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Abstract. This work presents new operators for construction of 3D cell 
complexes. Each cell in a complex is represented with the Augmented Quad-
Edge (AQE) data structure. Cells are linked together by the dual structure and 
form a mesh. This structure stores information about the geometry and topology 
of a modelled object. Navigation in the mesh is possible using standard AQE 
operators. A new set of atomic operators was developed to simultaneously 
construct the Primal and the Dual structures. This allows 3D tetrahedralization 
as well as the construction of different types of objects, such as buildings 
composed of multiple rooms and floors. 
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1 Introduction 

3D modelling is getting very important in many fields of science and industry. 
Current methods are often insufficient because many do not support complex 
connected 3D structures, and it is impossible or very difficult to integrate different 
models to analyze more complex influences. An example is geology where 3D 
models are essential and very often other, lower dimensional ones are not adequate. 
Very important is spatial connection and the influences between layers - for example 
between different rock formations. Another field is GIS and in particular modelling of 
buildings. Disaster management systems, simulation of terrorist attacks and looking 
for escape routes from buildings and other multi-level structures in urban areas are 
vital especially after 9/11. Many emergency management systems use 2D models and 
do visualization in 3D. Others use 2.5D models to navigate inside buildings [1], but 
3D models are essential to this issue. Results presented by Kwan and Lee [2] show 
that extending 2D building models to 3D can significantly improve the speed of 
rescue operations. The next improvement that gives better calculations in a model is 
the combination of geometry and logical models [3] [4]. The logical model would be 
used for compuing escape routes and the geometry model for visualization. Lee in his 
work [5] described current 3D methods of modelling with particular reference to 
emergency management. He presents a 3D Navigable Data Model (NDM) to support 
building evacuation. This is a digital geographic database of a transportation system 
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that can support emergency guidance operations at a high level. An emergency 
situation in a real building was simulated. 

The most essential item in each case is topology - adjacency and connectivity 
between objects. In a general topological model a dual navigation graph is derived 
from the geometric one (primal outline graph). For real-time updating we need 
automatic dual graph construction during dynamic (insertion and deletion) primal 
graph maintenance. New structures which will store both of them simultaneously will 
improve the efficiency of calculations significantly in the above issues. 

2 Related works 

3D data models can be classified into: Constructive Solid Geometry (CSG), 
boundary-representations (b-rep), regular decomposition, irregular decomposition and 
non-manifold structures [6]. For our research b-reps and irregular decomposition 
models are the most relevant. The well known b-reps are: Half-Edge [7], DCEL [8], 
Winged-Edge [9] and Quad-Edge [10]. Irregular decomposition models (e.g. for 
constructing a 3D Delaunay tetrahedralization) can be constructed with a Half-Faces 
[11], G-maps [12] and Facet-Edges [13]. The most important for us are the Quad-
Edge (QE) and (its extension) the Augmented Quad-Edge (AQE) [6] data structures. 
These structures are suitable to construct models and their duals at the same time. We 
use dual space to connect cells in cell complexes and to navigate between them. 
Navigation and data structures are the same in both spaces. Eventually both spaces are 
connected together and we do not need any additional pointers for this connection. 
Other data structures like Half-Edge or Winged-Edge used widely in CAD systems do 
not provide for management of the duality. The only similar structure which preserves 
primal and dual 3D subdivisions is the Facet-Edge. In a cell complex modelled with 
this structure common faces are not stored twice – faces are shared by two cells. This 
is less memory consuming than the AQE structure [6]. However we decided to use 
AQEs in our project as we need to keep common faces separate because of the nature 
of the modelled objects. We believe that our solution is more suitable for real-time 
simulations and computation. 

2.1 Quad-Edge 

The Quad-Edge (QE) was introduced by Guibas and Stolfi [10]. Each quad consists of 
three pointers: R, N and V. Four quads connected together in an anticlockwise (CCW) 
loop by the R pointer form a full Quad-Edge. The Next pointer N points to the next 
edge (with the same shared vertex or face). All edges connected by this pointer form a 
loop. This is a CCW connection as well. The pointers R and N are directly used in 
Rot, Sym and Next standard navigation operators [10]. Rot uses R and returns the 
next quad from a loop of four. Sym calls Rot twice. Next uses N and returns the next 
edge from the loop (Fig. 1). The V pointer is used to point to vertices in the structure. 
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Fig. 1. Navigation in a structure with Quad-Edges; q represents origin quad. 

