
An Operation-Independent Approach to Extend

2D Spatial Operations to 3D and Moving Objects
Farid Karimipour

Institute for Geoinformation and
Cartography, Vienna University of

Technology
Gusshausstr. 27-29, A-1040 Vienna,

Austria
(+43 1) 58801-12711

karimipour@geoinfo.tuwien.ac.at

Andrew U. Frank
Institute for Geoinformation and

Cartography, Vienna University of
Technology

Gusshausstr. 27-29, A-1040 Vienna,
Austria

(+43 1) 58801-12711

frank@geoinfo.tuwien.ac.at

Mahmoud R. Delavar
Deprtment of Surveying and

Geomatics Engineering, College of
Engineering, University of Tehran

North Kargar St., Tehran,
Iran

(+98 21) 88008839

mdelavar@ut.ac.ir

ABSTRACT

It has been pointed out repeatedly that spatial operations must be
extended to include support for 3D and moving objects. The
attempt to code by hand each spatial operation for each data type
(e.g., static 2D, moving 2D, static 3D, and moving 3D) is
forbidding and has led to specific solutions for particular
purposes. In this paper, we have advocated an operation-
independent approach to extend 2D spatial operations to 3D and
moving objects. The approach is based on implementation of the
concepts of n-dimensional geometry through definition of
transformations between domains called “lifting”. It is explained
via some sample spatial operations and then the implementation
results for convex hull computation are represented.

Categories and Subject Descriptors

F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages – Algebraic language theory

General Terms

Algorithms, Languages, Theory

Keywords

Spatial operations, 3D GIS, Moving Objects, Functor, Lifting

1. INTRODUCTION
The need to extend GIS software to treat 3D and moving objects
is widely recognized (for example: [1, 2, 3, 11, 12, 13, 15, 17]).
The attempt that needs recoding of each spatial operation for each
data type is forbidding and the code for a general 2D, 3D, and
moving objects supporting GIS is nearly four times the current
code size, offering four variants: static 2D, moving 2D, static 3D,
and moving 3D. The complexity of such a growth of code written

in one of the currently popular programming languages is hard to
manage, resulting in numerous bugs. We believe the sheer size of
the task explains why no commercial GIS has a comprehensive
offer for treatment of 3D and moving objects.

We have advocated a principled method to extend 2D spatial
operations to new data types, e.g., 3D and moving objects, with a
minimum amount of recoding [3]. The approach is based on
implementation of the concepts of n-dimensional geometry using
functors that transform one domain to another. It is possible to
define lifting functors that extend the applicability of code to new
data types— automatically [5, 6, 7, 8]. This sounds like magic,
but is (just) the application of a sound mathematical type theory
[16] implemented in modern functional programming languages,
e.g., Haskell [18, 19].

In this paper, we show how this is done. The proposed approach
is explained through a very simple operation: computation of
distance between two points. This operation will be extended to
support static 2D, moving 2D, static 3D, and moving 3D points,
which is called generalization henceforth in this paper. Moreover,
the idea is applied to generalize the ordering test, which tests if a
point is on the right or left of a line, plane, etc. This generalized
test is used for general point in polygon test and also for convex
hull computation. We show in this paper how these operations can
be generalized such that the same code applies to static or moving
n-dimensional points. The focus is on minimizing the amount of
new code necessary and not on performance: it seems better to
have a working program, even if it is slow, than to wait till
somebody writes a fast program some time in the future
(remember Moor’s law: computer speed doubles every 18 months
on average!).

Section 2 presents the generalized convex hull computation as a
motivation example. Section 3 briefly describes functors as the
concept behind the so-called lifting, i.e., extension of operations
from one domain (e.g., 2D) to another (e.g., 3D or moving). In
Section 4, the proposed approach to extend 2D spatial operations
to 3D and moving objects is explained through a simple example,
i.e., computation of distance between two points. The materials
developed here are used in Sections 5 to test if a static/moving
point is on the right or left of a static/moving line, plane, etc. It
leads to point in polygon test and convex hull computation for
static or moving n-dimensional points, which is shown in Section
6 and their implantation results are represented in Section 7.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM GIS’08, November 5–7, 2008, Irvine, CA, USA.
(c) 2008 ACM ISBN 978-1-60558-323-5/08/11…$5.00.

Finally, section 8 contains some conclusions and ideas for future
works.

