
Edward Verbree, Assistant Professor, OTB Research Institute
for Housing, Urban and Mobility Studies, Delft University of
Technology, Jaffalaan 9, 2628BX Delft, the Netherlands. E-
mail:<e.verbree@otb.tudelft.nl>. Arno van der Most, M.Sc.
Geodesy, GIS-Technology, Delft University of Technology.
E-mail:<avdmost@planet.nl>. Wilko Quak, Assistant
Researcher, OTB Research Institute for Housing, Urban and
Mobility Studies of Delft University of Technology. E-mail:
<w.quak@otb.tudelft.nl>. Peter van Oosterom, Professor,
Technology, Policy and Management, Delft University of
Technology. E-mail:<oosterom@otb.tudelft.nl>.

Towards a 3D Feature Overlay through
a Tetrahedral Mesh Data Structure

Edward Verbree, Arno van der Most, Wilko Quak,
and Peter van Oosterom

ABSTRACT: The use of 3D features within GIS has been increasing due to the need to represent,
query, manipulate, and analyze man-made objects in relationship to other 3D features related to the
surface of the earth. This will yield an increased use of 3D boundary representations of the features.
The spatial relationship between two or more features is often evaluated using a geometrical overlay
of these features, which reveals whether these features overlap and—if they do—to which extent. We
present the design of a 3D overlay algorithm which overlays 3D triangulated boundary representa-
tions through a constrained tetrahedral mesh. The intersections between the constrained facets of
the 3D features are calculated on the fly and within a restricted neighborhood. We can identify and
reconstruct the overlaid parts of the 3D boundary representation within the tetrahedral mesh. The
implementation is based on the Computational Geometry Algorithms Library, which proved to have
the functionality needed but also has its limitations.

KEYWORDS: Triangular mesh, tetrahedral mesh, overlay algorithms

Cartography and Geographic Information Science, Vol. 32, No. 4, 2005, pp. 303-314

Introduction

Current developments in three-dimen-
sional (3D) sensors and measuring
devices, such as terrestrial lasers can-

ners, make it possible to model and represent
real-world features so that they more closely
resemble their actual shape. Until recently,
geographic information science and cartogra-
phy have been utilizing 3D models primarily
for geo-visualization. Although visualization is
useful for obtaining visual insight and perform-
ing qualitative analysis, for most applications a
more quantitative analysis is needed.

We can distinguish between geometric que-
ries performed for each 3D model separately
(compute area, volume) and relational queries.
The latter are more or less topological in nature,

used to inquire whether or not geometrical rep-
resentations overlap, and if they do, where and
to which extent. These overlay calculations are
well known and implemented in two dimensions
(2D) between two or more planar partitions with
the geometrical intersection and the propagation
of the identifiers.

The overlay operation between 3D features, or
between 3D volumetric partitions, is more com-
plex. The geometric intersection has its challenges,
and it should be performed within reasonable
computational time. One way to manage that task
is by decomposing the feature into a set of cells,
such that a feature is defined as the union of all
cells. In most applications this cell is a voxel, a
3D cubic primitive. Feature decomposition has
the disadvantage that the representation of the
feature is directly related to the measure of the
voxel, giving it a rough appearance; but it has the
benefit of requiring no intersection calculation
when the spatial resolution of the objects to be
overlaid is the same.

Another approach is to use a tetrahedral network
(TEN) as the modeling environment in which the
overlay is performed. The features are defined by
their boundary representation as a 3D triangular
irregular network (3D TIN). By inserting the features
one by one into the overlay TEN, the geometrical
overlay is performed on the fly, and the process is

304 Cartography and Geographic Information Science

supported by the internal neighborhood search
possibilities of the TEN. The characteristics, given
by the identifier of the features, are propagated
to the tetrahedron primitives within the overlay
TEN. The overlay TEN then acts as a container in
which all the features are stored. One can retrieve
the features as a volume representation given by a
set of tetrahedra with the same identifier, or as a
surface representation given by the set of boundary
facets of the tetrahedra. An overlap is detected by
finding tetrahedra that belong to more than one
feature, querying the tetrahedra and creating the
overlay using these identifiers.

This paper first addresses the use of TIN/TEN
data models with respect to boundary representa-
tions. Then we give some definitions and provide
a background to triangulations in general, focus-
ing on Cavalcanti and Mello’s (1999) approach to
decomposing a polygon boundary representation
by a conformal triangulation. An overview of exist-
ing map overlay methods is given in the following
section to explain the need for the overlay of 2D
and 3D features, which are described in the next
two sections. A short description of the imple-
mentation of the 2D counterpart of this method
is followed by a summary of the 3D results. We
conclude by highlighting some other possibilities
of the proposed method.

TIN/TEN Data Models for
Boundary Representations

In topographical modeling, real-world objects
are characterized by a certain representation
and stored in a geo-database. The representa-
tion depends on the purpose of the geo-database
but also on the identification and data capture
process. In this section we will introduce 2D TIN
and 3D TEN data models, as they will be used in
the subsequent overlay computations.

