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Chapter 1 

Introduction 

The storage and retrieval of spatial data in computer systems has matured greatly over 
recent years, from the earliest approaches (digitising the linework and text of paper maps to 
allow efficient production of paper copies of those maps) to the representation of features 
and their attributes, with the semantics of their behaviour associated. This has led to 
massive cost savings where data, which might have been captured for a specific purpose, 
can be shared and reused for other purposes. 

Parallel to this, and in part driven by the potential savings, has been a move from individual 
Geographic Information Systems (GIS), standing in isolation (with the spatial data they use 
being held locally), towards a sophisticated Geographic Information Infrastructure (GII) 
(van Loenen 2006). In the early days, a simple exchange of data between systems, which 
may have been GIS, or even CAD (Computer Aided Drafting – or in later usage, Computer 
Aided Design) was sufficient, and a significant amount of manual correction and “cleaning” 
of data was accepted. In the first generation of GIS, each vendor used different 
nomenclature and definitions of spatial objects and had very different rules for what would 
be accepted as “valid”. At present, a scientist using a GIS may need to expend a 
considerable portion of his/her research effort and funds in translating, cleaning and 
preparing pre-existing data to be in the form required for the study. 

There has been a wide gulf between those systems which store geographic information in 
what is known as topological structure (Molenaar 1998), and those which do not, with some 
(but not all) of the more problematic exchanges occurring where data has originated in a 
non-topological system. The difficulties arise because large numbers of failures of validity 
are detected in one operation. Whereas, had the data been cleaned as it was originally 
captured, the failures would have been detected as part of the process of loading, while 
knowledge of the data capture was fresh in the operator’s mind.  
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For some years now, there has been a trend towards spatial data being housed within a 
database management system, these being considered as a corporate resource. Thus the next 
phase in this process is the realisation that the geographic data itself is in fact an 
infrastructure, in the same way as is, for example, a telephone network. This moves the 
ownership of the data from the desktop, firstly to the corporation, and ultimately to being a 
shared resource between public authorities and private organisations – a GII.  

An inhibiting factor in these trends is the lack of standardisation alluded to above. Where 
every data sharing operation involves manual intervention, it is difficult, if not impossible 
to create a GII. Thus a strong and consistent set of standards is needed. The most basic 
requirement of these standards is for consistency in the geometric concepts used – the 
primitive modelling constructs used to represent real-world features. This is an area with 
much work remaining to be done (van Oosterom et al. 2003), but progress is being made by 
groups such as the International Standards Organisation Technical Committee 211 (ISO 
TC211) and the Open Geospatial Consortium (OGC). 

The success of these standardisation efforts has been rather compromised by their attempt 
to be vendor neutral – that is to avoid becoming involved in the issue of how spatial data is 
converted into an internal representation suitable for storage. For example, the standards 
will remain silent on whether coordinate values should be stored in floating point or integer 
format (Lott 2004). As a result, the definitions are expressed in mathematical terms, 
assuming an infinite precision real number system, with the details of how this is to be 
translated into the floating point or integer computational representations being left to the 
implementer. Some of the consequences of this are documented in Chapter 2, as Cases 2, 3 
and 4 (Sections 2.2 to 2.4). 

If the standardisation effort is to lead to a position where spatial data can be interchanged 
without manual intervention, cleaning and correction, a rigorous logic is needed to underpin 
the standards and support the definition of validity of that data. It has been shown that 
certain classes of diagram (one example being the Venn diagram) possess a formal logic, 
and that "the syntax, semantics and rules of inference can be made entirely explicit and 
rigorous" (Hammer 1995 page 29)1; so it would be reasonable to assume that an analogous 
situation should exist with respect to the digital representation of spatial data. This would 
ensure that inferences drawn from the digital model must necessarily apply in the real 
world, but is clearly impossible where the digital representation is not itself internally 
consistent.  

Egenhofer et al (1999 page 775) noted “the lack of a comprehensive theoretical framework 
[for a spatial data model] comparable to the relational data model”. A number of cases 
where the internal consistency of current technology breaks down are documented in the 
case studies in Chapter 2. For example, Case 1 (Section 2.1) illustrates that the familiar 
“Union” operation may not be associative – with the result of forming the union of three or 
more regions depending on the order of calculation of this union, while Case 5 (Section 

                                                           

1 This same reasoning could be applied to the use of the Unified Modelling Language (UML) as used in data 
modelling. 
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2.5) refers to the difficulty of an operation as basic as calculating the intersection of two 
lines.  

This research has been motivated by an attempt to determine what level of rigour2 can be 
applied to the representation of spatial features in a computer system. A form of 
representation known as the regular polytope (this term will be defined in Chapter 4) has 
been defined and investigated and shown to possess a rigorous and fully specified logic, 
and to provide a potential storage structure for the representation of a class of features, but 
this should not be seen as the sole object of the research. Rather the regular polytope should 
be seen as an exemplar for any approach to spatial data representation.  

The fact that this particular representation can be rigorously defined and implemented 
demonstrates that such rigour is feasible, and opens the possibility that all computational 
representations can be similarly analysed. The regular polytope is a particularly tractable 
construct for this type of analysis, and that is the reason for choosing it, whereas the kind of 
structure embedded in many current systems is far more complex. In particular, floating 
point numbers add a level of complexity. 

