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Piecewise Linear Complexes

Definition. A piecewise linear complex (PLC) is a collection X of polytopes (possibly
non-convex) with the following properties:

1. The set X is closed under taking boundaries, i.e., for each P € X the boundary
of P is a union of polytopes in X.

2. X is closed under intersection, i.e., for each P, Q € X the intersection PN Q is
a polytope in X.

3. Ifdim(P N Q) =dim(Q) then P C @, and dim(P) < dim(Q).

non-PLCs
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How to Describe PLCs?
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A Simplified B-Rep Description

> A PLC is described by a list of vertices and a list of facets.

> Each "vertex" contains index, coordinates, attributes, ...
> Each "facet" is a list of polygons and holes.
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The Facet Description

The facet (shown in pink) consists of four polygons and one hole. The
polygons are: (1,2,3,4), (9,10,11,12), (11, 3), and (17). The last two
polygons are degenerate. The polygon (9,10, 11,12) is a hole.
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Data File Description (.poly format)

# The list of vertices
16300
10.00.0 0.6 #index, x, y, z

21.00.00.6 : v /' -
31.01.00.6 "9 10'

40.01.00.6 1 — ¢
R 8o il 7
# The list of facets 1 16g.... 154

100 R

# The top facet 5 7 13€------ o 14 é

210 # 2 polygons, 1 hole, no boundary marker
41234 #Apolygon.

49101112

10.50.5 0.6 # A hole point

# Other facets

100

41265

#-The list of volume holes
0
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TetGen Internal Representation

> The boundary of a PLC is stored as a 2D simplicial complex F.

> Triangulates each facet separately.
> Connects facets through their common boundaries.

> The triangle-edge data structure [Miicke’93] is adapted to represent F.
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Boundary Self-Intersection Detect

> The primitive operation is the triangle-triangle test. Fast algorithms are known,
see [Méller’97], [Guigue’03], etc. However, the implementations are found less
robust. Moreover, they generally do not distinguish the type of intersection.

> TetGen has its own triangle-triangle test (the same idea as [Guigue’03]) which
reports all types of intersections. The robustness is achieved by using exact

floating-point arithmetic.
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Self-Intersection Detect Algorithms

> Goal: given a set of m triangles in 3D, find all pairwise intersected triangles.
> A trivial approach: test the intersection of triangles by pairs, needs O(m?) tests.

> TetGen implemented a hybrid algorithm: initially takes a divide-and-conquer
approach and switches to the trivial approach for low number of triangles.

> This algorithm runs in time O(mlogm + I°), where I is the largest number of
undividable triangles.
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Self-intersections in the Campus Model
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Open Issues

> Repair self-intersections (one of the goals of the project).

> Validate the closeness of the PLC boundary.
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Delaunay Triangulations

Let S be a set of finite points in R%. Any simplex in S is Delaunay if it has a
circumscribed ball B, such that int(B) NS = (. The Delaunay triangulation
of S, D(S), is formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., Sur la sphere vide. 1zvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i
Estestvennykh Nauk. (1934) 7:793-800.
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Constrained Delaunay Triangulations

> The Delaunay triangulations (DTs) do not respect the boundaries.

> Constrained Delaunay triangulations (CDTs) well-solved the problem in
2D. ([Lee & Lin’86] and [Chew’89])

> Work in progress in 3D, [Shewchuk’00, 02, 03], [Si & Gértner’04, 05], ...

A2D PLC The DT The CDT

.
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Tetrahedralizing Polyhedra

> A simple polyhedron P may not have a tetrahedralization without using
additional points (so-called Steiner points). [Schonhardt’28]

> The problem of deciding whether P can be tetrahedralized is NP-complete.
[Rupper and Seidel’92]

> A simple polyhedron with n vertices may require Q(n?) Steiner points.
[Chazelle’84]
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3D Tetrahedralization Methods

> Convex decomposition: [Chazelle and Palios’90], [Bajaj and Dey’92], etc.

> Have theoretical guarantees on the complexities O(n?).
> Very complicated, require large number of Steiner points.

> Constrained Boundary Recovery: [George, Hecht, and Saltel’91], [Weatherill and
Hassan’94], [George, Borouchaki, and Saltel’03], etc.

