CNES R&D and available software for Space Images based risk and disaster management

Geo-Information for disaster management Delft- 21-23 March 2005

CNES (Centre National d'Etudes Spatiales), Toulouse, France Hélène Vadon Jordi Inglada

> Geo-Information for disaster management Delft- 21-23 March 2005

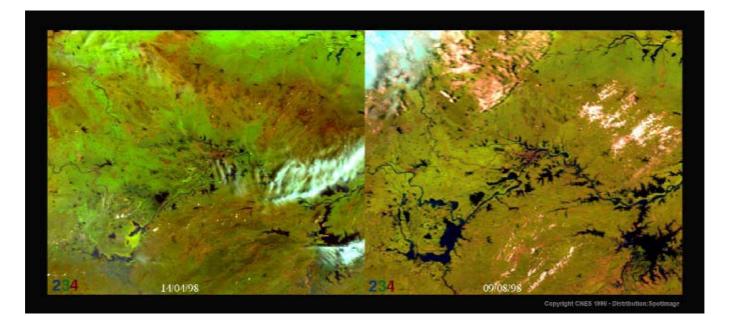
Content

- ⇒ Use of satellite imagery for disaster management
- ⇒ Some examples
- ➡ Images co-registration
 - Similar images
 - Multi_sensor images
- ➡ Geo-referencing process description and accuracy
 - optical images
 - radar images
- ⇒ Change detection and Information extraction
- ⇒ CNES software for risk management
- ⇒ CNES research programme related to risk

Advantages:

- Spatial coverage (10-20 km)² for very high resolution satellites,
 (60-100km)² for high resolution ones Spot5, Envisat (500-1000km)² for global coverage ones -Vegetation-
- Many operational satellite systems, at different resolution hence adapted to different kind of disasters
- Acquisition possible independently from local facilities (telecommunications, operators), processing possible in remote sites
- ➡ Archive images growing
- Optical and / or Radar images possible: complementarity

BUT


Use of satellite images for disaster management (2/2)

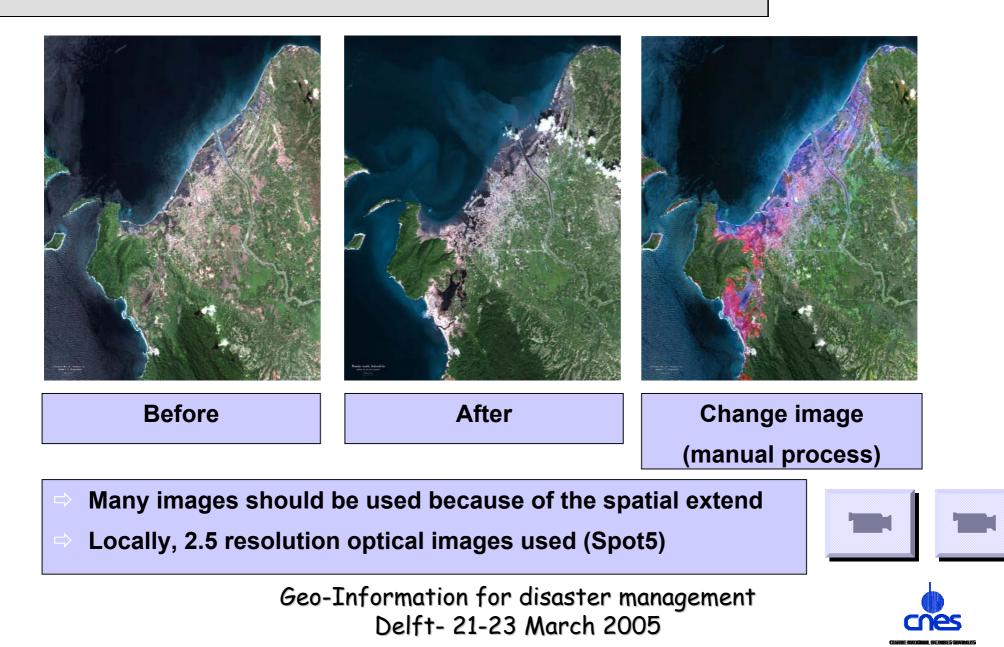
- ⇒ Operational timing constraint: no real time acquisition yet
- Images are not directly interpretable => much work required from raw data to usable information
 - Images co-registration / geo-referencing
 - Change detection
 - Damage assessment
 - Product generation (adding map info, etc...)
 - Transfer to the local authorities (fax, email, ftp...)

<u>Almost real-time acquisition</u> and <u>operational systems</u> <u>dedicated to risk</u> are a pre-requisite to provide really usable spatial products (on time, with the useful information).

