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ABSTRACT 

It has been pointed out repeatedly that spatial operations must be 
extended to include support for 3D and moving objects. The 
attempt to code by hand each spatial operation for each data type 
(e.g., static 2D, moving 2D, static 3D, and moving 3D) is 
forbidding and has led to specific solutions for particular 
purposes. In this paper, we have advocated an operation-
independent approach to extend 2D spatial operations to 3D and 
moving objects. The approach is based on implementation of the 
concepts of n-dimensional geometry through definition of 
transformations between domains called “lifting”. It is explained 
via some sample spatial operations and then the implementation 
results for convex hull computation are represented.   
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F.4.3 [Mathematical Logic and Formal Languages]: Formal 
Languages – Algebraic language theory 
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1. INTRODUCTION 
The need to extend GIS software to treat 3D and moving objects 
is widely recognized (for example: [1, 2, 3, 11, 12, 13, 15, 17]). 
The attempt that needs recoding of each spatial operation for each 
data type is forbidding and the code for a general 2D, 3D, and 
moving objects supporting GIS is nearly four times the current 
code size, offering four variants: static 2D, moving 2D, static 3D, 
and moving 3D. The complexity of such a growth of code written 

in one of the currently popular programming languages is hard to 
manage, resulting in numerous bugs. We believe the sheer size of 
the task explains why no commercial GIS has a comprehensive 
offer for treatment of 3D and moving objects. 

We have advocated a principled method to extend 2D spatial 
operations to new data types, e.g., 3D and moving objects, with a 
minimum amount of recoding [3]. The approach is based on 
implementation of the concepts of n-dimensional geometry using 
functors that transform one domain to another. It is possible to 
define lifting functors that extend the applicability of code to new 
data types— automatically [5, 6, 7, 8]. This sounds like magic, 
but is (just) the application of a sound mathematical type theory 
[16] implemented in modern functional programming languages, 
e.g., Haskell [18, 19].  

In this paper, we show how this is done. The proposed approach 
is explained through a very simple operation: computation of 
distance between two points. This operation will be extended to 
support static 2D, moving 2D, static 3D, and moving 3D points, 
which is called generalization henceforth in this paper. Moreover, 
the idea is applied to generalize the ordering test, which tests if a 
point is on the right or left of a line, plane, etc. This generalized 
test is used for general point in polygon test and also for convex 
hull computation. We show in this paper how these operations can 
be generalized such that the same code applies to static or moving 
n-dimensional points. The focus is on minimizing the amount of 
new code necessary and not on performance: it seems better to 
have a working program, even if it is slow, than to wait till 
somebody writes a fast program some time in the future 
(remember Moor’s law: computer speed doubles every 18 months 
on average!). 

Section 2 presents the generalized convex hull computation as a 
motivation example. Section 3 briefly describes functors as the 
concept behind the so-called lifting, i.e., extension of operations 
from one domain (e.g., 2D) to another (e.g., 3D or moving). In 
Section 4, the proposed approach to extend 2D spatial operations 
to 3D and moving objects is explained through a simple example, 
i.e., computation of distance between two points. The materials 
developed here are used in Sections 5 to test if a static/moving 
point is on the right or left of a static/moving line, plane, etc. It 
leads to point in polygon test and convex hull computation for 
static or moving n-dimensional points, which is shown in Section 
6 and their implantation results are represented in Section 7. 
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Finally, section 8 contains some conclusions and ideas for future 
works.  

2. MOTIVATION EXAMPLE 
Suppose we have a set of 2D points (e.g., police cars) and a 
specific target point (e.g., a target car). To answer the question 
whether the target point is inside the area delimited by the point 
set is possible by using convex hull computation (See section 6). 
As Figure 1 shows, if the target point is outside, then it is a part of 
the boundary of the convex hull of all points. 

 
 
 
 
 

 
(a) 

 
 
 
 
 

 
(b) 

Figure 1. Using convex hull to test if a target point (the 

triangle) is inside the area delimited by a set of points (the 

circles): (a) inside (b) outside. 

If the point set, the target point or both are moving, then the 
problem is computing the convex hull of some moving points. 
Extension of the problem to 3D will test if a static or moving 3D 
point is inside or outside the volume constructed by a set of static 
or moving 3D points, which again needs convex hull 
computation, but this time for some static or moving 3D points. 