This chapter introduces the motivation for the research, the specific problem being 
addressed and the approach that has been taken (in Sections 1.1 and 1.2). The scope of the 
research is delineated in Section 1.3. Section 1.4 defines some specific nomenclature and 
terminology to be used in the thesis. Section 1.5 discusses number systems, and the specific 
issue of the finite precision representation of vector information, and finally, a statement of 
the contribution of this research is made in Section 1.6 and an overview of the thesis 
follows in Section 1.7. 

1.1. Research Question 
The question that is addressed in this research is: “Can spatial objects be represented in 
digital form, so that they possess a closed, rigorous, simple and useful spatial logic which 
can be realised using finite computational arithmetic?” 

1.2. Research Approach 
To the present time, research into digital representation of spatial features has been divided 
into two main topics: 1. the mathematical abstraction, and 2. the representation of those 
abstractions in a digital form. The first has been well researched, as shown by the large 
amount of published literature on this subject. The second has received significantly less 
attention, and has been less conclusive. The aim of this thesis is to investigate directly the 
relationship between the digital representation and the "world" being modelled, and thus 
determine the validity of drawing conclusions about the latter, based on the former. As an 

                                                           
2 In this context, the term rigour is intended to describe the approach (as used in mathematical disciplines) of 
listing all assumptions in the form of axioms, presenting a chain of reasoning based solely on those axioms and 
thereby deriving a result. 
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example of the approach, a model has been developed of a certain class of real world 
features, based on a construct called the regular polytope. 

Note - The name "regular polytope" has been chosen to describe this concept, since it can 
be shown to be "regular" in the topological sense of being a set which is equal to the 
interior of its closure (Lemon and Pratt 1998), and a "polytope", which is defined as "A 
closed, bounded N-dimensional figure whose faces are hyperplanes. Informally, a 
multidimensional solid with flat sides. A generalization of polyhedron" (Black 2001). 

This research is directed towards three objectives – model design, exploration and 
verification, as described in the paragraphs below: 

1.2.1. Model Design 
To determine a method of representing spatial data which supports a rigorous formal 
logic.  

As will be seen in Chapter 2, existing technologies have significant failings in their 
internal logic. These failings inhibit any attempt to make explicit rules of inference 
analogous to those defined by Hammer (1995), who showed that logical conclusions 
can be drawn from certain classes of diagrams, graphs, tables and maps. It would be 
reasonable to assume the same would be possible from spatial data stored in a digital 
computer, but this requires rigour in the definitions. These failings also inhibit the 
transfer of information between data repositories. 

The regular polytope construct has been developed as a tool for this investigation and as 
the basis for a representation. This concept is described in detail in Chapters 4 to 6, but 
informally, a regular polytope is a region with no anomalies such as spikes or gaps in its 
boundary, analogous to a polygon in 2D or polyhedron in 3D. At this stage in the 
research, only linear boundaries are considered. 

In order to ensure that the underlying logic of this representation is consistent and 
robust, an axiomatic proof is used to show that the regular polytopes express a rigorous 
algebra. It is important to stress that it is the digital representation itself that has been 
shown to express the rigorous algebra, not merely an approximate representation of one. 
This is where this research differs from earlier work on the subject. It will also be 
shown that a complete non-overlapping coverage can be constructed using regular 
polytopes. 

Database schemas are suggested and discussed as potentially providing solutions to 
specific application domains. Later chapters show that useful functionality can be 
obtained from the proposed representations. 

1.2.2. Model Exploration 
To explore these representations, and determine their usefulness and limitations. 

The digital representation suggested above has been researched in detail with respect to 
its support of the various algebras that can be applied to spatial data. These algebras are 
defined in Section 3.2 and their characteristics explored therein. To be useful, the 
approach must supply much of the functionality usually expected of geographic 
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database management systems, and this is verified by showing (in Chapter 6) that the 
axioms for a range of algebraic formulations can be supported.  

Included in this objective is the need to show how the proposed solution can be applied 
to practical problems such as the representation of Cadastral data – especially where a 
combination of "volumetric" parcels and the more common 2D parcels are present. The 
approach proves to be particularly suited to such mixing of dimensionality.  

The representation as defined in this thesis is currently less rich in functionality than 
fully developed commercial systems. One example being that it does not support lower 
dimensionality objects – such as points and lines in 2D, and surfaces in 3D. This issue is 
discussed, and potential solutions suggested. The approach also appears to be less rich 
insofar as it leads to a “boundary-free” representation, but as will be discussed in 
Chapters 4 to 6, this is not in any way a restriction. 

1.2.3. Model Verification 
To prove that these representations are consistent, robust and practical. 

A set of demonstration Java classes have been developed as a proof of the concept, and 
a selection of operations implemented to show that a practical realisation of the 
approach is possible.  These show that the approach can support visualisation of the 
represented features. 

While the consistency of operations defined on regular polytopes are ensured by the 
axiomatic proof as part of the model design, there is the potential that the 
representations will increase in complexity as a result of operations. In order to satisfy 
the objective of practicality, proof of concept algorithms have been analysed to show 
that the complexity of the representation can be controlled, and that acceptable access 
times and storage requirements can be achieved. 

