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ABSTRACT: The use of 3D features within GIS has been increasing due to the need to represent, 
query, manipulate, and analyze man-made objects in relationship to other 3D features related to the 
surface of the earth. This will yield an increased use of 3D boundary representations of the features. 
The spatial relationship between two or more features is often evaluated using a geometrical overlay 
of these features, which reveals whether these features overlap and—if they do—to which extent. We 
present the design of a 3D overlay algorithm which overlays 3D triangulated boundary representa-
tions through a constrained tetrahedral mesh. The intersections between the constrained facets of 
the 3D features are calculated on the fly and within a restricted neighborhood. We can identify and 
reconstruct the overlaid parts of the 3D boundary representation within the tetrahedral mesh. The 
implementation is based on the Computational Geometry Algorithms Library, which proved to have 
the functionality needed but also has its limitations. 
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Introduction

Current developments in three-dimen-
sional (3D) sensors and measuring 
devices, such as terrestrial lasers can-

ners, make it possible to model and represent 
real-world features so that they more closely 
resemble their actual shape. Until recently, 
geographic information science and cartogra-
phy have been utilizing 3D models primarily 
for geo-visualization. Although visualization is 
useful for obtaining visual insight and perform-
ing qualitative analysis, for most applications a 
more quantitative analysis is needed.

We can distinguish between geometric que-
ries performed for each 3D model separately 
(compute area, volume) and relational queries. 
The latter are more or less topological in nature, 

used to inquire whether or not geometrical rep-
resentations overlap, and if they do, where and 
to which extent. These overlay calculations are 
well known and implemented in two dimensions 
(2D) between two or more planar partitions with 
the geometrical intersection and the propagation 
of the identifiers. 

The overlay operation between 3D features, or 
between 3D volumetric partitions, is more com-
plex. The geometric intersection has its challenges, 
and it should be performed within reasonable 
computational time. One way to manage that task 
is by decomposing the feature into a set of cells, 
such that a feature is defined as the union of all 
cells. In most applications this cell is a voxel, a 
3D cubic primitive. Feature decomposition has 
the disadvantage that the representation of the 
feature is directly related to the measure of the 
voxel, giving it a rough appearance; but it has the 
benefit of requiring no intersection calculation 
when the spatial resolution of the objects to be 
overlaid is the same. 

Another approach is to use a tetrahedral network 
(TEN) as the modeling environment in which the 
overlay is performed. The features are defined by 
their boundary representation as a 3D triangular 
irregular network (3D TIN). By inserting the features 
one by one into the overlay TEN, the geometrical 
overlay is performed on the fly, and the process is 
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supported by the internal neighborhood search 
possibilities of the TEN. The characteristics, given 
by the identifier of the features, are propagated 
to the tetrahedron primitives within the overlay 
TEN. The overlay TEN then acts as a container in 
which all the features are stored. One can retrieve 
the features as a volume representation given by a 
set of tetrahedra with the same identifier, or as a 
surface representation given by the set of boundary 
facets of the tetrahedra. An overlap is detected by 
finding tetrahedra that belong to more than one 
feature, querying the tetrahedra and creating the 
overlay using these identifiers.

This paper first addresses the use of TIN/TEN 
data models with respect to boundary representa-
tions. Then we give some definitions and provide 
a background to triangulations in general, focus-
ing on Cavalcanti and Mello’s (1999) approach to 
decomposing a polygon boundary representation 
by a conformal triangulation. An overview of exist-
ing map overlay methods is given in the following 
section to explain the need for the overlay of 2D 
and 3D features, which are described in the next 
two sections. A short description of the imple-
mentation of the 2D counterpart of this method 
is followed by a summary of the 3D results. We 
conclude by highlighting some other possibilities 
of the proposed method.

TIN/TEN Data Models for 
Boundary Representations

In topographical modeling, real-world objects 
are characterized by a certain representation 
and stored in a geo-database. The representa-
tion depends on the purpose of the geo-database 
but also on the identification and data capture 
process. In this section we will introduce 2D TIN 
and 3D TEN data models, as they will be used in 
the subsequent overlay computations.