The straightforward approach to implement this test to support 
2D, 3D and moving points is first implementation of one of the 
existing algorithms for convex hull computation of static 2D 
points [1]. Then, its extension to moving 2D points may be 
reached as follows: 

• If a moving point crosses an edge of the convex hull (called 
extreme edge), that edge splits into two new edges (Figure 
2a); 

• If the angle between two successive edges that pass through 
a point becomes greater than 180°, then the two edges merge 
to one edge going through their non-common points (Figure 
2b); 

• If none of the above cases occur, the edges of the convex 
hull do not change (Figure 2c).  

Note that in all of the three cases, location of the moving points 
must be updated.  

To support static 3D points, some modifications in the algorithm 
used for static 2D points are required in such a way that it 
produces the extreme triangles, instead of extreme edges. Finally, 
modification of the explained approach for moving 2D points will 
construct the convex hull of some moving 3D points. 

Following the above steps, we have four implementations of the 
convex hull computation for different types of points. However, 
there are two drawbacks in this approach: 
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Figure 2. Updating the convex hull of a set of moving points: 

(a) the black point causes splitting an edge (b) the black point 

causes merging two edges (c) no changes in the edges. 

 

• Recoding: Extension of convex hull computation to each 
new type of points requires recoding the whole procedure. 
Thus, the code for a general convex hull computation is four 
times the current code size for computing the convex hull of 
static 2D points. 

• Operation-dependency: The technique explained to extend 
computation of convex hull of static points to moving points 
has least effect on the performance of the computations. It 
reduces the number of cases that must be checked against 
required changes in the extreme edges. However, it depends 
on the definition of convex hull. Therefore, extension of 
another operation, say, Delauney Triangulation to support 
moving points needs another specialized technique [11].  

Considering the number of spatial operations, such approach that 
focuses on the performance and suggests specialized methods for 
extension of each spatial operation, seems not promising to 
achieve 3D and moving counterparts of all of the already 
implemented 2D spatial operations in the near future. 

In the following sections, we introduce an operation-independent 
approach to extend 2D spatial operations to 3D and moving 
objects with minimum amount of recoding. The approach 
implements the concepts of n-dimensional geometry using 
functors that transform one domain to another. We define 
appropriate lifting functors to lift a domain (e.g., static 2D) to 
another domain (e.g., moving 2D). These transformations will 
extend all operations from the first domain to the second in the 
same way and without recoding. 

3. FUNCTORS LIFT DOMAINS 
A collection of algebraic systems and their morphisms, e.g., 2D 
points and customary operations between them, are called a 
category [10, 14]. Functors are a principled way to extend a given 
algebraic system from one domain to another. As shown in Figure 
3, “A functor F from [category] A to [category] B assigns to any 
object Ak in A an object F(Ak)=Bk in B and to every operation 
fk:Ai→Aj [in A] an operation F(fk):F(Ai)→F(Aj) [in B] such that 
identity and composition are preserved, which says a functor is a 
mapping of categories” ([14], p. 131). The fundamental laws are: 

F(fk (Ai)) = gk (Bi) where gk= F(fk) and Bi= F(Ai) 

F(1Ai) = 1F(Ai) 

F(fk . ft) = F(fk) . F(ft). 

(1) 

(Note: “.” means function composition, i.e., applying the first 
function to the result of applying the second: (f.g) (x) = f(g(x)). 



 

Figure 3. A Functor F from category A to category B 

The approach of the paper to extend 2D spatial operations to 3D 
and moving objects is considering different desired domains in 
GIS (i.e., static 2D, moving 2D, static 3D and moving 3D) as 
categories with the same structures. Then, definition of 
appropriate functors, called lifting here, between them will extend 
all operations from one domain to another. Functors are functions 
that take another function(s) as argument(s). Such functions are 
called second order functions and can be treated in functional 
programming languages, e.g., Haskell [18, 19]. 

4. LIFTING SPATIAL OPERATIONS TO 

3D AND MOVING OBJECTS 
In this section, we show how to use the lifting functors to extend 
2D spatial operations to 3D and moving objects. The example 
used here is computation of the Euclidean distance between 
different types of points. Table 1 shows the definition of static and 
moving 2D/3D points as well as the square distance between two 
points for each type. 

