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SUMMARY  
 
The definition of a valid 3D parcel must be correct and unambiguous, because an error or 
ambiguity in the definition of the extent of a property can lead to expensive legal disputes or 
to problems with handling 3D parcels in the information systems or problems during data 
transfer between two systems. This paper develops a rigorous axiomatic definition of a 3D 
parcel, and its relationship with adjoining parcels within a space partition. Since the 
requirements of different jurisdictions mandate different levels of validation, some of the 
axioms are identified as optional. For example, a jurisdiction may require that a parcel must 
be contiguous, while another may not require this. In earlier publications the axioms 
concerning valid 3D parcels (within a partition) are formulated in natural language. In this 
paper we will further formalize this by using mathematical expressions. We also want to 
prove the necessity of all axioms, i.e. is our set of axioms minimal or are they perhaps 
overlapping? We show that one of the earlier proposed axioms (A4) is implied by axiom A5 
(see discussion in section 3.3) and can be omitted. In order to demonstrate the necessity and 
independence of the remaining set of axioms, a series of test cases is presented. Each case 
violates a single axiom and passes all other axioms, thus showing that the set of axioms is 
non-redundant. In addition, real examples of 3D parcels (From Queensland, Australia), are 
tested against the validation suite. 
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1. INTRODUCTION 
 
As the value of land in the urban regions of the world increases, there is a trend towards the 
subdivision of property rights in 3D. That is to say, rights to land may be replaced by rights to 
the space above and below the land. As a result, the simple plans of subdivision that are used 
in defining property rights on the surface of the earth are being replaced by more complex 3D 
spatial definitions. This trend has been observed in many different countries and jurisdictions 
around the world (van Oosterom, Stoter, Ploeger, Thompson and Karki 2011). 
An important issue in the framing of these definitions is that they must be correct and 
unambiguous, because an error or ambiguity in the definition of the extent of a property can 
lead to expensive legal disputes. This paper addresses two problems: 1. the modelling of a 
single 3D cadastral parcel, and 2. the modelling of a complete 3D spatial partition. 
This paper develops a rigorous axiomatic definition of a 3D parcel (spatial unit), and its 
relationship with adjoining parcels. Since the requirements of different jurisdictions mandate 
different levels of validation, some of the axioms are identified as optional. For example, a 
jurisdiction may require that a parcel be contiguous, while another may not. The suggested 
axioms are based on Gröger and Plümmer (2011), however they have been modified to reflect 
these cadastral requirements. Our first steps in this direction were described in our work 
(Thompson and van Oosterom 2012) In both these papers the definitions, axioms and 
theorems concerning valid 3D objects (within a partition) are formulated in natural language. 
In this paper we will further formalize this by using mathematical formalism. We also 
examine the necessity of all axioms, i.e. is our set of axioms minimal or are they perhaps 
overlapping? A similar question was raised, but not yet answered, in a recent paper on valid 
3D topology structures in general (Brugman, Tijssen and van Oosterom 2011). 
In general, it is not possible to prove that this or any set of axioms is complete, because it is 
always possible to find new cases of “unreasonable” parcels that pass all the validation tests, 
but the set presented here is shown to be a useful, non-redundant set of axioms that can be 
used to define practical validation tests, and therefore assist in the reliable transfer of 3D 
parcel data.  
The remainder of this paper is organized as follows. Section 2 provides background material, 
such as explaining the issues with finite precision, the specific requirements for representing 
3D parcels, and the nomenclature used in the paper. The axioms for valid 3D parcels are 
given as mathematical expressions in Section 3. The representation to unbounded objects (to 
above or below) as defined in the Land Administration Domain Model is discussed in Section 
4. Finally, the main conclusions and future research topics are given in Section 5.  
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2. BACKGROUND 
 
