
Flexible Architecture for the Development

of Realtime Interaction Behavior

Gerwin de Haan∗ Frits H. Post

Delft University of Technology, The Netherlands

ABSTRACT

In this paper, we describe our work in progress on the architecture
of StateStream, a software model for the development of interaction
behavior in realtime interactive systems. The StateStream design
aims to support the design and development cycle of complex in-
teraction techniques, object behavior and interaction scenarios and
is currently targeted at concurrent and fluent direct manipulation in
Virtual Environments. StateStream provides a dual modeling ap-
proach to model both discrete behavior and continuous interactive
behavior. The architecture integrates these modeling features with
the underlying graphics and tracking libraries. By design, a dy-
namic programming language is used both throughout the architec-
ture and in the behavioral model descriptions. We highlight some
of the features of the StateStream model and illustrate how its tight
integration through the Python language offers a flexible frame-
work for studying and adapting the complex interactions between
description models and architecture components. We believe this
approach provides flexible run-time experimentation environments
and tool chains, and can lead to improved insights and requirements
for future interaction description models and architectures for real-
time interactive systems.

Keywords: Virtual Reality, 3D Interaction, Scripting languages.

Index Terms: I.3.7 [Computing Methodologies]: Com-
puter Graphics—Virtual Reality; D.2.6 [Software]: Software
Engineering—Programming Environments

1 INTRODUCTION

Well-behaved interactivity is a core aspect of Virtual Reality and
other realtime interactive systems (RIS). Recent advances in com-
puter technology triggered a new generation of post-WIMP inter-
faces and enable new forms of interaction [6]. Although several in-
terface and interaction descriptions methodologies and taxonomies
exist, more complex interaction techniques and scenarios become
harder to design, to model, to program, to debug and to evalu-
ate. The introduction of new input modalities (e.g. multi-touch
displays) and a trend towards multi-user and distributed systems
further complicate the design and development of interfaces, inter-
action and the underlying software models and architectures.

With the next generation of devices, interfaces and interaction
scenarios well within reach, we should strive for a good under-
standing of the properties and issues of interaction modeling. As
interaction and the related software are strongly interconnected, it
is an important element in the requirements of any RIS architecture.
Given this importance, we believe that interaction design and de-
velopment issues should be considered an essential part of the RIS
architecture development, as well as a part of application design cy-
cles. We consider that powerful design patterns are not designed,

∗e-mail:g.dehaan@tudelft.nl

but rather discovered through trial and error during iterations in re-
flective practice. However, support for the iterative (process of)
design, development and evaluation for interactivity, often lacks in
current RIS frameworks. It is also hard to design either an inter-
action specification model or a RIS framework separately with the
other in mind.

Therefore, during our ongoing design and development efforts
of our StateStream interaction model, this is gradually integrated
with our VR software architecture. While the model is in develop-
ment, we use the Python language as the integrating layer between
the modeling components and the underlying architecture and ex-
periment with its possibilities. This allows us to quickly transfer
and integrate functional elements between model and software ar-
chitecture.

In the remainder of this paper we will elaborate on this in-
tegrated approach and demonstrate the current state of our Stat-
eStream model and environment. First, we discuss related work
on interactivity modeling for VR and underlying architectures of
current systems in section 2. Then, in section 3, we describe our
current StateStream model and how this integrates with the under-
lying architecture. Finally, we conclude in section 4 and indicate
possible directions and areas for future research.

2 RELATED WORK

Generally, flexibility in the description of interactive behavior in
VR systems is supported through one or more (formal) models, a
special API, scripting or a combination of either one.