To construct and modify graphs only two operations are needed – MakeEdge to 
create a new primal/dual edge pair, and Splice to connect/disconnect it to/from the 
graph under construction. Tse and Gold showed that Euler Operators could easily be 
developed on the basis of QEs rather than half-edges or winged-edges [14]. 

The QE structure was originally used to describe both the primal and dual graphs 
simultaneously. The particular example was triangulation modelling, showing both 
the primal Delaunay triangulation and the dual Voronoi tessellation. Either graph may 
be navigated by simple pointer-following, using Rot and Next pointers, with “Vertex” 
pointers to primal and dual graph nodes.  

Duality of structures is very important for many purposes. As stated in the previous 
section, many applications demand that 3D models include geometry and a graph of 
connections between elements at the same time. Having dual graphs at the same time 
are also advantageous for 2 and 3 dimensional electromagnetic simulation [15].  

2.2 Augmented Quad-Edge 

In 3D, primal and dual graphs may also be defined: the dual of a face is an edge, the 
dual of an edge is a face, the dual of a node is a volume and the dual of a volume is a 
node. Ledoux and Gold defined an extension of the Quad-Edge - the Augmented 
Quad-Edge (AQE) [6]. In this approach the “Vertex” pointer to a face (usually 
unused) was assigned to the dual edge of that face. This was called “Through” and 
allowed navigation between cells, via the dual edge. “Adjacent” is the next operator 
that uses the dual structure. It is a combination of Through and Next operators. It is 
used to reach the adjacent cell (e.g. the next room) in the structure (Fig. 2). If we are 
in one room/cell and want to go to the next one we have to find a wall/face between 
those two rooms/cells (this is quad qf in fig. 2) and use the Adjacent operator 
(qf.adjacent). The result gives an adjacent wall/face in the next room/cell. The original 
QE operators were restricted only to a single cell. 

The target application of the AQE was the 3D Voronoi/Delaunay structure. The 
difficulty with this model was that the construction operators were complex, in 
particular the implementation of the Through pointer maintenance. 



4      Pawel Boguslawski, Christopher Gold 

 
Fig. 2. The AQE structure is a suitable structure for modelling 3D objects – e.g. building 
interiors. The set of operators allow for navigation inside one cell as well as between cells; qf 
represents the origin quad. [6] 

2.3 GML/ISO19107 

In GIS systems the ISO 19107 standard is used widely. It uses the GML schema to 
describe objects. For example, a simple building composed of rooms consists of a 
collection of Solid components, each bounded by an ExteriorSurface composed of 
SurfacePatches which have one exteriorRing each. This LinearRing has a sequence of 
coordinate positions, or a sequence of Point components each with a coordinate 
position. There is no navigation mechanism between Solids, or between 
Surfaces/Patches on the same Solid. This must be done by matching coordinates, or 
Point IDs, for the LinearRing defining the SurfacePatch. 

Our data structure has a “Next” pointer permitting navigation within the 
ExteriorSurface (“Shell”) of any Solid. By using the Next pointer of the dual we may 
navigate between adjacent Solids. Our Solid is a volumetric component distinct from 
its Shell. Our structure handles lower-dimensional components, e.g. partly connected 
walls or edges. It can easily be exported to GML by navigating the graph structure 
and outputting the various components as they are encountered. 

GML currently assumes matching coordinates or Point IDs. To import from GML 
we must make these matches between GML components to reconstruct the adjacency 
structure. Where coordinates are only approximate and matching points have 
approximately similar coordinates some tolerances must be used. This is ongoing 
research. 