Table 1. Definition of static and moving 2D/3D points and 

square distance for each type 

Point type Point Square distance 

Static 2D (x, y) (x2-x1)
2+(y2-y1)

2 

Moving 2D (x(t), y(t)) (x2(t)-x1(t))
2+(y2(t)-y1(t))

2 

Static 3D (x, y, z) (x2-x1)
2+(y2-y1)

2+(z2-z1)
2 

Moving 3D (x(t), y(t), z(t)) (x2(t)-x1(t))
2+(y2(t)-y1(t))

2+(z2(t)-z1(t))
2 

 

The first step toward generalization is development of a unified 
representation of points of any dimension. The List data type is a 
solution: A static or moving n-dimensional point in Euclidean 
space can be represented as a list of numbers as [e1, e2, ..., en] 
where ei is either a constant or time-dependent value. Then, 

2

1 2( )i ie e−∑  is a general definition of distance between two static 

or moving n-dimensional points. As Equation 2 shows, it applies 
subtract to the points, which are defined as two lists, pairwise 
(also called “pointwise” applications [14]), then applies square to 
each element in the list and finally sums up all of the elements in 
the list and gets its square root. 

p1 = [e11, e21, …, en1], p2 = [e12, e22, …, en2] 

p1-p2 = [e11-e12, e21-e22, …, en1-en2] 

(p1-p2)
2 =  [(e11-e12)

2, (e21-e22)
2, …, (en1-en2)

2] 

(d (p1 , p2))
2 = (e11-e12)

2 + (e21-e22)
2 + … + (en1-en2)

2 

d (p1 , p2)
 = sqrt ((e11-e12)

2 + (e21-e22)
2 + … + (en1-en2)

2). 

(2) 

To implement this general definition of distance between two 
points, we need to extend the primitive operations (e.g., +, -, 
square, etc.) such that they applies to a list of numbers. To 
support moving points, they must be extended to be applicable on 
time-dependent values, as well. Development of the two 
extensions using lifting functors are described in sections 4.1 and 
4.2, respectively. 

4.1 Extension to 3D 
The key point of this extension is definition of an n-dimensional 
point as a list of numbers: 

Point = [num, num, ..., num]. (3) 

Then, a general solution to extend operations on numbers to 
operations on points is to declare a functor which applies an 
operation to each element of a list (liftD1), pairs of elements of 
two lists (liftD2), and so on: 

liftD1 (f  ([e1, e2, …, en])) = [f(e1), f(e2), …, f(en)] 

liftD2 (f  ( [e11, e21, …, en1], [e12, e22, …, en2])) = 

[f(e11, e12), f(e21, e22), …, f(en1, en2)]. 

(4) 

Thus, the operations on points are defined as lifted versions of 
original operations. For example: 

square = liftD1 (square) 

(+) = liftD2 (+) 

(-) = liftD2 (-). 

(5) 

Having lifted all of the required primitive operations, we can 
implement a general distance function: If p1 and p2 are two n-
dimensional points, the distance between them is: 

distance (p1, p2)= sqrt.sum.square (p1-p2) 
where sum [a1, a2, …, an] = a1+a2+…+an. (6) 

4.2 Extension to moving points 
Moving points are a prototypical case of temporal data [20]. A 
moving point has a different position for any given time; it is 
modeled – if the language is second order and permits this – as a 
function from time to point: 

MovingPoint = t → Point. (7) 

It is convenient to define a type Instant as Floating number, and a 
general type Changing value, of which a moving point is just a 
particular case: 

Instant = Float 

Changing v = Instant → v 

MovingPoint = Changing (Point). 

(8) 

To extend an operation of static points to moving points, all of its 
arguments must become functions of time. liftT1, liftT2 are used 
for operations with one and two arguments, respectively: 

liftT1 (f (a)) = f (a(t)) 

liftT2 (f (a, b)) = f (a(t), b(t)). 
(9) 
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Thus, the operations on moving points are defined as lifted 
versions of original operations. For example: 

square = liftT1 (square) 

(+) = liftT2 (+) 

(-) = liftT2 (-). 

