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What do we want?
Clean, closed and rigorous logic.

Automatic and reliable interchange of data.
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“A possibly infinite set; … This is actually 
the usual definition of set in mathematics, 
but programming languages restrict the 
term to mean finite set” (ISO19107)

(space is “smooth”)

Transfinite Set
(the theory)
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PointPointPointPoint----set Definition of Regionsset Definition of Regionsset Definition of Regionsset Definition of Regions
 

The volume, area, or line represents a continuous 
infiniteinfiniteinfiniteinfinite set, but only a finite finite finite finite number of points within it 
can be expressed in the digital representation 
(integer or floating point).

(the practice)
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Intersection of Two Lines or Intersection of Two Lines or Intersection of Two Lines or Intersection of Two Lines or 
PlanesPlanesPlanesPlanes
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Intersection of Two LinesIntersection of Two LinesIntersection of Two LinesIntersection of Two Lines
 

We would prefer a unique point of intersection!
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Breakdown of LogicBreakdown of LogicBreakdown of LogicBreakdown of Logic
Non-associativity of Operations

A 
C 

B 
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NonNonNonNon----associativityassociativityassociativityassociativity of of of of 
OperationsOperationsOperationsOperations

A 
C 

B 

p 

q 

Forming the union as (A ∪∪∪∪B)∪∪∪∪C.
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NonNonNonNon----associativityassociativityassociativityassociativity of of of of 
OperationsOperationsOperationsOperations

A 
C 

B 
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NonNonNonNon----associativityassociativityassociativityassociativity of of of of 
OperationsOperationsOperationsOperations

Forming the union B ∪∪∪∪C first

A 
C 

B 
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NonNonNonNon----associativityassociativityassociativityassociativity of of of of 
OperationsOperationsOperationsOperations

Forming the union as A ∪∪∪∪(B∪∪∪∪C).

A 
C 

B 
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We would like:

The union and intersection operations to 
be associative and distributive.
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equals() equals() equals() equals() 
(meaning identically defined)

 

A 

B 

C 

p 

a 

b 
 

After subdivision of B/C, A is not equal to its before image. 
In 3D there are many more variants on how to define In 3D there are many more variants on how to define In 3D there are many more variants on how to define In 3D there are many more variants on how to define 
an object.an object.an object.an object.
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equals() equals() equals() equals() 
(defining the same transfinite set)

 

A 

B 

C 

p 

a 

b 
 

Subdivision of B/C does not change the point set definition of A
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equals()equals()equals()equals()
(by ISO 19107 definiton)

A
B C

A.equals(B), B.equals(C), but not A.equals(C)

We would like equals() to be an equivalence 
relation

“Application schemas may define a tolerance tolerance tolerance tolerance that returns true if the two 
GM_Objects have the same dimension and each direct position in this GM_Object 
is within a tolerance distance of a direct position in the passed GM_Object and 
visa-versa" 

(ISO 19107 section 6.2.2.18.3).
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isSimpleisSimpleisSimpleisSimple()()()()
 

s i m p le  g e o m e t r i e s  n o n - s im p le  g e o m e t r i e s  

a  

b  

c  

d  

e  

f  

g  

h  

ISO 19107 definition.
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isSimpleisSimpleisSimpleisSimple()()()()
 

d 

invalid polygon marginally valid polygon 

In practice, the right figure is almost certainly 
“wrong” if d is small, but not detected as 
invalid
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Cadastral Cases

 

A 

B 

C 

E 

p 

q 
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Region around q (enlarged)Region around q (enlarged)Region around q (enlarged)Region around q (enlarged)
 

A 

B 

C 

E 

p 

q 

Small perturbations may cause topological breakdown
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Milenkovic Milenkovic Milenkovic Milenkovic NormalizationNormalizationNormalizationNormalization
 

A 

B 

C 

E 

p 

q 

Leads to the development of a complete coverage with no 
possibility of logic failure within that coverage. 

10ε
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MilenkovicMilenkovicMilenkovicMilenkovic NormalizationNormalizationNormalizationNormalization
BUT

Logic not necessarily closed and associative. The final 
coverage can vary depending on the order of addition of 
features to it.

No help with the difficulties with equals() already 
discussed.
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Realms ApproachRealms ApproachRealms ApproachRealms Approach

In effect, pre-calculates the intersections of all objects (in all 
layers) in the database, to ensure no “surprises” later.

