
Peer Review
 O

nly
3D Boundary Recovery by Constrained Delaunay Tetrahedralization 

Journal: International Journal for Numerical Methods in Engineering 

Manuscript ID: NME-Mar-08-0165.R1 

Wiley - Manuscript type: Research Article 

Date Submitted by the 
Author:

21-Aug-2008 

Complete List of Authors: Si, Hang; WIAS, FG3 
Gaernter, Klaus; WIAS, FG3 

Keywords:
tetrahedral mesh generation, 3D boundary recovery, constrained 
Delaunay, Steiner points 

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2000; 00:1–6 Prepared using nmeauth.cls [Version: 2002/09/18 v2.02]

3D Boundary Recovery by
Constrained Delaunay Tetrahedralization

H. Si∗ and K. Gärtner

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117, Berlin, Germany

SUMMARY

Three-dimensional boundary recovery is a fundamental problem in mesh generation. Theoretical
questions of this problem like complexity, optimality, and output size are either NP-complete or
still open. We propose a practical algorithm for solving this problem. Our algorithm is based on the
construction of a constrained Delaunay tetrahedralization (CDT) for a set of constraints (segments and
facets) in three-dimensional space. Additional points (so-called Steiner points) on the constraints are
allowed in order to form the CDT. All Steiner points can be removed from the constraints by a post-
processing step, few of them may remain in the interior of the mesh. The complexity of this algorithm
is discussed. The proposed algorithm has been implemented. The performance of the algorithm is
reported through various application examples. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: tetrahedral mesh generation, 3D boundary recovery, constrained Delaunay

tetrahedralization, Steiner points

1. INTRODUCTION

Given a domain Ω in R3, a fundamental problem is how to partition Ω into a set of simple
cells such that the boundary ∂Ω is represented by a union of the cells. This problem is also
known as boundary conformity. Many applications are based on it.

This problem has many difficulties in three-dimensional space. It is known that additional
points (so-called Steiner points) are necessary in order to form a tetrahedralization of a
polyhedron [1, 2]. See Fig. 1 for examples. Moreover, the problem to determine whether a
simple polyhedron can be tetrahedralized without Steiner points is NP-complete [3]. When
Steiner points are used, Chazelle [4] showed there are some polyhedra which may require a
large number of Steiner points to be tetrahedralized, see Fig. 1 right.

Some applications in mesh generation, e.g., local re-meshing, use a pre-discretized surface
mesh as input, and require that the tetrahedral mesh of the domain must match the surface
mesh exactly. This requires that Steiner points should not be added on the input boundary
but only occasionally be added into the interior space. A number of constructive methods have
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2 H. SI AND K. GÄRTNER

Figure 1. Two polyhedra which are not tetrahedralizable without Steiner point. Left: The Schönhardt
polyhedron [2] can be obtained by twisting the upper face around the axes of a parallel triangular
prism by a small angle. Right: The Chazelle’s polyhedron [4] formed by cutting wedges from a cube.
In the middle of the polyhedron are two sets of orthogonal lines. The lower and upper lines lie on

hyperbolic paraboloids z = xy, and z = xy + ǫ, respectively.

been developed for this purpose [5, 6, 7, 8]. These methods are successful in solving engineering
problems. However, many theoretical questions, like the number of Steiner points, the mesh
quality, and the complexity, are not well addressed.

Convex decomposition studies the problem of how to decompose a polyhedron into a set of
non-overlapping convex pieces [4, 9, 10, 11, 12, 13, 14]. By allowing Steiner points, Chazelle
showed that any simple polyhedron (which has genus 0) P of n vertices can be partitioned
into O(n2) tetrahedra [4]. The bound is tight in the worst case. Call an edge of P reflex if its
adjacent faces forming an angle larger than 180◦. Chazelle and Palios [9] presented an algorithm
to decompose a simple polyhedron with n vertices and r reflex edges using O(n + r2) Steiner
points. The main contribution of these works has been to establish the quadratic complexity of
the worst case of this problem. However, the proposed algorithms are usually very complicated
and will result unnecessarily large number of output tetrahedra. See Fig. 2 (b) for an example.
Hence these works are only of theoretical interest.

The Delaunay triangulations are well-studied objects in computational geometry, see, e.g.,
[15, 16]. A conforming Delaunay triangulation of a polyhedron P is a partition of the
polyhedron into a set of Delaunay simplices [17], see Fig. 2 (c) for an example. An alternative
approach for the boundary conformity problem is to directly enrich the vertex set V of a
polyhedron P by adding Steiner points on the boundary ∂P until all simplices on ∂P satisfy
the Delaunay criterion [17]. Hence the Delaunay triangulation of V is a conforming Delaunay
triangulation of P [18, 19, 20]. This approach, however, may need an unnecessarily large
number of Steiner points. Edelsbrunner and Tan [21] provides a cubic upper bounds on
the number of Steiner points necessary for a conforming Delaunay triangulation of a two-
dimensional polygon. No polynomial upper bound on the number of Steiner points is known
in three dimensions.

Constrained Delaunay triangulations are first studied by Lee and Lin [22] and Chew [23] for
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 3

(a) The input polyhedron (b) Convex decomposition
20 nodes, 12 facets 138 nodes, 280 tets

(c) Conforming Delaunay (d) Constrained Delaunay
51 nodes, 103 tets 20 nodes, 29 tets

Figure 2. Results of different approaches for meshing a simple polyhedra.

generating two-dimensional Delaunay-like triangulations from planar stright line graphs, see
Fig. 3 for an example. The same concept can be generalized into three and higher dimensions.
Constrained Delaunay triangulations usually need fewer number of Steiner points than that
needed by conforming Delaunay triangulations (see Fig. 2 (d) for an example), and they have
many optimal properties as close as those of Delaunay triangulations [24]. Furthermore, many
engineering meshing methods [25, 26, 27, 28] make use of them as the intermediate meshes to
obtain good quality tetrahedral meshes suitable for numerical simulation.

Algorithms for generating constrained Delaunay tetrahedralizations are proposed [29, 30, 31].
All the algorithms use Steiner points to enforce the boundary conformity. A key question is
how to choose Steiner points. In [29], the majority of Steiner points are chosen at the midpoint
of missing boundary edges. This algorithm may create many unnecessary Steiner points. A set
of Steiner points insertion rules are introduced in [31], such that the Steiner points are chosen
adaptively according to the geometric neighbor informations.

Once all boundary edges of P are recovered, Shewchuk shows that it is possible to recover the
boundary faces of P without using Steiner points [32]. Another key question is how to efficiently
recover facets of P? So far, Shewchuk proposed several algorithms for this purpose [29, 30].
Among them, the flip-based facet insertion algorithm [30] has better performance. In [31], a
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Figure 3. Constrained Delaunay triangulation. The circumcircle of the shaded triangle is not empty
but no enclosed vertex is visible from its interior.

simple incremental facet recovery algorithm is proposed.

Our contributions In this paper, we present an theoretical algorithm for constructing
constrained Delaunay tetrahedralizations and prove its correctness. This algorithm is based
on our previous work [31] and it contains many substantial improvements. First of all, the
presented algorithm is greatly simplified over the original algorithm and is easy to implement.
We will show that the phase of local degeneracy removal is not required. The segment recovery
and facet recovery phases in [31] are simplified and improved. We will compare our segment
recovery algorithm with other algorithm. In the facet recovery phase, we will prove that the
verification of cavity step in [31] (which is very time consuming) is not needed. The complexity
of the proposed algorithm will be analyzed. We further discuss a post-processing step for
deleting and suppressing Steiner points from the boundary of the domain.

Outline The rest of the paper is organized as follows. We first formalize the meshing
problems in Section 2. In Section 3 we give the definition of constrained Delaunay
tetrahedralizations and show some basic properties they have. The proposed algorithm is
described in Section 4. The individual phases (segment recovery and facet recovery) of the
algorithm are discussed in the consecutive sections, i.e., Section 5, 6, and 7. The analysis of
the algorithms are given therein. We discuss the approach for deleting and suppressing Steiner
points in Section 8. Some experimental results from publicly available examples are shown in
Section 9. We end this paper with a conclusion and an outlook in Section 10.

