WG II Acquisition

George Vosselman

Acquisition of 3D geo-information

- Data sources
 - Images
 - Point clouds
- Processing steps
 - Sensor calibration
 - Geo-referencing
 - Feature recognition
 - Model reconstruction
 - Change detection

Airborne sensor specifications

Cameras

- 1:1000 map
- H=2600 m
- 15 cm pixel
- σ_z =25-50 cm
- multiple overlaps

Lidar

- H=375 m
- 10 pts/m²
- $\sigma_7 = 2 3$ cm
- bias 2-4 cm
- multiple returns
- full waveform
- H=900 m
- $\sigma_7 = 8-15$ cm

Satellite

- H=400-800 km
- 50 cm pixel (WorldView)
- IKONOS
- σ_z =1 m
- TerraSar
- 5 m resolution

Airborne sensor pro and cons

- Flights with airborne cameras at much higher altitude than lidar surveys -> less flight lines -> cheaper
- Images needed anyway
- Lidar surveys at night
- Lidar penetrates onto ground in forests
- Lidar point distributions may be inhomogeneous
- Texture from imagery
- Better surface extraction from multiple overlapping imagery

Terrestrial sensor specifications

Cameras

- High speed100 Hz
- superresolution
- 1 cm pixel
- multiple overlap

Lidar

- $\sigma_7 = 0.5 3$ cm
- bias depending on surface properties
- ghost points in CW scans

GPS

- $\sigma_{XY7} = 2 3$ cm
- breaklines
- eaves

Problems in processing

Geo-referencing

- registration of images to point clouds
- sensor error modelling

Data storage and retrieval

Dealing with huge data amounts

Problems in processing

Surface reconstruction

- data gaps
 - poor reflectance
 - occlusions
 - bathymetry/lidar
- filtering
- breakline extraction

3D building models

- automation
- segmentation
- classification
- outlining
- data gaps

Trees

- species classification
- timber volume
- biomass

Potential directions for future research

- Usage of additional information
 - 2D maps
 - filtering point clouds
 - 3D building reconstruction
 - hyperspectral images for tree species classification
- Self-diagnosis of algorithms
- Modelling knowledge
 - classification
 - hypothesis generation for complex building shapes
 - outlining buildings
- Change detection
 - low resolution surveys
 - collective mapping