The representation of 3D objects in, for example CAD (Computer Aided Design/Drafting) is 
not new, and significant work has been done on ensuring that the computer-based model is 
valid and is a good representation of the real-world object as it exists, or as it is to be 
constructed. The problem with the cadastral parcel is slightly different. Cadastral parcels are 
not “real-world” objects, although they may sometimes be associated with them. A cadastral 
parcel is a theoretical definition of space. One result of this is that the validation rules of 
cadastral parcels may have differences from the rules for CAD. 
The approach taken by Oracle Spatial is described in (Kazar, Kothuri, van Oosterom and 
Ravada 2008). This provides a clear description of the rules for validating 3D geometries that 
are to be imported into the Oracle database, but has restrictions on the boundary surface 
representations that are problematic for cadastral data. 
(Gröger and Plümer 2005) give a simple set of axioms that define a “2.8D” coverage – which 
has many of the required attributes of the problem domain, but with restrictions. One of the 
restrictions – the inability to model bridges or tunnels has been removed in a later paper 
(Gröger and Plümmer 2011). This approach, based on the “2.8D” paradigm is also unsuitable 
for cadastral parcels as requires that boundary surfaces be 2D manifolds (Thompson and van 
Oosterom 2012). 

Note – there 
is no shared 
face 
between the 
two parts of 
this object 
 

C A B 

 
Figure 1. Cases A and B are disallowed by the axioms of Gröger and Plümer. Case C is disallowed by the 
Oracle Spatial validation rules 

 

2.1 Finite precision 
In the 2D world of GIS, the problem of finite precision of computation is often addressed by 
the process of normalisation (Milenkovic 1988), or some variant. This paper extends the 
concept into 3D. It is critical to the approach that there exists a tolerance value  with the 
characteristic that all arithmetic operations can be assured to give a result that is correct to an 
order of magnitude smaller that  (Milenkovic uses 1/10). 
This gives rise to a question of point identity. There is a distinction to be made between points 
which are close together, points at zero distance apart, and points which are identified as the 
same logically. In this paper, it is assumed that points are uniquely identified (by name), and 
so the statement that points must be a minimum of  apart excludes the possibility that two 
points are at the same location (in x, y and z). 
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2.2 Cadastral parcels 
Although cadastral parcels in 3D have a similarity to 3D objects, at least in terms of their 
modelling and computer representation, there are significant differences. 

1. A cadastral parcel is not physical object, and cannot be seen (although it may contain 
or even be defined by real world objects). 

2. The definition of a cadastral parcel may have points, lines, or faces in common with 
adjoining parcels, and this fact must be clear in the definition. For example, if in 
Figure 1, objects A and B represent pairs of cadastral parcels, the sharing of the 
point/line is significant. By contrast if these objects represent part of a 3D city model 
for example, the parts can simply be moved apart slightly to allow the rules of Gröger 
and Plümer to be observed.  

3. A cadastral parcel may not be fully bounded. This case arises because in many 
jurisdictions, the definition of the conventional 2D land parcel has no top or bottom 
defined. Thus, if a 3D parcel is excised from a 2D parcel, the remaining space may 
have no upper surface, or lower surface. 

 
2.3 Nomenclature 
In the mathematical space (R3) (Note – this assumes exact arithmetic for the purpose of the 
definitions). 
Let P be the set of all real-number valued points p = (x,y,z).  

For p1 = (x1,y1,z1), p2 = (x2,y2,z2), D(p1, p2) =def 
2

21
2

21
2

21 )()()( zzyyxx   . 

For p1, p2  P, p1 = p2 =def D(p1, p2) = 0; 
In what follows, where the context is clear, the definitions of variables are omitted. For 
example, if p1 represents a point, the definition p1  P will be omitted. 
 

A node n  P is a special case of point, which can be represented in the number system of the 
computer (for example as a set of floating point numbers). 
Let N be the set of all possible nodes, N  P.  
 
A directed-edge e is an ordered pair of nodes e = (n1, n2):  
Let E be the set of all possible directed-edges. 
For directed edges e1 = (n1, n2), e2 = (m1, m2)  E,  

e1 = e2 =def  n1 = m1  n2 = m2 
e1  e2 =def  n1 = m2  n2 = m1 
ē1 =def (n2, n1)  

The notation is used that n  e means if e = (n1, n2) then n = n1 or n = n2.  

On(p, e) =def  t  R: 0  t  1, x = x2 + t(x1-x2), y = y2 + t(y1-y2), z = z2 + t(z1-z2).  
 Where e = (n1,n2), n1 = (x1,y1,z1), n2 = (x2,y2,z2), 

For directed-edge e, point p, D(p, e) = 
),( 1

min
epOn

D(p, p1). 