Two-dimensional (2D) Boundary 
Representation
We can describe a 2D boundary explicitly by its 
polygon geometry through an ordered list of 
points connected to one another by straight-line 
segments, with the last point connecting to the 
first. We could also use topology, where points 
are identified as numbered nodes and the nodes 
define a polygon. The geometric description 
of polygons and other simple features within 
2D space is defined by the Simple Feature 
Specification (SFS) of the Open GeoSpatial 

Consortium (OGC 2005). Validation functions 
are available to determine whether or not a 
given feature is valid, i.e., a polygon is not self-
intersecting. Although the validation process 
is not complicated, many implementation and 
definition problems exist (see Van Oosterom et 
al 2004; Van Oosterom et al 2005).

If the boundary of the object is defined, then the 
interior is also, in some way, given. This interior 
could also be made explicit or materialized, i.e., 
when the boundary polygon is triangulated in a 
set of triangles and stored within a 2D Triangular 
Irregular Network (2D TIN) data structure. Because 
boundary edges can be derived from a set of 
triangles, it is no longer necessary to store the 
boundary polygon per sai. The TIN acts as the 
base data structure for the feature representation. 
The embedded space between two or more objects 
could also be defined by a triangulation of the 
covering polygon, where all objects are enclosed 
by sets of interior triangulations. The space is thus 
fully partitioned by triangular meshes. 

3D Boundary Representation
The identification and capture of real-world 
objects is far more complicated when we move 
to full 3D applications. In 3D, opposed to 2.5D, 
it is not possible to assume that objects can be 
flattened and defined as polygon footprints 
on a surface. Instead, a proper 3D boundary 
representation of the object is needed, mean-
ing more than one Z-value is attached to a 2D 
polygon, and also more information is needed 
than one Z-value attached to the vertices of the 
2D polygon.

In 3D, the definition of the geometric and/or 
topological description and validation of the cor-
rectness is far more complicated than in 2D. The 
polyhedral approach, as described in, among others, 
Teunissen and Van Oosterom (1988) and Stoter 
(2004) defines the boundary as a set of polygons, 
where each polygon is “flat” and valid according 
to the SFS of the OGC, i.e., non-self intersecting. 
The set of faces should enclose a single volume, 
meaning it should be “watertight” or “closed.” 

In fact this kind of explicit boundary representa-
tion is quite common in engineering disciplines, 
where 3D objects are actually measured, i.e., by 
lasers canning tools. Constructive solid geometry 
(CSG), on the other hand, deals with combining 
natural geometric primitives, such as the sphere, 
cylinder, cone, and torus. These primitives are 
commonly treated as solids. Binary set operations 
(union, intersection, and difference) are used to 
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combine more complex shapes. The boundary 
shape description of this complex shape is called 
the implicit surface representation. The boundar-
ies of such representations are not measured but 
derived from the CSG by particles connected to 
a triangulation (Hart 1997).

The validation of explicitly defined boundary 
representations (either derived from the implicit 
surface of a CSG or given by a polyhedral rep-
resentation) consists of validating the following 
assumptions: the polyhedron is non-valid when 
Eulers Law does not hold: the number of vertices 
(nodes) plus the number of faces minus the number 
of edges should be equal to 2. However, when 
the equation holds, it is still not certain that the 
polyhedron is valid, since the faces can intersect 
with each other. To determine whether or not 
faces do intersect is easier said than done. 

One way to simplify this problem is to use a 
pre-processing step where each face is subdivided 
into triangular patches. Not only does this avoid 
the need to check on “flat” polygons, as a triangle 
is flat by definition, but also the intersection test 
can now be performed without the actual calcula-
tion of the intersecting points (Möller 1997). And, 
triangular faces are easier to manage within a 
topological data model.

When an object is described by a valid, watertight 
set of triangles, its interior is also given. As in the 
2D scenario, this interior can be made explicit by 
a set of tetrahedrons, which fill the interior com-
pletely. A tetrahedronization algorithm performs 
this task. Once this TEN is available, the boundary 
can be derived. The boundary is represented by 
a set of triangles, and it could be explicitly made 
available within a 3D TIN.

Triangulations
In this section we discuss how to store our input 
data within a TIN/TEN representation, as 
needed by the overlay computation.