Two-dimensional (2D) Boundary
Representation
We can describe a 2D boundary explicitly by its
polygon geometry through an ordered list of
points connected to one another by straight-line
segments, with the last point connecting to the
first. We could also use topology, where points
are identified as numbered nodes and the nodes
define a polygon. The geometric description
of polygons and other simple features within
2D space is defined by the Simple Feature
Specification (SFS) of the Open GeoSpatial

Consortium (OGC 2005). Validation functions
are available to determine whether or not a
given feature is valid, i.e., a polygon is not self-
intersecting. Although the validation process
is not complicated, many implementation and
definition problems exist (see Van Oosterom et
al 2004; Van Oosterom et al 2005).

If the boundary of the object is defined, then the
interior is also, in some way, given. This interior
could also be made explicit or materialized, i.e.,
when the boundary polygon is triangulated in a
set of triangles and stored within a 2D Triangular
Irregular Network (2D TIN) data structure. Because
boundary edges can be derived from a set of
triangles, it is no longer necessary to store the
boundary polygon per sai. The TIN acts as the
base data structure for the feature representation.
The embedded space between two or more objects
could also be defined by a triangulation of the
covering polygon, where all objects are enclosed
by sets of interior triangulations. The space is thus
fully partitioned by triangular meshes.

3D Boundary Representation
The identification and capture of real-world
objects is far more complicated when we move
to full 3D applications. In 3D, opposed to 2.5D,
it is not possible to assume that objects can be
flattened and defined as polygon footprints
on a surface. Instead, a proper 3D boundary
representation of the object is needed, mean-
ing more than one Z-value is attached to a 2D
polygon, and also more information is needed
than one Z-value attached to the vertices of the
2D polygon.

In 3D, the definition of the geometric and/or
topological description and validation of the cor-
rectness is far more complicated than in 2D. The
polyhedral approach, as described in, among others,
Teunissen and Van Oosterom (1988) and Stoter
(2004) defines the boundary as a set of polygons,
where each polygon is “flat” and valid according
to the SFS of the OGC, i.e., non-self intersecting.
The set of faces should enclose a single volume,
meaning it should be “watertight” or “closed.”

In fact this kind of explicit boundary representa-
tion is quite common in engineering disciplines,
where 3D objects are actually measured, i.e., by
lasers canning tools. Constructive solid geometry
(CSG), on the other hand, deals with combining
natural geometric primitives, such as the sphere,
cylinder, cone, and torus. These primitives are
commonly treated as solids. Binary set operations
(union, intersection, and difference) are used to

Vol. 32, No. 4 305

combine more complex shapes. The boundary
shape description of this complex shape is called
the implicit surface representation. The boundar-
ies of such representations are not measured but
derived from the CSG by particles connected to
a triangulation (Hart 1997).

The validation of explicitly defined boundary
representations (either derived from the implicit
surface of a CSG or given by a polyhedral rep-
resentation) consists of validating the following
assumptions: the polyhedron is non-valid when
Eulers Law does not hold: the number of vertices
(nodes) plus the number of faces minus the number
of edges should be equal to 2. However, when
the equation holds, it is still not certain that the
polyhedron is valid, since the faces can intersect
with each other. To determine whether or not
faces do intersect is easier said than done.

One way to simplify this problem is to use a
pre-processing step where each face is subdivided
into triangular patches. Not only does this avoid
the need to check on “flat” polygons, as a triangle
is flat by definition, but also the intersection test
can now be performed without the actual calcula-
tion of the intersecting points (Möller 1997). And,
triangular faces are easier to manage within a
topological data model.

When an object is described by a valid, watertight
set of triangles, its interior is also given. As in the
2D scenario, this interior can be made explicit by
a set of tetrahedrons, which fill the interior com-
pletely. A tetrahedronization algorithm performs
this task. Once this TEN is available, the boundary
can be derived. The boundary is represented by
a set of triangles, and it could be explicitly made
available within a 3D TIN.

Triangulations
In this section we discuss how to store our input
data within a TIN/TEN representation, as
needed by the overlay computation.

Triangulations: General Issues
In n-dimensions, a triangulation of a set of
points V is a set of non-intersecting simplices
T(V), whose vertices form V, and whose union
completely fills the convex hull of V. Tetrahedra
are dimension 3 simplices whose faces are sim-
plices of dimension 2 (triangles), whose edges
are simplices of dimension 1 (segment lines),
whose vertices are simplices of dimension 0
(points).