For directed-edges e1, e2, D(e1,e2) = 
),( 11

min
epOn

D(p1,e2). 

A face f is defined as a set of nodes fn, a set of directed-edges fe and a tuple of numbers fp = 
(a,b,c,d): a,b,c,d  R  restricted as follows: 
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e = (n1,n2)  fe: n1, n2  fn. 
n  fn: {e1=(n1,n2): n1 = n} and {e2=(n1,n2): n2 = n} are of same cardinality. 
a2+b2+c2 = 1; 

f =def f(fn, fe, fp). Where the context is clear, f will be used to mean fe, fn or fp. e.g. n  f. 
The plane for face fp = (a,b,c,d) is {p = (x,y,z)  P: ax+by+cz+d = 0}. 
Let F the set of all possible faces. 
For any faces defined on the same set of nodes, the plane parameters must agree. 

For f = f(fn, fe, fp), f’ = f’(f’n, f’e, f’p), fn = f’n  fp = f’p  fp = -f’p. 

This can be a difficult issue, because if the faces’ planar parameters are not supplied, it is up 
to the receiving program to determine them. This means that the algorithm must be repeatable 
to within the accuracy of the calculation, or that the equality of the node sets must be detected, 
and the calculation carried out once only. 
If this constraint is not respected, many of the tests related to dihedral angles between faces 
will be complicated and difficult to make consistent. 
For e1, e2, n  f, n  e1, n  e2, let a(e1, e2, n) be the angle between e1 and e2 at n measured 
anticlockwise around n, as viewed from outside the face (i.e. from the side of the face for 
which ax+by+cz+d > 0). 
For e1  f1, e2  f2,  e1 = e2  e1  e2, let A(f1, f2, e1) be the dihedral angle between f1 and f2 at 
e1 measured anticlockwise around the directed-edge looking in the direction of the edge – so 
that A(f1, f2, e1) = -A(f1, f2, e2) = -A(f2, f1, e1) = A(f2, f1, e2). 

For plane fp and point p = (x,y,z), D(p, fp) = |ax+by+cz+d|. 

 ni  f, let ni’ be the point at the base of the normal from ni to fp. The points ni’ form a planar 
multi-polygon. Let On(p, f) be D(p, fp) = 0  (p is inside the closure of the planar polygon).  
 p  P, let p’ be the point at the base of the normal from p to fp. 

In(p, f) =def  On(p’, fp). (that is, the base of the normal is within the face). 
 

A shell i s s a set of faces sf and their associated directed edges se and nodes sn.  
sf   F 
se = {e: f:  e  f   f  sf} 
sn = {n: f:  n  f   f  sf} 

Note – the definition of a shell as a set of faces ensures that two identical faces cannot be 
within the same shell, but an implementation will have to ensure that f1, f2 s  f1  f2. Also 
note that by this definition a shell may not enclose 3D space. Later the concept of a “cycle 
shell” will be introduced as a fully bounded shell. 

 
An edge u (sf, n1, n2) within sf is defined as: 

u (sf, n1, n2) = {e = (m1,m2)  se  m1 = n1  m2 = n2}  
  {e = (m1,m2)  se  m1 = n2  m2 = n1}.   
su = {u: e  u, e  se} 
shell s =def sf  se  sn  su Corollary u (s, n1, n2) = u (s, n2, n1), hence u is undirected. 

Let the set of edges be U, and let u  s mean that e  u, e  s. 
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A corner v2(f, e1, e2) within face is the meeting of two directed edges e1 and e2 such that 

 n  N: (e1, e2, n  f , n  e1, n  e2) and 
 e  f, n  e  a(e1, e2, n) < a(e1, e, n) 

(Descriptively, a corner is a pair of edges meeting at a node, with no intervening edges in the 
same face. Note - if the edges do not have a node in common, a corner is not defined). 
Let V2 be the set of all corners. 
Notation: e  v2 where v2 = v2 (f, e1, e2), (v2  V2) is taken to mean e = e1 or e = e2. 
 