Investigation also shows that the representation is consistent and robust in the presence 
of small perturbations in the relative positions of points. These perturbations can occur 
as a result of transformation of the data to different datums or projections, or as a result 
of the use of limited precision data exchange formats. See Chapter 2, Case 2 and Case 
11. 

1.3. Scope of Research 

1.3.1. Included in the Research: 

• A number of issues are presented and discussed, as examples of the problems that can 
occur due to failure of the underlying logic of the representation. Examples in both 2D 
and 3D information are discussed. 

• Existing approaches are reviewed, again in 2D and 3D.   

• The forms of logic that can be applied to spatial data are explored in some detail. 
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• A potential solution (the regular polytope construct) is formally described.  

• The logic that can be supported by this approach, including connectivity, is defined, and 
detailed proof developed for the major assertions.  

• A “proof of concept” implementation of some of the functionality of the regular 
polytope construct has been developed, and documented. 

• Spatial analysis and query functions are discussed, including buffer searching, overlay 
calculation, visibility, area (2D), volume (3D) and distance calculations (these are brief 
discussions only). 

• Data uptake and conversion issues are discussed in terms of the regular polytope 
construct, and in terms of the conventional forms of representation that are likely to be 
used as data sources. 

• Partitioning of Space in 2D and 3D is shown to be supported. 

• Point or line features in 2D or 3D, surface features in 3D - an indication of a potential 
approach is given. 

1.3.2. Excluded from the Research: 
The following topics have not been addresses, except in brief summary form, or mentioned 
in the section on Further Research in Section 10.2: 

• Temporal issues. 

• Non-linear boundaries. 

• Spatial indexing and spatial clustering algorithms. 

• Actual requirements analysis of GIS (for example the question of whether the currently 
available spatial primitives and predicates are sufficient and necessary). 

• Level of Detail (Generalisation) operations. 

• Uncertain and vague objects (a brief discussion is included). 

• Thematic Semantics/Ontologies. 

• Visualisation (except in summary). 

• Survey information representation is mentioned in terms of data uptake, but not in any 
detail. 

• User interface design for viewing or editing purposes (insert/delete/update operations). 

• Field-encoded spatial data – e.g. raster data (grid representations) such as air 
temperature, ocean salinity (in contrast to vector data coverages). 
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1.4. Nomenclature 

1.4.1. Layers of Abstraction 
In the following discussion, when referring to layers of abstraction, the language of the 
Open Geospatial Consortium, Inc.® (OGC) Abstract Specification (OGC 1999a) is used as 
far as possible.  This specification defines nine layers of abstraction, ranging from the "Real 
World" to the "Project World" on the conceptual side, and including four mathematical and 
symbolic models on the mathematical model side (see Figure 1-1). Note that at the time of 
writing, the OGC Abstract Specification is a work in progress, and not all topics are at the 
same level of maturity. 

The following phrases should be read with the meanings given in that specification, but 
since use is made of this terminology, a brief summary3 is in order: 

 
Dimensional 

World: 
 

Geospatial 
World: 

 

Conceptual 
World: 

 

Real World: 
 
 

Project World
(World View):
 

OGIS Points: 
 

Coordinate 
Geometry 

OGIS Feature 
Collection World: 

OGIS Feature 
Collections 

Mathematical 
Models 

OGIS 
Geometry 

World: 
OGIS WKT's 

OGIS Feature 
World: 

 
OGIS features 

 
Figure 1-1 Nine layers of abstraction – after OGC (1999c)4. 

"Real World" means "the collection of all facts … known by mankind or not." 

                                                           
3 This is merely for the convenience of the reader. The meanings given in the specification are far more explicit, 
and it is the specification meanings that are intended in this thesis. 
4 In the currently published version of this specification (version 4), the older term “OGIS” is still in use. 
Presumably it will be replaced by the current “OpenGeospatial” in the future. 
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"Conceptual World" is also known as the "Universe of Discourse" and is the "world of our 
natural language". Only those facts used or required by the discourse are included, but this 
can include spatial and non-spatial concepts. 

In the "Geospatial World" the features are reduced to simple spatial abstractions, related to 
a position on the earth’s surface. This layer includes concepts such as property boundaries 
which are not visible in the conceptual world. 

"Dimensional World" is the Geospatial World measured. Note – not explicitly mentioned in 
the specification is the fact that legal measurements may override geospatial facts. For 
example, a property may be defined as having a certain road frontage which is legally 
binding regardless of the conceptual world situation (such as the existence of a made road). 

"Project World", also known as the "World View", is used in the context of "features with 
geometry" and “coverages”, and refers to the world as viewed by practitioners of a 
particular discipline. (For example, the world as seen by a Cartographer). In this context, it 
is limited to geographical information, and so excludes non geographic CAD, intergalactic 
space etc. 

The mathematical and symbolic models given in the specification - "OGIS Point World", 
"OGIS Geometry World", "OGIS Feature World" and "OGIS Feature Collection World") 
define ever more concrete approaches to the mathematical representation of a specific 
problem domain’s “project world”, adding the concept of coordinate values, geometric 
constructs, attachment of attributes to features, and aggregation of features respectively. 
Since they do not address the numeric representation in computer form, but assume that the 
modelling is in terms of real number mathematical theory, in this thesis they are referred to 
generically as "Mathematical Models". 