Modeling languages are used to describe interaction behavior
while avoiding programming and validity issues for the end-user.
For example, with the InTml [3] specification language one can
describe 3D interaction techniques, input devices and their con-
nections. It uses a data flow model to describe interaction tech-
niques in terms of filters. Also UNIT [9] uses a similar data flow
model here and focuses on flexible redefinition of continuous be-
havior of interaction techniques. The IFFI system [10] provides an
even higher abstraction to allow for reuse of techniques across dif-
ferent VR toolkits. In contrast with the mainly continuous behav-
ior descriptions of interaction technique components, other models
such as statemachines better grasp discrete behavior. For exam-
ple, CHASM [12] is a recent example of the use of StateCharts
to describe VR interaction techniques. In the work by Jacob et
al. [7][11], a StateChart model and a data flow model are used con-
currently to describe and program non-WIMP user interfaces. Our
StateStream system is build on a similar, dual-modeling approach
where both state mechanisms and data flow are first-class entities.
In this way we can model both event-based and behavioral-based
interactivity in our approach.

We avoid the use of a specialized declarative model language
in this early stage of development, and instead explicitly describe
interaction techniques using Python scripted constructions. Zach-
mann [13] already proposed the use of scripting to define interac-
tive behavior and provided special-purpose scripting language on
a fixed interaction API. Early versions of Alice toolkit [1] also
provided Python-based scripting environment for interaction and
low-level extensions, to lower the language learning barrier. Al-



Figure 1: Overview of the StateStream model and VRMeer software
layers (see Section 3.1). A pure VRMeer application can have native
access to various components and external software or, preferably,
through Python. A StateStream application uses actors with state-
based and streaming behavior model descriptions. Stars indicate
Python bindings on the underlying libraries.

though the use of a scripting language provides some flexibility, it
does not directly provide higher level tools which might be help-
ful in the interaction modeling process. Hendricks [5] highlighted
the need for VR interaction to allow a smooth migration of novice
users to becoming more experienced and proposed the use of meta-
authoring tools which assist in the creation of interactions by spec-
ifying higher-level, event-action pairs. By connecting our base VR
layers with a wealth of available Python libraries, we are able to
gradually build up the architecture and development front-end tools
over various iterations. As a result, the Python dynamic language
serves as a unified syntax and semantics for describing interactiv-
ity between objects, connect application components and produce
development and analysis tools.

3 SYSTEM DESCRIPTION

In our group we created the VRMeer VR toolkit to develop Virtual
Reality applications in C++ for our various VR hardware systems.
The toolkit provides common, hard-coded interaction techniques
which cannot readily be extended for complex interaction scenar-
ios. The StateStream model builds upon the toolkit and can replace
the existing interaction mechanisms.

3.1 Base Architecture

The VRMeer toolkit mainly builds upon the OpenSceneGraph li-
brary, and is a redesign of our previous iVR toolkit which was
OpenGL Performer based. In a similar fashion to our early VR
toolkit, iVR, we use SWIG to create Python bindings for both Open-
SceneGraph (osgswig1) and the VRMeer toolkit. Through sets of
flexible Python abstraction layers, one can quickly integrate vari-
ous Python and C++ toolkit functionality in a VR application, also
see [2]. A schematic overview of the software layers in the VRMeer
system is shown in Figure 1. On top of the base abstraction layers,
our proposed StateStream interaction model runs to facilitate inter-
action modeling integrated with system functionality.

A VR application is written in (sets of) Python file(s), which con-
tain the loading of 3D models, setting up devices, connecting inter-
action tools, defining specific callbacks, etcetera. For ease of use,
a standard set of procedures and callback functions to interact with
existing scene-graph traversals is provided. Through execution of
the main file by a Python interpreter, necessary libraries are loaded,
and the main loop of the VR run-time environment is invoked. This
Python-based environment further controls the execution of the VR
application. Currently, as we extend Python by importing the VR

1http://code.google.com/p/osgswig/

libraries in a running Python interpreter instance, this main Python
instance is the controlling process over the entire application.

3.2 StateStream Model

In this section, a short overview is given of the current StateStream
interaction model. StateStream currently uses a dual modeling ap-
proach of interaction, similar to PMIW [7]. The first modeling
primitive is the statemachine, a state-based mechanism intended
for describing discrete behavior. The second modeling primitive
is the streammachine, intended for modeling conceptually continu-
ous streams of information. The description of the complete model
with in-depth properties and design considerations is currently in
progress and outside the scope of this paper.