2. THE MESHING PROBLEMS

We first define the input objects. A physical domain Ω in R3 is the volume enclosed by its
boundary ∂Ω. Usually, ∂Ω may be arbitrarily shaped, e.g., curved edges and surfaces. Many
applications require that ∂Ω includes internal boundaries which separate Ω into sub-domains

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 5

Figure 4. Polyhedra and faces. Left: A polyhedron (a handle) formed by the union of four convex
polyhedra. Two faces (one at top and one at bottom) of it are not simply connected. Right: Two

polyhedra. The shaded area highlights two 2-faces whose points have the same face figures.

so that different materials can be modeled. Hence Ω is generally not a topological manifold. A
mesh domain is an object which approximates Ω topologically and geometrically.

We define a not necessarily convex polyhedron as the union of convex polyhedra, P =
⋃

P ,
where P is a finite set of convex polyhedra, and the space of P is connected, see Fig. 4. The
dimension of P , dim(P ), is the largest dimension of a convex polyhedron in P .

We modify the suggestion of Edelsbrunner [33] to define faces of P . Let Bǫ be the open
ball of radius ǫ centered at the origin in Rd. For a point x ∈ Rd we consider a sufficiently
small neighborhood Nǫ(x) = (x + Bǫ) ∩ P . The face figure of x is the enlarged version of this
neighborhood within this polyhedron, i.e., x+

⋃

λ>0 λ(Nǫ(x)−x). A face of P is the closure of
a maximal connected collection of points with identical face figures. By this definition, a face
F of P may contain holes, but the space of F must be connected, see Fig. 4 for examples. F

is again a polyhedron. The dimension of F is the dimension of its affine subspace aff(F ), i.e.,
dim(F ) = dim(aff(F )). A 0-face is a vertex, a 1-face is an edge (also called a segment), and a
(dim(P ) − 1)-face is called a facet of P . All proper faces of P form the boundary bd(P ) of P .
The interior of P is int(P ) = P − bd(P ).

We define a piecewise linear system (abbreviated as PLS) to be a finite collection X of
polyhedra with the following properties

(i) P ∈ X =⇒ all faces of P are in X ,
(ii) P, Q ∈ X =⇒ P ∩ Q ⊂ X , and
(iii) dim(P ∩ Q) = dim(P ) =⇒ P ⊆ Q and dim(P ) < dim(Q).

This definition generalizes the one introduced by Miller et al. [34] by allowing non-convex
polyhedra, see Fig. 5. PLSs are flexible for representing non-manifold objects. The properties
(i) and (ii) are essential, they ensures that a PLS is closed by both taking boundaries and
taking intersections. The property (ii) is relaxed from that of a complex. For example, an
edge and a quadrilateral may intersect at a point v as long as v ∈ X . Since two non-convex
polyhedra P and Q may intersect at more than one faces of them, P ∩Q is a subset of X . (iii)
is an extra property for a PLS which makes it more flexible. For example, it allows a cube
encloses an edge in its interior with no need to further decompose it. Furthermore, it excludes
the case which two polyhedra having the same dimension overlap each other.

The dimension of a PLS X , dim(X ), is the largest dimension of its polyhedron. A subsystem
of X is a subset of X which is again a PLS. A particular subsystem is the i-skeleton, X (i), of
X which consists of all polyhedra of X whose dimensions ≤ i. For example, X (0) is the vertex
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Figure 5. A three-dimensional piecewise linear system X . In this figure, the dimensions of polytopes
Q, P, R, L ∈ X are 3, 2, 1, 1, respectively. U, V, W ∈ X are 0-polytopes, where V = R ∩ L = R ∩ Q,

L = L ∩ Q, and dim(L) < dim(Q).

set, vert(X ), of X . The boundary system, ∂X , of X is the (dim(X ) − 1)-skeleton of X . The
underlying space of X is |X | =

⋃

P∈X
P . Note that |X | ⊆ Rd is a topological subspace of Rd.

The collection X gives a special topology on |X |, refer to [35].
Given a physical domain Ω, we use a PLS X to represent it such that Ω and |X | are

homeomorphic (i.e., they are topologically equivalent) and the shape of Ω is approximated by
|X | geometrically .

Next we define the output objects. A triangulation of a PLS X is a simplicial complex T
such that the underlying space of T equals to the convex hull of the vertices of X and every
polyhedron of X is represented by a subcomplex of T . More formally, T satisfies

(i) |T | = conv(vert(X )), and
(ii) ∀P ∈ X =⇒ ∃K ⊆ T such that |K| = P .

Note that T may contain Steiner points. We define a mesh of X to be a subcomplex K of
T such that |K| = |X |. According to our definitions, a triangulation of a set S of vertices
triangulates the convex hull of S, while a mesh of S is just S itself. See Fig. 6 for examples.
Our output object is either a triangulation or a mesh of the input PLS.

The meshing problems Let X be a three-dimensional PLS. The three-dimensional
boundary conformity problem is: Find a tetrahedral mesh T of X such that

(1) the number of Steiner points in T is bounded, and
(2) the mesh quality of T is optimal.

The first requirement means that the number of Steiner points in T should be limited as small
as possible. One can achieve it by showing a polynomial upper bound on the number of Steiner
points depending only on the input size of X .

The requirement (2) needs more definitions. First of all, the definition of mesh quality
depends on applications. In the context of numerical simulations, the mesh quality is be
determined together by several measures on element shape, size, and orientation [36]. In
general, the mesh quality can be expressed by an object function f : PT → R, where PT is the
collection of all meshes of X , and f(T ) maps a T ∈ PT into a real value. The optimal mesh is
defined to be the one on which f attains its minimum. For an example, when the mesh is used

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 7

(a) A PLS X (b) Not a triangulation of X

(c) A triangulation of X (d) A mesh of X

Figure 6. Triangulation and mesh.

for function approximation, then the Delaunay triangulation minimizes the interpolation error
for the lifting function ‖x‖2 among all other triangulations of the same vertex set [37, 38].

Among different mesh quality measures, a necessary requirement is that the element edge
length is not too short. This means that no Steiner point should be added arbitrarily close to
the existing vertices. In other words, the shortest edge length in T can be bounded by some
constant divided by the smallest feature size of X .

We further consider a stronger three-dimensional boundary conformity problem: Let F be
a (surface) mesh of ∂X , find a tetrahedral mesh T of X such that T satisfies the above two
requirements, in additional, F is a subcomplex of T . In other words, the stronger meshing
problem forbiddens the adding of Steiner points on the input boundary.

3. CONSTRAINED DELAUNAY TETRAHEDRALIZATIONS

Let S ⊂ Rd be a finite set of vertices. A Delaunay triangulation for S is a simplicial complex
whose union is the convex hull of S and every simplex is characterized by the Delaunay
criterion (also known as the ”empty sphere” criterion) [17]: a simplex σ whose vertices are in
S is Delaunay if there exists a circumscribed ball Bσ of σ such that Bσ contains no vertices of
S in its interior. Delaunay triangulations have many optimal properties [39] which are useful in
various applications. Efficient algorithms are proposed for computing Delaunay triangulations
in two and three dimensions, see e.g., [40, 41, 42, 43, 44].

Let X be a PLS in Rd. A conforming Delaunay triangulation of X is a triangulation of X
such that every simplex of the triangulation is Delaunay. Note that Steiner points is usually
needed in a conforming Delaunay triangulation of X . Edelsbrunner et al [21] proved that one
need at most O(n3) Steiner points for obtaining a conforming Delaunay triangulation in R2.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 7. Visibility and constrained Delaunay criterion. The shaded region is a facet F of a PLS X in
R3, a,b, c,p ∈ F . ab is a segment of X . Left: d and q are invisible to each other since dq∩ F = v. c

and p are invisible to each other since cp ∩ ab = u. u sees both c and p. Right: A circumball of the
tetrahedron abcd contains q. abcd is constrained Delaunay since q is not visible from its interior.

The triangle abc ⊂ F is constrained Delaunay since p is outside its diametric ball.

No upper bound is available yet in dimension higher than two.

Let G be a planar straight line graph. Any two edges of G is either disjoint or meet at a
common endpoint (i.e., G is a 1-dimensional PLS). A constrained Delaunay triangulation of G
is a triangulation T of G such that the circumscribed circle of any triangle τ ∈ T contains no
vertex of T which is visible from the interior of τ , see Fig. 3. This definition is independently
developed by Lee and Lin [22] and Chew [23]. Note that Steiner points are not needed in this
definition. This concept can be generalized into d dimensions for d ≥ 3. While it is necessary
to take Steiner points into account.

