cloud of ESRI)
3D – Crowdsourcing Self-developed Mobile Application (2/2)

Proposed Procedure for 3D Cadastral Surveys (1/2)

- Provision of the available **base map** with the areas under cadastral survey
 - recent **orthophoto** overlaid with buildings **floor plans** → **Higher geometric accuracy**
 - or
 - Orthophoto or aerial photo with the areas under cadastral survey → **Lower geometric accuracy**

- Crowdsourced 3D cadastral information/data acquisition
 - **Cadastral Mobile Application**
 - Demarcation / digitization of the property boundaries
 - Insertion of **additional geometric information**: building height, floor
 - Insertion of **additional descriptive information**: rights holder's personal data, type of rights, etc.
 - Verification **images** and **legal documents**
 - **3D Parametric reconstruction** of the building
Proposed Procedure for 3D Cadastral Surveys (2/2)

- Crowdsourced 3D cadastral information/data acquisition
 - Cadastral Mobile Application
 - Help needed?
 - Provided either by volunteers or by professionals
 - Demonstration videos of the mobile/web applications by NCMA

- Data evaluation and control by the cadastral service

- Compilation of preliminary crowdsourced 3D building models by right holders

Case Study (1/4)

 Acquisition of Crowdsourced 3D cadastral information/data:

- The room-outline coordinates
- The building area code, address
- The room holder name, role, type of rights
- The room floor, height, use, area size, volume

 Basemaps:

- Orthophoto at the scale of 1:1000
- Floor plans of:
 - the underground floor
 - the ground floor
 - the first and
 - the second floor at a scale of 1:200
Case Study (2/4)

- Registration procedure:

Case Study (3/4)

3D Visualization of the declared properties - LoD1 (Parametric Modelling)

Case Study (4/4)

- **Result evaluation:**
 - Comparison with the reference data:
 - Maximum deviation: 0.49 m
 - Minimum deviation: 0.03 m
 - Average deviation: 0.17 m
 - Qualitative 3D models
 - correct 3D position
 - small shape defects
 - Recording time per property:
 - 5-7 min fast
 - Easy-to-use
Conclusions

A cost effective solution is required for the initial implementation of a EU desired 3D Cadastre

- Modern Approach - 3D Cadastral Surveys:
 - 3D Crowdsourcing Techniques - Citizens' participation – errors minimization
 - Cost effective and time consuming solution / automation
 usage of modern low-cost IT tools, m-services, parametric modelling techniques
 - Land Administration Domain Model (LADM ISO 19152)
 - Available cartographic infrastructure

Generalized technical framework for the initial registration of 3D crowdsourced cadastral data and the creation of a standardize cadastral database for both the developed and developing world

Thank you for your attention!

Maria Gkeli, Surveying Engineer, PhD student
Dr. Chryssy Potsiou, Professor
Dr. Charalabos Ioannidis, Professor