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Introduction

• Mainstream GIS use still mainly 2D due to

• Limited 3D awareness at the user site

• Limited availability of 3D data sets

• Limited 3D support in mainstream products

• However pressure on space increases

• Custom-made systems have shown the potential of 3D 
applications (within professional organizations)

• 3D data collection is getting less and less a problem

• R&D to get 3D in the mainstream
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3D applications

• Taxation/valuation: volume of building

• Cadastral registration: 3D volume ‘parcel’

• Telecom: location of antennas

• Utility: subsurface networks of pipelines/cables

• Geology: (deep) subsurface model: oil, gas, 
minerals,…

• Aviation: 3D airspace management

• Planning: new constructions in VR environment

• Flooding: Water management: rivers, coastal zones,…
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Subsurface networks of 
pipelines/cables



4

March 7, 2007 7

March 7, 2007 8

Virtual Reality

Advanced 3D visualization
+interactie (for planning)

Karma: VR en 3D GIS
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Background of the 3D Cadastre research

• Registration of real estate (property) at Cadastre 

• 2D parcel is basis of registration

• Parcel is not limited in 3rd dimension

• Increasing use of space results in multi-functional land 
use (under and above the surface)

• It gets more and more difficult to register these 
situations in the current 2D system (admin tags)

• Extend current registration with 3D geo-objects within 
geo-DBMS (and link with legal admin tags)

3D factual 
situations
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Possible 3D
registration 

Current 
representation
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3D apartement complex on 2D parcels
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Registration of 3D infra object (HSL)
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The Gabba
3D space as
volumetric
property
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3D data 
collection

• 3D data collection does not seam to be the problem: 
no longer separation between horizontal and vertical 
component in modern surveying (WGS84, ETRS)

• GPS (Galileo) based positioning delivers 3D coord’s

• Laser altimetry (Lidar) very well suited for obtaining 
terrain elevation models (surfaces)

• Terrestrial rotating laser scanners are suited to create 
3D models of objects (in addition to close range 
photogrammetry)

• Multi-beam sonar for river, lake or sea floor mapping
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3D (2.5D) data 
available data sets

• Traditional elevation models (contour/breaklines, grid)

• Modern laser altimetry based nation wide data: e.g. 
AHN in the Netherlands (at least 1 point per 16 m^2)

• For routes/trace's even 16 point per 1 m^2 (Flymap, 
helicopter)

• Large scale topographic data of infrastrucure 
(terrestrial surveys of roads, waterways)

• 3D deep subsurface models (geology)

• Work in progress on: 3D Cadastre and 3D Top10NL

March 7, 2007 20

AHN

laserscan data 

1 point/ 16 m2
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3D data modeling aspects 
z-value: relative or absolute

• Z-value 3D object absolute in (inter)national height 
reference system, drawback: 

• The spatial relationship between traditional 2D data 
sets (on the surface) and the new 3D objects, 
requires explicit analysis (takes time)

• Z-value 3D object relative w.r.t. 2D surface, 
drawbacks:

• absolute coordinates of 3D objects must be 
converted to relative coordinates 

• Data-consistency can be a problem (surface change)
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3D DBMS-GIS-CAD software

• Spatial DBMS foundation for both GIS (presentation, 
analysis) and CAD (creating models)

• 2D data types available in DBMSs similar to OGC 
Simple Feature Specification (SFS) for SQL

• Required 3D extensions of the geo-DBMS:

• Support of 3D geometry (spatial data types 
including functions)

• Support of 3D topological structures

• 3D Spatial indexing and clustering
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State of the Art: 
example Oracle Spatial (10g)

• Supported spatial data types: point, lines, polygons 
(arcs, boxes, sets), that is, the 0D-2D primitives

• Topology structure management is not supported 
(start of 2D topology structure management in 10g)

• Z-values can be used to store 3D features; e.g. 3D 
polygons, 3D lines, 3D points (and ‘multi’ versions)