The specification does not define what this proposal refers to as the "Digital 
Representation", which is the mathematical model world(s) as implemented in a digital 
computer, with the restrictions imposed by the finite accuracy and storage capacity which 
that entails. 

1.4.2. Design by Contract 
The preferred paradigm for software engineering today is what is known as "Design by 
Contract" (Meyer 1988).  In this approach, modules are "contracted" to provide an output, 
and require that their inputs fulfil certain contracted specifications.  An obvious example 
would be a routine to place text within a polygonal region, requiring its input polygonal 
region to be stored in an anticlockwise direction and to be simply connected.  In the 
absence of this contract, it is necessary for the text placement routine to pre-validate the 
polygon, but this is expensive, and is in itself problematic. In the event of a region that fails 
validation, should the routine "crash", or attempt to correct the polygon? Validation of 
polygonal regions is a non-trivial exercise, and will in most cases be an unnecessary 
overhead – for example, where the polygon has already been validated on input to the 
database. Correcting an invalid polygon is even more problematic.  

The alternate to "Design by Contract" is known as "Defensive Programming", which is 
characterised by such redundant validation efforts. This may be observed by the end user in 
situations where an object, generated by the software, fails in some subsequent operation. 
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For example, "select buffer(geometry, …) from …" fails with a message such as "polygon 
boundary is self-intersecting", when the geometry being buffered was a linestring. (Clearly 
the polygon which has failed validation was generated by the buffer routine itself). 

The advantages of design by contract cannot be achieved with the spatial technology as 
available today, since the primitive operations are not completely consistent. For example, 
it is possible in some representations for a point to be interior to a region A, but when the 
union of A with another region B is calculated, the point could be found to be not within 
A∪B, because exact mathematical operations are not being evaluated, and some rounding 
or approximation is occurring. 

Consider a situation where regions are associated with reference points that are asserted to 
be within them – i.e. region A has reference point a, B has point b, and it is asserted that 
a∈A, b∈B. Having calculated the union A∪B, if it cannot be asserted that a ∈ A∪B, and b 
∈ A∪B, it will now be necessary to provide a test. Note - it might be argued that this can 
only fail if the reference point is originally near the edge of a region, which should be 
avoided; but unless this requirement is itself a contracted assertion, it cannot be assumed. 

The ideal would be the provision of a toolkit of operations that could be used in any 
combination – e.g. union, negation, intersection, etc. This will not be possible unless the 
results of those operations can be defined rigorously, with no "surprises". For example, 
a∈A, b∈B must imply a ∈ A∪B, and b ∈ A∪B. 

1.4.3. Open and Closed 
The terms "open" and "closed" have several different meanings in different mathematical 
disciplines, leading to some confusion. In this thesis, they are used in the topological sense 
of open or closed sets (Gaal 1964). That is – loosely5 – a closed set includes its boundaries, 
while an open set does not. For example, the interval [0, 1] (defined as x: 0 ≤ x ≤ 1) is 
closed, and the interval (0, 1) (defined as x: 0 < x < 1) is open.  Many sets are neither open 
nor closed, such as the “half open” interval [0, 1) – defined as x: 0 ≤ x < 1. 

Following the ISO 19107 (ISO-TC211 2001) convention, the term "cycle" is used to 
describe a curve whose start and end point are the same (often called a "closed curve") or a 
3D "closed" surface. A cycle is often the boundary of a higher dimensionality object. 

The term "bounded" is used to indicate an object which is fully enclosed. For example, a 
"volumetric parcel" defines a volume of space, and is bounded. A Cadastral parcel is often 
not bounded above or below (see Section 2.10). 

                                                           
5 This is merely a description of the concept. The actual usage in the body of the thesis is accompanied by the true 
definition. 
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no lower 
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Figure 1-2 Nomenclature - "cycle", and "bounded". 

The 2D objects 1 and 2 in Figure 1-2 illustrate the concept of “cycle”. The 3D objects 
represent cadastral parcels, A, B and D being partly un-bounded. Parcel C is fully bounded 
and would be known as a 3D cycle in the ISO 19107 document. 

There is a further use of the word "closed" in relation to operations. An algebra is closed 
with reference to an operation if for all members of the set, the result of the operation is 
also a member of the set. For example, the set of natural numbers {0,1,2,3,…} is closed 
under addition, since the sum of natural numbers is a natural number. It is not closed under 
division, since 1 divided by 2 is not a natural number. 

1.4.4. Regular Sets 
The term “regular set” is used to mean a topological set which is equal to the interior of its 
closure (Lemon and Pratt 1999). In effect, a regular set has no spikes or gaps. A set can be 
regularised by taking the interior of its closure. This will be discussed in Section 4.2.3. The 
definition used here is actually that of an “open-regular” set. There is also an equivalent 
concept – the “closed-regular” set which is equal to the closure of its interior. It is clear that 
the interior of a closed-regular set is open-regular and vice versa. 

1.4.5. Continuity 
Continuity of sets can have two possible forms, here denoted “Density” and “Connectivity” 
as follows: 

• Density: is used in the topological sense of a non-atomic set. That is, the set is 
infinitely smooth, and not gridded – see Section 1.5.  For example the axiom of the 
region-connection calculus (Randell et al. 1992) (see discussion in Chapter 6), 
requiring each region to contain a non-tangential proper part, defines the regions as 
"dense". 