2. MOTIVATION EXAMPLE
Suppose we have a set of 2D points (e.g., police cars) and a
specific target point (e.g., a target car). To answer the question
whether the target point is inside the area delimited by the point
set is possible by using convex hull computation (See section 6).
As Figure 1 shows, if the target point is outside, then it is a part of
the boundary of the convex hull of all points.

(a)

(b)

Figure 1. Using convex hull to test if a target point (the

triangle) is inside the area delimited by a set of points (the

circles): (a) inside (b) outside.

If the point set, the target point or both are moving, then the
problem is computing the convex hull of some moving points.
Extension of the problem to 3D will test if a static or moving 3D
point is inside or outside the volume constructed by a set of static
or moving 3D points, which again needs convex hull
computation, but this time for some static or moving 3D points.

The straightforward approach to implement this test to support
2D, 3D and moving points is first implementation of one of the
existing algorithms for convex hull computation of static 2D
points [1]. Then, its extension to moving 2D points may be
reached as follows:

• If a moving point crosses an edge of the convex hull (called
extreme edge), that edge splits into two new edges (Figure
2a);

• If the angle between two successive edges that pass through
a point becomes greater than 180°, then the two edges merge
to one edge going through their non-common points (Figure
2b);

• If none of the above cases occur, the edges of the convex
hull do not change (Figure 2c).

Note that in all of the three cases, location of the moving points
must be updated.

To support static 3D points, some modifications in the algorithm
used for static 2D points are required in such a way that it
produces the extreme triangles, instead of extreme edges. Finally,
modification of the explained approach for moving 2D points will
construct the convex hull of some moving 3D points.

Following the above steps, we have four implementations of the
convex hull computation for different types of points. However,
there are two drawbacks in this approach:

(a)

(b)

(c)

Figure 2. Updating the convex hull of a set of moving points:

(a) the black point causes splitting an edge (b) the black point

causes merging two edges (c) no changes in the edges.

• Recoding: Extension of convex hull computation to each
new type of points requires recoding the whole procedure.
Thus, the code for a general convex hull computation is four
times the current code size for computing the convex hull of
static 2D points.

• Operation-dependency: The technique explained to extend
computation of convex hull of static points to moving points
has least effect on the performance of the computations. It
reduces the number of cases that must be checked against
required changes in the extreme edges. However, it depends
on the definition of convex hull. Therefore, extension of
another operation, say, Delauney Triangulation to support
moving points needs another specialized technique [11].

Considering the number of spatial operations, such approach that
focuses on the performance and suggests specialized methods for
extension of each spatial operation, seems not promising to
achieve 3D and moving counterparts of all of the already
implemented 2D spatial operations in the near future.

In the following sections, we introduce an operation-independent
approach to extend 2D spatial operations to 3D and moving
objects with minimum amount of recoding. The approach
implements the concepts of n-dimensional geometry using
functors that transform one domain to another. We define
appropriate lifting functors to lift a domain (e.g., static 2D) to
another domain (e.g., moving 2D). These transformations will
extend all operations from the first domain to the second in the
same way and without recoding.

3. FUNCTORS LIFT DOMAINS
A collection of algebraic systems and their morphisms, e.g., 2D
points and customary operations between them, are called a
category [10, 14]. Functors are a principled way to extend a given
algebraic system from one domain to another. As shown in Figure
3, “A functor F from [category] A to [category] B assigns to any
object Ak in A an object F(Ak)=Bk in B and to every operation
fk:Ai→Aj [in A] an operation F(fk):F(Ai)→F(Aj) [in B] such that
identity and composition are preserved, which says a functor is a
mapping of categories” ([14], p. 131). The fundamental laws are:

F(fk (Ai)) = gk (Bi) where gk= F(fk) and Bi= F(Ai)

F(1Ai) = 1F(Ai)

F(fk . ft) = F(fk) . F(ft).

(1)

(Note: “.” means function composition, i.e., applying the first
function to the result of applying the second: (f.g) (x) = f(g(x)).

Figure 3. A Functor F from category A to category B

The approach of the paper to extend 2D spatial operations to 3D
and moving objects is considering different desired domains in
GIS (i.e., static 2D, moving 2D, static 3D and moving 3D) as
categories with the same structures. Then, definition of
appropriate functors, called lifting here, between them will extend
all operations from one domain to another. Functors are functions
that take another function(s) as argument(s). Such functions are
called second order functions and can be treated in functional
programming languages, e.g., Haskell [18, 19].