A Delaunay triangulation is one of the many
ways to triangulate a set V. In a Delaunay tri-
angulation, for any simplex of T(V) there is an
empty n-dimensional sphere that passes through
all the vertices of that simplex. A sphere is said
to be empty if there is no vertex in its interior.
The incremental cavity algorithm (Watson 1981)
deletes all n-dimensional simplices that are no
longer empty, according the Delaunay circum-
sphere criterion, after the insertion of the new
point. The algorithm then connects each n-1 facet
at the cavity boundary to the newly inserted point
to create new n-dimensional simplices. Another
approach is the flip algorithm created by (Joe 1989),
which generalizes to 3D the well known 2D flip
algorithm of (Lawson 1972). The flip algorithm
is described in detail below.

In some GIS-related literature (i.e., Pilouk
1996; Zlatanova 2000), a 3D tetrahedral mesh is
called a TEN and a 2D triangular mesh is a TIN.
We will follow this convention to emphasize the
fundamental difference in handling 3D data and
2D data, the problems still existing in constructing
TINs and TENs, and to emphasize that TENs are
mostly used to represent (volumetric) 3D objects
and TINs are typically used in 2D computational
geometry applications and to represent 2.5D and
3D surfaces.

Conformal / Constrained (Delaunay)
Triangulations
As reported by Cavalcanti and Mello (1999), it is
still a problem to create a tetrahedral mesh that
represents 3D objects bounded by polygonal
faces or interior-constraining faces and edges.
Traditional unconstrained Delaunay triangula-
tions (Watson 1981; Joe 1989) use only point
datasets.

However, a point mesh generator can be used
as the foundation for the implementation of a
conformal/constrained mesh generator. This is
achieved by either adding extra (Steiner) points
to the triangulation on missing faces, or by flip-
ping faces on the tetrahedra of the starting mesh.
Although in some literature references (also in
Cavalcanti and Mello 1999), constrained Delaunay
triangulations are utilized, we will follow the more
strict definition of conformal triangulations where
Steiner points are inserted to represent the polygo-
nal faces by a set of triangular faces within the
triangulation. If this can be implemented in such
way that the Delaunay criterion is obeyed, it is a
conformal Delaunay triangulation.

306 Cartography and Geographic Information Science

If the polygonal faces can be recovered without
adding extra Steiner points, the triangulation is
constrained. As this task generally cannot be per-
formed without obeying the Delaunay criterion,
strictly constrained Delaunay triangulations are
very rare. One good example of a 3D polyhedron
which has to be treated as a conformal triangula-
tion is the Schönharts polyhedron (Aichholzer et
al. 2002; Shewchuk 2002), as there is no possibil-
ity to create a constrained triangulation for this
object (see Figure 1).

Conformal TEN Data Models
for Storing Polygonal Boundary
Representations
Cavalcanti and Mello (1999) describe an
approach to generating a conformal tetrahe-
dronization using the following steps:
• Step 1: Generate an unconstrained

Delaunay tetrahedral mesh (TEN) using the
object point set. This is performed by the
flipping algorithms as given by Joe (1989).

• Step 2: Recover missing constrained edges.
Steiner points are inserted in the tetrahe-
dronization at the midpoint of the missing
edge, and also on the corresponding bound-
ing edge of the polygon, followed by a re-
tetrahedronization, and check for missing
constrained edges. This process will iterate
until all constrained subdivided edges are
part of the TEN. This method is followed
by Kraak and Verbree (1992). Till now the
TEN is still Delaunay, but not constrained.
The missing edges could also be recovered
by edge flipping, but the TEN is than not
longer Delaunay.

• Step 3: Recover missing polygon faces. Now
all (subdivided) edges are part of the TEN,
but this does not automatically mean that all

constrained facets are also part of the TEN.
Therefore, the polygon transformations are
also triangulated in 2D to obtain a triangu-
lar representation. All triangles that do not
have a counterpart within the TEN will yield
new Steiner points at the midpoint of the
missing edge of the triangle. The updated
TEN is still Delaunay. As this process does
not converge always, a forth step is neces-
sary.

• Step 4: Perform local triangulation of tet-
rahedra if there are some faces still miss-
ing. When polygon faces are not recovered
within the TEN, the global Delaunay criteria
are abandoned and a local re-triangulation
of the tetrahedra is performed, whose inte-
riors are intersected by a missing polygon.

Existing Map Overlay Methods

Overlays in the Raster Domain
Cartographic modeling has successfully been
applied in the analysis and synthesis of geo-
graphical data (Tomlin 1990; DeMers 2001).
This kind of map algebra works by decomposing
data sets, data processing capabilities, and data
processing control specifications into elemen-
tary components that can be recombined with
relative ease and great flexibility. The complete
body of data for a given geographical study area
exists as a cartographic model consisting of map
layers. Each layer is a two-dimensional image on
which every location is associated with exactly
one characteristic. The data-processing capa-
bilities as given by Tomlin (1990) are to be per-
formed between map layers and are intended to
facilitate the interpretation of cartographic data.
The LocalProduct operator, for example, multi-

Figure 1. Schönharts polyhedron.

Vol. 32, No. 4 307

plies each location’s value on one specified layer
to its value(s) on one or more additional layers.