(10) 

Even the definition of distance between two moving points is 
achieved by liftT2 functor: 

distance = liftT2 (distance). (11) 

The integration of liftDs and liftTs functors will provide us with 
operations that can be applied to static or moving n-dimensional 
points. 

4.3 Example: distance between two points 
This subsection shows how the operation distance works for 
different type of points. Static points are defined by their 
coordinates in the Cartesian coordinate system: 

s2Dpt1 = [2, 3] 

s2Dpt2 = [4, 5] 

s3Dpt1 = [2, 4, 1] 

s3Dpt2 = [4, 3, 2]. 

(12) 

Function distance calculates the distance between these static 
points—independent of their dimension: 

sDist2D = distance (s2Dpt1, s2Dpt2)    →    2.82 

sDist3D = distance (s3Dpt1, s3Dpt2)    →    2.44. 
(13) 

How can one enter moving points? For this example, we define 
them as continuous functions. In practice, however, moving 
points are given by observed time-position elements between 
which positions are interpolated: 

m2Dpt1 t = [(3t+1), (2t-1)] 

m2Dpt2 t = [(2t+3), (7-2t)] 

m3Dpt1 t =  [(4t-3), (5t+2), (3t-4)] 

m3Dpt2 t =  [(3t-2), (2t+3), (5t-3)] 

(14) 

To print such moving points, they must be given a time instant 
and then they reduce to ordinary, printable points. For example 
the position of above moving points at time instant 3 are as 
follows: 

m2Dpt1 (3) = [10, 5] 

m2Dpt2 (3) = [9, 1] 

m3Dpt1 (3) =  [9, 17, 5] 

m3Dpt2 (3) =  [7, 9, 12] 

(15) 

Again, function distance calculates the distance between these 
moving points: 

mDist2D = distance (m2Dpt1, m2Dpt2) 

mDist3D = distance (m3Dpt1, m3Dpt2). 
(16) 

In this case the distance depends on the time at which the points 
were observed; it is a changing value, i.e., a function of time. For 
example these distances at time instant 3 are reached as follows: 

mDist2D (3) = 4.12 

mDist3D (3) = 10.81. 
(17) 

5. ORDER OF POINTS 
The test whether three 2D points are in cw (clockwise) or ccw 
(counterclockwise) order is called ordering or ccw test and it is 
often used in geometric algorithms [9]. The extension of this test 
to 3D points checks whether a point is on the right or left side of a 
plane goes through three points. The ordering test is implemented 
as calculation of determinants, i.e., area or volume calculation and 
then comparison with zero: 
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(18) 

Generally, for n+1 number of n-dimensional points, the ordering 
test is based on the sign of the following determinant: 

11 12 11 14 1( 1)

21 22 23 24 2( 1)
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(19) 

where eij is ith element of the jth point. Then, for n-dimensional 
points, to test if a point is on right or left of n number of points is 
calculated as follows: 

right (p, [p1, …, pn]) = det (tr [p1, …, pn, p]) ≤ 0 

left   (p, [p1, …, pn]) = det (tr [p1, …, pn, p]) > 0 

where tr [e1, …, en] = [e1, …, en, 1]. 

(20) 

These tests work immediately for n-dimensional moving points, 
without new code, using lifting functors presented in section 4.2: 

right = lift2T (right) 

left = lift2T (left). 
(21) 

6. POINT IN POLYGON TEST AND 

CONVEX HULL COMPUTATION 
Having implemented the ordering test, the test if a point is inside a 
polygon is straightforward: A point is inside a polygon, whose 
nodes are in clockwise order, if it is located on the right side of all 
edges of the polygon. If a polygon is defined by its vertexes as 
[[p1, p2], [p2, p3], …, [pn, p1]], then: 

PointInPolygon (p, [[p1, p2], [p2, p3], …, [pn, p1]]) = 
allTrue (right (p, [[p1, p2], [p2, p3], …, [pn, p1]]))  

where allTrue [b1, b2,…, bn] = (b1==true) and 
(b2==true) and … and (bn==true). 

(22) 



The right and left tests are defined generally for n-dimensional 
points. Therefore, this definition of point in polygon test works 
for n-dimensional points. 