• Connectivity: is used to mean that for any two points in the region, a path can be 
found joining them which remains within the region. A region which has this 
property is known as a connected region. 
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not connected connected connected? 
 

Figure 1-3 Connectivity of regions. 

Note: the question of whether the region on the right in Figure 1-3 should be considered to 
be connected is considered in detail in Chapter 5. 

1.4.6. Accuracy and Resolution 
Based on Veregin (1998), the following meanings are used in this thesis: 

• Accuracy means the difference between the value recorded for a measurement, and 
the ideal value which would be recorded if no errors or limitations on the 
measurement had occurred.  

• Resolution is taken to mean the finest unit of accuracy possible in, or chosen for, 
the digital representation. Usually the resolution will be significantly finer than the 
accuracy. The accuracy cannot be finer than the resolution. 

1.4.7. Geometric Primitives 
Generally speaking, the following terms are used to describe geometric primitives. It is not 
intended to give rigorous definitions at this time, since this is one of the aims of this 
research. The terms are: 

• Point: the representation of an object by its position only. 
• Line segment: a line joining two points, usually straight, but could be a 

parametrically defined curve. 
• Linestring (or Polyline): a series of line segments connected end to end with no 

branching. This usually carries the additional requirement of no self-intersection. 
• Ring: a linestring that is joined as a cycle, i.e. the first and last points are joined 

together.  
• Polygon: the area defined by a ring, possibly with exclusions defined by additional 

rings (holes) inside the outer ring.  
• Polyhedron: the volume completely enclosed by a set of planar polygonal faces (in 

the ISO19107 terminology, a 3D cycle) with possible exclusions defined by other 
sets of planar polygonal faces (3D cycles). 

• Polytope: the generalisation of polygon, and polyhedron to any number of 
dimensions. 



Chapter 1 – Introduction 

24 

At present, there is significant disparity in the GIS industry as to the exact definitions of 
these concepts, and issues such as what constitutes validity (van Oosterom et al. 2004). 

1.4.8. Layers 
In many GIS and spatial data models, it is practice to divide the data into “layers”, 
frequently on the basis of thematic content (e.g. into drainage features, transport features 
etc.) It is also common for structural connectivity and validity constraints to be restricted to 
relationships between features within the same layer. For example, it may be mandated that 
drainage basins cannot overlap, while it is possible for them to overlap vegetation type 
regions without restriction. Where the individual layers have an internal structure of this 
type, the term “structured layer” will be used.  

1.4.9. Dimensionality 
In this document, the descriptions are generally couched in terms of the three dimensional 
cases. Thus, the term half space (to be defined in Chapter 3), is used to refer generically to 
the half space, or the half plane (in 2D), or the half line (in 1D).  

By contrast, many of the diagrams are drawn to illustrate a 2D case. This is simply due to 
the difficulties in representing complex 3D situations, so wherever the 2D case is sufficient 
to illustrate the situation being discussed, it is used. 

1.5. Computational Representation of Vector Spatial 
Data 

The Open Geospatial Consortium Abstract Specification Topic 2: Spatial Referencing by 
Coordinates (OGC 2002) describes the processes of determining coordinate representations 
of "Dimensional World" locations, and the reverse. Ultimately the locations can be 
represented as tuples of real numbers – e.g. (latitude, longitude), (x, y, z) etc. However the 
numbers themselves must be represented digitally and since a real number cannot be 
directly stored as a value, typically either integer or floating point representation will be 
used. This inevitably introduces an approximation on initial data capture, and rounding 
errors in individual calculations. Thus the question of countability and infinity need to be 
discussed. 

1.5.1. Countability and Infinity 
A countable set is one whose members can be put into 1-1 correspondence with a subset of 
the set of counting numbers {1, 2, 3, …} (i.e. “counted”). All finite sets are therefore 
countable, but a set can be infinite and countable. Examples of finite (and therefore 
countable) sets include the set of all floating point numbers; the grid points within any 
region in a gridded representation; and the set of all possible bit patterns that can be stored 
in a digital computer. Infinite countable sets include the integers (including negatives), the 
rational numbers (Archbold 1964; Weisstein 2005) and the number of points in a region 
defined by points with rational number coordinates. Uncountable sets include the set of real 
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numbers, and the set of mathematical points on a line (Courant and Robbins 1941). Note 
that this means that the set of points on a line is “very much larger” than the set of rational 
numbers. 

1.5.2. Numbers 
The discipline of mathematics defines several classes of numbers, starting from the most 
basic “natural” or counting numbers. From these, the integers are defined (to allow closure 
of the subtraction operation) followed by the rational numbers (to allow partial closure of 
division), and finally the real numbers (Burkill 1964). These systems are all abstractions, 
and are assumed to be unbounded. That is to say, there is no largest integer, and any two 
unequal rational numbers will have an infinite number of further rational numbers between 
them. Likewise, there exists a real number whose square is exactly 2, and one with the 
exact value of the circumference of a circle divided by its diameter (π). The real numbers 
and the rational numbers form mathematical fields (meaning they satisfy the field axioms) 
(Patterson and Rutherford 1965; Weisstein 1999d) (see Appendix I.1). 