Although, in our opinion, the term “cartographic”
modeling is not accurate, since the data processing
is performed on the data layers that are behind the
map visualization, it shows clearly the advantages
of this kind of “map combinations.” Each layer
models a certain aspect of the real world; it is a
natural to organize data from different. These
single-valued, general-context data sources are
combined in a more specific context without the
need to model the relationships between the input
maps beforehand. The values express geographi-
cal characteristics, and the mathematical func-
tions (summation, multiplication, etc.) express
relations as more information is revealed during
map overlay process.

Overlay in the Vector Domain
Although some of the implementations of carto-
graphic modeling, such ArcGIS Spatial Analyst
(ESRI, 2005), describe the spatial relationships
only on raster data, there is nothing that pre-
vents the same method from being applied to
vector (polygon) data set. To do this, the local,
zonal, and focal operations need to be defined
in the vector domain, and, importantly, a vector
map overlay has to be performed.

The map overlay of two (or more) polygon-based
feature maps is usually computed in three logical
phases (Frank 1987; Franklin 1990). The first step
is performed at the metric level and computes all
intersections between the edges (line segments)
of the different layers. The second step is the
topological reconstruction of the resulting new
polygons, and the third step is the assignment of
the identifiers. The computational drawback of
most algorithms is that the line segments should
be sorted based on their X-coordinate to be inter-
sected in an efficient way, i.e., plane-sweep (Van
Roessel 1990; Kriegel et al. 1991). The map overlay
algorithm by Van Oosterom (1994) attempts to
overcome that limitation by using the R-tree spatial
index structure to test whether two line segments
are candidates for intersecting. If two line seg-
ments overlap, then an intersect function has to
determine whether the lines really intersect, after
which four new line segments with the propagated
identifiers are returned. When all intersections
are computed, the resulting line segments have to
be assembled to form new polygons. Finally, the
identifiers of the original maps have to be set or
combined into a new value and attached to the
new area features.

Limitations of Existing Overlay
Methods
The map overlay as performed by cartographic
modeling is limited to the propagation and func-
tional calculation of cell values obtained from the
original data sets. No intersection calculation is
needed, as the input raster cells are similar for all
data sets.

This said, cartographic modeling can be per-
formed with ease in three-dimensional space, as
voxel cells are the three-dimensional equivalents
of the two-dimensional raster cells. But polygon
feature map layers should first be rasterized, and
three-dimensional polyhedral features need to be
transformed into a voxel representation. Depending
on the cell size of the pixels or voxels selected,
the results could be less accurate, and large data
storage or high calculation times may entail.

The map overlay of polygon-based feature maps
requires an intersection of all line segments. To
speed up this calculation, either the line segments
need to be sorted or an efficient spatial index and
clustering must be made available. Both options will
take some time to perform, to build, and to tune.
And one can assume the complexity of implement-
ing an efficient and correct map overlay algorithm
of three-dimensional polyhedral features.

Examples of True 3D Overlays
For most applications, the real world is mod-
eled through representations that fit their pur-
poses. As our activities are in general related at
the earth surface, we can use 2D or 2.5D (with
height added) data structures, and thus also 2D
overlays algorithms. But as soon as the space
above or below the ground is occupied, the third
dimension has to be taken into account. That’s
why in geology, 3D modeling is needed.

Another good example of 3D, or even 4D, mod-
eling is given by in flight navigation systems made
possible by new on board systems based on the
‘tunnel in the sky’ concept. Restricted areas, like
military sites are shown at a display in the cockpit
of the aircraft. But it is also possible to show the
location of nearby airplanes with their intended
routes. If a route overlays with the one of the
own airplane the system will warn the pilot and
ground control.

More examples and applications on 3D GIS
for Urban Development and 3D Cadastre can be
found in within the PhD work of (Zlatanova 2000)
and (Stoter 2004).

308 Cartography and Geographic Information Science

 2D Feature Overlay
in TIN

Background
To overcome the limitations of the
existing overlay methods the datas-
ets themselves could be manipulated
for the overlay operator. This can be
accomplished with a data structure
that is capable of storing the poly-
gon features and has an internal
spatial search structure that can be
used within the geometrical inter-
section process of the map overlay.
In addition, efficient propagation
of the identifiers attached to the
polygon features to the new overlaid
map is required. We believe that the
TIN of two-dimensional polygon feature maps and
the TEN of three-dimensional polyhedral feature
maps are data structures that can attain that goal.

The idea behind feature overlay in TIN/TEN
data models is to perform a map overlay by insert-
ing all features, expressed as a polygonal bound-
ary representation, in one triangulation. We will
describe this approach by first explaining the 2D
feature overlay in a TIN, and then the 3D feature
overlay in a TEN. The main advantage of this
method is that the insertion of the features, the
geometrical intersecting of the line segments (in
2D) and the polygon facets (in 3D), is performed
in a local neighborhood. After the insertion and
intersection are completed, the overlaid features
are re-assembled and the identifiers of the origi-
nal features are propagated and attached to the
overlaid features.