A crucial concept is the visibility of points in Rd. The basic idea is: every polyhedron P ∈ X
may block the visibility of points which are not in P , while P does not block the visibility
for its own points. Two points x,y ∈ Rd are invisible to each other if the interior of the line
segment xy intersects a polyhedron P ∈ X at a single point. Otherwise x and y are visible to
each other. See Fig. 7 left for examples.

The next definition, referred as the constrained Delaunay crietrion, relaxes the Delaunay
criterion by using the visibility of points. Let S be a finite set of points and X be a PLS in Rd

with vert(X ) ⊆ S. A simplex σ whose vertices are in S is constrained Delaunay if it is in one
of the two cases:

(i) There is a circumball Bσ of σ which is empty.
(ii) There exists F ∈ X , such that int(σ) ⊆ int(F ). Let K = S ∩ aff(F ), then no vertex of K

inside Bσ is visible from any point in int(σ).

Case (i) means that every Delaunay simplex is constrained Delaunay. In (ii), F is the lowest-
dimensional polyhedron of X that contains σ, K is the subset of S in the affine hull generated
by F . A simplex σ ⊂ F is constrained Delaunay or not only depends on vertices of K. See
Fig. 7 right for examples.

A constrained Delaunay triangulation (abbreviated as CDT) of X is defined as a
triangulation T of X such that every simplex of T is constrained Delaunay. A three-dimensional
CDT is also called a constrained Delaunay tetrahedralization.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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By this definition, a CDT of X may contain Steiner points, i.e., the points in S \ vert(X ).
It is called a pure CDT if it does not contain Steiner points. A 2-dimensional pure CDT is
the same as the one defined by Lee and Lin [22] and Chew [45]. Shewchuk’s definition of a
CDT [24] is also a pure CDT. It is well known that a pure CDT of a 3-dimensional PLS may
not exist while there are infinitely many CDTs of X with Steiner points.

In the following, we introduce some basic properties of the CDTs we’ve just defined. These
properties show that a CDT of a PLS X is very close to a conforming Delaunay triangulation
of X . The proofs are omitted, they are found in [35].

Delaunay triangulations can be checked locally. It is true for CDTs as well. Let X be a d-
dimensional PLS. Let T be any triangulation of X . A (d−1)-simplex σ of T is locally Delaunay
if either (i) σ is on the convex hull, or (ii) σ ⊂ |∂X|, or (iii) the opposite vertex of τ is not
in int(Bν) of ν, where τ, ν ∈ T and σ = τ ∩ ν. Note that (ii) implies that one can ignore the
(d − 1)-simplices contained in the boundary of |X |.

Theorem 1 (Constrained Delaunay Lemma [35]) If every (d−1)-simplex of T is locally
Delaunay, then T is a CDT of X .

If a point set S in Rd is in general position, i.e., no d + 2 points of S share a common
(d − 1)-sphere, then the Delaunay triangulation of S is unique. By the above theorem, it is
easy to show that this property holds for CDT as well.

Corollary 2. Let T be a CDT of X . If vert(T ) is in general position, then T is the unique
CDT of X with respect to vert(T ).

Let X be a d-dimensional PLS. The i-skeleton X (i) of X is an i-dimensional PLS, where
0 ≤ i ≤ d − 1. It is useful to know the properties of a CDT of X (i).

Theorem 3 ([35]) Let X be a d-dimensional PLS.
(i) A CDT of X (d−1) is a CDT of X .
(ii) A CDT of X (i) is a conforming Delaunay triangulation of X (i), where 0 ≤ i ≤ d − 2.

For examples, if X is a 3-dimensional PLS in R3, then a CDT of the 1-skeleton of X (the
set of vertices and segments of X ) is a conforming Delaunay triangulation. And a CDT of the
2-skeleton of X (the set of vertices, segments, and facets of X ) is also a CDT of X .

4. THE CDT ALGORITHM

Let X be a three-dimensional PLS, i.e., X is a collection of polyhedra of dimensions up to
3. The boundary of X consists of a set of vertices, segments, and facets. The algorithm to
construct a constrained Delaunay tetrahedralization T of X works in the following steps:

1. Initialize a CDT D0 of X (0).
2. Let D1 = D0. Recover segments of X in D1 such that D1 is a CDT of X (1).
3. Let D2 = D1. Recover facets of X in D2 such that D2 is a CDT of X (2).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 8. A condition (Theorem 5) guarantees the existence of a CDT without Steiner points. The left
PLS does not satisfy the condition. The right PLS whose all edges are Delaunay satisfies the condition

if the vertex set of the PLS is in general position.

This algorithm proceeds in the increasing order of the dimensions of the skeletons. It
initializes a CDT of X (0) (which is a Delaunay tetrahedralization of vert(X )). This step can
be completed efficiently by any of the Delaunay triangulation algorithms mentioned before.

The next two steps incrementally constructing a CDT Di of X (i) from a CDT Di−1, where
i = 1, 2. By Theorem 3, D2 is a CDT of X . A constrained Delaunay mesh of X can be obtained
by removing simplices of D2 not in |X |.

In this algorithm, Steiner points are only introduced in the step 2 (segment recovery). In
order to prove this, the following assumption is needed.

Assumption 4. Assume the vertex set of the CDT D1 of X (1) is in general position, i.e., no
five vertices of vert(D1) share a common sphere.

Although this assumption is very strong, it can be satisfied easily by using techniques like
symbolic perturbations [46, 29, 47]. Hence, theoretically, there is no need to actually perturb
the vertices. We will discuss this issue in the implementation of this algorithm.

Shewchuk [32] showed that if every segment of X is Delaunay with respect to the vertex set
of X , then it is possible to recovery facets of X without using Steiner points. The following
theorem follows directly from Shewchuk’s result [32] and Corollary 2.

Theorem 5. If the vertex set of D1 is in general position and D1 contains all segments of X ,
then X has a unique CDT with no Steiner point.

The above theorem states a slightly stronger condition than Shewchuk’s condition [32] which
will be satisfied in our algorithm (see Fig. 8).

Once the existence of a CDT with no Steiner points is known, we still need to show that
the step 3, i.e., facet recovery, can be done without using Steiner points. We will postpone the
proof of the correctness of the algorithm until the end of Section 6.2.

5. SEGMENT RECOVERY

The Delaunay tetrahedralization D0 of vert(X ) may not contain all segments of X . This section
presents a segment recovery algorithm for recovering missing segments of X . The inputs are
X (1) and D0. The output of this algorithm is a CDT D1 of X (1). Hence every segment of X is

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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a union of edges of D1. For the mesh quality requirement, it is desired that no unnecessarily
short edge is introduced in D1.

5.1. Segment Splitting Rules

We need some definitions. A vertex of X is acute if at least two segments of X incident at it
form an angle less than 90◦. We distinguish two types of segments in X : a segment is type-0
if its both endpoints are not acute, it is type-1 if only one of its endpoints is acute. If both
endpoints of a segment are acute, it is treated as a type-0 segment at the beginning and it is
transformed into two type-1 segments immediately after a Steiner point is inserted in it.

Let eiej be a segment of X with endpoints ei and ej . eiej is split by adding a Steiner
point in the interior of it. The two resulting edges are called subsegments of eiej . Subsegments
inherit types from the original segments. For example, if eiej is a subsegment of e1e2 which
is a type-1 segment, eiej is also type-1 although none of its endpoints is acute. For any vertex
v inserted on a type-1 segment (or subsegment), let R(v) denote its original acute vertex. A
tacit rule is used throughout this section, if eiej is a type-1 segment, it implies that either ei

or R(ei) is acute. In the following, unless it is explicitly mentioned, the term ”segment” means
either a segment or a subsegment.

The diametric circumball of a segment is the smallest circumscribed ball of it. A vertex
encroaches upon a segment if it lies inside the diametric circumball of that segment. We have
the following fact about missing segments of X .

Fact 6. If a segment of X is missing in D0 and vert(D0) is in general position, then it must
be encroached by at least one vertex of D0.