A fold v3 (s, f1,e1,f2) within shell s is the meeting of two faces f1 and f2 at directed edges e1 and 

e2 such that f1  s,  f2  s,  e1  f1,  e2  f2, e1  e2 and: 
  (f  s, e  f, e  e1)  A(f1,f2,e1) < A(f1,f,e1)  
  (f  s, e  f, e = e1)  A(f1,f2,e1)  A(f1,-f,e1). 
 Where -f =def  fn, -fe = {ē: e  fe}, and (-a,-b,-c,-d) – that is the same face but with the 

reversed sense. 
(Descriptively, a fold is a pair of faces that meet at an edge, with no intervening faces at the 
same edge between them). 
Let V3 be the set of all folds. 
Notation: f  v3 where v3 = v3(s,f1,e1,f2), (v3  V3) is taken to mean f = f1 or f = f2, while e  v3 

is taken to mean e = e1 or e  e1  e  f2.  

f1 

f2 f3 

f4 

fold fold 

inside inside 

 
Figure 2. An edge which is the meeting of 4 faces, 2 folds and 4 directed edges 

A C0 face f’ = f’(e) in shell s is a subset of a face f  s such that: 

e  f’  
f’p = fp  
e1  f’  n1  f’  n2  f’  (where e1 = (n1, n2) )  
n  f’  ( e  f: n  e  e  f’) 
 (Descriptively, for any edge in f’ the nodes that define it are in f’, for every node, all 

directed edges that meet at that node are in f’). 
C0(f) =def  e  f  f = f’(e) 

(Descriptively, a face is zero-connected if it has at least one directed edge, and all other 
edges/nodes are zero-connected to it) 
 

A C1 face f” = f”(e)  in shell s is a subset of a face f  s such that: 

f”p = fp 
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e1  f”  n1  f”  n2  f” (where e1 = (n1, n2) ) 
e1  f” e2  f   v2(f, e1, e2)  V2   e2  f” 
 (Descriptively, for any edge in f” the nodes that define it are in f”, and all directed 

edges that meet at that node in a corner are in f”). 
C1(f) =def  e  f  f = f”(e) 

face C0 face C1 face  
Figure 3. Faces, with weak and strong connectivity depicted 

In common parlance, a face and a C0 face would be referred to as multi-polygons, with a C1 
face being a simple polygon. 
 
A cycle shell s is a shell such that: 

u  s: for e  u {e1: e1 = e} and {e2: e2  e} are of same cardinality. 
 (Every undirected edge in the shell is composed of anti-equal pairs of directed edges). 

(A cycle shell defines a bound region of space). 

 
A C0 shell s’ = s’(f) in cycle shell s a subset of s such that 

C0(f)  f  s’  
f1  s’  n  f1  f2  s  C0(f2)  n  f2      f2  s’ 
 (For every face in s’ all C0 connected faces that meet it at a node are also in s’). 
C0(s) =def  f  s  s = s’(f) 
 

A C1 shell s” = s”(f)  in cycle shell s a subset of s such that 

C1(f)  f  s’  
f1  s”  e1  f1  f2  s  C1(f2)  e2  f2  (e1  e2)  f2  s” 
 (For every face in s” all C1 connected faces that meet it at any edge are also in s”). 
C1(s) =def  f  s  s = s”(f) 
 

A C2 shell s = s (f)  in cycle shell s a subset of s such that 

C1(f)  f  s   
f1  s   e1  f1  f2  s  C1(f2)  v3 (s, f1,e1,f2)  f2  s 
 (For every face in s  all C1 connected faces that meet it at a fold are also in s). 
C2(s) =def  f  s  s = s (f) 
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shell cycle shell C0 shell C1 shell C2 shell  
Figure 4. Shell, cycle shell, two types of weak connectivity and strong connectivity 

The cycle shell, C0 shell and C1 shell can be referred to as multi-polyhedra, while the C2 shell 
can be termed a simple polyhedron. Note that any polyhedron can, by this definition, have 
holes, which may “tunnel through” the body, or be total inclusions with no connection to the 
outer boundary. 
 
 
3. THE AXIOMS 
 
An axiom is considered to be necessary if it cannot be derived from other axioms, and some 
unacceptable consequences follow from its violation. Therefore, an attempt has been made in 
each case to generate a test case which fails a single axiom (and no other), and an explanation 
is given as to why that case is problematic.  The numbering of the axioms is the same as in the 
paper (Thompson, van Oosterom, 2012) where these axioms where presented in natural 
language. 
 