Triangulations: General Issues
In n-dimensions, a triangulation of a set of 
points V is a set of non-intersecting simplices 
T(V), whose vertices form V, and whose union 
completely fills the convex hull of V. Tetrahedra 
are dimension 3 simplices whose faces are sim-
plices of dimension 2 (triangles), whose edges 
are simplices of dimension 1 (segment lines), 
whose vertices are simplices of dimension 0 
(points).

A Delaunay triangulation is one of the many 
ways to triangulate a set V. In a Delaunay tri-
angulation, for any simplex of T(V) there is an 
empty n-dimensional sphere that passes through 
all the vertices of that simplex. A sphere is said 
to be empty if there is no vertex in its interior. 
The incremental cavity algorithm (Watson 1981) 
deletes all n-dimensional simplices that are no 
longer empty, according the Delaunay circum-
sphere criterion, after the insertion of the new 
point. The algorithm then connects each n-1 facet 
at the cavity boundary to the newly inserted point 
to create new n-dimensional simplices. Another 
approach is the flip algorithm created by (Joe 1989), 
which generalizes to 3D the well known 2D flip 
algorithm of (Lawson 1972). The flip algorithm 
is described in detail below.

In some GIS-related literature (i.e., Pilouk 
1996; Zlatanova 2000), a 3D tetrahedral mesh is 
called a TEN and a 2D triangular mesh is a TIN. 
We will follow this convention to emphasize the 
fundamental difference in handling 3D data and 
2D data, the problems still existing in constructing 
TINs and TENs, and to emphasize that TENs are 
mostly used to represent (volumetric) 3D objects 
and TINs are typically used in 2D computational 
geometry applications and to represent 2.5D and 
3D surfaces.

Conformal / Constrained (Delaunay) 
Triangulations
As reported by Cavalcanti and Mello (1999), it is 
still a problem to create a tetrahedral mesh that 
represents 3D objects bounded by polygonal 
faces or interior-constraining faces and edges. 
Traditional unconstrained Delaunay triangula-
tions (Watson 1981; Joe 1989) use only point 
datasets. 

However, a point mesh generator can be used 
as the foundation for the implementation of a 
conformal/constrained mesh generator. This is 
achieved by either adding extra (Steiner) points 
to the triangulation on missing faces, or by flip-
ping faces on the tetrahedra of the starting mesh. 
Although in some literature references (also in 
Cavalcanti and Mello 1999), constrained Delaunay 
triangulations are utilized, we will follow the more 
strict definition of conformal triangulations where 
Steiner points are inserted to represent the polygo-
nal faces by a set of triangular faces within the 
triangulation. If this can be implemented in such 
way that the Delaunay criterion is obeyed, it is a 
conformal Delaunay triangulation. 
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If the polygonal faces can be recovered without 
adding extra Steiner points, the triangulation is 
constrained. As this task generally cannot be per-
formed without obeying the Delaunay criterion, 
strictly constrained Delaunay triangulations are 
very rare. One good example of a 3D polyhedron 
which has to be treated as a conformal triangula-
tion is the Schönharts polyhedron (Aichholzer et 
al. 2002; Shewchuk 2002), as there is no possibil-
ity to create a constrained triangulation for this 
object (see Figure 1).

Conformal TEN Data Models 
for Storing Polygonal Boundary 
Representations
Cavalcanti and Mello (1999) describe an 
approach to generating a conformal tetrahe-
dronization using the following steps:
• Step 1: Generate an unconstrained 

Delaunay tetrahedral mesh (TEN) using the 
object point set. This is performed by the 
flipping algorithms as given by Joe (1989).

• Step 2: Recover missing constrained edges. 
Steiner points are inserted in the tetrahe-
dronization at the midpoint of the missing 
edge, and also on the corresponding bound-
ing edge of the polygon, followed by a re-
tetrahedronization, and check for missing 
constrained edges. This process will iterate 
until all constrained subdivided edges are 
part of the TEN. This method is followed 
by Kraak and Verbree (1992). Till now the 
TEN is still Delaunay, but not constrained. 
The missing edges could also be recovered 
by edge flipping, but the TEN is than not 
longer Delaunay.