Feature Overlay Algorithm
Project Strategy
We use the following strategy to deal with the
highly complex algorithms:
1. Formulate a general feature overlay algo-

rithm;
2. Elaborate this algorithm with two-dimensional

sub algorithms; and
3. Translate the two-dimensional sub-algorithms

to their three-dimensional counterparts.

2D Feature Overlay Algorithm
First an empty overlay triangulation is per-
formed. Then the polygon features are inserted
into it one by one. Their edges are processed

iteratively. When a new feature edge intersects
with a constrained TIN edge previously inserted
into the overlay TIN, this feature edge is split
into sections. The same applies to the inter-
sected constrained TIN edge. When all sections
of the feature edges of all polygon features are
inserted into the overlay TIN, the entire poly-
gon feature set is overlaid, and the post-pro-
cessing phase can begin. The post processing
involves re-assembling the overlaid features and
propagation of the original identifiers. This pro-
cedure is illustrated in Figure 2.

In Detail: Inserting 2D Feature Edges
by Flipping
The algorithm inserts feature edges into the
overlay TIN in three steps. The feature edge
is inserted into the overlay TIN by inserting its
start and its end node. This was implemented in
the Computational Geometry Algorithm Library
(CGAL 2005) environment, using a point loca-
tion algorithm from the family of triangle line
walk. The line walk involves inserting the start
and end nodes and then “walking” from the start
to the end node until all intersected TIN edges
in the overlay TIN are detected. What happens
with the inserted feature edges depends on
the type of the intersected TIN edges. When
the intersected TIN edges are constrained,
the intersecting points are determined and
inserted into the overlay TIN. The intersecting
feature edge is then split into segments, as is the
intersected feature edge. These segments start
a flipping process, such that the intersecting
segments are represented by constrained TIN
edges in the overlay TIN.

Figure 2. Result of overlaying polygon features of ‘A’ and ‘B’.

Vol. 32, No. 4 309

A section is constructed in the overlay TIN by
flipping all non-constrained edges that intersect
with this section until none of them intersects
anymore. Flipping is not a trivial matter, as some
configurations could pose problems that should
be treated carefully. In Figure 3, a worst-case flip-
ping scenario is given.

Re-assembling Overlaid 2D Features
The edges of the polygon features are processed
in counter clockwise order. The counterparts of
these edges are the constrained TIN edges in
the overlay TIN. During the insertion of these
constrained edges, the left-right information
is propagated from the feature edges. A flood
fill algorithm is initialized by providing it with
a face that lies in the interior of a feature and
an identifier of that feature. The algorithm
searches for corresponding TIN faces in the
overlay TIN by recursively checking its three
neighboring faces.

3D Feature Overlay
 in a TEN Data Model

When developing the 3D feature overlay algo-
rithm, it was assumed that the basic 2D algo-
rithm could be extended to the third dimension,
by using input data that are one dimension
higher and performing the overlay in a 3D
triangulation or TEN. Consequently, all sub-
algorithms were expected to work in 3D. Below
we address the main difficulties encountered
during the implementation of this approach.

3D Feature Overlay Algorithm
Note that in this algorithm, the input polyhe-
dral features are described by their 3D boundary
representations. These features should be “valid”

and “simple.” No intersections or gaps are
allowed with respect to these features, thus they
are also “watertight.” To be “simple,” all feature
faces of the polyhedron are split into triangular,
i.e., flat facets. The edges of these triangular
facets are expected to be constrained, i.e., to be
maintained within the overlay triangulation.

The algorithm itself is similar to the 2D algo-
rithm. First an empty 3D overlay triangulation is
initialized. All polyhedral features are inserted
into this TEN one by one. The feature edges of
the polyhedral triangulation are processed itera-
tively. As in the 2D scenario, the feature edges that
intersect with a constrained TEN edge previously
inserted into the overlay TEN causes this feature
edge and the intersected feature edge to split
into sections.

 If all sections of the edges of a polyhedral fea-
ture are inserted into the overlay triangulation,
a special check has to be performed, as the pres-
ence of all (sections of the) feature edges does not
necessarily guarantee that all features facets are
present in the triangulation. Calvacanti and Mello
(1999) encountered this problem while computing
a TEN from one polyhedron (see previous discus-
sion). In our case, the polyhedral features were
preprocessed to simple triangular facets, so that
the test of missing feature facets was not difficult
to perform. This notwithstanding, the problem
of the missing feature facets is still to be tackled.
Below are some thoughts on how to handle this
problem.

In Detail: Inserting 3D Feature Edges
by Flipping
Flipping in 3D is far more complex than in 2D.
The main reason is that the so-called bistellar
flipping of an edge can cause the destruction
of two tetrahedra and the creation of three
new tetrahedra, and vice versa. Besides this 2-3
flip, a 4-4 flip exists, where four tetrahedra are
destroyed and four new ones are created. The
4-4 flip is, however, only possible when two TEN
facets in adjacent tetrahedra lie in the same
plane (Figure 4).