4. LIFTING SPATIAL OPERATIONS TO

3D AND MOVING OBJECTS
In this section, we show how to use the lifting functors to extend
2D spatial operations to 3D and moving objects. The example
used here is computation of the Euclidean distance between
different types of points. Table 1 shows the definition of static and
moving 2D/3D points as well as the square distance between two
points for each type.

Table 1. Definition of static and moving 2D/3D points and

square distance for each type

Point type Point Square distance

Static 2D (x, y) (x2-x1)
2+(y2-y1)

2

Moving 2D (x(t), y(t)) (x2(t)-x1(t))
2+(y2(t)-y1(t))

2

Static 3D (x, y, z) (x2-x1)
2+(y2-y1)

2+(z2-z1)
2

Moving 3D (x(t), y(t), z(t)) (x2(t)-x1(t))
2+(y2(t)-y1(t))

2+(z2(t)-z1(t))
2

The first step toward generalization is development of a unified
representation of points of any dimension. The List data type is a
solution: A static or moving n-dimensional point in Euclidean
space can be represented as a list of numbers as [e1, e2, ..., en]
where ei is either a constant or time-dependent value. Then,

2

1 2()i ie e−∑ is a general definition of distance between two static

or moving n-dimensional points. As Equation 2 shows, it applies
subtract to the points, which are defined as two lists, pairwise
(also called “pointwise” applications [14]), then applies square to
each element in the list and finally sums up all of the elements in
the list and gets its square root.

p1 = [e11, e21, …, en1], p2 = [e12, e22, …, en2]

p1-p2 = [e11-e12, e21-e22, …, en1-en2]

(p1-p2)
2 = [(e11-e12)

2, (e21-e22)
2, …, (en1-en2)

2]

(d (p1 , p2))
2 = (e11-e12)

2 + (e21-e22)
2 + … + (en1-en2)

2

d (p1 , p2)
 = sqrt ((e11-e12)

2 + (e21-e22)
2 + … + (en1-en2)

2).

(2)

To implement this general definition of distance between two
points, we need to extend the primitive operations (e.g., +, -,
square, etc.) such that they applies to a list of numbers. To
support moving points, they must be extended to be applicable on
time-dependent values, as well. Development of the two
extensions using lifting functors are described in sections 4.1 and
4.2, respectively.

4.1 Extension to 3D
The key point of this extension is definition of an n-dimensional
point as a list of numbers:

Point = [num, num, ..., num]. (3)

Then, a general solution to extend operations on numbers to
operations on points is to declare a functor which applies an
operation to each element of a list (liftD1), pairs of elements of
two lists (liftD2), and so on:

liftD1 (f ([e1, e2, …, en])) = [f(e1), f(e2), …, f(en)]

liftD2 (f ([e11, e21, …, en1], [e12, e22, …, en2])) =

[f(e11, e12), f(e21, e22), …, f(en1, en2)].

(4)

Thus, the operations on points are defined as lifted versions of
original operations. For example:

square = liftD1 (square)

(+) = liftD2 (+)

(-) = liftD2 (-).

(5)

Having lifted all of the required primitive operations, we can
implement a general distance function: If p1 and p2 are two n-
dimensional points, the distance between them is:

distance (p1, p2)= sqrt.sum.square (p1-p2)
where sum [a1, a2, …, an] = a1+a2+…+an. (6)

4.2 Extension to moving points
Moving points are a prototypical case of temporal data [20]. A
moving point has a different position for any given time; it is
modeled – if the language is second order and permits this – as a
function from time to point:

MovingPoint = t → Point. (7)

It is convenient to define a type Instant as Floating number, and a
general type Changing value, of which a moving point is just a
particular case:

Instant = Float

Changing v = Instant → v

MovingPoint = Changing (Point).

(8)

To extend an operation of static points to moving points, all of its
arguments must become functions of time. liftT1, liftT2 are used
for operations with one and two arguments, respectively:

liftT1 (f (a)) = f (a(t))

liftT2 (f (a, b)) = f (a(t), b(t)).
(9)

B1=F(A1)

B2=F(A2)

B3=F(A3)

g1=F(f1) g2=F(f2)

g3=F(f3)

1B1=F(1A1)

1B2=F(1A2)

1B3=F(1A3)

A1

A2

A3

f1 f2

f3

1A1

1A2

1A3

F

B A

Thus, the operations on moving points are defined as lifted
versions of original operations. For example:

square = liftT1 (square)

(+) = liftT2 (+)

(-) = liftT2 (-).