• Step 3: Recover missing polygon faces. Now 
all (subdivided) edges are part of the TEN, 
but this does not automatically mean that all 

constrained facets are also part of the TEN. 
Therefore, the polygon transformations are 
also triangulated in 2D to obtain a triangu-
lar representation. All triangles that do not 
have a counterpart within the TEN will yield 
new Steiner points at the midpoint of the 
missing edge of the triangle. The updated 
TEN is still Delaunay. As this process does 
not converge always, a forth step is neces-
sary. 

• Step 4: Perform local triangulation of tet-
rahedra if there are some faces still miss-
ing. When polygon faces are not recovered 
within the TEN, the global Delaunay criteria 
are abandoned and a local re-triangulation 
of the tetrahedra is performed, whose inte-
riors are intersected by a missing polygon.

Existing Map Overlay Methods

Overlays in the Raster Domain
Cartographic modeling has successfully been 
applied in the analysis and synthesis of geo-
graphical data (Tomlin 1990; DeMers 2001). 
This kind of map algebra works by decomposing 
data sets, data processing capabilities, and data 
processing control specifications into elemen-
tary components that can be recombined with 
relative ease and great flexibility. The complete 
body of data for a given geographical study area 
exists as a cartographic model consisting of map 
layers. Each layer is a two-dimensional image on 
which every location is associated with exactly 
one characteristic. The data-processing capa-
bilities as given by Tomlin (1990) are to be per-
formed between map layers and are intended to 
facilitate the interpretation of cartographic data. 
The LocalProduct operator, for example, multi-

Figure 1. Schönharts polyhedron.
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plies each location’s value on one specified layer 
to its value(s) on one or more additional layers.

Although, in our opinion, the term “cartographic” 
modeling is not accurate, since the data processing 
is performed on the data layers that are behind the 
map visualization, it shows clearly the advantages 
of this kind of “map combinations.” Each layer 
models a certain aspect of the real world; it is a 
natural to organize data from different. These 
single-valued, general-context data sources are 
combined in a more specific context without the 
need to model the relationships between the input 
maps beforehand. The values express geographi-
cal characteristics, and the mathematical func-
tions (summation, multiplication, etc.) express 
relations as more information is revealed during 
map overlay process.

Overlay in the Vector Domain
Although some of the implementations of carto-
graphic modeling, such ArcGIS Spatial Analyst 
(ESRI, 2005), describe the spatial relationships 
only on raster data, there is nothing that pre-
vents the same method from being applied to 
vector (polygon) data set. To do this, the local, 
zonal, and focal operations need to be defined 
in the vector domain, and, importantly, a vector 
map overlay has to be performed. 

The map overlay of two (or more) polygon-based 
feature maps is usually computed in three logical 
phases (Frank 1987; Franklin 1990). The first step 
is performed at the metric level and computes all 
intersections between the edges (line segments) 
of the different layers. The second step is the 
topological reconstruction of the resulting new 
polygons, and the third step is the assignment of 
the identifiers. The computational drawback of 
most algorithms is that the line segments should 
be sorted based on their X-coordinate to be inter-
sected in an efficient way, i.e., plane-sweep (Van 
Roessel 1990; Kriegel et al. 1991). The map overlay 
algorithm by Van Oosterom (1994) attempts to 
overcome that limitation by using the R-tree spatial 
index structure to test whether two line segments 
are candidates for intersecting. If two line seg-
ments overlap, then an intersect function has to 
determine whether the lines really intersect, after 
which four new line segments with the propagated 
identifiers are returned. When all intersections 
are computed, the resulting line segments have to 
be assembled to form new polygons. Finally, the 
identifiers of the original maps have to be set or 
combined into a new value and attached to the 
new area features.

Limitations of Existing Overlay 
Methods 
The map overlay as performed by cartographic 
modeling is limited to the propagation and func-
tional calculation of cell values obtained from the 
original data sets. No intersection calculation is 
needed, as the input raster cells are similar for all 
data sets. 

This said, cartographic modeling can be per-
formed with ease in three-dimensional space, as 
voxel cells are the three-dimensional equivalents 
of the two-dimensional raster cells. But polygon 
feature map layers should first be rasterized, and 
three-dimensional polyhedral features need to be 
transformed into a voxel representation. Depending 
on the cell size of the pixels or voxels selected, 
the results could be less accurate, and large data 
storage or high calculation times may entail.