1.5.3. Computation Numbers 
A computer representation has certain restrictions. Since all computers are finite objects, 
there is clearly no such thing as an infinite representation. Numbers are typically stored in 
one of two primitive forms, known as integers and floating point numbers. It is important to 
note that the term “integer” in a computational representation is a restricted version of the 
mathematical integer, in that it has a maximum and minimum allowable value. Thus it is 
more correctly a “domain-restricted integer”. Any programs using integer arithmetic must 
be aware of the possibility of numeric overflow.  

Some computer languages – such as Java – define an integer representation with no 
restriction of size. In Java, it is called “BigInteger” (Sun 2003). This, for all practical 
purposes, is a true representation of a mathematical integer, and has correct computational 
behaviour. Although it is not truly infinite, the results of any arithmetic on any reasonable 
values can be expected to give the correct answer. It is not necessary to consider the 
possibility of overflow in BigInteger operations. 

A floating point number is recorded as a characteristic, and an exponent (Goldberg 1991). 
Thus it is able to approximate a real number. Like the integer, it has a largest and a smallest 
allowable value (but these are very large in magnitude). On the other hand, they are limited 
in precision (there exist pairs of floating point numbers without any other between them), 
and do not obey the field axioms. 

Java also defines a BigDecimal number representation which allows arbitrary precision in a 
number which is not an integer. This is not an exact representation of a real number, but an 
approximation with unrestricted accuracy. Thus for example, it is not possible to represent 
1/3 exactly, or 2 , or π. Any division operation on a BigDecimal number has to specify at 
what number of decimal places rounding is to occur. 
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1.5.4. Rational Numbers 
Rational numbers can be represented and manipulated within a computer fairly readily. A 
rational number r can be represented as an ordered pair of integers (I, J) with the 
interpretation r = I/J. The basic arithmetic operations can be defined in the obvious way 
(Courant and Robbins 1941) – e.g. if r = (I1, J1) and s = (I2, J2), then: 

r+s is defined as ((I1J2 + I2J1), J1J2), 
r.s is defined as (I1I2, J1J2). 

It is not possible in theory to implement infinite precision rational numbers, since any 
computer is finite in capacity. In practice, however, it is possible to define numbers using a 
representation such as BigInteger which has no explicit bounds, so that in any mathematical 
operation, sufficient resources can be devoted to the result so that the correct answer can be 
calculated. For example, to multiply an n bit number by an m bit number, a result can be 
calculated if n+m bits are available. Thus, in effect, true rational numbers can be 
accommodated. 

If, on the other hand, the range of I and J are restricted in magnitude, (for example by using 
a conventional computational representation such as 4 byte integers, which would lead to 
the limitation that -231 ≤ I, J < 231), then the term used in this thesis is “domain-restricted 
rational” or “dr-rational” numbers. 

1.5.5. Representation of Vector Spatial Data 
All computer representations of spatial data with one possible exception (the unrestricted 
precision rational numbers - see below) are at the fundamental level gridded. That is to say, 
there are only a finite number of possible values for the x, y and z coordinates of points. A 
significant fact about gridded representations is that, at least when the grid is of fixed size6 
there is a high probability (about 60%) that a line between two random points will not pass 
through any intermediate points of the grid. This is because for a line between two points to 
have an intermediate point the difference between the x and y coordinates must have a 
common factor, and so cannot be relatively prime. The probability of two random large 
integers being relatively prime is 6/π2 (Castellanos 1988; Weisstein 2006b). 

                                                           
6 And probably in the case of variable sized grids as well, but this needs investigation. 
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dx = 16 

dy = 9 

dx = 15 

 

 
Figure 1-4 Example of intermediate grid points falling on a line. The line on the left 

has no intermediate points. That on the right has two. 

For any line on an integer grid, if dx is the difference between the x coordinates of its 
endpoints, and dy the difference in y coordinates, and if f is the largest common factor of dx 
and dy, then the line will be divided into f segments by grid points that lie exactly on the 
line, and so there will be f-1 points on the line. For example, in Figure 1-4, the line on the 
left has no intermediate points since the largest common factor is 1 (dx and dy are relatively 
prime), the line on the right has 3 as the highest common factor of 9 and 15, so the line is 
divided into 3 segments by 2 points. 

Integer Representations 

The region of interest (“universal region”) is divided into cells, each of which is given a 
triple of integral numbers to represent its position in 3D. Any point position which is 
measured or calculated is either determined using integer arithmetic, or approximated using 
floating point or other arithmetic, and then rounded or truncated to integral values. This 
means a kind of “snap” operation is happening, in that several points which are closer than 
one unit together can be “snapped” to the same values. For example, there can be no points 
between (0, 0, 0) and (1, 0, 0). 

Fixed Point Representations  

Where an accuracy of better than one unit is required – for example, 0.01 of a metre, a 
“fixed point” decimal or binary representation would be ideal. Programming languages 
such as PL/1 and COBOL provide this form of internal representation, but generally they 
are considered as more appropriate to commercial applications.  For example, PL/1 allows 
the definition of a binary variable of 32 bits of which (say) 11 are considered to be to the 
right of the binary point, giving a resolution of 1/211 units. 