(10)

Even the definition of distance between two moving points is
achieved by liftT2 functor:

distance = liftT2 (distance). (11)

The integration of liftDs and liftTs functors will provide us with
operations that can be applied to static or moving n-dimensional
points.

4.3 Example: distance between two points
This subsection shows how the operation distance works for
different type of points. Static points are defined by their
coordinates in the Cartesian coordinate system:

s2Dpt1 = [2, 3]

s2Dpt2 = [4, 5]

s3Dpt1 = [2, 4, 1]

s3Dpt2 = [4, 3, 2].

(12)

Function distance calculates the distance between these static
points—independent of their dimension:

sDist2D = distance (s2Dpt1, s2Dpt2) → 2.82

sDist3D = distance (s3Dpt1, s3Dpt2) → 2.44.
(13)

How can one enter moving points? For this example, we define
them as continuous functions. In practice, however, moving
points are given by observed time-position elements between
which positions are interpolated:

m2Dpt1 t = [(3t+1), (2t-1)]

m2Dpt2 t = [(2t+3), (7-2t)]

m3Dpt1 t = [(4t-3), (5t+2), (3t-4)]

m3Dpt2 t = [(3t-2), (2t+3), (5t-3)]

(14)

To print such moving points, they must be given a time instant
and then they reduce to ordinary, printable points. For example
the position of above moving points at time instant 3 are as
follows:

m2Dpt1 (3) = [10, 5]

m2Dpt2 (3) = [9, 1]

m3Dpt1 (3) = [9, 17, 5]

m3Dpt2 (3) = [7, 9, 12]

(15)

Again, function distance calculates the distance between these
moving points:

mDist2D = distance (m2Dpt1, m2Dpt2)

mDist3D = distance (m3Dpt1, m3Dpt2).
(16)

In this case the distance depends on the time at which the points
were observed; it is a changing value, i.e., a function of time. For
example these distances at time instant 3 are reached as follows:

mDist2D (3) = 4.12

mDist3D (3) = 10.81.
(17)

5. ORDER OF POINTS
The test whether three 2D points are in cw (clockwise) or ccw
(counterclockwise) order is called ordering or ccw test and it is
often used in geometric algorithms [9]. The extension of this test
to 3D points checks whether a point is on the right or left side of a
plane goes through three points. The ordering test is implemented
as calculation of determinants, i.e., area or volume calculation and
then comparison with zero:

1 2 3

1 2 3

1 1 1

x x x

y y y

 for 2D and
1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1

x x x x

y y y y

z z z z

for 3D points

(18)

Generally, for n+1 number of n-dimensional points, the ordering
test is based on the sign of the following determinant:

11 12 11 14 1(1)

21 22 23 24 2(1)

31 32 33 34 3(1)

1 2 3 4 (1)

...

...

...

...

...

1 1 1 1 ... 1

n

n

n

n n n n n n

e e e e e

e e e e e

e e e e e

e e e e e

+

+

+

+

(19)

where eij is ith element of the jth point. Then, for n-dimensional
points, to test if a point is on right or left of n number of points is
calculated as follows:

right (p, [p1, …, pn]) = det (tr [p1, …, pn, p]) ≤ 0

left (p, [p1, …, pn]) = det (tr [p1, …, pn, p]) > 0

where tr [e1, …, en] = [e1, …, en, 1].

(20)

These tests work immediately for n-dimensional moving points,
without new code, using lifting functors presented in section 4.2:

right = lift2T (right)

left = lift2T (left).
(21)

6. POINT IN POLYGON TEST AND

CONVEX HULL COMPUTATION
Having implemented the ordering test, the test if a point is inside a
polygon is straightforward: A point is inside a polygon, whose
nodes are in clockwise order, if it is located on the right side of all
edges of the polygon. If a polygon is defined by its vertexes as
[[p1, p2], [p2, p3], …, [pn, p1]], then:

PointInPolygon (p, [[p1, p2], [p2, p3], …, [pn, p1]]) =
allTrue (right (p, [[p1, p2], [p2, p3], …, [pn, p1]]))

where allTrue [b1, b2,…, bn] = (b1==true) and
(b2==true) and … and (bn==true).

(22)

The right and left tests are defined generally for n-dimensional
points. Therefore, this definition of point in polygon test works
for n-dimensional points.

We can go further and use the above operations for convex hull
computation. The convex hull of a set of points is defined as the
smallest set that contains the points [1]. Figure 4 illustrates the
convex hulls for some 2D and 3D points.