Case 1: Flood in China

Before

After


Extension has been assessed at a very large scale

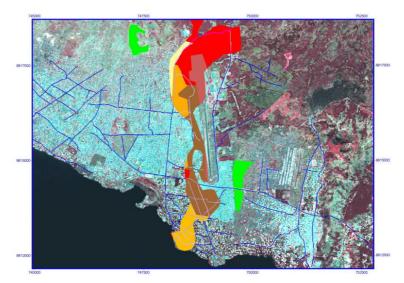
- 1km resolution optical images used (Vegetation on Spot4)
- No damage assessment

Geo-Information for disaster management Delft- 21-23 March 2005

Case 2: Tsunami

Case 3: Nyiragongo (Congo): Smaller extend. Clouds => Radar images used

Spot P+XS image (before)



Radar images based change detection Before / After (automatic)

An optical image from the archived is used for <u>land cover</u> estimation.

A before/after radar images pair (all weather) allows for <u>damage assessment</u>.

Their joint use allows to recognize the type of damage.

Damages assessment

Discussion

- ⇒ Every case is different (in terms of disaster)
- One uses the first available image after the disaster, and has to build the more adequate processing sequence, depending on
 - Available archive images (instrument, spectral bands...)
 - Knowledge / availability of local DEMs
 - Availability of local maps
- ⇒ To be reactive, one should tend to automated processing

BUT what is common to all cases is

- ⇒ The need for image co-registration (=> superimposable image)
- The need for geo-referencing (if data used is not already geo-referenced)

Images co-registration (1/4)

- Superimposability must be accurate (typically better than ~0.5 pixels)
- Pre-requisite for change detection algorithms
- ➡ Ideally, should be achieved (but not easy)
 - Without any knowledge about local DEM
 - Without any knowledge about acquisition geometry
 - Even after disaster, when landscape has changed locally
- In practice, when images are geo-referenced independently, they do not have, on the whole image, such a co-registration accuracy
 => even in this case, need for fine co-registration before change detection.

Images co-registration (2/4)

SIMILAR IMAGES

Optical to Optical images

- General principle: shifts computation based on maximisation of local correlation, then one image is re-sampled to the geometry of the other
 - 0.02 accuracy achievable (case of similar images, good quality interpolation filters, well sampled images), but poor accuracy may be experienced in particular with non similar images
 - In case of <u>disaster</u>, images <u>locally non similar</u>, because
 - elapsed time between acquisitions
 - surface changes due to damage
 - Damage assessment itself based on radiometry changes !!
- Hence co-registration must be performed using homologous points on non-damaged areas, and interpolating / extrapolating on damaged areas

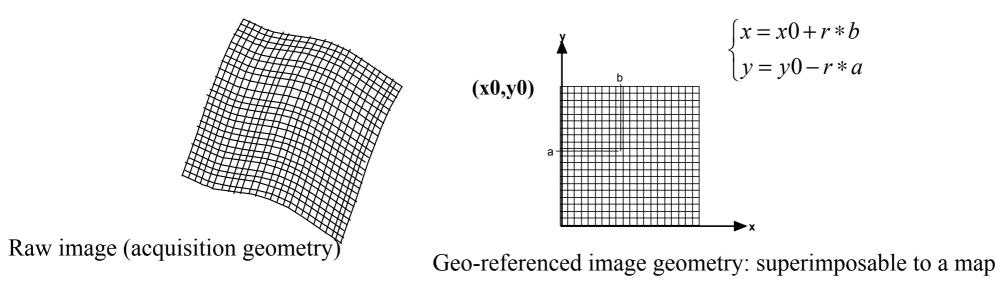
Geo-Information for disaster management Delft- 21-23 March 2005

Images co-registration (3/4)

SIMILAR IMAGES

- ➡ Radar to Radar images
 - On same incidence images
 - Good results using SLC because same speckle (interferometric conditions)
 - But no real add-on value for co-registration. Better use multi-look images correlation
 - On images with different incidences
 - When acquisition angles become slightly different, speckle noise changes => accuracy decreases.
 - When acquisition angles are very different, ML images become very different =>
 - Refinement of NR and acquisition start time of both images by image simulation (using DEM)
 - Projection of both images on the terrain
 - Local co-registration like for optical images.