Since such native types are not usually available in programming languages used in spatial 
applications, it is more common to apply a false origin and multiplier, so that a position 
expressed in meters, or degrees etc. can be stored as integers. Foe example, a position such 
as: 439257.782E, 6862683.102S 35.736m (elevation) could be expressed in integer form as 
(7782, 3102, 5736) with a false origin of (439250, 6862680, 30) and a multiplier of 1000. 
In mathematical terms, this is equivalent to the integer representation. 
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Floating Point Representations 

It is also fairly common to use floating point numbers to represent geographical 
coordinates. There is no need for details here, but it should be noted that in 64 bit 
representations there are a maximum of 264 possible numbers that can be recorded. Though 
large, this is finite. A false origin is often also applied in this case. As a finite 
representation, the issue of snapping of points still applies, and this representation is also 
gridded. In this case, the grid size varies over the universal region, with the spacing being 
finer closer to the false origin. 

It should be noted that the floating point numbers are a subset of the rational numbers, 
where the denominators are constrained to be a power of 2. Conventional floating point 
numbers are also domain-restricted. 

Domain-Restricted Rational Number Representation and Dual Grid 

Where rational numbers are used, but where the magnitudes of the numerators and 
denominators are constrained to a predefined range (see Section 1.5.4) – as in the domain- 
restricted rational number representation to be introduced in Section 4.4, and in the dual 
grid approach (Lema and Güting 2002) (see Section 3.4.4), there is an underlying finite 
grid, albeit much finer than any of the above. 

Unrestricted Precision Rational Number Representations 

It is a moot point whether these are gridded or not. It is possible using an unrestricted 
precision integer representation (such as BigInteger) for I and J, to define a rational number 
r (as I/J) which thus can be as finely structured as necessary. That is to say for any two 
rational numbers in this form, there can be arbitrarily many rational numbers between them. 

Thus it can be said that this approach is not gridded, since no matter how close two points 
are together, it is still possible to define representable points between them, therefore no 
snapping is ever needed (unless the capacity of the machine is exceeded). The use of 
unrestricted precision rational numbers is discussed in Section 3.4.6. 

1.6. Contribution of this Work 
This research has shown that it is possible to rigorously define spatial primitives and 
operations between them in the computational domain, and in particular has led to the 
definition of a representation for spatial objects (called the regular polytope), which 
provides a solid foundation for the investigation of rigorous spatial logic. It will be shown 
in later chapters that it is possible to implement this representation within a database 
management system, associated with manipulation software to exhibit this rigorous logic. 
Thus it is possible to draw provable logical inferences from the spatial data stored in a 
digital computer. 

This is shown to provide the basis for a “tool kit” of functionality where the individual 
functions can be applied in any combination with no possibility of incorrect results. That is 
to say, the sort of logic failures documented in the Case Studies of Chapter 2 cannot arise. 
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1.7. Organisation of the Thesis 
The thesis is structured as follows: 

Chapter 1 (this chapter) introduces the motivation for the research, and the specific 
problem being addressed, delineates the scope of the research, and defines some of the 
nomenclature to be used. Finally there is a summary, including the contribution of this 
research and an overview of the thesis. 

Chapter 2 identifies a number of case studies which illustrate some of the major issues 
involved in currently used digital representations of spatial data. In most of these instances, 
a significant failure of the logic of the computer representation can occur, albeit in rare 
circumstances. 

Chapter 3 presents a perspective on the history and current status of the field, and reviews 
some of the alternative approaches that have been, and are being investigated by other 
researchers. Research into the specific issue of representing the spatial information in 
computer form is highlighted in this chapter, rather than the larger body of work that 
concentrates on the mathematical model, some examples of which are included as 
background information.   

Chapter 4 introduces a construct which has potential in addressing and solving the issues. 
This is named the “regular polytope”, and is rigorously defined. The properties are 
explored, and the space of regular polytopes is shown to be a metric topology, and to be a 
Boolean algebra. In addition, the regular polytope is shown to be “regular” in the 
topological sense (see Section 1.4.4). Finally, the issue of detection of overlap and equality 
is explored, first for the purely integer-based representation, and then for a representation 
based on rational numbers with a limited range of quotients and divisors.   

Chapter 5 addresses the issue of connectivity, which is a critical issue in the storage, query 
and manipulation of spatial data. In seeking a useful definition, it is found that a single 
definition is not sufficient to all requirements, so the two most useful (to be known as Ca 
and Cb)7 are discussed in detail. Finally, these are applied to the regular polytope 
representation of spatial regions, using the integer and the domain restricted (finite 
precision) rational representations as defined in Chapter 4. 

Chapter 6 discusses alternative approaches to spatial algebra, and relates the functionality 
of the regular polytope representation to these. The expressiveness of the regular polytope 
approach is considered in relation to: The regional connection calculus (Randell et al. 
1992), The proximity space (Naimpally and Warrack 1970) and the Boolean connection 
algebra (Stell 1999). Use is also made of the "Egenhofer 9-intersection matrix" in these 
discussions for comparison purposes. This is followed by a discussion of the richness of the 
algebra provided in comparison with other possibilities. Finally, the relationship between 
this work and the constraint database (Kuper et al. 2000) approach is explored. 