(a)

(b)

Figure 4. Convexhull for some (a) 2D points (b) 3D points

The algorithm we have used here to construct the convex hull is
an incremental algorithm called IncrementalConvexhull. Figure 5
illustrates the key concept of the algorithm: When a point is
inserted in the convex hull of a set of points, if it is inside the
convex hull, no change is needed (Figures 5a and 5c). If it is
outside, however, its opposite edges (for 2D) or triangles (for 3D)
are replaced by new edges (for 2D) or triangles (for 3D) passing
through the new point (Figures 5b and 5d).

(a)

(b)

(c)

(d)

Figure 5. IncrementalConvexhull algorithm for 2D and 3D

points: the newly added black point is inserted (a) inside the

2D convex hull (b) outside the 2D convex hull (c) inside the 3D

convex hull (d) outside the 3D convex hull. In Figures (b) and

(d), the removed parts are indicated by dotted line and plane.

Since the point in polygon test was defined generally for n-
dimensional points, therefore this definition of convex hull works
for n-dimensional points. Finally, point in polygon test and
convex hull computation are extended to moving points using the
appropriate lifting functors:

PointInPolygon = liftT2 (PointInPolygon)

ConvexHull = lifT1 (ConvexHull).
(23)

7. IMPLEMENTATION
The data types, operations and lifting functors introduced in
sections 4 to 6 were implemented in Haskell programming
language [18, 19]. It is a functional programming language that

can handle functional arguments, which is the case here for lifting
functors. Its syntax is so similar to mathematical notations. For
example, translation of Equation 22 to Haskell notation is as
follow:

PointInPolygon pt pl = all (==true) ((map right pt) pl) (24)

s2Dpts and s3Dpts are two lists of sample static 2D and 3D points
introduced like the points of Equation 12. Figure 6 shows the
results of ConvexHull (s2Dpts) and ConvexHull (s2Dpts).

(a)

(b)

Figure 6. Results of convex hull computation for some sample

static points: (a) static 2D (b) static 3D

Some moving 2D and 3D points (m2Dpts and m3Dpts,
respectively) introduced like the points of Equation 13.
ConvexHull (m2Dpts) and ConvexHull (m2Dpts) are functions of
time whose results at instants 3 and 10 are shown in Figure 7.

(a)

(b)

(c)

(d)

Figure 7. Results of convex hull computation for some sample

moving points: (a) moving 2D points at time instant 3 (b)

moving 2D points at time instant 10 (c) moving 3D points at

time instant 3 (d) moving 3D points at time instant 10

8. CONCLUSIONS AND FUTURE WORKS
The goal here is to show how a minimal amount of new coding
allows the use of available solutions for static 2D points by
automatic extension for other data types, e.g., 3D and moving
points. The method shown here can be used well equally to
compute the intersection point of a moving point with the
boundary of convex hull as well as the intersection of two lines
that go through some moving points, which will appear in the
following publications. However, computing the interception time
(i.e., when the moving car crosses the boundary) requires another
approach, which we will study next. The method shown here
answers for any time point of interest, whether a condition is met
or not, but not cannot tell when a spatial condition is achieved.

Specialized method to compute with less computational effort
may be possible — the focus here was on minimizing effort to
produce a GIS that works for static 2D, static 3D, moving 2D, and
moving 3D objects alike — with the least amount of code
adoption for each case. Performance issues of the approach,
however, will be studied in our future works.

We are using the same approach to lift the inCircle test (i.e.,
whether a point is inside or outside the circle goes through three
points) and from which an n-dimensional Delauney Triangulation
program for static and moving points follows. Distance
computation together with ccw and inCircle tests are the
connection between metric and topological operations. Having
these primitive operations lifted using the explained approach,
their combination provides us with a number of metric and
topological operations for 3D and moving objects.

9. REFERENCES
[1] De Berg, M., Kreveld, M.V., Overmars, M., and

Schwarzkopf, O. 2000 Computational Geometry: Algorithms
and Applications, 2nd Edition. Springer-Verlag, Berline.

[2] Erwig, M., Güting, R.H., Schneider, M., and Vazirgiannis,
M., "Spatio-Temporal Data Types: An Approach to
Modeling and Querying Moving Objects in Databases",
GeoInformatica, 3(3), 269-296, 1999.

[3] Frank, A.U. 1999. One step up the abstraction ladder:
Combining algebras – From functional pieces to a whole. In
Proceedings of the International Conference COSIT'99, 25-
29 August, 1999, Stade, Germany, Freksa, C., and Mark,
D.M., (eds.), Lecture Notes in Computer Science, Springer-
Verlag, 1661, 95-107.