We first split behavioral functionality into conceptual actors,
each of which contain the behavioral primitives as described above.
In our case, an actor often consists of a visible VR object and its
behavior specification. For interaction techniques, actors include
the graphical elements such as cursors, icons and rays.

For describing discrete behavior, we use a custom StateChart
variant, which consists of hierarchical, concurrent statemachines.
A graphical representation, automatically generated from an in-
stance of such a statemachine, is shown in Figure 3B. For each Stat-
eStream application, we instantiate a main, top-level statemachine.
All other statemachines existing in the applications are attached
as (concurrent) child statemachine of this statemachine, or descen-
dants thereof. Typically, state variables of actors and its graphical
objects are directly related to, or even modeled as statemachines.
State transitions can occur if certain events match the conditions
of available transition. Custom functionality is defined in callback
functions such as state entry and exit functions, or at transitions.
A main functional element here is the sending of events to other
objects, and the creation, enabling and disabling of connections be-
tween other streammachines.

The streammachine model is intended for modeling conceptu-
ally continuous streams of information. For this, we use a data flow
graph structure, which consists of a set of connected nodes or fil-
ters with various input and output ports, see Figure 3C. The ports
of the nodes can be connected through connections, over which in-
formation of various data types can be transported. The custom
functionality of the nodes is defined in callback functions on the
incoming and outgoing ports. Typically, these functions are exe-
cuted every frame. Therefore, continuous variables of an actor and
its graphical objects, e.g. position, rotation, color or size are easily
modeled and connected through filters. A second element is the use
of a specialized streammachine, which can trigger the generation of
an event based on incoming streams.

A StateStream-based application consists of the description of
the actors, their statemachines and streammachines. After initial-
ization, the main loop proceeds with the distribution of aggregated
events to the top-level statemachine. Then, the acyclic data flow
graph of streammachines is ordered, and values are pushed through
the graph. Functionality in both models can influence underlying
content, for example nodes in the scene graph. To obtain events
and streams in the StateStream model, a set of converters is used to
translate events and variables for the underlying libraries, e.g. the
scene graph or tracking libraries. An example of this is the con-
version of button presses and coordinates of a 3D tracker device,
where button presses are converted to StateStream events, while the
coordinates are handled through streammachine nodes. By already
performing this conversion at a low-level, the fine-grained details
of interactivity can be flexibly modeled, composed and inspected
through their explicit models.

3.3 StateStream Example

To give some insight on the model’s use in practice, we take a sim-
plified ray-based selection and manipulation scenario as an exam-



ple. Two simple VR objects can be interacted with at the same
time by two interactors connected to 6DOF styli in both hands
(Figure 3A). The application’s state contains four concurrent sub-
states: two for the interactors and two for the objects. Continuous
device streams, such as stylus position and orientation, are con-
nected to ray-intersection streammachines which can generate “hit”
events. An interactor’s statemachine (Figure 3B) can respond to
these events, notify the VR objects it hits and connect to some of its
stream ports (Figure 3C). A separate streammachines can be used
to calculate the length of the ray. When a “button” event is received,
the interactor can reconnect streams to impose a new position and
rotation onto the hit VR object. As a result, the object’s position
is defined as the stylus position “filtered” through a chain of con-
nected streammachines.

The combined behavior of both interactor and object is defined in
the actors’ statemachines and streammachines. We can define spe-
cial interactors to work on regular objects or define special object
behavior for various interactors, all on a fine-grained level. Through
concurrent state-based behavior, each interactor or object can also
maintain a separate child state- and streammachines for each related
actor. In this example, we can extend one interactor’s behavior to
support manipulation of multiple objects at the same time. Two
handed object manipulation of a single object can also be described
by connecting interactor streams to different functional ports of the
object, such as position and rotation. The complexity in sets of
states and stream connections quickly explodes in such a scenario,
and will require extra tools for visualization and development.