Addresses the problem of logic closure.Addresses the problem of logic closure.Addresses the problem of logic closure.Addresses the problem of logic closure.
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Realms ApproachRealms ApproachRealms ApproachRealms Approach
 

A 
D 

B E 

C 
line 1 

line 2 

line 3 

From: Guting, R. H. & Schneider, M. 1993, 'Realms: A Foundation 
for Spatial Data Types in Database Systems' 3rd International 
Symposium on large Spatial Databases (SSD).
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Realms ApproachRealms ApproachRealms ApproachRealms Approach
 

A 
D 

B E 

C 
line 1 

line 2 

line 3 

From: Guting, R. H. & Schneider, M. 1993, 'Realms: A Foundation 
for Spatial Data Types in Database Systems' 3rd International 
Symposium on large Spatial Databases (SSD).
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Realms ApproachRealms ApproachRealms ApproachRealms Approach
 

A 
D 

B E 

C 
line 1 

line 2 

line 3 

From: Guting, R. H. & Schneider, M. 1993, 'Realms: A Foundation 
for Spatial Data Types in Database Systems' 3rd International 
Symposium on large Spatial Databases (SSD).
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Realms ApproachRealms ApproachRealms ApproachRealms Approach
 

A 
D 

B E 

C 
line 1 

line 2 

line 3 

From: Guting, R. H. & Schneider, M. 1993, 'Realms: A Foundation 
for Spatial Data Types in Database Systems' 3rd International 
Symposium on large Spatial Databases (SSD).
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Realms ApproachRealms ApproachRealms ApproachRealms Approach
 

A 
D 

E line 1 

28

Realms in 3DRealms in 3DRealms in 3DRealms in 3D
 

A 

B 

C 

a 

b 

c 
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Realms in 3DRealms in 3DRealms in 3DRealms in 3D
 

A 

B 

C 

a 

b 

c 
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Rational PolygonsRational PolygonsRational PolygonsRational Polygons

Define coordinates of spatial primitives using rational 
coordinate values. (Store each coordinate value as a pair of 
integers).

The intersection of two lines is defined exactly (no 
tolerance is required), and it falls on both lines.

(Lemon & Pratt 1998)

The logic is closed and correct.

All operations are associative.

Can lead to a definition of equals().
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Rational PolygonsRational PolygonsRational PolygonsRational Polygons

This is only true if the integer values are potentially 
infinite in size – such as the “big integer” of java. 

As the database matures, and gets more complex, the 
big integers get bigger.

It is not possible to deal with irrational numbers – for 
example where a circular arc intersects a straight 
line.

But:
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Dual Grid
 

A B 

C 
line 1 

line 2 

line 3 

Lines are defined by points on a grid, but the intersections 
are points on a very much finer grid. 
Cannot, for example, draw a line through the intersection 
of lines 1 and 2.

Lema, J.A.C. and Gueting R.H.
Geoinformatica 6:1 57-67 2002
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Dual Grid
Provides a closed logic, based on the point-line-
polygon paradigm.

Implements the ROSE algebra.

Requires only finite precision integer arithmetic. (But 
precision requirements are very large).

Does not easily extend to 3D.
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Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope

Polytope Polytope Polytope Polytope – the generalisation of polygon (2D) and 
polyhedron (3D) to nD. (not restricted to 2 or 3D).

Regular Regular Regular Regular – A topological term, referring to a set which is 
equal to the interior of its closure.

(loosely – a set with no spikes).
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Definition Definition Definition Definition –––– Half Plane (2D)Half Plane (2D)Half Plane (2D)Half Plane (2D)

HHHH(A,B,C,S)={(X,Y)|((A(A,B,C,S)={(X,Y)|((A(A,B,C,S)={(X,Y)|((A(A,B,C,S)={(X,Y)|((A⊗⊗⊗⊗X X X X ⊕⊕⊕⊕ BBBB⊗⊗⊗⊗Y Y Y Y ⊕⊕⊕⊕ C) > 0) = S,C) > 0) = S,C) > 0) = S,C) > 0) = S,

-M<X≤M, -M<Y≤M} 

The inverse of H(A,B,C,S) is defined as H(A,B,C,not(S)).
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Definition Definition Definition Definition –––– Half Space (3D)Half Space (3D)Half Space (3D)Half Space (3D)