3.1 Core axioms 
These axioms are considered to be essential, because non-compliant objects would potentially 
cause malfunctioning of software that uses the data. All axioms apply to a particular shell s. 

Axiom A1 No two nodes are closer than ε apart. 

A1: n1, n2  s: (n1  n2)  D(n1, n2) >  

Many test cases are possible, but the one illustrated in Figure 5 does not violate any other 
axiom. 
There are two main unacceptable characteristics of objects which do not satisfy this: 

1. Calculations of bearings and lengths of very short lines can give spurious results. 
2. Perturbations of the object, due to rounding errors or changes of coordinate system can 

cause topological failures of a more serious nature – e.g. failures of axiom A10. 
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Figure 5 A failure of Axiom A1. The points within the circled area are about 4mm apart. (The front and 
top faces have been made transparent) 

Axiom A3 The faces incident at a node do not intersect one another except at an edge. 

n  s: f1, f2  s, n  f1, n  f2; On(p, f1), On(p, f2), p  n 
   e: e  f1  e  f2,  

Violation of this axiom potentially makes it impossible to determine “inside” and “outside” of 
an object. See the top prism of Figure 6, which is “inside out”. 
 

+ 

+ 

- 

+ 

- 

+ 

- 

 
Figure 6. There is no edge between the points marked with black dots. The faces that cross between the 
dots are planar (and have 6 edges that define them). This has a genus of 0. Faces towards the viewer have 
a +, and are shown in blue, those that face away are shown in pink, with a -  

 

 
Figure 7. A more restricted case of failure of this axiom. The rightmost face does not have an edge which 
meets the diagonal faces, but does have nodes where they meet 
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Axiom A5 Non-intersecting edges must not be within a distance ε of each other. 

A5. e1, e2  s, D(e1, e2) <    n: n  e1, n  e2. 

There are two test cases shown, Figure 8, in which the end of one edge is near the other, and 
Figure 9 where the interior of the edges are close. Failure to observe this axiom means that 
perturbations of the object can cause topological failures of a more serious nature. 
 

 
Figure 8. The central node is 9mm from the nearby edge. (The front face has been made transparent) 

 

 
Figure 9. The edges are 1.5mm apart in the centre of the object. (Front and top faces made transparent) 

Axiom A6 Every directed-edge of a face in the shell, belongs to a fold. 

(That is, each edge is the meeting of an even number of faces such that the directed-edges 
of those faces form an alternating sequence around the edge). 

A6. e  s,  v  s: e  v. 

Failure of this axiom can mean that the alternating sequence of faces is not observed and the 
folds are broken. (Figure 10) Objects which violate this axiom may not have a well-defined 
interior.  
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outside 
* 

I 

 
Figure 10. Front faces made transparent, right – a cross section of the parcel. This object is in effect the 
intersection of a cube and a isohedron,  The point marked “*” in the diagram is within both, and therefore 
“twice within” the object 

Axiom A8 Bounded faces are planar to a tolerance of ε’. 

A8.  f  F,  n  f, D(n, fp)  ’. 

Any surface that is based on a polygon of more than 3 points may exhibit this failure. If the 
failure is extreme, the interior of the parcel is not legally definable. 
 

 
Figure 11. This test case is based on a real cadastral parcel, which contains surfaces which are out of 
plane. The darker coloured surfaces are 140 and 227 mm out of plane, the pink surface is 6.7mm out of 
plane 

Axiom A9 No node is within ε of a face unless it is part of the definition of that face. 

A9. f, n  s, n  f  In(n, f)  D(n, fp) > . 

Failure to observe this axiom means that perturbations of the object could cause topological 
failures of a more serious nature. 
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Figure 12 The point is 1.5 mm from the face on the right. (Note there is no vertex in the middle of the face 
on the right) The front face has been made transparent 

Axiom A10 No directed-edge intersects a face except at a node of that edge. 

e  s, f  s: e  f,    

 ( p: D(p, e) = 0  D(p, f) = 0)  p = n1  p = n2,  where e = (n1, n2). 
An object which violates this test has no unambiguous definition of inside/outside.  
 