Let eiej be a missing segment, it will be split by a vertex v in the interior of it. A reference
point p of v, which is responsible for the insertion of v, is chosen randomly from the set of
encroaching points of eiej . The choice of v is governed by three rules given below. Let Σ(c, r)
be a sphere with cenetr c and radius r, and let ‖ · ‖ be the Euclidean distance function:

1. eiej is type-0 (Fig. 9 left), then v = eiej ∩ Σ(c, r), where
if ‖ei − p‖ < 1

2‖ei − ej‖ then
c = ei, r = ‖ei − p‖;

else if ‖ej − p‖ < 1
2‖ei − ej‖ then

c = ej , r = ‖ej − p‖;
else

c = ei, r = 1
2‖ei − ej‖;

end.
2. eiej is type-1 (Fig. 9 middle), let ek = R(ei), then v = ekej ∩Σ(c, r), where c = ek and

r = ‖ek − p‖. However, if ‖v − ej‖ < ‖v − p‖, then reject v and use Rule 3; end.
3. (Continued from Rule 2) Let v′ be the rejected vertex by Rule 2 (Fig. 9 right), then

v = ekej ∩ Σ(c, r), where c = ek, and
if ‖p− v′‖ < 1

2‖ei − v′‖ then
r = ‖ek − ei‖ + ‖ei − v′‖ − ‖p− v′‖;

else
r = ‖ek − ei‖ + 1

2‖ei − v′‖;
end.
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Figure 9. Segment splitting rules.

The idea of these rules is to avoid creating unnecessarily short edges. All the three rules
guarantee that the newly inserted vertices do not too close to the existing ones. Note that
Rule 1 and 2 never create an edge shorter than the distance ‖R(ei) − v‖. Rule 3 may create
an edge which is at most one third of the length of ‖R(ei)− ej‖. Later we will show the total
number of applying Rule 3 is bounded.

For several segments sharing an acute vertex, by repeatedly using Rule 2 or 3, a protecting
ball is automatically created which ensures: no other vertex can be inserted inside the ball.
The effect is shown in Fig. 10 right. Note that the protecting ball is not necessarily completely
created, i.e., only the missing segments will be split and protected. Existing segments remain
untouched. This feature reduces the insertion of unnecessary Steiner points.

5.2. The Algorithm

The SegmentRecovery algorithm is described below. The inputs are a three-dimensional
PLS X and a Delaunay tetrahedralization D0 of vert(X ). The algorithm initializes a set S of
all segments of X . Then it runs into a loop until S is empty.

At each time, a randomly selected segment eiej is removed from S. If it is missing in D1, a
Steiner point v is generated by one of the three segment splitting rules (line 6). v splits eiej

into two subsegments eiv and ejv, they are added into S (line 7). Moreover, the insertion of
v may cause other existing segments (subsegments) of X missing in D1, they are added into S
as well (line 8). Here Bσ means the diametric circumball of a segment σ ∈ X (1). D1 is updated
to a Delaunay tetrahedralization of the vertex set including v (line 9).

5.3. Proof of Termination

The termination of this algorithm can be proved by showing that the length of every
subsegment will not be arbitrarily small. The local feature size [48] lfs(v) of any point v ∈ |X |
is the radius of the smallest ball centered at v that intersects two disjoint elements of X . The
lfs() defines a continuous map that maps every point in |X | into a positive value which suggests
how large the ball of the empty space around this point can be. This function only depends
on the set X and does not change as new points are inserted.

Theorem 7. Let eiej be a resulting subsegment.
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Algorithm SegmentRecovery (X , D0)
// X is a three-dimensional PLS; D0 is the DT of vert(X ).
1. D1 = D0;
2. Initialize a set S of all segments of X ;
3. while S 6= ∅ do
4. get a segment eiej ∈ S; S = S \ {eiej};
5. if eiej is missing in D1, then
6. find a Steiner point v ∈ int(eiej) by Rule i, i ∈ {1, 2, 3};
7. S = S ∪ {eiv, ejv};
8. S = S ∪ {σ ∈ X (1), σ ∈ D1

∣

∣v ∈ int(Bσ)};
9. update D1 to be the DT of vert(D1) ∪ {v};
10. endif
11. endwhile
12. return D1;

• if eiej is type-1, then:
‖ei − ej‖ ≥ min{lfs(ei), lfs(ej)}.

• if eiej is type-2, let ek = R(ei), then:
‖ei − ej‖ ≥ 1

C
lfs(ek) when ei = ek,

‖ei − ej‖ ≥ lfs(ek) sin(θ) when ei 6= ek.
where C is a bounded constant and θ is the smallest input angle.

Proof Every inserted vertex has a reference point which is responsible for the insertion. Let
v be an inserted vertex, and P (v) be its reference point.

If eiej is type-1. Without loss of generality, let ei be an inserted vertex, then pi = P (ei) is
either an input vertex or an inserted vertex on a segment which is not incident with eiej . By
Rule 1 ‖ei − ej‖ ≥ ‖ei − pi‖ ≥ lfs(ei).

If eiej is type-2 and let ek = R(ei). If ei = ek (ei is the acute vertex), let eies be the
segment containing eiej. Without loss of generality, assume there are n segments incident at
ei (including eies), and let eiea be the shortest segment among them, then lfs(ei) ≤ ‖ei−ea‖.

Consider the worst case, that eiea is first halved by a Rule 3, and due to multi-encroachment,
eies is also be split into eiv1 and v1es. If v1 = ej, then ‖ei − ej‖ = 1

2‖ei − ea‖ ≥ 1
2 lfs(ei),

else eiv1 will be split again. Assume again the worst case, i.e., eiv1 is halved by a Rule 3 into
eiv2 and v2v1. But the cause of inserting v2 must not due to eiea because the incident
parts (at ei) of both segments have been split into the same length. Again consider the
worst case, the insertion of v2 is caused by a split of another segment eieb. If v2 = ej ,
then ‖ei−ej‖ ≥ 1

4‖ei−e1‖ ≥ 1
4 lfs(ei). If eiej still doesn’t appear, the splitting procedure will

continue. In the worst case, eies is split at most n times, and each time is originally caused
by a Rule 3. Hence ‖ei − vn‖ ≥ 1

2n
lfs(ei). If vn = ej, then C = 2n.

Now it is possible that vn 6= ej , i.e., eies will be split again. However, after at most n times
Rule 3 splits, the new split of eies must not be caused by any incident segment at ei. Hence
the cause of the split is either from a disjoint segment or an existing vertex. Since there are
only finite number of input vertices and input segments, C is finite.

If ei 6= ek, then p = P (ei), and ‖ei − ej‖ ≥ ‖ek − ei‖ sin(θ) ≥ lfs(ei) sin(θ) (θ be the angle
between ekei and ekp).
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Figure 10. Comparison with other algorithm (in 2D). The Steiner vertices are shown in red. The
protecting balls around acute vertices are shown (in red). Left: a result of Shewchuk’s algorithm [29],

24 Steiner points. Right: a result of our algorithm, 8 Steiner points.

Theoretically, the constant C in the above theorem could be exponentially large. In our
experiments on various data sets, the algorithm terminates within a few steps creating the
protection ball sector. C is usually no larger than 4.

5.4. Comparison with Other Algorithm

Shewchuk proposed a segment recovery algorithm [29] for the same purpose. This algorothm
proceeds in two steps. The first step uses protecting spheres centered at acute vertices of X .
New points are placed at where the segments and spheres intersect (see Fig. 10). The radii of
these spheres are chosen priori such that they are not unnecessarily small. The subsegments
inside the spheres are strongly Delaunay, and no later Steiner points can be inside the spheres.
The second step recovers other non-Delaunay (sub)segments by recursively bisection. Fig 10
shows a comparison between the two algorithms in two dimensions. It shows that Shewchuk’s
algorithm may create many unnecessary Steiner points than Ours.

Next example shows that Shewchuk’s algorithm may introduce many unnecessarily short
edges. The input PLS is shown in Fig. 11 (a). It consists of m + 1 segments all meeting at
one single point a. Assume that all segments have the same length. An additional point v lies
slightly below the segment ab0, and let ‖a−v‖ = 2

3 ‖a−b0‖−ǫ, where 0 < ǫ << ‖a−b0‖. The
first step of the algorithm protects a by adding Steiner points c0, ..., cm on segments (Shown
in (b)) such that ‖a− cm‖ = 1

3 ‖a− bm‖.
Now because of the presence of v, segment c0b0 is non-Delaunay. The second step of this

algorithm will bisect c0b0 by adding u0, and so do for cibi by adding ui, for i ≤ m. One can
easily see ‖cm − um‖ = 2−1 2

3 ‖a− bm‖.
The bisection process will continue until all subsegments are Delaunay. The final status is

shown in (c). One can deduce that the length:

‖wm − um‖ = 2−k 2

3
‖a− bm‖,

where k is the number of bisections on each segment. In particular,

2

3
‖a− bm‖ ≥ lfs(wm).
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Figure 11. A study of the number of Steiner points may be introduced by the algorithm of
Shewchuk [29] and our algorithm.

