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Piecewise Linear Complexes

Definition. A piecewise linear complex (PLC) is a collection X of polytopes (possibly
non-convex) with the following properties:

1. The set X is closed under taking boundaries, i.e., for each P ∈ X the boundary
of P is a union of polytopes in X.

2. X is closed under intersection, i.e., for each P, Q ∈ X the intersection P ∩Q is
a polytope in X.

3. If dim(P ∩Q) = dim(Q) then P ⊆ Q, and dim(P ) < dim(Q).

A PLC non-PLCs
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How to Describe PLCs?
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Representation
A Simplified B-Rep Description

. A PLC is described by a list of vertices and a list of facets.

. Each "vertex" contains index, coordinates, attributes, ...

. Each "facet" is a list of polygons and holes.
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Representation
The Facet Description
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The facet (shown in pink) consists of four polygons and one hole. The
polygons are: (1, 2, 3, 4), (9, 10, 11, 12), (11, 3), and (17). The last two

polygons are degenerate. The polygon (9, 10, 11, 12) is a hole.
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Representation
Data File Description (.poly format)

# The list of vertices
16 3 0 0
1 0.0 0.0 0.6 # index, x, y, z
2 1.0 0.0 0.6
3 1.0 1.0 0.6
4 0.0 1.0 0.6
...
# The list of facets
10 0
# The top facet
2 1 0 # 2 polygons, 1 hole, no boundary marker
4 1 2 3 4 # A polygon.
4 9 10 11 12
1 0.5 0.5 0.6 # A hole point
# Other facets
1 0 0
4 1 2 6 5
...
# The list of volume holes
0
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Representation
TetGen Internal Representation

. The boundary of a PLC is stored as a 2D simplicial complex F .

. Triangulates each facet separately.

. Connects facets through their common boundaries.

. The triangle-edge data structure [Mücke’93] is adapted to represent F .

,
TetGen for TEN Computations Dec. 11, 2007 TU Delft 9 (27)



Validation
Boundary Self-Intersection Detect

. The primitive operation is the triangle-triangle test. Fast algorithms are known,
see [Möller’97], [Guigue’03], etc. However, the implementations are found less
robust. Moreover, they generally do not distinguish the type of intersection.

. TetGen has its own triangle-triangle test (the same idea as [Guigue’03]) which
reports all types of intersections. The robustness is achieved by using exact
floating-point arithmetic.

! !
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Intersect
Duplicate

Share edge Share vertex

Invalid PLC Types of intersection
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Validation
Self-Intersection Detect Algorithms

. Goal: given a set of m triangles in 3D, find all pairwise intersected triangles.

. A trivial approach: test the intersection of triangles by pairs, needs O(m2) tests.

. TetGen implemented a hybrid algorithm: initially takes a divide-and-conquer
approach and switches to the trivial approach for low number of triangles.

. This algorithm runs in time O(m log m + I2), where I is the largest number of
undividable triangles.
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Validation
Self-intersections in the Campus Model
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Validation
Open Issues

. Repair self-intersections (one of the goals of the project).

. Validate the closeness of the PLC boundary.
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Delaunay Triangulations

Let S be a set of finite points in Rd. Any simplex in S is Delaunay if it has a
circumscribed ball B, such that int(B) ∩ S = ∅. The Delaunay triangulation
of S, D(S), is formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk. (1934) 7:793–800.
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Constrained Delaunay Triangulations

. The Delaunay triangulations (DTs) do not respect the boundaries.

. Constrained Delaunay triangulations (CDTs) well-solved the problem in
2D. ([Lee & Lin’86] and [Chew’89])

. Work in progress in 3D, [Shewchuk’00, 02, 03], [Si & Gärtner’04, 05], ...

A 2D PLC The DT The CDT

,
TetGen for TEN Computations Dec. 11, 2007 TU Delft 16 (27)



Tetrahedralizing Polyhedra

. A simple polyhedron P may not have a tetrahedralization without using
additional points (so-called Steiner points). [Schönhardt’28]

. The problem of deciding whether P can be tetrahedralized is NP-complete.
[Rupper and Seidel’92]

. A simple polyhedron with n vertices may require Ω(n2) Steiner points.
[Chazelle’84]
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Algorithms
3D Tetrahedralization Methods

. Convex decomposition: [Chazelle and Palios’90], [Bajaj and Dey’92], etc.