 
Figure 13. This is a more extreme case than Figure 12, and indicates what may occur if that case is 
perturbed. The front face has been made transparent 

 
3.2 Parsimony axioms 
These axioms might be considered “nice to have”. Failure to respect these axioms may not 
have extreme consequences such as those above, but may lead to excessive storage and 
difficulty in maintenance. In some cases there may be good reasons to violate these axioms, as 
noted below. 

Axiom A7 The semi-edges that delineate a hole in a face must be part of the outer boundary 
of other faces. 

A7. n  s, f1, f2  s: n  f1, n  f2, f1  f2. 

(For any node, there must be at least two distinct faces that it participates in) 



  409 
Rod Thompson and Peter van Oosterom 
Axiomatic Definition of Valid 3D Parcels, potentially in a Space Partition  
 
2nd International Workshop on 3D Cadastres 
16-18 November 2011, Delft, the Netherlands 

There are no severe consequences that follow from violating this axiom, and the axiom is 
redundant if axiom A2 is mandated (A2  A7).A minor consequence is that if the total length 
of the edges of a parcel is calculated, the unnecessary edges will be counted. On the other 
hand, as shown in (Thompson and Van Oosterom 2011), a 2-shell subset of a 3D parcel may 
violate this axiom. 
 

 
Figure 14. The line on the right face indicates a “hole” in the face, defined by a pair of edges.  (The front 
face has been made transparent) 

Axiom A2 Each node has at least 3 incident faces. 

A2. n  s, f1, f2, f3  s: n  f1, n  f2, n  f3  f1  f2  f2  f3  f1  f3. 

This is a deceptively simple axiom. On the one hand, it prevents unnecessary points, but on 
the other it may be violated by separating a compliant cycle shell into C2 connected sub-shells 
(Thompson and Van Oosterom 2011). That paper states that: 
If P is a 3D parcel which satisfies axioms A1 to A10 (but which may be discontinuous): 

Any 0-shell of P obeys all axioms A1 to A10. 
Any 1-shell of P obeys all axioms A1 to A10 except A2. 
Any 2-shell of P obeys all axioms A1 to A10 except A2 and A7. 

This may be seen as a strong case to omit axioms A2 and A7. 

 
Figure 15. Shapes that do not respect axiom A2 

On the other hand, it is possible to construct an example that violates no axioms except A2, 
but which has an unfortunate appearance (Figure 16). It is not expected that two planes should 
meet at a bent line. Since this case is a consequence of the extremely fine dihedral angle of 
these faces, a solution to this could be to ban faces that meet at an angle less than some limit. 
Sharp wedges can have other unpleasant consequences. 
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Figure 16. The object is like a thin wedge of cheese, 35 cm at the widest. The two largest faces are almost 
planar (worst case 5.6mm out of plane), but the circled vertex is 1m off the straight line 

Axiom A2a No neighbour faces in same plane. 

There are a number of other cases of unnecessary complication in a parcel definition.  

 

f1 
f2 

f1 
f2 

f1 

f2 

B C A 

 
Figure 17. In all of these cases, f1 and f2 are coplanar, and together comprise the front face of the object 

For example, in Figure 17 A, the face f2 fills in a rectangular hole in f1. If it were removed, 
and the hole filled in, the point-set definition of A would not change. 
These cases could be prevented by a blanket rule that “adjoining faces must not be coplanar” 
(to a tolerance). As can be seen in Figure 17 C, this would prevent the unnecessary 
triangulation of surfaces, which may not be a good thing. In Queensland, there is a convention 
developing that vertical or horizontal surfaces are represented as polygons and are by 
definition flat, while all other surfaces are triangulated (Figure 18). It may well be that some 
of the adjacent faces in Figure 18 are nearly coplanar and may even violate A2a at a given 
tolerance. 
 

 
Figure 18. Sections of a tunnel parcel. The top surface is not horizontal, and has been triangulated. The 
sides are vertical and are composed of rectangles. (The z values have all been increased by 40m so that it is 
visible above ground)  

35cm 
20m 
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Axiom S1. No face may be paired with an anti-equal face in the same shell. (Disallowing 
dangling faces, but also disallowing the interior to be cut by a face.) 
 