Here the algorithm inserts feature edges into
the overlay TEN by inserting the start and end
nodes of the feature edge (which causes some
flips) into the overlay TEN and by walking from
the start to the end node to detect all intersected
TEN edges and TEN facets. The feature edges are
split into segments at the intersecting edges by
inserting the intersecting vertices in the overlay
TEN (which again causes some flips). When the

Figure 3. Worst-case scenario (n2 flips) for non-flippable
edge.

310 Cartography and Geographic Information Science

start and end vertex of the
section are present in the
overlay TEN, all TEN facets
that intersect with this sec-
tion need to be flipped out
of the way. Figure 5 shows
a segment that needs to
be inserted with one last
intersecting TEN facet.
After flipping the facets with
a 2-3 flip, the segment is
propagated in the overlay
TEN. But, contrary to the
2D feature edge case, no
proof exists that under
all conditions all feature
edges are preserved in
the overlay TEN (Anwei
and Baida 2000).

In Detail: Confirming 3D Feature
Facets by Flipping
Compared to the conforming method described by
Calvacanti and Mello (1999), this algorithm is very
economical with regard to inserting extra points
into the triangulation. It is only when feature edges
(from different feature polyhedra) intersect with
TEN edges that an intersecting point is inserted
into the overlay TEN. No unnecessary Steiner
points are inserted. However, inserting (sections of)
feature edges is not sufficient to make sure that the
feature facets are presents in the overlay TEN, since
they still intersect with the facets of the inserted fea-
ture edges.

This problem can be solved in three steps. First all
constrained TEN facets are marked. A TEN facet is
constrained when its three TEN edges are constrained
by the same feature (and thus have a feature seg-
ment as a counterpart). The second step is to find a
tetrahedron that intersects with a constrained TEN
facet, and then use the neighborhood relationships
embedded in the TEN to detect all other intersecting
tetrahedra. Once their constrained TEN facets are
detected, the intersecting point is inserted into the
overlay TEN. All other non-constrained facets are
flipped out of the way.

As with the insertion of constrained edges, this
algorithm has only partially been proven Shewchuk
2002; 2003), but experiments show that it works most
of the time (Anwei and Baida, 2000).

Re-assembling Overlaid 3D Features
When the sections of the edges of the feature
facets are inserted into the overlay TEN and

all tetrahedra that intersect with the facets are
processed, the entire polyhedral feature is pres-
ent in the tetrahedral network. After all feature
polyhedra have been inserted, a flood fill algo-
rithm similar to the one used for the 2D feature
overlay algorithm can be applied to assign a
feature identifier to all of the tetrahedra in the
overlay TEN that are inside the boundary of the
feature.

The overlay TEN now acts as a container where
all features are stored. One can retrieve the fea-
tures as a volume representation given by a col-
lection of tetrahedra with the same identifier, and
as the surface representation given by the set of
boundary facets of these tetrahedra. An overlay is
detected by those tetrahedra that have more than
one identifier, and, by querying the tetrahedra
according to these identifiers, this overlay can
be materialized.

2D Feature Overlay Algorithm
Implementation

We have implemented the basic ideas of the
feature overlay algorithm using CGAL (2005).
CGAL is a collaborative effort of several sites in
Europe and Israel. Its goal is to make the most
important solutions and methods developed in
computational geometry available to users in
industry and academia in a C++ library. The
intention is to provide easy access to useful, reli-
able geometric algorithms.

The CGAL library comprises a Kernel of geo-
metric primitives such as points, vectors, lines,
and predicates which is used to test, for instance,
the relative positions of points, intersections, and
distance calculation. Its Basic Library is a collection

Figure 4. Above: 2D flip; below: 2-3 bistellar 3D-flip and 4-4 bistellar 3D-flip.

Vol. 32, No. 4 311

of standard data structures and geometric algo-
rithms, such as convex hull in 2D/3D, (Delaunay)
triangulation in 2D/3D, planar map, polyhedron,
smallest enclosing circle, and multidimensional
query structures. The Support Library offers inter-
faces to other packages, e.g., for visualization, and
I/O and other support facilities.

Our goal was to investigate the available CGAL
data structures for triangulation in both 2D and
3D and to identify the possibilities and limitations
of CGAL. Besides, the concept of performing an
overlay within a triangulation has to be proved to
work. Currently, the algorithm itself is implemented
only in 2D. Implementation in 3D is possible, but
can only be done when the computational and
geometrical difficulties as described in the previous
paragraph are fully understood and tackled.