The map overlay of polygon-based feature maps 
requires an intersection of all line segments. To 
speed up this calculation, either the line segments 
need to be sorted or an efficient spatial index and 
clustering must be made available. Both options will 
take some time to perform, to build, and to tune. 
And one can assume the complexity of implement-
ing an efficient and correct map overlay algorithm 
of three-dimensional polyhedral features. 

Examples of True 3D Overlays
For most applications, the real world is mod-
eled through representations that fit their pur-
poses. As our activities are in general related at 
the earth surface, we can use 2D or 2.5D (with 
height added) data structures, and thus also 2D 
overlays algorithms. But as soon as the space 
above or below the ground is occupied, the third 
dimension has to be taken into account. That’s 
why in geology, 3D modeling is needed.

Another good example of 3D, or even 4D, mod-
eling is given by in flight navigation systems made 
possible by new on board systems based on the 
‘tunnel in the sky’ concept. Restricted areas, like 
military sites are shown at a display in the cockpit 
of the aircraft. But it is also possible to show the 
location of nearby airplanes with their intended 
routes. If a route overlays with the one of the 
own airplane the system will warn the pilot and 
ground control.

More examples and applications on 3D GIS 
for Urban Development and 3D Cadastre can be 
found in within the PhD work of (Zlatanova 2000) 
and (Stoter 2004).
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 2D Feature Overlay
in TIN 

Background
To overcome the limitations of the 
existing overlay methods the datas-
ets themselves could be manipulated 
for the overlay operator. This can be 
accomplished with a data structure 
that is capable of storing the poly-
gon features and has an internal 
spatial search structure that can be 
used within the geometrical inter-
section process of the map overlay. 
In addition, efficient propagation 
of the identifiers attached to the 
polygon features to the new overlaid 
map is required. We believe that the 
TIN of two-dimensional polygon feature maps and 
the TEN of three-dimensional polyhedral feature 
maps are data structures that can attain that goal. 

The idea behind feature overlay in TIN/TEN 
data models is to perform a map overlay by insert-
ing all features, expressed as a polygonal bound-
ary representation, in one triangulation. We will 
describe this approach by first explaining the 2D 
feature overlay in a TIN, and then the 3D feature 
overlay in a TEN. The main advantage of this 
method is that the insertion of the features, the 
geometrical intersecting of the line segments (in 
2D) and the polygon facets (in 3D), is performed 
in a local neighborhood. After the insertion and 
intersection are completed, the overlaid features 
are re-assembled and the identifiers of the origi-
nal features are propagated and attached to the 
overlaid features.

Feature Overlay Algorithm
Project Strategy 
We use the following strategy to deal with the 
highly complex algorithms:
1. Formulate a general feature overlay algo-

rithm;
2. Elaborate this algorithm with two-dimensional 

sub algorithms; and
3. Translate the two-dimensional sub-algorithms 

to their three-dimensional counterparts.

2D Feature Overlay Algorithm
First an empty overlay triangulation is per-
formed. Then the polygon features are inserted 
into it one by one. Their edges are processed 

iteratively. When a new feature edge intersects 
with a constrained TIN edge previously inserted 
into the overlay TIN, this feature edge is split 
into sections. The same applies to the inter-
sected constrained TIN edge. When all sections 
of the feature edges of all polygon features are 
inserted into the overlay TIN, the entire poly-
gon feature set is overlaid, and the post-pro-
cessing phase can begin. The post processing 
involves re-assembling the overlaid features and 
propagation of the original identifiers. This pro-
cedure is illustrated in Figure 2.

In Detail: Inserting 2D Feature Edges 
by Flipping
The algorithm inserts feature edges into the 
overlay TIN in three steps. The feature edge 
is inserted into the overlay TIN by inserting its 
start and its end node. This was implemented in 
the Computational Geometry Algorithm Library 
(CGAL 2005) environment, using a point loca-
tion algorithm from the family of triangle line 
walk. The line walk involves inserting the start 
and end nodes and then “walking” from the start 
to the end node until all intersected TIN edges 
in the overlay TIN are detected. What happens 
with the inserted feature edges depends on 
the type of the intersected TIN edges. When 
the intersected TIN edges are constrained, 
the intersecting points are determined and 
inserted into the overlay TIN. The intersecting 
feature edge is then split into segments, as is the 
intersected feature edge. These segments start 
a flipping process, such that the intersecting 
segments are represented by constrained TIN 
edges in the overlay TIN. 