• 3D Spatial indexing is available

• But: z-values are not recognized in spatial functions

• True 3D volume objects can not be represented
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3D modeling example, 
creating 2D and 3D tables

create table geom2d (
shape mdsys.sdo_geometry not null,
TAG number(11) not null);

create table geom3d (
shape mdsys.sdo_geometry not null,
TAG number(11) not null);

Note same data type used in 2D and 3D case
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3D modeling example, 
filling 2D and 3D tables

/* a 2D box */
insert into geom2d (TAG,shape) values (8,

mdsys.SDO_GEOMETRY(2003 ,…,
mdsys.SDO_ORDINATE_ARRAY(0,0, 100,100)));

/* a 3D box */
insert into geom3d (TAG,shape) values (9,

mdsys.SDO_GEOMETRY(3003 ,…,
mdsys.SDO_ORDINATE_ARRAY(0,0, 50, 100,100, 50)));

Note: different GTYPE and additional z-values, 
which are not used in the functions (distance, area,…)
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Extension with 3D data types:
possible 3D primitives

• Tetrahedron primitive: simplest 3D primitive:

• easy algorithms (volume, area, distance, buffer), 

• but many primitives needed for real 3D object

• Polyhedron: ‘equivalent’ of 2D polygon, boundary 
defined by flat faces:

• both boundary and interior may contain contain 
concavities (quite complex), 

• one polyhedron for one real 3D object

• Polyhedron with non flat faces (sphere/cylinder):

• Close to 2D situation with circular arcs Complex to 
define, image, compute,…

March 7, 2007 28

‘Normal’ Polyhedron Most Realistic 
Option

More than 3 vertices in a face. 
How flat is this face?

Cave inside
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Invalid ‘Polyhedra’
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Normal encoding in Oracle 
sdo_geometry

SDO_GEOMETRY Column = (
SDO_GTYPE = 2003
SDO_SRID = NULL
SDO_POINT = NULL
SDO_ELEM_INFO = (1,1003,3)
SDO_ORDINATES = (6,21, 9,24)) (6,21)

(9,24)

GTYPE=2003 indicates: 2D (2xxx) and polygon (xxx3)
ELEM_INFO=(1,1003,3) indicates a rectangle
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3D data type: encoding proposal 
polyhedron in Oracle (1)

insert into geom3d (shape, TAG) values (
mdsys.SDO_GEOMETRY(3008 ,NULL,NULL, -- polyhedron, no ref point, no srid

mdsys.SDO_ELEM_INFO_ARRAY(13,1006,1 -- first flat face at offset 13,
-- because the first twelve positions are used for t he coordinates

16,1006,1, 19,1006,1, 22,1006,1), -- others faces at 16, 19 and 22
mdsys.SDO_ORDINATE_ARRAY(0,0,0, -- coordinate triplet of point 1,

1,0,0, 0,1,0, 0,0,1, -- and of points 2, 3 and 4
1,2,3, 1,2,4, 1,3,4, 2,3,4 )),   -- the 4 faces by refs to the points

1)); -- the TAG of example 1

Based on internal topology: 
first nodes, then faces

New GTYPE=3008 Faces of outer boundary
start at offset 13

Faces refer to the nodes
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Oracle storage/ MicroStation editing
(after conversion to multi-polygons)

Note, the mix of 2D and 3D data

• Prototype developed in Oracle by Calin Arens (MSc-
thesis project at TU Delft)
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Further extension for 3D space:
curved lines and surfaces (NURBS)

• Not a volume primitive (3D), but line (1D) and surface 
(2D) primitives in 3D space Non Uniform Rational B-
Splines (NURBS)

• Used for freeform curves and surfaces in CAD

• Part of industry standards IGES, STEP, PHIGS

• Specified via degree, control points, knots and weights

• Types added: GM_NURBSCurve and 
GM_NURBSSurface

• Prototype developed in Oracle by Pu Shi (MSc-thesis 
project at TU Delft)
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SQL Example with NURBS

// create a table with spatial column
create table test(id number,col GM_NURBSCurve);   