> Restriction: no Steiner points are on boundary.
> complicated, complexities are ad hoc.

> Conforming Delaunay Methods: [Murphy, Mount, and Gable’00], [Cohen-Steiner, de
Verdiére, and Yvinec’02], [Cheng and Poon’03], etc.

> May need too many Steiner points.
> Constrained Delaunay Methods: [Shewchuk’00,02,03], [Si and Gartner’04,05], etc.

> Use less Steiner points than conforming Delaunay methods.
> Have complexity guarantees.
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A Comparison of Various Approaches

A simple ployhedron Convex decomposition
20 vertices, 2 reflex edges 138 nodes, 280 tetrahedra

Conforming Delaunay method  Constrained Delaunay method
51 vertices, 103 tetrahedra 20 vertices, 29 tetrahedra.
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CDTs with no Steiner point
Let X be a 3D PLC. A simplex t is strongly Delaunay if there exists a circumscribed
sphere X of ¢, such that no vertex of X lies inside and on X..

Theorem ([Shewchuk’98]). If all segment of X are strongly Delaunay, then X has a
CDT with no Steiner point.

APLC X’

Corollary. If no 5 vertices of X share a common sphere, and all segment of X are
Delaunay, then X has a CDT with no Steiner point, and it is unique.
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Constructing the CDT of a PLC

Given a 3D PLC X, a CDT is constructed in the following subsequent phases:
(1)  Form the Delaunay tetrahedralization 7 of the vertices of X.
(2) Form the surface triangulation F from the facets of X.
(3)°  Perturb the vertices in F and 7 (add Steiner points).
(4)  Recover the segments of F in 7 (add Steiner points).
(5) Recover the facets of Fin 7.
(6)  Remove tetrahedra outside | X| from 7.
(7)*  Remove Steiner points from 0X (for constrained boundary recovery).

TetGen for TEN Computations Dec. 11,2007 TU Delft 21(27) lwlilal's



Segment Recovery — Protecting Sharp Corners

Corner lopping [Ruppert’95, Shewchuk’02, Pav and Walkington’05].

:
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Segment Recovery — Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gértner’05].

TetGen for TEN Computations Dec. 11,2007 TU Delft 22(27) [wlhilal's



Segment Recovery — Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gértner’05].

TetGen for TEN Computations Dec. 11,2007 TU Delft 22(27) [wlhilal's



Segment Recovery — Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gértner’05].

TetGen for TEN Computations Dec. 11,2007 TU Delft 22(27) [wlhilal's



Segment Recovery — Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gértner’05].

TetGen for TEN Computations Dec. 11,2007 TU Delft 22(27) [wlhilal's



Segment Recovery — Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gértner’05].
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Facet Recovery
Some subfaces of a facet are missing - they must be non-Delaunay
and crossed by Delaunay edges.

A missing region €2 is formed by a set of missing subfaces which are
connected to each other.

From each € one can form two cavities in a DT, one at each side of (2.
Each cavity C is a polyhedron bounded by triangular faces.

>
[ T ST

A facet A missing region A cavity
(shaded area)
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Cavity Tetrahedralization
A cavity C is tetrahedralized by the following procedure.

1. Verify C. Enlarge C until all faces of C are Delaunay.
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Complexity Issues

n — the number of input points,
s —the number of Steiner points,
m — the number of output points (i.e., m=n + s).

Steps | Algorithms Worst case | General case
(1) | Delaunay tetrahedralization O(n?) O(nlogn)
(2) | Surface triangulation O(nlogn)
(3) | Vertex perturbation [Si et al05] | O(nlogn)
(4) Segment recovery [Si et al05] | O(sn?logn) | O(slogn)
(5) Facet recovery [Shewchuk'03] | O(m?logm)
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Example 1 - Camila

A 3D PLC The DT The surface mesh
954 subfaces, 706 segments

460 vertices, 328 facets

V=
A CDT Facet recovery Segment recovery
with 505 Steiner points 22 missing subfaces 213 + 292 Steiner points
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Example 2 - Campus TU Delft

Input PLC The CDT

5184 vertices 9921 vertices
3229 facets 54338 tetrahedra
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