Figure 2. Result of overlaying polygon features of ‘A’ and ‘B’.
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A section is constructed in the overlay TIN by 
flipping all non-constrained edges that intersect 
with this section until none of them intersects 
anymore. Flipping is not a trivial matter, as some 
configurations could pose problems that should 
be treated carefully. In Figure 3, a worst-case flip-
ping scenario is given. 

Re-assembling Overlaid 2D Features
The edges of the polygon features are processed 
in counter clockwise order. The counterparts of 
these edges are the constrained TIN edges in 
the overlay TIN. During the insertion of these 
constrained edges, the left-right information 
is propagated from the feature edges. A flood 
fill algorithm is initialized by providing it with 
a face that lies in the interior of a feature and 
an identifier of that feature. The algorithm 
searches for corresponding TIN faces in the 
overlay TIN by recursively checking its three 
neighboring faces.

3D Feature Overlay
 in a TEN Data Model

When developing the 3D feature overlay algo-
rithm, it was assumed that the basic 2D algo-
rithm could be extended to the third dimension, 
by using input data that are one dimension 
higher and performing the overlay in a 3D 
triangulation or TEN. Consequently, all sub-
algorithms were expected to work in 3D. Below 
we address the main difficulties encountered 
during the implementation of this approach.

3D Feature Overlay Algorithm
Note that in this algorithm, the input polyhe-
dral features are described by their 3D boundary 
representations. These features should be “valid” 

and “simple.” No intersections or gaps are 
allowed with respect to these features, thus they 
are also “watertight.” To be “simple,” all feature 
faces of the polyhedron are split into triangular, 
i.e., flat facets. The edges of these triangular 
facets are expected to be constrained, i.e., to be 
maintained within the overlay triangulation.

The algorithm itself is similar to the 2D algo-
rithm. First an empty 3D overlay triangulation is 
initialized. All polyhedral features are inserted 
into this TEN one by one. The feature edges of 
the polyhedral triangulation are processed itera-
tively. As in the 2D scenario, the feature edges that 
intersect with a constrained TEN edge previously 
inserted into the overlay TEN causes this feature 
edge and the intersected feature edge to split 
into sections.

 If all sections of the edges of a polyhedral fea-
ture are inserted into the overlay triangulation, 
a special check has to be performed, as the pres-
ence of all (sections of the) feature edges does not 
necessarily guarantee that all features facets are 
present in the triangulation. Calvacanti and Mello 
(1999) encountered this problem while computing 
a TEN from one polyhedron (see previous discus-
sion). In our case, the polyhedral features were 
preprocessed to simple triangular facets, so that 
the test of missing feature facets was not difficult 
to perform. This notwithstanding, the problem 
of the missing feature facets is still to be tackled. 
Below are some thoughts on how to handle this 
problem.

In Detail: Inserting 3D Feature Edges 
by Flipping
Flipping in 3D is far more complex than in 2D. 
The main reason is that the so-called bistellar 
flipping of an edge can cause the destruction 
of two tetrahedra and the creation of three 
new tetrahedra, and vice versa. Besides this 2-3 
flip, a 4-4 flip exists, where four tetrahedra are 
destroyed and four new ones are created. The 
4-4 flip is, however, only possible when two TEN 
facets in adjacent tetrahedra lie in the same 
plane (Figure 4). 

Here the algorithm inserts feature edges into 
the overlay TEN by inserting the start and end 
nodes of the feature edge (which causes some 
flips) into the overlay TEN and by walking from  
the start to the end node to detect all intersected 
TEN edges and TEN facets. The feature edges are 
split into segments at the intersecting edges by 
inserting the intersecting vertices in the overlay 
TEN (which again causes some flips). When the 

Figure 3. Worst-case scenario (n2 flips) for non-flippable 
edge.
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start and end vertex of the 
section are present in the 
overlay TEN, all TEN facets 
that intersect with this sec-
tion need to be flipped out 
of the way. Figure 5 shows 
a segment that needs to 
be inserted with one last 
intersecting TEN facet. 
After flipping the facets with 
a 2-3 flip, the segment is 
propagated in the overlay 
TEN. But, contrary to the 
2D feature edge case, no 
proof exists that under 
all conditions all feature 
edges are preserved in 
the overlay TEN (Anwei 
and Baida 2000).