// insert a NURBS curve
insert into test values(2, GM_NURBSCurve(2,GM_PointArray 

(135,225,346,127,256,336,945,20,30,504,70,698,434,4 0,4), 
GM_KnotVector(Vector(- 0.5,0,0.5,1,2,3,4,5),NULL),NULL));  

//select the convex hull geometry from
select a.col.convexHull() from test a;   
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From MicroStation
to Oracle and back
(without data loss)
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Further extension for 3D space:
point clouds

• Require also data management, but too ‘expensive’ to 
be stored using standards types (point and multipoint) 

• TU Delft MSc thesis project of Martine Hoefsloot (at 
Fugro) investigates maximizing the efficiency of the 
standard SDO_GEOMETRY (point or multipoint)

• Efficient data storage (including meta data) for later 
altimetry, terrestrial laser scanning, multi-beam echo 
soundings, etc.

• New data type needed…
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Fli-Map
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Expected new 3D functionality in 
Beta of Oracle Spatial (11g)

• Z-values can be used in spatial 3D features; e.g. 3D 
polygons, 3D lines, 3D points (and ‘multi’ versions)

• True 3D volume objects can be represented via 
polyhedron (supported by set of functions)

• Specific data type for point clouds (again supported by 
set of functions)

• Support of TINs (NURBS not sure)

• Beta available on Red Hat Linux, not yet on Solaris, 
Windows (TU Delft beta tester, not yet started)
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GIS mathematics: Poincaré simplicial 
homology for 3D volume modeling 

A. TEN Data Structure

B. Poincaré simplicial homology

C. Poincaré boundary properties

D. TEN based analysis

E. Conceptual Model

F. DBMS aspects

G. Implementation
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Real world is based on 3D objects

Objects + object representations 

get more complex due to 

multiple use of space

Applications in:

Sustainable development (planning)

Support disaster management

3D Topography: more than visualization!

Need for 3D Topography
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Research Goal

+Develop a new topographic model to be

realized within a robust data structure and

filled with existing 2D, 2.5D and 3D data

Data structure: 

design / develop / implement a 

data structure that supports 3D analyses 

and maintains data-integrity

=
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Full 3D Model

Observation: the real world is a volume partition 

Result: ‘air’ and ‘earth’ (connecting the physical objects) are modeled

Advantages of volume partitioning:

• Air/earth often subject of analysis (noise, smell, pollution,..)

• Model can be refined to include:

air traffic routes geology layers (oil) indoor topography

Ford & James, University of Newcastle, Agile 2005
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A. TEN Structure

• Support 3D (volume) analysis 

• Irregular data with varying density 

• Topological relationships 

enable consistency control 
(and analysis)

After considering alternatives the 

Tetrahedronized irregular Network 

(TEN) was selected (3D ‘brother’ of a TIN)
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A. TEN Structure, Advantages

Based on simplexes (TEN):

• Well defined: a nD-simplex is bounded by n+1  (n-1)D-simplexes

2D-simplex (triangle) bounded by 3 1D-simplexes (line segments)

• Flat: every plane is defined by 3 points (triangle in 3D)

• nD-simplex is convex (simple point-in-polygon tests)

The TEN structure is very suitable for 3D analyses!
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A. TEN Structure, Many Primitives Needed, 
a Disadvantage?

In 3D (complex) shapes   � subdivide in (many) tetrahedrons:

TEN is based on points, line segments, triangles and tetrahedrons:

simplexes (‘simplest shape in a given dimension’)
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B. Poincaré simplicial homology (1)

Solid mathematical foundation:

A n -simplex Sn is defined as smallest convex set in 

Euclidian space Rm of n+1 points v0 , …, vn 
(which do not lie in a hyper plane of dimension less than n) 
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B. Poincaré simplicial homology (2)

The boundary of simplex Sn is defined as sum of (n-1) dimensional 
simplexes (note that ‘hat’ means skip the node):

Sn =

remark: sum has n+1 terms

><−∑
=

ni

n

i

i vvv ,...,ˆ,...,)1( 0
0

∂
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B. Poincaré simplicial homology (3)