Class Definition of
Constrained Faces
The implementation of the
algorithm depends heavily
on the explicit availability of
edges in the data structure.
However, the triangulation
data structure used by CGAL
does not contain explicit edges.
These edges are only implic-
itly accessible by the vertices
opposite to them in the same

face. Our constructor of the constrained face
class reads:
Constrained_face_2 (void* v0, void* v1, void* v2,
 void* n0, void* n1, void* n2,
 bool c0, bool c1, bool c2,
 long face_id = 0)
 : Fab(v0,v1,v2,n0,n1,n2)
 {
 set_constraints(c0,c1,c2);
 set_id(face_id);
 }

In overlay triangulation, v0, v1 and v2 are
the handles of constrained vertices while n0, n1
and n2 are the handles of the neighboring faces.
These neighboring faces are chosen in such a way
that neighbor n0 lies opposite to vertex v0. c0,
c1 and c2 define constraints on the edges of the
face (Figure 6).

For the reconstruction of the overlaid features
each face will hold two feature_ids to identify in
the features in which the face lies, this limits the
implementation to overlay two features on top
of each other.

Inserting features
The implementation follows the steps given
above for 2D feature overlay in TIN by the fol-
lowing custom-code, non-standard CGAL func-
tions:
// Framework functions:
void insert_obj(long object_id);
Vertex_handle insert_edge(const Vertex_handle
vt1, Point pt2, long object_id);
Vertex_handle insert_section(Vertex_handle
start_vertex, Vertex_handle end_vertex, long
object_id);
// Support functions:
Vertex_handle insert_vertex(const Point pt, long
object_id);

Figure 5. Last flip produces section as an edge.

Figure 6. Face definition.

312 Cartography and Geographic Information Science

Vertex_handle insert_vertex_in_edge(const
Point pt, Face_handle f, int i,
long object_id);
void c_flip(Edge flip_edge);
Face_handle get_start_face(const Vertex_handle
vstart, Vertex_handle vend);

The insert_obj function is called each time an
object has been loaded into the overlay_trian-
gulation. The insert_edge function first uses the
insert_vertex function to insert the start and end
nodes of the edge into the overlay_triangulation.
It then inserts all sections of the edge with the
insert_section function. Because of the earlier
mentioned shortcoming of the CGAL triangulation
data structure (it does not contain edges explicitly),
the sections cannot be determined before hand.
The insert_section function determines each sec-
tion on the fly, by processing the edge without the
previously processed sections.

The insert_section function does the bulk of the
processing needed to insert features into the over-
lay triangulation. First, it uses the get_start_face
function to initialize the triangular walk algorithm.
It then performs the triangular walk process until
it reaches a constraint. When a constrained edge
is found, it uses the insert_vertex_in_edge func-
tion to insert the end point of the section. The
section’s start vertex and end vertex are known,
and the section can reconstructed using the c_flip
function.

Results
Figure 7 shows a detail of a feature triangulation,
which was created by an overlay of two datas-
ets. The first (shown in green) consists of 200
features, the second (shown in orange) consists
of 100 features. The overlay parts, enclosed by
constrained (red) edges, are shown in brown.
The unconstrained edges of the triangulation
are shown in blue.

Conclusions and
Recommendations

We have presented a method of storing tri-
angular boundary representation objects in a
tetrahedral mesh (TEN), where the intersection
between the different features is calculated on
the fly, and the overlay TEN is a constrained
triangulation, as only the intersecting points are
inserted in the TEN on top of the feature nodes,
edges, and facets.

The overlay TEN acts as a container structure
where each feature can be reconstructed as its tetra-
hedral volume or triangular surface representation.
As each tetrahedron has an identifier(s) inherited
from its originating feature, the inserted features
can be materialized by querying the overlay TEN
for these identifiers.

This method could also be used to validate
“non-watertight” and self-intersecting boundary
representations. If the overlay TEN is used to
process these features, then the facets of this
feature intersecting other facets will be found and
corrected while inserting.

We have tested and implemented this method
for the 2D scenario. As far as we know, in itself,
this is a completely new approach. More research
is needed to compare the performance with other
2D overlay methods. A fully proven and opera-
tional implementation within 3D still needs to
be done.

ACKNOWLEDGMENTS
This paper is the result of the research pro-
gramme of the Delft Centre for Sustainable
Urban Development, part of the Delft University
of Technology. The remarks of the reviewer on
the first version of this paper as presented at
Auto-Carto 2005 are greatly appreciated, as is
the proofreading by Elfriede Fendel. The final
editorial review has improved the paper consid-
erably.

REFERENCES
Aichholzer, O, L. Alboul, and F. Hurtado. 2002. On

flips in polyhedral surfaces. International Journal
of Foundations of Computer Science (IJFCS) (Special
issue on Volume and Surface Triangulations) 13(2):
303-11.

Anwei, L., and M. Baida. 2000. How far flipping
can go towards 3D conforming/constrained
triangulation. In: Proceedings 9th International
Meshing Roundtable, Sandia National Laboratories,
New Orleans, Lousiana, pp: 307-315.