HHHH(A,B,C,D,S)={(X,Y)|((A(A,B,C,D,S)={(X,Y)|((A(A,B,C,D,S)={(X,Y)|((A(A,B,C,D,S)={(X,Y)|((A⊗⊗⊗⊗X X X X ⊕⊕⊕⊕ BBBB⊗⊗⊗⊗Y Y Y Y ⊕⊕⊕⊕ C C C C ⊗⊗⊗⊗Z Z Z Z ⊕⊕⊕⊕ D) > 0) = S,D) > 0) = S,D) > 0) = S,D) > 0) = S,

-M<X≤M, -M<Y≤M, -M<Z≤M} 
The inverse of H(A,B,C,D,S) is defined as H(A,B,C,D,not(S)).
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Definition Definition Definition Definition –––– Convex PolytopeConvex PolytopeConvex PolytopeConvex Polytope
 

Defined as the intersection of a set of half spaces
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Definition Definition Definition Definition –––– Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope
 

Defined as the union of a set of convex polytopes.

(closely related to the polygon chain of constraint db approaches)
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Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope
Regular Polytopes by this definition can be shown to 
form the basis of a topological spacetopological spacetopological spacetopological space. 

Note – the representations themselves span the 
topological space, not approximation to a topological 
space.

Axioms of a Topological Space

O0 ∈ OOOO and O∞∈ OOOO
if O1∈ OOOO and O2∈ OOOO then O1∩O2∈OOOO
if Oi∈ OOOO for all i∈I then ∪Oi∈OOOO

i∈I
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Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope

Regular Polytopes support a closed, rigorously Regular Polytopes support a closed, rigorously Regular Polytopes support a closed, rigorously Regular Polytopes support a closed, rigorously 
defined logic, and the operations are consistent.defined logic, and the operations are consistent.defined logic, and the operations are consistent.defined logic, and the operations are consistent.
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Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope

• All regular polytopes are finite point sets – there is only a 
finite number of values for x, y, and z that satisfy the 
criterion of the regular polytope.

• For this reason, the Regular Polytope is not continuous –
it is a grid of points. (Closely related to the finer grid of the 
“Dual grid”).
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Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope

• A convex polytope need not be fully bounded, thus a 
Regular Polytope need not be fully bounded. (This is a 
consequence of every Regular Polytope having an inverse)

  

2D 3D
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Regular PolytopeRegular PolytopeRegular PolytopeRegular Polytope
 

The way of defining a region as a regular polytope is not 
unique. 

The convex polytopes can overlap, and can meet in different 
ways.

Many definitions can produce the same point set.

equals() can be defined as point set equality.equals() can be defined as point set equality.equals() can be defined as point set equality.equals() can be defined as point set equality.
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Regular Polytope Regular Polytope Regular Polytope Regular Polytope ---- ContiguityContiguityContiguityContiguity
The definition of RP does not imply contiguity, and in fact 
cannot – since the closure under union prevents this.

A

B

A∪B
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Regular Polytope UsefulnessRegular Polytope UsefulnessRegular Polytope UsefulnessRegular Polytope Usefulness
• No value in the Regular Polytope concept if it cannot be 
used to represent real world features. 

• Can be converted to/from conventional polyhedra.
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Storage SchemaStorage SchemaStorage SchemaStorage Schema
 

Regular Polytope 

Convex Polytope 

1:* 

1:* 

1 

1 

Half Space 
A, B, C, D, S  

Regular Polytope Representation 



24

47

Storage Storage Storage Storage –––– with redundant with redundant with redundant with redundant 
verticesverticesverticesvertices

 

Regular Polytope 

Convex Polytope 

Face 

1:* 

1:* 
* * 

1 

1 

1 Half Space 
A, B, C, D, S  

Vertex 

X, Y, Z 

Regular Polytope 
Representation 

Redundant Data 

48

Storage RequirementsStorage RequirementsStorage RequirementsStorage Requirements

In summary – using redundant vertices, about double 
the requirements of conventional polygon or polyhedral 
storage.

But But But But 

The approach leads to a closed predictable logic, and 
a robust digital representation.
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Further ResearchFurther ResearchFurther ResearchFurther Research
• Practical proof of concept 

(development of a prototype)
• Extension to floating point.
• Lower dimensionality objects 

(lines,points)
• “Topology” in GIS sense.
• “Approximated Polytope” – a variant 

storage structure.
• Other than straight lines
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