A 

B 

 
Figure 19. There is a pair of anti-equal faces between parts A and B 

An anti-equal pair of faces such as this may make the shell fail the test of being a 2-shell (as 
in Figure 19), while it has all the appearances and real-world characteristics of a 2-shell. If 
there is some distinction between parts of a shell that need to be highlighted by anti-equal 
pairs of faces, then there will almost certainly be attribute differences between them. 
 
3.3 Redundant axiom  
The axiom A4 in an earlier paper (Thompson and van Oosterom 2012) has proved to be 
redundant. In that paper A4 stated: “Edges do not intersect except at their common end point 
nodes”. It is now clear that A5  A4. 

Proof; If e1, e2 intersect at point p, then D(e1, e2) = 0.  
By A5, D(e1, e2) <     n: n  e1, n  e2. 
Since straight lines can only intersect at one point, p = n, i.e. the edges meet at common 

end point nodes.  
 
 

4. LAND ADMINISTRATION DOMAIN MODEL 
 
The representations of parcels in ISO19152 (The Land Administration Domain Model – 
LADM) (ISO-TC211 2009) is specified at five different levels of encoding, but it is only at 
the two higher levels that any serious validation is possible – the “polygon based” and the 
“topology based” levels. The standard also allows 2D, 3D and mixed dimensionality parcels. 
As observed by (Stoter and van Oosterom 2006), the key to mixing 2D and 3D cadastral 
parcel is to recognise that what is commonly referred to as 2D is in fact the representation of a 
3D space that extends above and below the defined parcel. 
The LADM handles this mixture by defining two boundary objects – the 
LA_BoundaryFaceString (used mainly for 2D parcels, but which may abut or surround a 3D 
parcel), and the LA_BoundaryFace (used for 3D parcels) (Lemmen, Van Oosterom, 
Thompson, Hespanha and Uitermark 2010). The concept of the LA_BoundaryFaceString 
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(here referred to as FaceString) is that it is defined by a simple linear GM_Curve, but 
interpreted as a series of faces which run from an undefined negative height to an undefined 
positive height (notated as - and ). See Figure 20 
 
4.1 Polygon based spatial units 
This section is a discussion of how these validation rules can be applied to parcels that are 
encoded according to the LADM profile of the polygon based spatial units – that is encoded 
as separate parcels without topology being specifically encoded. Spatial units may be 2D or 
3D or any combination, and may have faces in any orientation (not merely vertical or 
horizontal).  
In this form, each spatial unit is a separate polygon (or polyhedron). There are restrictions on 
the overlap of spatial units, but these are not imposed by the data model (as they are in the 
case of the Topology Based encoding). It would be common for a 3D object to be within the 
space defined by a 2D parcel in this approach, and overlaps of different interests are common 
(e.g. easements over base parcels). 
In this model, the FaceString is considered to be a set of faces, each being defined by a single 
linear segment. Thus the segment from point (x1,y1) to (x2,y2) in the linestring that defines the 
FaceString is considered as a face defined by four points (x1,y1,-), (x2,y2,-), (x2,y2,), 
(x1,y1,). See Figure 20. 
 

L A _Fa ceS t rin g
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+
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(x 2,y 2, )  

( x 1,y 1, - )  

( x1, y 1, ) 

No de  =  
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Figure 20. Segment of a FaceString interpreted as a face. (Note - the direction of this face is clockwise 
because it is being viewed from inside the parcel it defines) 

An LA_BoundaryFace is simply treated as a face, and as noted before need not be vertical or 
horizontal. In the case of faces that extend to infinity, but the following  restrictions apply:   

e = ((x1,y1,z1), (x2,y2,-)), z1  -:  x1 = x2 and y1 = y2.  
e = ((x1,y1,z1), (x2,y2,)),  z1  :  x1 = x2 and y1 = y2.  
e = ((x1,y1,-), (x2,y2,z2)), z2  -:  x1 = x2 and y1 = y2.  
e = ((x1,y1,), (x2,y2,z2), z2  :  x1 = x2 and y1 = y2.  