Put these together, we have

‖wm − um‖ ≥ 2−k lfs(wm).

One can make k arbitrarily large by moving v arbitrarily close to ab0. Hence the edge length
‖um −wm‖ may be arbitrarily short. As a result, many short edges (on the circles) and many
Steiner points are created. Our algorithm will only create m + 1 Steiner points (see (d)) on
the circle centered at a with radius ‖a − v‖.

5.5. Computational Issues

One frequently used operation in our segment recovery algorithm is to match a segment with
an edge of D1. Let ab be a segment to be matched. The star of a, St(a), contains all simplices
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of D1 that contain a, and the link of a, Lk(a), contains all faces of simplices in St(a) that do
not contain a. One first locate a tetrahedron τ ∈ St(a), then search ab in St(a). If ab ∈ St(a),
then ab is matched in D1, otherwise, it is missing and will be recovered. The main cost of
this operation is the time for locating τ . By available point location algorithms, e.g., [49], the
matching of a segment could be done efficiently.

Let ab be a missing segment. The reference point p for splitting ab is randomly chosen
from the set of encroaching points of ab. Another frequent operation is to collect the set of
encroaching points of ab. This is done by performing a line search from a towards b. The
worst-case time complexity for searching a reference point could be O(n2), such an example is
found in [50]. However, the average time for performing a line searching is much smaller.

Once a Steiner point v is found (by one of the segment splitting rules), it is inserted into D1

and D1 is updated into a Delaunay tetrahedralization including v. The main costs for inserting
v are point location and Delaunay update of D1 ∪ {v}. It can be shown that both steps could
be done efficiently.

After the insertions of v, ab is replaced by two subsegments av and vb. They are added
in S. The whole process is repeated until S is empty. The complexity of the segment recovery
algorithm depends on the total number of Steiner points ns. In the worst-case, the algorithm
may need O(n2

s log ns) time.

The robustness of this implementation takes advantage of the fact that D1 is always a
Delaunay tetrahedralization. The updating of D1 ∪ {v} incrementally builds a new Delaunay
tetrahedralization. Hence high precision or exact point-in-sphere test can be performed, see
e.g. [51, 52].

6. FACET RECOVERY

The input of the facet recovery algorithm is a CDT D1 of X (1). Some facets of X may not
be represented by D1. The Assumption 4, i.e., the vertex set of D1 is in general position, is
important. It guarantees that the facets of X can be recovered without using Steiner points.

6.1. The Algorithm

Each facet F ∈ X together with the Steiner points inserted on F is first triangulated into a
two-dimensional CDT TF . Hence ∂X is triangulated into a triangulation F . We call triangles
of F subfaces to distinguish other faces of D2. Some subfaces may be missing in D2. The facet
recovery algorithm incrementally recover missing subfaces of F .

At initialization, let D2 = D1; add all missing subfaces of F into a set S. The algorithm
iteratively recovers the subfaces in S and update D2, it stops when S is empty.

At each iteration i, several missing subfaces are recovered together. We define a missing
region Ω to be a set of subfaces of F such that

(i) all subfaces in Ω are coplanar,
(ii) the edges on ∂Ω are edges of D2, and
(iii) the edges in int(Ω) are missing in D2.

Hence Ω is a connected set of missing subfaces. It may not be simply connected, i.e., Ω can
contain a hole inside. Each missing subface belongs to a missing region. A facet can have more
than one missing regions.
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Figure 12. Left: The shaded area highlights a missing region Ω. Right: One of the cavities resulting
from a missing region is illustrated.

Figure 13. The FacetRecovery algorithm (illustrated in 2D). From left to right, the two initial
cavities C1 and C2 separated by a segment, the initial Delaunay triangulations DC1

and DC2
, triangles

of DC1
and DC1

are classified as ”inside” or ”outside”, and the new partitions of C1 and C2.

When a missing region Ω is found, one can derive a cavity in |D2| by removing all its
tetrahedra whose interiors intersect with Ω. This cavity can be further subdivided into two
cavities by inserting the subfaces of Ω in it, see Fig. 12 right. Each cavity is a three-dimensional
polyhedron C whose facets are triangles, some of them are subfaces of F .

The next step is to tetrahedralize each cavity C without using Steiner points. The
TetrahedralizeCavity subroutine first constructs the Delaunay tetrahedralization DC of
vert(C) (line 1). Next it removes those tetrahedra of DC which are not in the interior of C

from DC (lines 2 − 6). On finish, the remaining tetrahedra in DC form a partition of C.

Subroutine TetrahedralizeCavity (C)
// C is a cavity (a polyhedron with triangular facets).
1. form the Delaunay tetrahedralization DC of vert(C);
2. for each tetrahedron τ ∈ DC , do
3. if τ * int(C), then
4. DC = DC \ {τ};
5. endif
6. endfor
7. return DC ;

The FacetRecovery algorithm first initializes a set S of all subfaces of X . Then it runs
into a loop until S is empty. Once a subface σ is found missing in D2, a missing region
Ω containing σ is formed (line 6). All tetrahedra crossing Ω are removed from D2 (line 7)
resulting a temporary object D′

2. Two cavities C1 and C2 separated by Ω are formed in the
interior of |D2| (line 8). Then C1 and C2 are partitioned into two sets (DC1

and DC2
) of

tetrahedra by the subroutine TetrahedralizeCavity (lines 9 and 10), respectively. D2 is
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Algorithm FacetRecovery (X , D1)
// X is a three-dimensional PLS; D1 is the CDT of X (1).
1. D2 = D1;
2. Initialize a set S of all subfaces of X ;
3. while S 6= ∅ do
4. get a subface σ ∈ S; S = S \ {σ};
5. if σ is missing in D2, then
6. form a missing region Ω containing σ;
7. D′

2 = D2 \ {τ ∈ D2 | int(τ) ∩ Ω 6= ∅};
8. form two cavities C1, C2 (in |D2|), where C1 ∩ C2 = Ω;
9. DC1

= TetrahedralizeCavity(C1);
10. DC2

= TetrahedralizeCavity(C2);
11. D2 = D′

2 ∪ DC1
∪ DC2

;
12. endif
13. endwhile
14. return D2;

then updated to respect Ω with the new partitions of C1 and C2 (lines 11). Fig. 13 illustrates
the idea of this algorithm in two dimensions.

6.2. Proof of Termination

For each missing region Ω, the FacetRecovery algorithm recovers it by modifying an old
tetrahedralization D2 (which does not respect Ω) into a new tetrahedralization D2 which respects
Ω, i.e., Ω is a union of faces in D2.

There are two key issues to be shown in the FacetRecovery algorithm, which are: (1) the
two calls of the subroutine TetrahedralizeCavity (in lines 9 and 10), and (2) the update
of D2 (line 11). For (1) we prove that each Ci, i = {1, 2} can be partitioned into DCi

without
using Steiner points (Lemma 8). For (2), we prove that the new tetrahedralization D2 (respects
Ω) is a CDT with respect to all the recovered subfaces of X (Lemma 9).

Lemma 8. Assume the old tetrahedralization D2 is a CDT and it satisfies the assumption 4.
Then the two calls of TetrahedralizeCavity subroutines (in lines 9 and 10) success.

Proof Recall that a cavity C in |D2| is a polyhedron whose facets are all triangles. If a facet
σ of C is a Delaunay in the vertex set (vert(C)) of C, then the Delaunay tetrahedralization
DC of vert(C) must contain σ (by the assumption that vert(C) is in general position). If it is
the case for every facet of C, then each tetrahedra in DC must lie either inside or outside C.
Hence the loop (lines 2− 6) in TetrahedralizeCavity can be done successfully. It remains
to show that: all facets of C are Delaunay in vert(C). We show that this is true if the old
tetrahedralization D2 (which does not respect Ω) is a CDT.