)0( with dimension  of faces 
1

1
has  npp

p

n
S

n
<≤









+
+

• 2D: this means that triangle (S2) has 
3 edges (S1) and 3 nodes (S0)

• 3D: this means that tetrahedron (S3) has
4 triangles (S2), 6 edges (S1) and 4 nodes (S0)
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B. Poincaré simplicial homology (4)

With (n+1)points, there are (n+1)! permutations of 

these points.  In 3D for the 4 simplexes this 

means 1, 2, 6 and 24 options (S0 obvious):

• For S1 the two permutations are <v0 ,v1> and <v1 ,v0>
(one positive and one negative <v0 ,v1> = - <v1 ,v0> )

• For S2 there are 6: <v0,v1,v2>, <v1,v2,v0>, <v2,v0,v1>, <v2,v1,v0>, 
<v0,v2,v1>, and <v1,v0,v2>. First 3 opposite orientation from last 3, 
e.g. <v0,v1,v2> = - <v2,v1,v0>. counter clockwise (+) and the 
negative orientation is clockwise (-)

• For S3 there are 24, of which 12 with all normal vectors outside 
(+) and 12 others with all normal vectors inside (-)!
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S2 permutations and +/- orientation

<v0,v1,v2> +

<v0,v2,v1> -

<v2,v0,v1> +

<v2,v1,v0> -

<v1,v2,v0> +

<v1,v0,v2> -

><+><−><+
=><∂

021210

102

,,,

 ,,

vvvvvv

vvv

-<v2,v1> +<v2,v0>

+<v0,v1>
v1

v2

v0
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S2 permutations and +/- orientation

<v0,v1,v2> -

<v0,v2,v1> +

<v2,v0,v1> -

<v2,v1,v0> +

<v1,v2,v0> -

<v1,v0,v2> +

v1 v0

new v2

Note: +/- orientation 
depends on configuration 
(in this case on surface 
observed from above)

old v2
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S3 permutations and +/- orientation

<v2,v0,v1,v3 >

<v2,v0,v3,v1 >

<v2,v3,v0,v1 >

<v2,v3,v1,v0 >

<v2,v1,v3,v0 >

<v2,v1,v0,v3 >

<v0,v1,v2,v3 >

<v0,v1,v3,v2 >

<v0,v3,v1,v2 >

<v0,v3,v2,v1 >

<v0,v2,v3,v1 >

<v0,v2,v1,v3 >

<v1,v2,v0,v3 >

<v1,v2,v3,v0 >

<v1,v3,v2,v0 >

<v1,v3,v0,v2 >

<v1,v0,v3,v2 >

<v1,v0,v2,v3 >

<v3,v0,v1,v2 >

<v3,v0,v2,v1 >

<v3,v2,v0,v1 >

<v3,v2,v1,v0 >

<v3,v1,v2,v0 >

<v3,v1,v0,v2 >

v1

v0

v2

v3
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S3 permutations and +/- orientation

S31: For given configuration, first permutation of S3 is 
positive (all signed normals pointing outside)

v1

v0

v2

v3

><−><+><−><+=
><∂=∂

210310320321

321031

,,,,,,,,

 ,,,

vvvvvvvvvvvv

vvvvS

v1

v0

v2

v3

v1

v0

v2

v3

v1

v0

v2

v3
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S3 permutations and +/- orientation

S32: For given configuration, second permutation of S3 is 
negative (all signed normals pointing inside)

><−><+><−><+=
><∂=∂

310210230231

231032

,,,,,,,,

 ,,,

vvvvvvvvvvvv

vvvvS

v1

v0

v2

v3

v1

v0

v2

v3

v1

v0

v2

v3

v1

v0

v2

v3
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C. Poincaré boundary properties (1)

• Within a single simplex, the sum of the signed 
boundaries of the boundaries of a simplex is 0 (taking 
into account the orientation)

( )
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,...,ˆ,...,ˆ,...,)1()1(

,...,ˆ,...,)1(

0
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0
0
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C. Poincaré boundary properties (2)