3.4 Integration with Python

The complexity and unclarity in the model requirements and the
supporting architecture withheld us from directly specifying which
functional features should be placed in which part of the system.
The dynamic properties Python language gives us the advantage
in the development of the modeling and architecture. A main fea-
ture is that both the two modeling primitives are described through
Python class structures, and also their executing engines are Python
based. First, it avoided the up-front specification of protocol struc-
tures and static data types. We can rapidly transport various types
of structures through the event and stream channels. Second, we in-
troduce a bridge between descriptive and imperative programming,
as flexible syntax constructs mimic declarative programming. The
class inheritance mechanism provides an expressive way for reusing
constructions. Third, the introspective properties allows us to in-
spect types and to act accordingly at run-time or display them in
the interface. In conclusion, it brings us a tight integration between
description model and its execution engine, as well as underlying
VR architecture. We observe that the descriptive modeling of inter-
action integrates functionality at a single level of abstraction, which
is orthogonal to the software layers.

3.5 Iterated Development

Since its early conception, the model and underlying architecture
have gone through several iterations of advancement. More and
more interaction parts of the original VR toolkit were converted
to use StateStream primitives. Early versions consisted only of
state-based primitives, after which it quickly became clear that this
was unpractical for modeling continuous relations. During a transi-
tion of both the StateStream model from our old iVR toolkit to the
new VRMeer toolkit, the logic of the interaction techniques was
preserved. Only a limited set of relations to the underlying scene
graph and toolkit had to be changed in order to restore functional-
ity. More recently, we introduced the derivation and instantiation of
StateStream-based component templates. This allows more elegant
re-use of code and provides more concurrent state-based functions.

3.6 Run-time Environment

We provide an interactive (graphical) debugging or development
environment, available concurrently with the VR application. This
is achieved through the integrated use of the GTK GUI toolkit and
an iPython interactive Python shell. As all components of the appli-
cation can be accessed through the same single Python instance, one
can rapidly create GUI components and adjust relations between
them. Through small pieces of code or a layout designer, a devel-
opment workspace can be created, see Figure 2. This workspace
can be displayed on a separate screen or machine, with the benefit
that a user can perform an action in the Virtual Environment while
the interaction designer or developer inspects the flow of events and
the correct handling of the states, or even interrupts or assists in
the sessions by performing extra actions. This possibility is espe-
cially useful when used for inspecting StateStream modeled behav-
ior. For example, we display a list of active statemachines, each
of which when clicked, generates a graphical representation of its
current state.

4 CONCLUSIONS AND FUTURE DIRECTIONS

The design and evaluation of the interactive components of RIS
remains a complex task. Simple testing and evaluation of sys-
tem properties as a whole are not adequate, as Olsen stated in [8].
Therefore, our proposed StateStream model and architecture fo-
cuses on providing the suggested visibility, flexibility and the ex-
pressiveness necessary to rapidly iterate to a better user interface
system, and resulting user interfaces in general. At its current state
of development, it is difficult to objectively assess the added value
of the proposed StateStream model and the supporting architec-
ture. Nevertheless, the increasing rate of the addition of useful fea-
tures and growing insight in dynamic relations between our inter-
action model and architecture already indicate we are making good
progress. We feel that, with the proposed combination of evolving
descriptive, semi-formal models and tool-chains, we increase our
understanding of the complex logic of interactivity, the software in-
volved, as well as its development cycle. The use of a single unified
language accelerates these iteration cycles.

We hope that through this line of work, we demonstrate design-
ers of next-generation RIS systems the importance of flexibility in
interaction design, and encourage the adoption of the base tech-
nologies that allow similar development strategies. In this way, our
research community might be better prepared to offer robust system
designs for useful next-generation interfaces and devices. In the
line of the current approach, we also see two important directions
of future developments in interaction modeling and RIS system de-
velopment in general.

The first direction is to work towards a extensible development,
rapid-prototyping and evaluation environment for fine-grained in-
teraction behavior development for VR applications, similar to
what d.tools does on a higher level for external devices [4]. Our
StateStream work increased our understanding that in interaction
models are difficult to predict, design and realize. The complex-
ity of technical and aesthetic relations between interaction models,
implementation and understandable end-user interfaces make this
hard, and we do not expect that a single model or development tool
can alleviate this. As also stated in [5] and [2], we therefore con-
tinue the use of many flexible layers of abstraction and prototyping
cycles in the development cycle for interaction. In these cycles, the
model, (visual) languages and front-end GUIs and evaluation strate-
gies gradually become available and continuously evolve. Depend-
ing on the application, developers, interface design and end-users,
one should quickly be able to adapt available language constructs,
models and visual development tools to fit that specific case. The
main work needed in this area is on rapid prototyping, deriving in-
teraction models, construction of new front-end interfaces and the
creation of analysis tools for interaction models.