We divide the set of facets of C into two disjoint sets K1 and K2 such that all triangles in K1

are also triangles in D2, and no triangle of K2 is in D2. In other words, K2 is the set of missing
subfaces in D2 and |K2| = Ω (see Fig. 14). Obviously, all facets of C in K2 are Delaunay in
vert(C) (since each subface of X is constrained Delaunay in vert(X )). What left is to show
that: all facets in K1 are Delaunay in vert(C).

Assume the converse is true. Let σ ∈ K1 be a non-Delaunay face in vert(C). The diametric
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Figure 14. Proof of Lemma 8. Illustrations in 2D.

circumball Bσ of σ contains a subset V of vertices of vert(C) in its interior. Let Hσ be the
plane passing through σ. Hσ divides V into two disjoint sets V1 and V2, where both V1 and V2

are not empty. Without loss of generality, let V1 be the set of vertices at the same halfspace
of Hσ containing the vertex v ∈ D2, where v and σ form a tetrahedron τ in D2 (v 6∈ vert(C),
see Fig. 14). Then all vertices of V1 lie inside the circumscribed ball Bτ of τ .

Let w ∈ V1. We show that w is visible from the interior of τ . Pick any point x ∈ int(τ) such
that the line segment xw intersects τ at a face ν of τ (such x exists). Since τ intersects Ω in its
interior, it follows that ν also intersects Ω in its interior. If w is invisible from the interior of
τ , then ν must belong to a facet of X , so it can block the visibility of w. However, this would
implies that two facets of X intersect in their interior which is not possible by the definition
of a PLS. So w must be visible from the interior of τ . Hence, τ ∈ D2 is non-Delaunay, which
implies that D2 is not a CDT. We arrive a contradiction.

Lemma 9. The new tetrahedralization D2 (in line 11) is a CDT.

Proof Let Dold denote the old tetrahedralization which does not respect Ω. By assumption,
Dold is a CDT. D2 differs Dold only in the sets DC1

and DC2
. It suffices to show that every

simplex in DC1
and DC2

is constrained Delaunay in vert(D2).
Without loss of generality, let σ be a 2-face of DC , where DC may be either DC1

or DC2
.

We have the following cases.

(1) σ 6∈ ∂DC . Then σ is locally Delaunay (by TetrahedralizeCavity).
(2) σ ∈ ∂DC , and σ is a subface of X . Then σ is locally Delaunay by definition.
(3) σ ∈ ∂DC , and σ is not a subface of X . Then there are two tetrahedra τ ∈ DC and

τ ′ ∈ D2 \ DC and σ = τ ∩ τ ′. Let v ∈ τ and v′ ∈ τ ′ be the two opposite vertices of σ,
respectively. If the circumscribed ball Bτ of τ contains v′ in its interior, it also implies
that Bτ ′ contains v in its interior. This implies that Dold is not a CDT since τ ′ ∈ Dold

is not Delaunay, a contradiction. Hence it must be that σ is locally Delaunay.

In all cases, σ is locally Delaunay. Then by Theorem 1, D2 is a CDT.
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Now we can prove the termination of the FacetRecovery algorithm by combining
Lemma 8 and Lemma 9.

Theorem 10. The FacetRecovery algorithm terminates and results a CDT of X .

Proof At the beginning of the algorithm, the old tetrahedralization D2 = D1, it is a
CDT. Hence the first missing region Ω1 can be recovered (by Lemma 8) and the new
tetrahedralization D2 (which respects Ω1) is a CDT (by Lemma 9). This implies that the
second missing region Ω2 can be recovered in a new CDT D2 (which respects both Ω1 and
Ω2). This process repeats iteratively. Since X has finite number of facets. It implies that there
are finite number of missing regions. Hence the algorithm must terminate in a finite number
of iterations. On finish, the resulting tetrahedralization D2 is a CDT of X .

Theorem 10 completes the proof of the correctness of our CDT algorithm given in Section 4.

6.3. Complexity

In this section we show the worst behavior of the FacetRecovery algorithm with respect to
the number of vertices and facets of the input PLS.

Lemma 11. Let X be a three-dimensional PLS which has v vertices. One missing facet can
be recovered in time O(v2 log v).

Proof We prove this lemma by constructing a PLS which needs such running time, then
showing that it is indeed the worst case.

The PLS Lv,1 (1-layer) shown in Fig. 15 (a) has only 1 facet. It is a slightly perturbed square
(non-degenerate). Lv,1 contains a set of v points (here v = 100) which are randomly distributed
on top of the facet. The diameter of the facet is much larger than that of the point set. There
is another point in Lv,1 lies below the center of the facet. The Delaunay tetrahedralization
of vert(Lv,1) is shown in (b). The facet of Lv,1 is missing in it. The cavity formed from the
missing facet has size O(v). The CDT of Lv,1 is shown in (c).

Note that the removal of outside tetrahedra (lines 2− 6 in TetrahedralizeCavity) takes
linear time. The time for recovery of this facet is dominated by the time for constructing the
Delaunay tetrahedralization of the set of v vertices. There exist point sets with linear size
Delaunay tetrahedralizations that reach quadratic intermediate size with positive constant
probability. By using the randomized incremental flip algorithm [43], the worst time for
constructing the Delaunay tetrahedralization is O(v2 log v). Note that the largest possible
size of a cavity is v. These together prove the claim.

Theorem 12. Let X be a three-dimensional PLS which has v vertices and f facets. The
FacetRecovery algorithm runs in time O(fv2 log v).

Proof Since the time for recovery of one facet may be O(v2 log v), we just need to show that
it is indeed possible that all facets of X may be missing and the recovery of any facet may
require this time.

Let Lv,f be the PLS extended from Lv,1 by including a set of f parallel facets. Fig. 15 (d)
shows an example for f = 5. Clearly, the Delaunay tetrahedralization of vert(Lv,f ) will not
contain the f facets, see (e). If the set of missing facets are recovered in an order which is from
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(a) L100,1 (1 layer) (b) The DT (c) The CDT

(d) L100,5 (5 layers) (e) The DT (f) The CDT

Figure 15. Examples (Layers). The PLS L100,1 shown in (a) has 1 facet (1 layer), 100 vertices lie
on top of the facet, one vertex below the center of the facet. The facet is missing in the Delaunay
tetrahedralization of vert(L100,1) shown in (b). The CDT of L100,1 is shown in (c). The PLS L100,5

shown in (d) is extended from L100,1 by including 5 parallel facets. (e) and (f) respectively show the
Delaunay tetrahedralization and the CDT of L100,5.

bottom to top, then the size of each cavity remains O(v). This implies that the total time for
recovery of the f facets is O(fv2 log v).

Remark Note that the order of the recovery of the missing facets is important. For example,
if we reverse the recovering order in the above proof, i.e., missing facets are recovered from
top to bottom, only the top facet needs time O(v2 log v), while the size of all other cavities is
a constant (here is 4).

7. LOCAL DEGENERACIES REMOVAL

Theoretically, the assumption 4 can be satisfied by applying symbolic perturbation [46, 29, 47]
on the geometric predicates, e.g., point-in-sphere test, during the CDT algorithm. If the input
is a finite set of vertices, and the point-in-sphere test is calculated exactly, then the symbolic
perturbation is enough to satisfy the assumption.

Note that the facets of a PLS can be defined by any number of coplanar vertices. Hence
the point-in-sphere test is essentially reduced to the point-in-circle test on the vertices of a
facet. However, the latter may not be calculated exactly due to the possible input error, e.g.,
the vertices defining a facet may not be exactly coplanar. Even the input data is correct, it
may not be represented exactly by the computer floating-point numbers. For these reasons, a
preprocessing on the input PLS is necessary. The purpose is to detect and break the (possible)
degeneracies in the PLS. Steiner points (called break point) may be added.

Let X be a three-dimensional PLS. Let F ∈ X be a facet, and KF be a triangulation of F .
A set V of four vertices in F is called a local degeneracy if there are two triangles σ, ν ∈ KF ,
where σ ∩ ν 6= ∅ and V = vert(σ) ∪ vert(ν), such that the four vertices of V share a common
sphere. See Fig. 16 left for examples of local degeneracies.

Once the triangulation of a facet is formed, the local degeneracies can be detected efficiently
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v2

v4

vb

v3

v5

v6

v7

v1

Figure 16. Local degeneracies and the break points. On the left, a set of seven coplanar vertices
{v1, ..., v7} sharing a common circle. A triangulation of the vertices is shown. The subset
{v1,v2,v3, v4} is a local degeneracy, while the subset {v1,v2,v3,v5} is not. There are 4 local
degeneracies (corresponding to the four interior edges) in this triangulation. vb is a break point.