3 Current work 

The work reported here is the continuation of a larger project. Ledoux and Gold [6] 
saw the need for a data structure for the simultaneous maintenance of both the primal 
and dual spatial subdivisions. Although the dual can always be obtained from the 
primal, there are many applications where it is needed directly: an obvious example is 
for the navigation from primal cell to primal cell. Especially for disaster management, 
where repeated traversals are needed for real-time shortest-path planning through a 
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changing network, such processes are basic. They demonstrated that, with a space-
filling set of primal cells and another space-filling set of dual cells (where each cell is 
a simple 2-manifold shell), it was possible to provide a mechanism for navigation 
throughout. It was based on the observation that the dual-entity of a face in one space 
is an edge in the other. Thus transforming the pointer to a face within a cell in the first 
space into a pointer to the corresponding edge in the second space gave a link 
between the two – and hence a way to navigate. This Augmented Quad-Edge was a 
direct modification of Guibas and Stolfi’s [10] Quad-Edge structure. 

We were already familiar with the Voronoi-Delaunay duality in 3D, and so this 
was our test-bed to validate the principle and develop functional code. It was entirely 
successful and, for example, drawing a single Voronoi cell or a single Delaunay 
tetrahedron was greatly simplified. The algorithms used were the standard 
incremental insertion and flipping methods of Shewchuk [16] and others. There was a 
great deal of local searching and sewing needed to maintain the primal and dual 
structures simultaneously. An effect of a simple tetrahedralization is shown in the Fig. 
3. 

 
Fig. 3. Tetrahedralization. Gray cell with black edges is a Voronoi cell. This cell enclosed one 
Delaunay point (big gray vertex). Dotted black edges form Delaunay tetrahedral cells. 

However, rooms in buildings, or subsurface catacombs, are not easily made 
directly from Voronoi cells – so the point-insertion and flipping algorithms were 
inappropriate. The current work attempts to produce a set of local, and general, 
construction operators that allow the maintenance of the dual structure as a by-
product of the (manual) construction of buildings from floor-plans, stairways, etc. 

This is in principle very similar to the Euler Operators developed for CAD systems 
(e.g. Mantyla [7], Lee [17]) –, but with the ability to create and link multiple simple 
shells (as in non-manifold CAD systems) – and with the simultaneous maintenance of 
the dual. We are still working on the construction of exact equivalents of Euler 
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Operators, but we have developed an alternative approach, based on double-face 
elements, that can achieve similar results. 

In the Quad-Edge structure there are four individual pieces (“Quads”) associated 
with each edge of a simple oriented 2-manifold. These are linked (by pointers in our 
implementation) so that the “first” has a pointer to a vertex, the “third” points to the 
other vertex forming the edge, the “second” (anticlockwise) points to the right-hand 
face and the “fourth” points to the left-hand face. An additional “Next” pointer in 
each Quad points to the next Quad-Edge in anticlockwise order around the associated 
vertex or face. The (2D) dual is represented, and one may navigate directly around 
e.g. Voronoi cells or Delaunay triangles. Frequently the face pointers remain unused, 
unless an explicit face object is desired, e.g. to assign an attribute such as colour. 

We observed above that in 3D each face of a cell is penetrated by a dual edge. 
Indeed, it is penetrated by one edge for each of the vertices of the face – each of these 
is surrounded by its own dual shell. Thus if the face pointer is re-assigned to point to a 
dual edge, then this need never be changed. (Inversely, the related face pointer of the 
dual edge points back and also remains unchanged.) Construction is thus simplified if 
these are created together, already linked. However, an edge has two sides, with 
associated faces, and during construction low-level elements need to be linked to form 
the final structure. Initially our atomic elements were complete edges – but this 
necessitated the updating of the re-assigned face pointers, which is undesirable. 

Our final choice was to create an atomic element from a “half edge” (essentially 
two of our four Quads) together with the linked half-edge in the dual. This reduced 
our construction process to the snapping-together of the appropriate half edges, to 
form complete edges. This atomic element is shown in Fig. 4. 

 

 
Fig. 4. Half Edges are created in the primal and dual. They are linked permanently. 

Our current construction method starts by building one side of a complete “double 
face” – a “half-face”, then the other, and then joining them to form a “sandwich”. Fig. 
5 shows the process to connect half-edges together in primal space, and to make the 
necessary connections in the dual. The result is a half-face based on the building 
design. This is repeated for the matching half-face. 
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Fig. 5. Construction of a half face in the primal. Half edges are added one by one to the loop. 
The Dual is not shown. 

These two are combined to form the completed “double face” by snapping the 
matching half-faces together (Fig. 6). The result is a completely defined shell – 
although of zero volume.  