In Detail: Confirming 3D Feature 
Facets by Flipping
Compared to the conforming method described by 
Calvacanti and Mello (1999), this algorithm is very 
economical with regard to inserting extra points 
into the triangulation. It is only when feature edges 
(from different feature polyhedra) intersect with 
TEN edges that an intersecting point is inserted 
into the overlay TEN. No unnecessary Steiner 
points are inserted. However, inserting (sections of) 
feature edges is not sufficient to make sure that the 
feature facets are presents in the overlay TEN, since 
they still intersect with the facets of the inserted fea-
ture edges.

This problem can be solved in three steps. First all 
constrained TEN facets are marked. A TEN facet is 
constrained when its three TEN edges are constrained 
by the same feature (and thus have a feature seg-
ment as a counterpart). The second step is to find a 
tetrahedron that intersects with a constrained TEN 
facet, and then use the neighborhood relationships 
embedded in the TEN to detect all other intersecting 
tetrahedra. Once their constrained TEN facets are 
detected, the intersecting point is inserted into the 
overlay TEN. All other non-constrained facets are 
flipped out of the way.

As with the insertion of constrained edges, this 
algorithm has only partially been proven Shewchuk 
2002; 2003), but experiments show that it works most 
of the time (Anwei and Baida, 2000).

Re-assembling Overlaid 3D Features
When the sections of the edges of the feature 
facets are inserted into the overlay TEN and 

all tetrahedra that intersect with the facets are 
processed, the entire polyhedral feature is pres-
ent in the tetrahedral network. After all feature 
polyhedra have been inserted, a flood fill algo-
rithm similar to the one used for the 2D feature 
overlay algorithm can be applied to assign a 
feature identifier to all of the tetrahedra in the 
overlay TEN that are inside the boundary of the 
feature. 

The overlay TEN now acts as a container where 
all features are stored. One can retrieve the fea-
tures as a volume representation given by a col-
lection of tetrahedra with the same identifier, and 
as the surface representation given by the set of 
boundary facets of these tetrahedra. An overlay is 
detected by those tetrahedra that have more than 
one identifier, and, by querying the tetrahedra 
according to these identifiers, this overlay can 
be materialized.

2D Feature Overlay Algorithm 
Implementation

We have implemented the basic ideas of the 
feature overlay algorithm using CGAL (2005). 
CGAL is a collaborative effort of several sites in 
Europe and Israel. Its goal is to make the most 
important solutions and methods developed in 
computational geometry available to users in 
industry and academia in a C++ library. The 
intention is to provide easy access to useful, reli-
able geometric algorithms. 

The CGAL library comprises a Kernel of geo-
metric primitives such as points, vectors, lines, 
and predicates which is used to test, for instance, 
the relative positions of points, intersections, and 
distance calculation. Its Basic Library is a collection 

Figure 4. Above: 2D flip; below: 2-3 bistellar 3D-flip and 4-4 bistellar 3D-flip.
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of standard data structures and geometric algo-
rithms, such as convex hull in 2D/3D, (Delaunay) 
triangulation in 2D/3D, planar map, polyhedron, 
smallest enclosing circle, and multidimensional 
query structures. The Support Library offers inter-
faces to other packages, e.g., for visualization, and 
I/O and other support facilities. 

Our goal was to investigate the available CGAL 
data structures for triangulation in both 2D and 
3D and to identify the possibilities and limitations 
of CGAL. Besides, the concept of performing an 
overlay within a triangulation has to be proved to 
work. Currently, the algorithm itself is implemented 
only in 2D. Implementation in 3D is possible, but 
can only be done when the computational and 
geometrical difficulties as described in the previous 
paragraph are fully understood and tackled. 