We can go further and use the above operations for convex hull 
computation. The convex hull of a set of points is defined as the 
smallest set that contains the points [1]. Figure 4 illustrates the 
convex hulls for some 2D and 3D points. 

 
 
 
 

(a) 

 
 
 
 

(b) 

Figure 4. Convexhull for some (a) 2D points (b) 3D points 

The algorithm we have used here to construct the convex hull is 
an incremental algorithm called IncrementalConvexhull. Figure 5 
illustrates the key concept of the algorithm: When a point is 
inserted in the convex hull of a set of points, if it is inside the 
convex hull, no change is needed (Figures 5a and 5c). If it is 
outside, however, its opposite edges (for 2D) or triangles (for 3D) 
are replaced by new edges (for 2D) or triangles (for 3D) passing 
through the new point (Figures 5b and 5d). 
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(c) 

 
 
 
 

 

(d) 

Figure 5. IncrementalConvexhull algorithm for 2D and 3D 

points: the newly added black point is inserted (a) inside the 

2D convex hull (b) outside the 2D convex hull (c) inside the 3D 

convex hull (d) outside the 3D convex hull. In Figures (b) and 

(d), the removed parts are indicated by dotted line and plane. 

Since the point in polygon test was defined generally for n-
dimensional points, therefore this definition of convex hull works 
for n-dimensional points. Finally, point in polygon test and 
convex hull computation are extended to moving points using the 
appropriate lifting functors: 

PointInPolygon = liftT2 (PointInPolygon) 

ConvexHull = lifT1 (ConvexHull). 
(23) 

7. IMPLEMENTATION 
The data types, operations and lifting functors introduced in 
sections 4 to 6 were implemented in Haskell programming 
language [18, 19]. It is a functional programming language that 

can handle functional arguments, which is the case here for lifting 
functors. Its syntax is so similar to mathematical notations. For 
example, translation of Equation 22 to Haskell notation is as 
follow: 

PointInPolygon pt pl = all (==true) ((map right pt) pl) (24) 

s2Dpts and s3Dpts are two lists of sample static 2D and 3D points 
introduced like the points of Equation 12. Figure 6 shows the 
results of ConvexHull (s2Dpts) and ConvexHull (s2Dpts). 

 
(a) 

 
(b) 

Figure 6. Results of convex hull computation for some sample 

static points: (a) static 2D (b) static 3D 

Some moving 2D and 3D points (m2Dpts and m3Dpts, 
respectively) introduced like the points of Equation 13. 
ConvexHull (m2Dpts) and ConvexHull (m2Dpts) are functions of 
time whose results at instants 3 and 10 are shown in Figure 7.  

 
(a) 

 
(b) 

 
(c) 

 

(d) 
 

Figure 7. Results of convex hull computation for some sample 

moving points: (a) moving 2D points at time instant 3 (b) 

moving 2D points at time instant 10 (c) moving 3D points at 

time instant 3 (d) moving 3D points at time instant 10 

8. CONCLUSIONS AND FUTURE WORKS 
The goal here is to show how a minimal amount of new coding 
allows the use of available solutions for static 2D points by 
automatic extension for other data types, e.g., 3D and moving 
points. The method shown here can be used well equally to 
compute the intersection point of a moving point with the 
boundary of convex hull as well as the intersection of two lines 
that go through some moving points, which will appear in the 
following publications. However, computing the interception time 
(i.e., when the moving car crosses the boundary) requires another 
approach, which we will study next. The method shown here 
answers for any time point of interest, whether a condition is met 
or not, but not cannot tell when a spatial condition is achieved. 



Specialized method to compute with less computational effort 
may be possible — the focus here was on minimizing effort to 
produce a GIS that works for static 2D, static 3D, moving 2D, and 
moving 3D objects alike — with the least amount of code 
adoption for each case. Performance issues of the approach, 
however, will be studied in our future works. 

We are using the same approach to lift the inCircle test (i.e., 
whether a point is inside or outside the circle goes through three 
points) and from which an n-dimensional Delauney Triangulation 
program for static and moving points follows. Distance 
computation together with ccw and inCircle tests are the 
connection between metric and topological operations. Having 
these primitive operations lifted using the explained approach, 
their combination provides us with a number of metric and 
topological operations for 3D and moving objects. 
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