 

 
Fig. 6. Construction of a double face. Half edges in the primal and dual are linked together and 
now form full edges. 

These “walls” (or “floors”, etc.) are then joined together as desired to give our final 
building structure. As all operations are defined to be reversible, one edge at a time of 
the double-face is un-snapped, the same is done for the receiving face, and then the 
half-faces are snapped back together in the new configuration (Fig. 7). This directly 
mimics the construction of a cardboard model using sticky tape! 

Visualization of a model is very easy. To get all points, edges or faces of a cell we 
use breadth –first traversal of the graph. All cells are connected by a dual structure 
which is also a graph. 
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Fig. 7. Snapping two faces: a) two separate faces; b) unsnapping edges; c) snapping edges into 
new configuration. 

The process of construction was first validated using the previous Voronoi-
Delaunay model (see Fig. 3). It satisfactorily replaces the complex stitching process 
previously used. It was then used to construct both simple and more complex building 
structures (see Fig. 8). Note that the sequence of “manual” operations is relatively 
straightforward. 

 

 
Fig. 8. Objects constructed using AQEs and the new construction operators; a) model with 
faces shown; C1-C5 – cells of a model, C0 – outside cell, b) mesh of edges; black – primal and 
grey – dual structure and c) one volume/room selected. 

There are 98 edges used in this model of a building grouped in six cells of one cell 
complex. Five cells (C1-C5) form the building and one (C0) is its outside. Outside is 
an environment of a building. It can be air, ground etc. We need this outside cell for 
navigation and to have properly built dual graphs. Each edge in the model consists of 
four quads and each edge in the primal has been assigned two half edges in the dual. 
This gives us 784 quads. To obtain the number of pointers we have to multiply the 
number of quads by three. In total we have 2352 pointers in the model. There are also 
26 vertices (21 in the primal and 5 in the dual).  
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The number of elements in this model is too high to show the process of 
construction, so we present only a middle part of the building to make this example 
clear (Fig. 9). All steps in Table 1 are high level operators used to construct the 
model. The MakeFace operator takes a list of points (Pxx) to create a face. The 
SnapFaces operator takes two quads (Qxxx) from faces to snap them together. Finally 
we have three cells C2, C4 and C0. C0 is outside of the model. 

 

 
Fig. 9. Process of construction is presented only for a middle part of a building. 

Table 1. Process of the model construction. Only high level operators are shown. 

Cell 2 Cell 4 
MakeFace(P1,P2,P3,P4) – left face 
MakeFace(P1,P4,P5,P6) – back face 
SnapFaces(Q33,Q1) 
MakeFace(P2,P1,P6,P7) – bottom face 
SnapFaces(Q65,Q5) 
SnapFaces(Q65,Q33) 
MakeFace(P3,P2,P7,P8) – front face 
SnapFaces(Q97,Q9) 
SnapFaces(Q97,Q65) 
MakeFace(P4,P3,P8,P5) – top face 
SnapFaces(Q129,Q13) 
SnapFaces(Q129,Q97) 
SnapFaces(Q129,Q41) 
MakeFace(P6,P5,P8,P7) right face 
SnapFaces(Q161,Q45) 
SnapFaces(Q161, Q141) 
SnapFaces(Q161, Q109) 
SnapFaces(Q161, Q77) 

MakeFace(P4,P3,P9) – left face 
SnapFaces(Q193,Q153) 
MakeFace(P3,P8,P10,P9) – front face 
SnapFaces(Q217,Q149) 
SnapFaces(Q217,Q201) 
MakeFace(P8,P5,P10) – right face 
SnapFaces(Q249,Q145) 
SnapFaces(Q249,Q225) 
MakeFace(P5,P4,P9,P10) – back face 
SnapFaces(Q273,Q157) 
SnapFaces(Q273,Q193) 
SnapFaces(Q273,Q229) 
SnapFaces(Q273,Q257) 

 
We do not have to construct the bottom face of C4 explicitly. The faces of C4 are 

connected to C2. The top, two-sided face from C2 is shared to give the bottom face of 
C4. 

