

3D Topography

A simplicial Complex-based Solution in a Spatial DBMS

Friso Penninga

GIS-t lunch meeting January 18, 2008

Presentation outline

- Introduction
- Previous presentation (01-09-06)
 - Characteristics simplicial complex-based approach
 - Simplicial complexes applied to 3D Topography
 - Implementation details
- Update operations (feature insertion)
- Test data sets
 - Tetrahedronisation of models
 - Storage requirements, comparison to Oracle 11g polyhedrons
- Future research & conclusions

Introduction (1/2)

PhD research within RGI-011

<page-header><image><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

Objective RGI-011:

Enforcing a major break-through in the application of 3D Topography in corporate ICT environments due to structural embedding of 3D methods and techniques.

Research question my PhD:

How can a 3D topographic representation be realised in a feature-based triangular data model?

Ruimte voor Geo-Informatie

Introduction (2/2)

Two-step approach:

- How to develop a conceptual model that describes the real world phenomena (the topographic features)?
- How to implement this conceptual model, i.e. how to develop a suitable DBMS data structure?

Focus:

storage, analysis, validation

Presentation outline

• Introduction

- Previous presentation (01-09-06)
 - Characteristics simplicial complex-based approach
 - Simplicial complexes applied to 3D Topography
 - Implementation details
- Update operations (feature insertion)
- Test data sets
 - Tetrahedronisation of models
 - Storage requirements, comparison to Oracle 11g polyhedrons
 - Future research & conclusions

Previous presentation

Previous presentation Characteristics sc-based approach (1/3)

Characteristic 1: Full decomposition of space

Two fundamental observations (Cosit'05 paper):

- ISO19101: a feature is an 'abstraction of real world phenomena'. These real world phenomena have by definition a volume
- Real world can be considered to be a volume partition (analogous to a planar partition: a set of non-overlapping volumes that form a closed modelled space)

Result: explicit inclusion of earth and air

Previous presentation Characteristics sc-based approach (2/3)

Characteristic 2: constrained TEN

object boundaries represented by constraints

Advantages of TEN:

- Well defined: a n-simplex is bounded by n + 1 (n - 1)-simplexes.
- Flatness of faces: every face can be described by three points
- A n-simplex is convex (which simplifies amongst others point-in-polygon tests)

Previous presentation Example: small data set

Previous presentation Characteristics sc-based approach (3/3)

Characteristic 3: based on Poincaré simplicial homology solid mathematical foundation (SDH'06 paper):

Simplex S_n defined by (n+1) vertices: $S_n = \langle V_{0'}, ..., V_n \rangle$ The boundary ∂ of simplex S_n is defined as sum of (n-1) dimensional simplexes (note that 'hat' means skip the node):

$$\partial S_n = \sum_{i=0}^n (-1)^i < v_0, ..., \hat{v}_i, ..., v_n >$$

remark: sum has n+1 terms

$$S_{1} = \langle v_{0}, v_{1} \rangle \qquad \partial S_{1} = \langle v_{1} \rangle - \langle v_{0} \rangle \\S_{2} = \langle v_{0}, v_{1}, v_{2} \rangle \qquad \partial S_{2} = \langle v_{1}, v_{2} \rangle - \langle v_{0}, v_{2} \rangle + \langle v_{0}, v_{1} \rangle \\S_{3} = \langle v_{0}, v_{1}, v_{2}, v_{3} \rangle \qquad \partial S_{3} = \langle v_{1}, v_{2}, v_{3} \rangle - \langle v_{0}, v_{2}, v_{3} \rangle + \\\langle v_{0}, v_{1}, v_{3} \rangle - \langle v_{0}, v_{1}, v_{2} \rangle$$

Previous presentation SC-based approach to 3D topography

Previous presentation Implementation details

$$\partial S_{n} = \sum_{i=0}^{n} (-1)^{i} < v_{0}, ..., \hat{v}_{i}, ..., v_{n} >$$

Boundary operator implemented in PL/SQL procedure Procedure used to define views with triangles, edges, constrained triangles (object boundaries!), constrained edges, e.g.:

```
create or replace view triangle as
  select deriveboundarytriangle1(tetcode) tricode,
  tetcode fromtetcode from tetrahedron
  UNION ALL
  select deriveboundarytriangle2(tetcode) tricode,
  tetcode fromtetcode from tetrahedron
  UNION ALL
...
```