• In 3D this means that every edge is used once in 
positive direction and once in the negative direction 
(within simplex S3=<v0, v1, v2, v3> )

j\i 0 1 2 3

0 -v2v3 + v1v3 - v1v2
1 + v2v3 - v0v3 + v0v2
2 - v1v3 + v0v3 - v0v1
3 + v1v2 - v1v2 + v0v1

><−><+><−>=<∂ 2103103203213 ,,,,,,,, vvvvvvvvvvvvS

=∂∂ 3S

jiij )1()1(: −−<1)1()1(: +−−< jiji
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C. Poincaré boundary properties (3)
Adding Simplices to Complexes

 ,vv  ,vv  ,vv  ,vv
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 ,vv ,vv ,vvC
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• Within a complex (of homogeneous highest dimension) 
• sum of signed boundaries of (highest dimensional) simplices is 0
with exception of outer boundary of complex

• sum of signed boundaries of boundaries of (highest dimensional) 
simplices is 0

• 2D: boundary is edge 3D: boundary is triangle
boundary of boundary is node boundary of boundary is edge

C. Poincaré boundary properties (4)

end
start
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C. Poincaré boundary properties (5)

• Within a simplical complex of homegeous dimension
(e.g. the TEN network in 3D), the co-boundary of Sn is 
defined as the set of higher dimesional simplices (set 
of Sn+1) of which Sn is boundary

• For example in a TEN network (3D):

• the co-boundary of a triangle is formed by set of 
the two adjacent thetrahedrons

• The co-boundary of a edge is formed by set of k
incident triangles
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D. Analysis Euler-Poincaré formula
check if network can be ‘correct’ (1)

• The ‘balance’ between the number of simplices of 
different dimensions in a simplical complex is given by
the Euler-Poincaré formula (including outside world):

2D: f-e+n=2 3D: t-f+e-n=0

(11-21+12=2) (3-7+9-5=0)
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D. Analysis Euler-Poincaré formula
check if network can be correct (2)

• Formula is valid for any simplical complex. Therefore can
not detect dangling edges or faces in simplicial complex 
with homogeniuos highest dimesion such as a TEN. 

2D: f-e+n=2 3D: t-f+e-n=0

11-21+12=2 � 11-22+13=2 3-7+9-5=0 � 3-8+12-7=0
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D. Analysis, compute content 
(area in 2D, volume in 3D,…)

• 2D: compute area of triangle (base * half of height), 
also according to Heron’s formula with semiperimeter
s=1/2(a+b+c):

• Can be stated using Cayley-Menger determinant:

• Also defined for nD simplex based on (n+2)*(n+2) det

))()(()( 2 csbsassSArea −−−=

01

01

01

1110

)(*16

22

22

22
2

2

ab

ac

bc
SArea =−
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D. Analysis, point-in-polygon test 
(point- in-polyhedron test similar)

• nD-simplex is convex, much simpler point-in-polygon 
tests (for every boundary check is point is on correct 
side of boundary) compared to concave test (shoot ray 
from point to infinite and count number of boundary 
intersections)

2
3
1
0
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D. Analysis, check if polyhedral object is 
correct (connected)

• Definition of a valid polyhedral object (bounded by flat 
faces and possible having holes and handles):
from every point of the polyhedron is should be able to
reach every other point of the polyhedron via the 
interior.

Hole
inside
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Invalid

Valid
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D. polyhedral object correctness test

• Traditional approach: check for 2-manifold (every 
edges used twice) and boundaries may not cross

• If outer and inner boundary touch: do topology 
analysis. Potentially invalid: if the connected 
intersections (edges) of inner and outer boundaries 
(faces) do form a ring (however, this is not a sufficient 
condition)

• Much easier: check if tetrahedrons (within a correct 
TEN) of one object are neighbors sharing a triangle (so 
edge or node is not sufficient)
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D. Analysis, TEN-based buffer 
approximation

MSc-thesis

Jeroen de Vries

March 7, 2007 70

D. Analysis, TEN-based overlay

MSc-thesis

Arno van der Most

(prototype in 2D,

Concept in 3D)
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E. Conceptual Model