[4] Frank, A.U. and Gruenbacher, A. 2001. Temporal Data: 2nd
order concepts lead to an algebra for spatio-temporal objects.
In Proceedings of Workshop on Complex Reasoning on
Geographical Data, 1 December, 2001, Cyprus.

[5] Karimipour, F., Delavar, M.R., and Frank, A.U. 2008. A
Mathematical Tool to Extend 2D Spatial Operations to
Higher Dimensions. In Proceedings of the International
Conference on Computational Science and Its Applications
(ICCSA 2008), 30 June – 3 July, 2008, Perugia, Italy,
Gervasi, O., Murgante, B., Lagana, A., Taniar, D., Mun, Y.
and Gavrilova, M., (eds.), Lecture Notes in Computer
Science, Springer-Verlag, 5072, 153-164.

[6] Karmipour F., Delavar, M.R., and Rezayan, H. 2006.
Formalization of Moving Objects' Spatial Analysis Using
Algebraic Structures. In Proceedings of Extended Abstracts
of GIScience 2006 Conference, Munster, Germany, IfGI
Prints Vol. 28, pp. 105-111.

[7] Karimipour, F., Delavar, M.R., Frank, A.U., and Rezayan, H.
2005. Point in Polygon Analysis for Moving Objects. In
Proceedings of the 4th Workshop on Dynamic & Multi-

dimensional GIS, Gold, C. (ed.), 5-8 September, 2005,
Pontypridd, Wales, UK, ISPRS Working Group II/IV, 68-72.

[8] Karimipour, F. 2005. Logical Formalization of Spatial
Analyses of Moving Objects Using Algebraic Structures,
M.Sc. Thesis (in Persian with English abstract), College of
Engineering, University of Tehran, Iran.

[9] Knuth, D. E., 1992 Axioms and Hulls, Lecture Notes in
Computer Science, Vol. 606, Springer-Verlag.

[10] Lawvere, F.W. and Schanuel, S.H. 2005 Conceptual
Mathematics: A First Introduction to Categories. Cambridge
University Press.

[11] Ledoux H. 2008. The Kinetic 3D Voronoi Diagram: A Tool
for Simulating Environmental Processes, in Oosterom, P.V.,
Zlatanova, S., Penninga, F. and Fendel, E. (eds.) Advances in
3D Geo Information Systems. Proceeding of the 2nd
International Workshop on 3D Geoinformation, December
12-14, 2007, Delft, the Netherlands, Lecture Notes in
Geoinformation and Cartography, Springer-Verlag, 361-380.

[12] Ledoux, H. 2007. Computing the 3D Voronoi Diagram
Robustly: An Easy Explanation. In Proceeding of the 4th
International Symposium on Voronoi Diagrams in Science
and Engineering, Pontypridd, Wales, UK, July 9-12, 2007.

[13] Ledoux, H. 2006. Modelling three-dimensional fields in geo-
science with the Voronoi diagram and its dual. PhD thesis,
School of Computing, University of Glamorgan, Pontypridd,
Wales, UK.

[14] MacLane, S. and Birkhoff, G. 1999 Algebra, 3rd Edition.
AMS Chelsea Publishing.

[15] Mostafavi, M.A., Gold, C., and Dakowiczb, M. "Delete and
Insert Operations in Voronoi/Delaunay Methods and
Applications", Journal of Computers and Geosciences, 29,
pp. 523-530, 2003.

[16] Nordstrom, B., Petersson, K., and J. M. Smith 1990
Programming in Martin-Lof ’s Type Theory, An
Introduction. Oxford University Press.

[17] Oosterom, P.V., Zlatanova, S., Penninga, F., and Fendel, E.
(eds.) 2008 Advances in 3D Geo Information Systems,
Proceeding of the 2nd International Workshop on 3D
Geoinformation, December 12-14, 2007, Delft, the
Netherlands, Lecture Notes in Geoinformation and
Cartography, Springer-Verlag.

[18] Peyton Jones, S. and Hughes, J. 1999. Haskell 98: A Non-
Strict, Purely Functional Language. From
http://www.haskell.org/onlinereport/ (accessed June, 2008).

[19] Thompson, S. 1999 Haskell: The Craft of Functional
Programming. Addison- Wesley.

[20] Chorochronos Project 2004.
http://www.dbnet.ece.ntua.gr/~choros/.