Images co-registration (4/4)


MULTI-SENSOR IMAGES

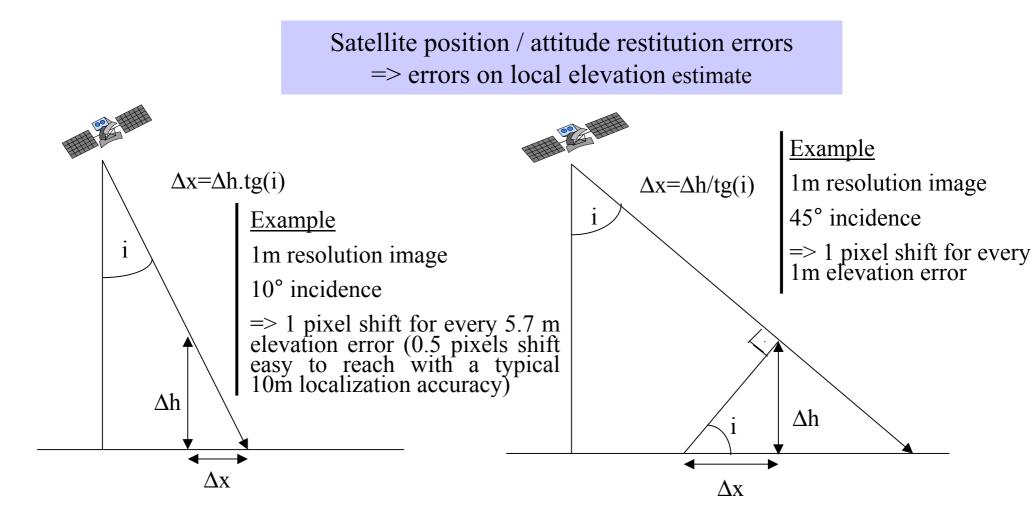
- Correlation technique no more applicable
- Recent R & D work performed in the field of space images, based on algorithms already used in the medical imaging community
 - Locally, radiometry is considered as a random variable (area must be large enough, larger than for correlation)
 - Measurement of the statistical dependence between the two distributions
 - Search for the position of the maximum similarity value => homologous points
- Applicable to Radar / Optic but also Optic / Optic pairs, in different spectral bands

Images geo-referencing (1/4)

Geo-referencing is THE condition for being able to use map information

Satellite position and attitude errors impact the geo-referencing, both globally and locally

Images geo-referencing (2/4)


GLOBALLY

Images geo-referencing (3/4)

LOCALLY

Conclusion on geo-referencing:

⇒ Even with already geo-referenced images, superposition is likely to be not precise enough for accurate change detection.

(experience with optical images times series, and optical to radar superposition)

=> There is always a need for automatic co-registration

⇒ The impact of non accurate geo-referencing is more sensitive with high resolution, proportionally to the resolution

⇒ With high resolution images, we are close (or already beyond) the accuracy of the map themselves (when available)... Therefore, for a fully automatic process, one should think about automatic **map to image co-registration**.

Geo-Information for disaster management Delft- 21-23 March 2005

Change detection and information extraction (1/2)

- ⇒ Geometrical changes (e.g. Surface movement measurement)
 - Shifts measured by optical correlation or radar interferometry
- Radiometrical changes: CNES has implemented the following algorithms
 - Intensity ratio, at pixel level
 - Mutual information, on a local area
 - Local morphological gradient average direction
 - Comparison of probability density distance (before / after disaster): has proven to be well suited for radar images acquired at different incidences
 - Loss of coherence (radar/radar but also optic/optic)

But a promising direction is the comparison of image objects

Change detection and information extraction (2/2)

⇒ Objects extraction

- CNES has been working on <u>automated</u> man-made object recognition (road, roundabouts, suburbs, bridges, isolated buildings...)
- Supervised learning approach based on Support Vector Machines
- Evaluation with the confusion matrix (good detection, non detection, false alarm)
- <u>Results</u>: with 10 object classes, 150 learning examples / class
 => 80% of good detection achieved
- Drawback: slow process => extensive tests difficult, in particular on large images like Spot5 ones (24000*24000 pixels)
 - => Need for pre-selection using a different technique (pre-conscious user models used)

CNES software for risk management

Aim: Automatic production of damage maps

- Superpose images acquired at different dates, from any satellite instrument, radar or optical
- Detect changes
- Produce damage maps

Development environment: Python (portable, automatic MMI building)

- Not fully available yet, but expected soon. Underlying software used:
 - Geometrical modelling
 - Re-sampling
 - DEM generation (when not already available)
 - Object recognition
 - Change detection

CNES research program related to risks

➡ R&D on-going work

- Continuation on object extraction (improvement of computer time by a two-pass method)
- Implementation of optical to radar image geometrical models
- Continuation of work on radar stable detectors
- Development of algorithms for optic / radar change detection

Geo-Information for disaster management Delft- 21-23 March 2005