On the right is a triangulation after vb is inserted, no local degeneracy exists.

by locally checking all adjacent pairs of triangles. Let V be a local degeneracy. Let Σ(c, r) be
the common sphere shared by the four vertices of V , where c and r are the center and radius of
Σ, respectively. We introduce a Steiner point vb, called break point, such that vb = c+ǫ (c−v),
where v ∈ V and 0 < ǫ < 1. vb locates inside Σ and will break the local degeneracy after it is
inserted in to the triangulation by a Delaunay algorithm. See Fig. 16 right for an example.

The algorithm for removing local degeneracy is described below. The triangulation F of
all facets of X is the input. The algorithm first initializes a queue Q containing all local
degeneracies in F . For each local degeneracy of F , a break point vb is calculated. vb may
encroach upon some segments. In such cases, vb is shifted to the midpoint of an encroached
segment. This avoids the case that vb locates too close to a segment. Finally F is updated by
including vb as a vertex of it.

The success of this algorithm relies on the following hypothesis: the insertion of vb does
not create new local degeneracy in F . If the parameter ǫ is chosen randomly for each vb, this
hypothesis is true in high probability. If we ignore the time for updating F to include vb, this
algorithm runs in linear time with respect to the initial size of Q.

8. BOUNDARY STEINER POINTS REMOVAL

In this section, we consider the stronger meshing problem: Given a surface triangular mesh F
of a three-dimensional PLS X , we want to find a tetrahedral mesh T of X such that F is a
subcomplex of T .

The three-dimensional CDT algorithm proposed in this paper will add Steiner points on
elements of F , and most of them are added on edges of F . We then must remove these Steiner
points by either suppressing them or by relocating them into the interior of X . Of course the
resulting mesh is by no guarantee a CDT anymore. But this is not the question here.
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v

E

∂Bv

Bv

Figure 17. Boundary Steiner points removal (the 2D case). Left: v is a Steiner point on edge E. The
half-ball Bv consists of all triangles having v as a vertex in one region. The bold lines are the boundary

complex ∂Bv . Middle: v is relocated into the interior of Bv . Right: After v is deleted from Bv.

8.1. Point Relocation

It is shown in [7] that any Steiner point inserted on an element (edge or face) of F is
guaranteed to be removed from that element. The proposed approach is rather straightforward
and practical. Consider a Steiner point v inserted on a face F ∈ F . Assume that F is an
external face. One can form a ”half-ball” Bv of v which consists of all tetrahedra in T having
v as a vertex. The boundary ∂Bv are triangular faces either (i) coplanar with v, or (ii) visible
by v (since they form tetrahedra with v), see Fig. 17 left for an example. Hence it is always
possible to relocate v inside Bv such that Bv becomes a ”full-ball” of v, see Fig. 17 middle. As
a result, v has been removed from F . Steiner points inserted on edges of F can be removed by
the same principle. The only difference is that an edge may be shared by arbitrary number of
faces. Hence it may produce many half-balls. Within each one it is able to relocate the Steiner
point from the edge.

8.2. Point Deletion

The relocated Steiner points may be completely removed from the mesh. The most common
approach for this purpose is edge contraction – the Steiner points are removed by contracting
edges to zero length. Although the operation is easy in principle, it is not trivial to select one
edge to be contracted such that the resulting shapes of tetrahedra are optimal. This issue is
addressed in [53] in which several criteria for selecting the contracting edges are proposed.

Another approach to directly delete v after forming the half-ball Bv is to re-tetrahedralize
Bv such that the new tetrahedralization of Bv does not contain v. A flip-based approach works
in the following steps,

1. Re-triangulate the boundary of Bv such that v is not on ∂Bv any more.
2. Form a Delaunay tetrahedralization D of the vertices of Bv (without v);
3. Recover the faces of ∂Bv in D by combination of edge/face flips;
4. If all faces of ∂Bv are recovered, remove tetrahedra outside Bv from D; return D;

Otherwise, return ∅.

Although the above approach does not guarantee to work for all cases, it is shown in [54]
that the flipping algorithm is effective in forming a tetrahedralization of Bv. In Section 9,
experiments on selected mesh examples are reported (see Table II).
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(a) A 3D PLS (b) The surface mesh (c) The DT
460 vertices, 954 subfaces, 460 vertices,
328 facets 706 segments 2637 tetrahedra

(d) Segment recovery (e) Facet recovery (f) A CDT
213 break points 6446 subfaces 482 Steiner points

269 protect points 22 are missing 2738 tetrahedra

Figure 18. Example: Cami1a. The input PLS and the constructed CDT are shown in (a) and (f),
respectively. Pictures from (b) to (e) show the intermediate status of the CDT algorithm.

8.3. Mesh Optimization

It is known that not all relocated points can be deleted, for example, when F is the surface
mesh of a Schönhardt polyhedron. Moreover, some relocated points may be very close to the
boundary faces (or edges). The resulting mesh must be optimized. Common mesh improvement
techniques are local edge (or face) swapping, mesh smoothing, and even new point insertion.
These techniques can be appropriately combined in optimizing some pre-defined mesh objective
functions, see e.g. [55, 56].

9. EXAMPLES AND DISCUSSIONS

The CDT algorithm has been implemented in the program TetGen [57]. Given
a three-dimensional PLS, the LocalDegeneracyRemoval, SegmentRecovery, and
FacetRecovery algorithms are called subsequently to create a CDT of that PLS. In the
following, we provide several application examples to illustrate the practical behavior and the
effectiveness of the CDT algorithm. Following the examples, we discuss the issues about the
complexities of this algorithm and possible improvements.

Fig. 18 illustrates an example of one run of the CDT algorithm on a mechanical part
(Cami1a, available from [58]) with the intermediate status of the different steps. The input PLS
shown in (a) has 460 vertices, 706 segments, and 328 facets. The surface mesh shown in (b),
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1 Cami1a Heart Fan Crystal Wing-Iso IFP

2 Input nodes 460 3, 588 6, 516 11, 706 22, 905 57, 270
3 Input segs 706 11, 205 19, 709 37, 785 46, 693 172, 001
4 Input facets 884 7, 620 13, 180 26, 399 45, 806 114, 680
5 Break points 213 0 102 8 2, 542 0
6 Protect points 269 3, 622 4, 992 10, 789 16, 913 1, 963
7 Delaunay tetra. 0.05 0.22 0.41 0.81 1.61 4.85
8 Surface mesh 0.02 0.03 0.10 0.15 0.44 0.38
9 L.d. removal 0.07 0.10 0.18 0.42 0.42 1.80

10 Seg. recovery 0.12 0.28 0.37 0.97 2.02 0.51
11 Facet recovery 0 0.06 0.07 0.64 0.13 0.31
12 Total time (sec.) 0.26 0.69 1.13 2.99 4.62 7.85

Table I. Runtime statistics of the CDT algorithm. Tested by TetGen (compiled by g++ with -O3
option) on a linux workstation (Intel(R) Xeon(R) CPU 2.40GHz). (In line 9, L.d. = Local degeneracy.)

which is the input of the local degeneracy removal algorithm, contains 954 subfaces. (c) is the
initial Delaunay tetrahedralization of the vertex set. The status after the SegmentRecovery
algorithms is shown in (d). The number of break points and protect points are 213 and 269,
respectively. (e) shows the initial status of the FacetRecovery algorithm, there are total
6446 subfaces in which 22 are missing (highlighted in yellow). The resulting CDT is shown in
(f). A vertical cut is made for visualizing the interior constrained Delaunay tetrahedra.

In the above example, the number of Steiner points is in the same order of the input size.
This is the most often case that we have observed. Note that it may be further reduced the
number of Steiner points by using appropriately point insertion order (currently it is random).
Also note that the local degeneracy removal algorithm may be called only when it is necessary.
Current we call it in advance which may add at most O(n) Steiner points.

The geometry of the next example shown in Fig. 19 is the wing of an airplane placed inside
a large bounding box, see (a). The surface of the wing and the bounding box were triangulated
by 22905 nodes and 45806 triangles. A detailed view of the surface triangulation of the wing is
shown in (b). To generate the CDT from the surface mesh, TetGen added total 19, 455 Steiner
points in which 2542 are break points and 16, 913 are protect points. A view of the inside of
the CDT near the wing is shown in (c). In (d), the modified surface mesh of the CDT is shown.