Calvacanti, P.R., and U.T. Mello. 1999. Three-
dimensional constrained Delaunay triangulation:
A minimalist approach. In: Proceedings, 8th
International Meshing Roundtable, South Lake Tahoe,
California, USA. pp: 119-29.

CGAL (Computational Geometry Algorithm Library).
2005. www.cgal.org [accessed January 2005].

DeMers, M.N. 2001. GIS modeling in raster. [city,
state?]: Wiley, New York

Frank, A.U. 1987. Overlay processing in spatial
information systems. In: Auto-Carto 8, ACSM. pp:
12-31.

http://www.cgal.org

Vol. 32, No. 4 313

Figure 7. Detail of result of 2D feature overlay.

Franklin, Wm. R. 1990. Calculating map overlay
polygons’ areas without explicitly calculating the
polygons: Implementation. In: Proceedings, 4th
International Symposium on Spatial Data Handling,
Zürich, Switzerland. pp: 151-60.

Hart, J. C. 1997. Morse theory for implicit surface
modeling. In: Hege, H.-C. and Polthier, K., eds.,
Mathematical Visualization, pp. 257--268. Springer-
Verlag, Heidelberg, 1998.

Joe, B. 1989. Constructing of three-dimensional
triangulations using local transformations. SIAM
Journal of Scientific and Statistical Computing 10(4):
718-41.

Kraak, M.-J., and E. Verbree. 1992 . Tetrahedrons
and animated maps in 2D and 3D space. In: E.
P. Bresnahan, E. Corwin, and D. Cowen (eds),
Proceedings of the 5th International Symposium on
Spatial Data Handling, IGU Commission of GIS,
Charleston, 1992. pp: 63-71.

Kriegel, H.-P., T. Brinkhoff, and R. Schneider. 1991.
The combination of spatial access methods and
computational geometry in geographic database
systems. In: Advances in Spatial Databases, 2nd
Symposium, SSD’91, Zürich, Switzerland. Springer-
Verlag. pp: 3-21.

Lawson, C.L. 1972. Transforming triangulations.
Discrete mathematics 3 pp: 365-372.

Möller, T. 1997. A fast triangle-triangle intersection
test. Journal of Graphics Tools 2(2): 25-30

OGC (Open GeoSpatial Consortium) 2005. Simple

feature specification. [http://www.opengeospatial.org/
specs/. Accessed January 2005].

Pilouk, M. 1996. Integrated modeling for 3D GIS. PhD
thesis, ITC, the Netherlands.

Shewchuk, J.R. 2002. Constrained Delaunay
tetrahedralizations and provably good boundary
recovery. In: Proceedings, Eleventh International
Meshing Roundtable, Ithaca, New York. pp: 193-204

Shewchuk, J.R. 2003. Updating and constructing
constrained Delaunay and constrained regular
triangulations by flips. In: Proceedings of the
Nineteenth Annual Symposium on Computational
Geometry, San Diego, California. pp: 181-90.

Stoter, J.E. 2004. 3D cadastre. PhD thesis, Delft
University of Technology, Nederlandse Commissie
voor Geodesie (NCG).

 Teunissen Wim J.M., and P. J.M. van Oosterom. 1988.
The creation and display of arbitrary polyhedra
in HIRASP. Technical report, University of Leiden,
Department of Computer Science, Report 88-20.

Tomlin, C. D. 1990. Geographic information systems and
cartographic modeling. Englewood Cliffs, NJ: Prentice
Hall.

Van Oosterom, P.J.M. 1994. An R-tree based map
overlay algorithm. In: EGIS/MARI’94, Paris,

March 29 - April 1, pages 318-327
Van Oosterom, P.J.M., C.W. Quak and T.P.M. Tijssen.

2003. Polygons: the unstable foundation of spatial
modeling, ISPRS Joint Workshop on “Spatial, Temporal

http://www.ingentaconnect.com/content/external-references?article=0012-365X()3L.365[aid=7049784]
http://www.opengeospatial.org/specs/
http://www.opengeospatial.org/specs/

314 Cartography and Geographic Information Science

and Multi-Dimensional Data Modeling and Analysis”,
Québec, Canada.

Van Oosterom, P.J.M., W. Quak, and T. Tijssen. 2004.
About invalid, valid and clean polygons. In: Fisher,
P. F. (ed.), Developments in Spatial Data Handling.
Springer Verlag, Berlin. pp: 1-16.

Van Roessel, J. W. 1990. Attribute propagation and
line segment classification in plane sweep overlay.

In: Proceedings, 4th International Symposium on
Spatial Data Handling, Zürich, Switzerland. pp:
127-40.

Watson, D.F. 1981. Computing the n-dimensional
Delaunay tesselation with applications to Voronoi
polytypes. The Computer Journal 24(2): 167-72.

Zlatanova, S. 2000. 3D GIS for urban development.
PhD thesis, Graz, Austria.

http://www.ingentaconnect.com/content/external-references?article=0010-4620()24:2L.167[aid=7049781]