• Earlier work: Panda (Egenhofer et. al. 1989) and Oracle 
Spatial (Kothuri et. al. 2004) only 2D space. Panda has 
no attention for feature modeling

• Features attached to set of primitives (simplices)

• TEN model seams simple, but different perspectives 
results in 3 different conceptual models for same TEN:
1. Explicit oriented relations between next higher level

2. As above but with directed and undirected primitives

3. Only with ordered relations to nodes (others derived)
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F. DBMS Aspects

• Models are expected to be large � efficient encoding (of both 
base tables and indices), so what to store explicitly and what to 
store implicitly (derive)?

• Consistency is very important: 

1. Start with initial correct DBMS (e.g., empty)

2. Make sure that update results in another correct state

• Specific constraints: earth surface (triangles with ground on one 
side and something else on other side) must form a connected 
surface (every earth surface triangle has 3 neighbor earth surface 
triangles)

• No holes allowed, but trough holes 
(tunnel) possible
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F. DBMS Aspects
Incremental Update

• Inserting a feature (e.g., house): means that boundary (triangle) 
has to be present in TEN

• TEN algorithms do support constrained edges, but not triangles 
� first triangulate boundary

• Resulting edges are inserted in constrained TEN (updating 
node/edge/triangle/tetrahedron table)

• Finally link feature (house) to set of tetrahedrons

• New features take space of old features (could be air or earth),
which should agree

• Lock relevant objects during transaction
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F. DBMS Aspects: Update TEN Structure, 
Basic Actions (1)

• Move node (without topology destruction)

• Insert node and incident edges/triangles/tetrahedrons on the 
middle of:

1. tetrahedron:+1 node, +4 edges, +6 triangles, and +3 tets

2. triangle: +1 node, +5 edges, +7 triangles, and +4 tets

3. Edge (n tets involved): +1 node, +(n+1) edges, +2n 
triangles, +n tets
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F. DBMS Aspects: Update TEN Structure, 
Basic Actions (2)

• Flipping of tetrahedrons, two cases possible:

1. 2-3 bistellar flip (left)

2. 4-4 bistellar flip (right)

• Inserting constrained edges (not so easy…)



40

March 7, 2007 79

G. TEN topology table definitions

create table node (nid integer, geom sdo_geometry);

create table edge (eid integer, startnode integer,
endnode integer, isconstraint integer);

create table triangle (trid integer, edge1 integer,
edge2 integer, edge3 integer,
isconstraint integer, afid integer);

create table tetrahedron (tetid integer, 
triangle1 integer, triangle2 integer, 
triangle3 integer, triangle4 integer, vfid integer);
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Simple 3D viewer
created, based on:

1. 2D viewer
2. rotate_geom

function

Note use of semi-
Transparency

Hidden line/surface
by painter algorithm
and depth sorting
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G. Next implementation

• Only geometry in node (point)
• functions (e.g., get_edge_geometry ) compute geometry for 

other primitives

• Can be used in view
create view full_edge as
select a.*, get_edge_geometry(eid) edge_geometry 
from edge a;

• After metadata registration, add index:
create index edge_sidx on 
edge(get_edge_geometry(eid))
indextype is mdsys.spatial_index
parameters('sdo_indx_dims=3')
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Overview

• Introduction

• 3D applications

• 3D spatial data (collection)

• 3D DBMS-GIS-CAD software

• TEN/Poincaré research

• Conclusion
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Conclusion

• Concepts to integrate 2D en 3D geo-objects within one 
environment (DBMS)

• Integration consists of: storage, query and 
visualization

• DBMS as basic fundament: for both “project-based”
and “data-based” approaches (CAD and GIS)

• Near future: storage of 3D geo-objects as 3D volume 
primitives within the DBMS (with GIS/CAD connection)

• Based on mature 3D collection: standard 3D data sets 
will be part of a nations Geo-Information Infrastrucure

• 3D topography prototype: TEN based on Poincaré
simplicial homology (full 3D partition, topology)
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