Class Definition of 
Constrained Faces
The implementation of the 
algorithm depends heavily 
on the explicit availability of 
edges in the data structure. 
However, the triangulation 
data structure used by CGAL 
does not contain explicit edges. 
These edges are only implic-
itly accessible by the vertices 
opposite to them in the same 

face. Our constructor of the constrained face 
class reads:
Constrained_face_2 (void* v0, void* v1, void* v2,
     void* n0, void* n1, void* n2,
     bool c0, bool c1, bool c2,
     long face_id = 0)
 : Fab(v0,v1,v2,n0,n1,n2)
 {
 set_constraints(c0,c1,c2);
 set_id(face_id);
 }

In overlay triangulation, v0, v1 and v2 are 
the handles of constrained vertices while n0, n1 
and n2 are the handles of the neighboring faces. 
These neighboring faces are chosen in such a way 
that neighbor n0 lies opposite to vertex v0. c0, 
c1 and c2 define constraints on the edges of the 
face (Figure 6).

For the reconstruction of the overlaid features 
each face will hold two feature_ids to identify in 
the features in which the face lies, this limits the 
implementation to overlay two features on top 
of each other.

Inserting features
The implementation follows the steps given 
above for 2D feature overlay in TIN by the fol-
lowing custom-code, non-standard CGAL func-
tions:
// Framework functions:
void insert_obj(long object_id);
Vertex_handle insert_edge(const Vertex_handle 
vt1, Point pt2, long object_id);
Vertex_handle insert_section(Vertex_handle 
start_vertex, Vertex_handle end_vertex, long 
object_id);
// Support functions:
Vertex_handle insert_vertex(const Point pt, long 
object_id);

Figure 5. Last flip produces section as an edge.

Figure 6. Face definition.
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Vertex_handle insert_vertex_in_edge(const 
Point pt, Face_handle f, int i,
long object_id);
void c_flip(Edge flip_edge);
Face_handle get_start_face(const Vertex_handle 
vstart, Vertex_handle vend);

The insert_obj function is called each time an 
object has been loaded into the overlay_trian-
gulation. The insert_edge function first uses the 
insert_vertex function to insert the start and end 
nodes of the edge into the overlay_triangulation. 
It then inserts all sections of the edge with the 
insert_section function. Because of the earlier 
mentioned shortcoming of the CGAL triangulation 
data structure (it does not contain edges explicitly), 
the sections cannot be determined before hand. 
The insert_section function determines each sec-
tion on the fly, by processing the edge without the 
previously processed sections.

The insert_section function does the bulk of the 
processing needed to insert features into the over-
lay triangulation. First, it uses the get_start_face 
function to initialize the triangular walk algorithm. 
It then performs the triangular walk process until 
it reaches a constraint. When a constrained edge 
is found, it uses the insert_vertex_in_edge func-
tion to insert the end point of the section. The 
section’s start vertex and end vertex are known, 
and the section can reconstructed using the c_flip 
function.

Results
Figure 7 shows a detail of a feature triangulation, 
which was created by an overlay of two datas-
ets. The first (shown in green) consists of 200 
features, the second (shown in orange) consists 
of 100 features. The overlay parts, enclosed by 
constrained (red) edges, are shown in brown. 
The unconstrained edges of the triangulation 
are shown in blue.

Conclusions and 
Recommendations

We have presented a method of storing tri-
angular boundary representation objects in a 
tetrahedral mesh (TEN), where the intersection 
between the different features is calculated on 
the fly, and the overlay TEN is a constrained 
triangulation, as only the intersecting points are 
inserted in the TEN on top of the feature nodes, 
edges, and facets. 

The overlay TEN acts as a container structure 
where each feature can be reconstructed as its tetra-
hedral volume or triangular surface representation. 
As each tetrahedron has an identifier(s) inherited 
from its originating feature, the inserted features 
can be materialized by querying the overlay TEN 
for these identifiers.

This method could also be used to validate 
“non-watertight” and self-intersecting boundary 
representations. If the overlay TEN is used to 
process these features, then the facets of this 
feature intersecting other facets will be found and 
corrected while inserting.

We have tested and implemented this method 
for the 2D scenario. As far as we know, in itself, 
this is a completely new approach. More research 
is needed to compare the performance with other 
2D overlay methods. A fully proven and opera-
tional implementation within 3D still needs to 
be done.
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