(That is, every edge running to or from  must be vertical. Otherwise, it has an undefinable 
slope). 
Given these interpretations, a SpatialUnit can be interpreted as a shell of faces as defined here, 
with top and bottom faces defined from the GM_Curves (setting the z values to  and 
reversing the sense of the top face). Constraints would usually be placed on this that it be a 
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cycle shell, and that it satisfy the core axioms. It may be also mandated that a SpatialUnit be a 
2-shell, and that any of the parsimony axioms should apply as decided by the jurisdiction.   
 
4.2 Topology based spatial units 
This section is a discussion of how these validation rules can be applied to parcels that are 
encoded according to the LADM profile of the topology based spatial units. Spatial units may 
be 2D or 3D or any combination, and may have faces in any orientation.  
In this form, the set of spatial units forms a linear partition of space. The overlap of spatial 
units is prevented by the data model, except where layering is used.  
In this model, each linear segment of the FaceString is considered to be a pair of anti-equal 
faces. Thus the segment from point (x1,y1) to (x2,y2) in the linestring that defines the 
FaceString is considered as a face defined by four points (x1,y1,-), (x2,y2,-), (x2,y2,), 
(x1,y1,), paired with a face defined by the four points (x1,y1,), (x2,y2,), (x2,y2,-), (x1,y1,-
). See Figure 21. 
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Figure 21. A segment of a FaceString interpreted as a pair of faces 

 
An LA_BoundaryFace is treated as a pair of faces, with the same restriction as above:   

e = ((x1,y1,z1), (x2,y2,-)), z1  -:  x1 = x2 and y1 = y2.  
e = ((x1,y1,z1), (x2,y2,)),  z1  :  x1 = x2 and y1 = y2.  
e = ((x1,y1,-), (x2,y2,z2)), z2  -:  x1 = x2 and y1 = y2.  
e = ((x1,y1,), (x2,y2,z2), z2  :  x1 = x2 and y1 = y2.  

As for the polygon based encoding, top and bottom faces are based on the GM_curves. 
Given these interpretations, the entire set of spatial units may be interpreted as a cycle shell as 
defined above, which satisfies the core axioms but does not satisfy axiom S1. It may be also 
mandated that this set be a 2-shell, and that any of the parsimony axioms should apply as 
decided by the jurisdiction.   
In addition, each individual spatial unit can be interpreted as a cycle shell, which again must 
satisfy the core axioms, and as many of the remaining axioms as the jurisdiction should 
decide. 
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Note that this approach defines a shell, which does not correspond to any spatial unit in the 
set. This is the outer boundary of the entire set. Again, this can be mandated to be a 2-shell if 
appropriate. 
 
 
5. CONCLUSIONS AND FUTURE RESEARCH 
 
5.1 Conclusions 
A set of definitions and axioms has been developed to be applied to cadastral data, and these 
have been shown to address two problems, which correspond to two of the spatial unit 
encodings defined in ISO19152:   

1. The modelling of a single cadastral parcel (a Polygon Based Spatial Unit). 
2. The modelling of a linear partition of space (the Polygon based Spatial Units). 

 
5.2 Further Research 
Although the axioms presented here have been shown to be independent and necessary for 
“well behaved” cadastral parcels, there may well be other validation tests possible that can 
detect ill formed cadastral spatial units that would be accepted by these. This will always be 
the case, since it is not possible to guess all ways that incorrect data can be encoded. It is, 
however possible to add to this list, provided that any additional axioms or tests should be 
subjected to the same scrutiny. The question should be asked of any other proposed tests: 
 
 What is the cost of accepting data that fails this test? 
 
Using these definitions and axioms, many other results follow, some trivial, others not so 
(such as for a Cycle Shell with no points at infinity, a volume can be calculated). As many as 
possible of these results need to be catalogued, and proven. The behaviour of the faces at  
infinity, and of the outer boundary set of a set of topology based spatial units can be further 
investigated.  
Java routines have been written to verify that each of the axioms is individually testable. 
These are not sophisticated or efficient, especially as each axiom has been tested as a single 
stand-alone procedure (to ensure that no other axioms are also violated). For example, it is 
easy to modify the test for “isCycle” for a shell so as to trap violations of A6 and S1, but this 
was carefully avoided in the test routines. For a practical implementation, more efficient 
algorithms could result from combining many axioms into a common routine (although it 
would be preferred that in the case of an error, the correct axiom is reported). 
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