We next report the detailed running times of the CDT algorithm on some selected examples
in Table I. Most of the input PLSs (whose boundary are triangular surface meshes) are available
from the repository of 3D Meshes Research Database maintained by INRIA’s GAMMA
project [58]. Two of the generated CDTs are shown in Fig. 20. Table I is divided into four
parts: the input sizes (the number of nodes, segments, and facets) are reported in rows 2 − 4,
they are increasing from left to right; the number of break points and protect points are listed
in rows 5 − 6, respectively; then the running time statistics in individual steps of the CDT
algorithm are given in rows 7− 11, the time is reported in seconds; and the total running time
(which is the sum of the detailed times) is given in row 12.

From Table I we see that the majority Steiner points of these examples are inserted in
the segment recovery step (line 10). Hence this step took the most time comparing to other
steps. While the times for facet recovery (line 11) were relatively small which mean there were
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(a) A view of the input PLS (b) A view of the input surface mesh
22905 nodes 45806 triangles

(c) A view of the output CDT (d) A view of the output surface mesh
43044 nodes 2542 break points

134700 tetrahedra 17597 protect points

Figure 19. Example: Wing-Iso. A global and a local views of the input PLS are shown in (a) and (b),
respectively. Two detailed views of the output CDT are shown in (c) and (d).

relatively small number of missing facets. The step of local degeneracy removal (line 9) uses
linear time with respect to the input number of facets (line 4).

Our CDT algorithm will inserted Steiner points on the boundary (segments and facets) of
the input PLS. In Section 8 we discussed a post-processing step to remove Steiner points from
boundaries so that the output mesh can conform to the input surface mesh of the PLS with
possibly few Steiner points remaining inside the PLS. This step is implemented in TetGen.
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Figure 20. Examples: Crystal (left) and IFP (right). The generated CDTs are shown. See Table I for
their statistics.

Cami1a Heart Crystal IFP

Input Steiner points 482 3, 622 10, 797 1, 963
Deleted Steiner points 446 3, 605 10, 778 1, 957

Relocated Steiner points 36 17 21 6
Total time (sec.) 0.76 0.79 0.88 0.27

Table II. Experiments on the post-process step for Steiner point removal (discussed in Section 8).
Tested by TetGen (the same version in Table I).

Table II reports the experiments of this step on some selected examples. From Table II, we
can observe that the majority of these Steiner points could be completely deleted from the
mesh, only few of them are relocated in the interior of the domain.

Although our algorithm does not directly work on smooth domains (whose boundaries are
curved surfaces), it is possible to combine our algorithm with other surface meshing algorithms,
e.g., [59, 60], such that smooth domains and piecewise smooth domains can be approximated
by CDTs. It has been shown that any C2-smooth surface Σ can be well-approximated by
a restricted Delaunay triangulation of a set of ǫ-samples on Σ [61, 62]. Fig. 21 left shows a
restricted Delaunay triangulation of a piecewise smooth surface. This model is freely available
from [63]. Since such triangulation is a two-dimensional PLS. Hence the domain bounded
by it can be approximated by a CDT, see Fig. 21 left. In particular, restricted Delaunay
triangulations are subsets of Delaunay triangulations. Theoretically, our CDT algorithm needs
no Steiner points in constructing the CDTs from such inputs.
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Figure 21. Examples n10. Left: a restricted Delaunay triangulation of a piecewise smooth surface.
Right: a CDT partition of the domain bounded by this surface (a cut away view of the interior

tetrahedra), it contains no Steiner points.

10. CONCLUSION

The three-dimensional boundary recovery problem has challenges both in theory and practice.
We showed that constrained Delaunay tetrahedralizations (CDTs) are useful in solving this
problem. An algorithm to construct a CDT of an arbitrary three-dimensional piecewise linear
system (PLS) is developed and its correctness is proved. The essential steps of this algorithm
are simple and easy to implement. The choices of Steiner points are determined through
three segment splitting rules and the recovery of facets is by constructing locally Delaunay
tetrahedralizations. We provided an analysis on this algorithm. In the following, we summarize
the results of this paper and outline some problems for the future work.

• We defined a constrained Delaunay triangulation (CDT) of a piecewise linear system
(PLS) of any dimension. Our definition allows Steiner points (points which do not belong
to the input PLS) in a CDT. Hence every PLS can have a CDT. It is more general than
previous definitions. We showed several basic properties of such objects which are very
close to those of Delaunay triangulations.

• We proposed a practical algorithm for constructing a CDT of any three-dimensional
PLS. Steiner points are used in order to recover the boundaries. The termination and
correctness of this algorithm are proved. We give partial analysis on the complexity of the
individual steps of the algorithm. It has been implemented and the practical performance
is reported through various examples.

• The three segment splitting rules handle the small input angle problem well. Previous
works [29, 64, 65] require a separate step to protect the sharp corners, and it must be
done in advance. Our rules avoid the pre-processing step by adaptively selecting the
segments to be split. Moreover, the achieved edge lengths are usually better, i.e., some
input segments are not forced to be split in advance.
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For future work, some theoretical questions regarding this algorithm are worth to be
investigated.

• The complexity of the segment recovery algorithm with regard to the input size is not
known yet. This is closely related to an open question [33] in computational geometry,
i.e., the upper bound of the number of Steiner points needed to construct a conforming
Delaunay tetrahedralization of a three-dimensioanl PLS?

• Limiting the number of Steiner points is important since it directly influences the
performance of the facet recovery algorithm. Some technical detail of the segment
recovery algorithm need to be investigated. Currently, the segments are split in a
randomized order. It generally works well, but sometimes it results in unnecessary Steiner
points.

• Although the problem of removing Steiner points from boundary is discussed and
implemented, the problem is far from been solved. Difficulties are arising in practices
when the input boundary of the PLS contains anisotropic features.

• The proposed CDT algorithm only takes piecewise linear boundary as input. It would
be a possible extension to let the algorithm directly handle inputs containing smooth
surfaces. The piecewise smooth complex [60] could be considered.
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18. Pébay P, Frey PJ. A priori Delaunay-conformity. Proc. 7th International Meshing Roundtable, Sandia

National Laboratories, 1998; 321–333.
19. Murphy M, Mount DM, Gable CW. A point-placement strategy for conforming Delaunay

tetrahedralizations. Proc. 11th annual ACM-SIAM Symposium on Discrete Algorithms, 2000; 67–74.
20. Cohen-Steiner D, De Verdière EC, Yvinec M. Conforming Delaunay triangulation in 3D. Proc. 18th annual

ACM Symposium on Computational Geometry, 2002.
21. Edelsbrunner H, Tan TS. An upper bound for conforming Delaunay triangulations. SIAM Journal on

Computing 1993; 22:527–551.
22. Lee DT, Lin AK. Generalized Delaunay triangulations for planar graphs. Discrete and Computational

Geometry 1986; 1:201–217.
23. Chew PL. Guaranteed-quality triangular meshes. Technical Report TR 89-983, Department of Computer

Science, Cornell University 1989.
24. Shewchuk JR. General-dimensional constrained Delaunay and constrained regular triangulations I:

Combinatorial properties 2007. To appear in Discrete and Computational Geometry.
25. Baker T. Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay

triangulation. Engineering with Computers 1989; 5:161–175.
26. Hazlewood C. Approximating constrained tetrahedralizations. Computer Aided Geometric Design 1993;

10:67–87.
27. Cavalcanti PR, Mello UT. Three-dimensional constrained Delaunay triangulation: a minimalist approach.

Proc. 8th International Meshing Roundtable, Sandia National Laboratories, 1999; 119–129.
28. Si H. Adaptive tetrahedral mesh generation by constrained delaunay refinement. International Journal

for Numerical Methods in Engineering 2008; 75(7):856–880.
29. Shewchuk JR. Constrained Delaunay tetrahedralization and provably good boundary recovery. Proc. 11th

International Meshing Roundtable, Sandia National Laboratories, 2002; 193–204.
30. Shewchuk JR. Updating and constructing constrained Delaunay and constrained regular triangulations by

flips. Proc. 19th Annual Symposium on Computational Geometry, 2003; 181–190.
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