Figure 2: Typical layout of a StateStream application within the interactive VRMeer run-time environment: List overviews of active state- and
streammachines (A), generated graphical StateChart representations (B) and interactive IPython shells to inspect and control objects (C).

A second direction is to obtain more useful, (semi-)formal prop-
erties in the interaction model. This is necessary to enable rea-
soning about concurrent and connected components of interaction
behavior. One goal is to offer robust serialization for recording, an-
alyzing and replaying interactive sessions. A second goal is that
of optimization and distribution. Through analysis of interdepen-
dencies and requirements of the streammachine components op-
timization and guarantees of responsiveness and latency of inter-
action techniques can be made. Of special interest are the sepa-
ration and distribution of parts of the statemachines or streamma-
chines over multiple, connected StateStream instances on indepen-
dent processes or machines. To provide such model features, it is
necessary to make sure the related implementation part does not in-
validate newly introduced model assumptions, e.g. no side effects
occur with model operations.

ACKNOWLEDGEMENTS

Part of this research has been funded by the Dutch BSIK/BRICKS
project.

REFERENCES

[1] M. J. Conway and R. Pausch. Alice: easy to learn interactive 3D

graphics. SIGGRAPH Comput. Graph., 31(3):58–59, 1997.

[2] G. de Haan, M. Koutek, and F. H. Post. Flexible Abstraction Layers

for VR application development. In Proc. IEEE VR 2007, pages 239–

242.

[3] P. Figueroa, M. Green, and H. J. Hoover. InTml: a description lan-

guage for VR applications. In Proc. Web3D 2002, pages 53–58.

[4] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr,

A. Robinson-Mosher, and J. Gee. Reflective physical prototyping

through integrated design, test, and analysis. In Proc. UIST 2006,

pages 299–308.

[5] Z. Hendricks, G. Marsden, and E. Blake. A meta-authoring tool for

specifying interactions in virtual reality environments. In Proc. AFRI-

GRAPH 2003, pages 171–180.

[6] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer, E. T.

Solovey, and J. Zigelbaum. Reality-Based Interaction: A Framework

for Post-WIMP Interfaces. In Proc. CHI 2008, to appear.

[7] R. J. K. Jacob, L. Deligiannidis, and S. Morrison. A software model

and specification language for non-WIMP user interfaces. ACM

TOCHI, 6(1):1–46, 1999.

[8] D. Olsen Jr. Evaluating user interface systems research. In Proc. UIST

2007, pages 251–258.

[9] A. Olwal and S. Feiner. Unit: modular development of distributed

interaction techniques for highly interactive user interfaces. In Proc.

GRAPHITE 2004, pages 131–138.

[10] A. Ray and D. A. Bowman. Towards a system for reusable 3D inter-

action techniques. In Proc. VRST 2007, pages 187–190.

[11] O. Shaer and R. J. K. Jacob. Toward a Software Model and a Spec-

ification Language for Next-Generation User Interfaces. ACM CHI

Workshop on The Future of User Interface Software Tools, 2005.

[12] C. Wingrave and D. Bowman. ”CHASM”: Bridging Description and

Implementation of 3D Interfaces. In Proc. IEEE VR Workshop on New

Directions in 3D User Interfaces, pages 85–88, 2005.

[13] G. Zachmann. A language for describing behavior of and interaction

with virtual worlds. In Proc. VRST 1996.



Figure 3: Overview of a basic VR interaction scenario modeled with StateStream. Two VR objects(A) are selected and manipulated in various
ways over time by two different interactors. The diagrams for states (B) and streams (C) graphically represent the changing relations and
transitions between various interaction components.