Presentation outline

- Introduction
- Previous presentation (01-09-06)
 - Characteristics simplicial complex-based approach
 - Simplicial complexes applied to 3D Topography
 - Implementation details
- Update operations (feature insertion)
- Test data sets
 - Tetrahedronisation of models
 - Storage requirements, comparison to Oracle 11g polyhedrons
 - Future research & conclusions

Update operations Four steps in feature insertion

- 1. Feature boundary triangulation: input for step 2
- 2. Inserting constrained edges with new approach (following slides)
- 3. Ensuring presence of constrained triangles

4.

Update operations Insertion of constrained edge in a TEN

Usual approach: insert nodes, using flipping for edge recovery

Might fail in topographic TEN:

many constraints in close proximity — flipping not always possible

New approach: insert a complete constrained edge Nine unique cases: *exhaustive + mutually exclusive*

Node lies on	Node	\mathbf{Edge}	Triangle	Tetrahedron
Node	I_{00}	I_{01}	I_{02}	I_{03}
Edge	(I_{01})	I_{11}	I_{12}	I_{13}
Triangle	(I_{02})	(I_{12})	I_{22}	I_{23}
Tetrahedron	(I_{03})	(I_{13})	(I_{23})	I_{33}

Insertion of constrained edge in a TEN

New approach: act as local as possible with minimal impact

Example: constrained edge insertion

Example: constrained edge insertion

Example: constrained edge insertion

Update operations Example: constrained edge insertion

Presentation outline

- Introduction
- Previous presentation (01-09-06)
 - Characteristics simplicial complex-based approach
 - Simplicial complexes applied to 3D Topography
 - Implementation details
- Update operations (feature insertion)
- Test data sets
 - Tetrahedronisation of models
 - Storage requirements, comparison to Oracle 11g polyhedrons

Future research & conclusions

Test data sets (1/2) Rotterdam data set

Test data sets (2/2) Campus data set

Test data sets (2/2) Campus data set

Data storage requirements (1/2) Two alternative approaches

Coordinate concatenation:

describe tetrahedrons by node geometries:

Identifier concateation:

describe tetrahedrons by node id's: $id_1id_2id_3id_4$ with $id_1:x_1y_1z_1$, $id_2:x_2y_2z_2$, etc.

Data storage requirements (2/2) Comparing alternatives and polyhedrons

Presentation outline

- Introduction
- Previous presentation (01-09-06)
 - Characteristics simplicial complex-based approach
 - Simplicial complexes applied to 3D Topography
 - Implementation details
- Update operations (feature insertion)
- Test data sets
 - Tetrahedronisation of models
 - Storage requirements, comparison to Oracle 11g polyhedrons
- Future research & conclusions

Future research Spatial clustering and indexing

Basic idea:

Why add a meaningless unique id to a node, when its geometry is already unique?

1 Bitwise interleaving coordinates \rightarrow Morton-like code \rightarrow sorting these codes \rightarrow spatial clustering

2 Use as spatial index — no additional indexes (R-tree/quad tree)

Objective: reducing storage requirements

Future research Coordinates vs. coord. differences

Four nodes of a tetrahedron will be relatively close: only small differences in coordinates

Alternative tetrahedron description: $xyzdx_1dy_1dz_1dx_2dy_2dz_2dx_3dy_3dz_3$

Description is based on geometry (so still unique) but smaller

Conclusions

The PhD project results in a a new topological approach to data modelling, based on a tetrahedral network.

- Operators and definitions from the field of simplicial homology are used to define and handle this structure of tetrahedrons.
- Simplicial homology provides a solid mathematical foundation
- Simplicial homology enables one to derive substantial parts of the TEN structure efficiently, instead of explicitly storing all primitives.
- DBMS characteristics as the usage of views, functions and function-based indexes are extensively used to realise this potential data reduction.

Conclusions

 A proof-of-concept implementation was created: prevailing view that tetrahedrons are more expensive in terms of storage, is not correct when using the proposed approach (incl. proposed improvements (binary, delta's, etc.)

Using tetrahedrons is easy!

Thesis defence

Thursday June 19, 2008 – 15.00 h Keep the evening free...