. Have theoretical guarantees on the complexities O(n2).

. Very complicated, require large number of Steiner points.
. Constrained Boundary Recovery: [George, Hecht, and Saltel’91], [Weatherill and

Hassan’94], [George, Borouchaki, and Saltel’03], etc.

. Restriction: no Steiner points are on boundary.

. complicated, complexities are ad hoc.
. Conforming Delaunay Methods: [Murphy, Mount, and Gable’00], [Cohen-Steiner, de

Verdière, and Yvinec’02], [Cheng and Poon’03], etc.

. May need too many Steiner points.
. Constrained Delaunay Methods: [Shewchuk’00,02,03], [Si and Gärtner’04,05], etc.

. Use less Steiner points than conforming Delaunay methods.

. Have complexity guarantees.
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Algorithms
A Comparison of Various Approaches

A simple ployhedron Convex decomposition
20 vertices, 2 reflex edges 138 nodes, 280 tetrahedra

Conforming Delaunay method Constrained Delaunay method
51 vertices, 103 tetrahedra 20 vertices, 29 tetrahedra.

,
TetGen for TEN Computations Dec. 11, 2007 TU Delft 19 (27)



Algorithms
CDTs with no Steiner point

Let X be a 3D PLC. A simplex t is strongly Delaunay if there exists a circumscribed
sphere Σ of t, such that no vertex of X lies inside and on Σ.

Theorem ([Shewchuk’98]). If all segment of X are strongly Delaunay, then X has a
CDT with no Steiner point.

A PLC X A PLC X ′

Corollary. If no 5 vertices of X share a common sphere, and all segment of X are
Delaunay, then X has a CDT with no Steiner point, and it is unique.

,
TetGen for TEN Computations Dec. 11, 2007 TU Delft 20 (27)



Algorithms
Constructing the CDT of a PLC

Given a 3D PLC X, a CDT is constructed in the following subsequent phases:
(1) Form the Delaunay tetrahedralization T of the vertices of X.
(2)∗ Form the surface triangulation F from the facets of X.
(3)∗ Perturb the vertices in F and T (add Steiner points).
(4) Recover the segments of F in T (add Steiner points).
(5) Recover the facets of F in T .
(6) Remove tetrahedra outside |X| from T .
(7)∗ Remove Steiner points from ∂X (for constrained boundary recovery).
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Algorithms
Segment Recovery – Protecting Sharp Corners

Corner lopping [Ruppert’95, Shewchuk’02, Pav and Walkington’05].
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Algorithms
Segment Recovery – Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].
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Algorithms
Facet Recovery

Some subfaces of a facet are missing - they must be non-Delaunay
and crossed by Delaunay edges.

A missing region Ω is formed by a set of missing subfaces which are
connected to each other.

From each Ω one can form two cavities in a DT, one at each side of Ω.
Each cavity C is a polyhedron bounded by triangular faces.

A facet A missing region A cavity
(shaded area)
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Algorithms
Cavity Tetrahedralization

A cavity C is tetrahedralized by the following procedure.

1. Verify C. Enlarge C until all faces of C are Delaunay.
p1
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2. Tetrahedralize C.
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Algorithms
Complexity Issues

n – the number of input points,
s – the number of Steiner points,
m – the number of output points (i.e., m = n + s).

Steps Algorithms Worst case General case
(1) Delaunay tetrahedralization O(n2) O(n log n)
(2) Surface triangulation O(n log n)
(3) Vertex perturbation [Si et al’05] O(n log n)
(4) Segment recovery [Si et al’05] O(sn2 log n) O(s log n)
(5) Facet recovery [Shewchuk’03] O(m2 log m)
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Examples
Example 1 – Cami1a

A 3D PLC The DT The surface mesh
460 vertices, 328 facets 2637 tetrahedra 954 subfaces, 706 segments

A CDT Facet recovery Segment recovery
with 505 Steiner points 22 missing subfaces 213 + 292 Steiner points
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Examples
Example 2 – Campus TU Delft

Input PLC The CDT
5184 vertices 9921 vertices
3229 facets 54338 tetrahedra
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