In all cases the dual graph – a necessity for building navigation and real-time 
escape route planning – is constructed on-the-fly. 
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We believe that this construction process is both satisfactory and intuitively clear 
when using the higher-level commands. It is not presented in this paper but each 
operator has an inverse version or is self-reversible, although no formal proofs have 
yet been developed. We are exploring the relationship with conventional CAD Euler 
Operators, and we hope to provide equivalent operations in the near future – with 
automatic dual construction as the major requirement. Overall, the ready availability 
of the dual graph should provide new insight into spatial relationships – for 
navigation, sound propagation, the solutions of Maxwell’s Equations [15] and many 
other applications. 

4 Future work 

Euler operators The next issue we want to undertake is to develop a set of Euler 
operators. This will open the door to CAD system development. Many CAD 
applications implement a boundary representation using Winged-Edge and Half-Edge 
structures [17, 18]. These structures do not include a dual graph, which is essential in 
emergency management systems. We think that it is possible to implement duality in 
Euler operators for cell complexes: it works for single cells. Future work will show if 
more complex operations on many connected cells are possible. 
 
Storage Many GIS 3D applications are based on a tetrahedral mesh stored in a 
database such as Oracle [19]. Modern large database engines support 3D geometry 
storage and operations. Our approach comes from graph theory rather than database 
design. In one solution in [19] only tetrahedral shapes are allowed – ours is more 
general. Our future task is to develop methods for saving our graph structures in a 
database or on disk.  

We can assign unique IDs to points and quads in a structure. Each cell in one space 
encloses exactly one point in dual space. Thus a solid can be identified by the ID of 
the dual point, and its boundary is associated with the dual point. In addition faces 
have dual penetrating edges and thus take the edge ID. 
 
Overlapping Currently coordinates of the vertices of adjacent cells in the same cell 
complex must be identical. In many models objects penetrate each other due to data 
errors. We would like to include mechanisms in the future that can manage this issue. 

5 Applications 

To prove the correctness of our algorithms we developed a simple application. We 
used Delphi to write it and an in-house graphics engine based on OpenGL for 
visualization. This engine was written for previous projects. To be sure that the 
presented methods are suitable for modelling building interiors we reconstructed the 
simple project (Fig. 10a) originally presented in [5]. 

 



Construction operators for modelling 3D objects and dual navigation structures      11 

 
Fig. 10. Example structure representing a 3D model of a building interior. S1, S7 – staircases, 
S2-S5, S8-S11 rooms, S6, S12 - corridor; a) spatial schema – original version [5], b) volumetric 
model of rooms, c) complete graph of connections between rooms, d) graph of connections 
between rooms – only passages. 

In our approach the geometry of the building is in the primal (Fig. 10b) and the 
topology in the dual space – a connection graph (Fig. 10c). Each point (S1-S12) in 
this graph represents a separate room, corridor or stair cage. Connections between 
these objects are represented by edges. Edges have weights as attributes. The decision 
whether there is a passage or not depends on this weight. A strong connection means 
that there is a passage like a door, window, etc. A weak connection means no passage, 
but the possibility to go to the next room still exists. This model predicts such 
situations as making holes in walls and the creation of new passages. When weak 
connections are removed from the graph, we have the same logical network as in the 
case of [5] (Fig. 10d). The only difference between the models is that we built the 
staircase as one room (originally the stair case was divided into two levels). 

6 Conclusions 

The 3D structure and construction operators presented here create a solid base for 3D 
models where both geometry and topology are essential. It seems to be valid for 
modelling and navigation within spatial objects like multilevel buildings in urban 
areas. The structure consists of two graphs. The first one represents the geometry i.e. 
rooms in a building and the second one indicates the connectivity between objects 
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(rooms). We do not need to manipulate the dual space directly. It should be noted that 
we have achieved this by creating and joining individual faces only in the primal 
space. We achieved a straightforward mechanism for 3D volumetric modelling which 
preserves the dual space for navigation, useful for example in disaster management, 
with no additional effort. Other construction operators are also possible – e. g. 
standard CAD Euler Operators. We are exploring these. 

Real-time systems for emergency response are currently very important. They can 
save many human lives and much money in hazardous situations. The lack of a good 
3D model has been a problem. Perhaps our structures and methods will be useful in 
real-time applications in the future, and they will improve existing solutions. 
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