                                                           
7 These will be defined in Chapter 5, but Cb is strong connection – where objects of dimensionality d meet at a 
hyper-surface of dimensionality at least d-1. Ca is weak connectivity, and only requires (at least) one point of 
contact. 
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Chapter 7 presents some alternate data models that could be used to implement the 
approach in a database management system. For comparison purposes, a brief summary of 
conventional vertex representation of polyhedra is included. A basic data model for storage 
of spatial data in regular polytope form is then described. An alternative model, the 
“approximated polytope”, is introduced which, while retaining the rigour of the regular 
polytope will address some practical issues, using a storage form more closely aligned to 
the point/line/polygon paradigm. Also included are basic strategies for topological 
encoding, with a discussion of practical issues raised by these models. 

Chapter 8 describes the implementation of a demonstration set of Java classes, intended as 
a tool for the practical review of the approach. The implementation is described, the test 
cases illustrated and some of the practical considerations that arose as a result documented. 
Special reference is made to the significant issue that arises in cadastral applications of the 
mixture of 2D and 3D definitions. This chapter gives an indication of the further 
development that is needed for a full implementation, and contains a discussion of the 
practicalities involved in converting geo-information to the regular polytope form from the 
conventional vertex representations. 

Chapter 9 Revisits the case studies from Chapter 2 to highlight their solutions using the 
regular polytope.  

Chapter 10 contains the conclusions that can be drawn from the research, summarising the 
findings in terms of the research question and the results obtained. There is scope for 
further research in this subject area, and this is also identified. 

A bibliography of references follows. 

Appendix I contains a summary of the definitions, axioms and assumptions used 
throughout the thesis. 

Appendix II contains proofs of assertions that apply to half spaces, as made in the body of 
the work. 

Appendix III contains proofs of assertions that apply to the integer representation of 
regular polytopes. 

Appendix IV contains proofs of assertions that apply to the domain-restricted rational 
number representation of regular polytopes. 

Appendix V contains the header documentation for selected classes and methods from the 
Java implementation discussed in Chapter 8.  

Appendix VI contains the details of the encoding used in the Java demonstration classes. 

Appendix VII contains some calculations of data storage requirements that can be 
expected for the various data models proposed in Chapter 7. Also included, for comparison 
are some estimated requirements for similar objects to be stored as conventional vertex 
representations with and without topological encoding. 



  

  

 

Chapter 2 

Case Studies 

Chapter 1 has discussed the motivation and objectives of this research, defined 
nomenclature, introduced some number theory, and in particular highlighted the “gridded” 
nature of vector spatial data. In order to illustrate the issues that this raises in more detail, a 
number of case studies have been chosen, which have the same underlying root cause – the 
fact that the arithmetic calculations carried out within the computer are not exact, and do 
not produce the mathematically correct real number result that theory predicts. It might be 
thought that the result of small differences between expected results and actual calculations 
would be trivial, but this is not always so, as the following cases illustrate. Many of the 
cases illustrate the point that a Boolean valued function of spatial objects is a construct that 
requires caution.  

The functionality provided by spatial database management systems is couched in the 
language of topology. For example, the words "union", "intersection" etc, are used in the 
form of function names in SQL statements such as: 

select union(mytable.geometry, :fixed_geom) from mytable 
where ...; 

The behaviour assigned to these functions, generally speaking, approximates to the usual 
topological or set theoretical meanings of these terms. This leads to the impression that 
these functions satisfy the axioms for union, intersection etc. as defined in the mathematical 
literature. This is unfortunately, not the case, as several of the following case studies 
indicate. It is important to note that these failures are symptoms of the lack of a rigorous 
underlying logic, and should not be interpreted as the problem itself. Individual solutions to 
each problem may well be available, but a consistent solution to all such problems is being 
sought.  
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The individual case studies are presented in Sections 2.1 to 2.13. These are then followed 
by a summary (Section 2.14) of the current situation as highlighted by these examples. 

2.1. Case 1. Polygon Union 
The union and intersection operations may not be associative. i.e. 

CBACBA ∪∪≠∪∪ )()( . More particularly, the result of 
ni
iA

..1=
U could depend on the order 

of evaluation. In the process of calculating the union of two polygons (each defined by their 
vertices), the points of intersection of the boundary lines are calculated. These points will 
be forced to fall on the grid as described in Section 1.5. Each union operation may snap the 
vertices of the feature boundaries to the nearest grid point, thus moving those boundaries 
and affecting the result of later operations. 

A 
C 

B 

 
Figure 2-1 Forming the union of polygons A, B and C – the original polygons. 

In Figure 2-1 to Figure 2-4 the size of the grid has been exaggerated. In practice, the gaps 
between objects would not be visible at normal scales. Figure 2-1 shows the original three 
polygons A, B and C. 

A 
C 

B 

p 

q

 
Figure 2-2 Forming the union as (A∪B)∪C. 

In Figure 2-2, when A∪B is calculated, the snapping of the intersections of the boundaries 
causes the line pq to move away from polygon C, which is now not within the snap distance 
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(one unit of the grid). As a result, (A∪B)∪C evaluates to two regions which are not 
connected. 

A 
C 

B 

 
Figure 2-3 Forming the union B∪C first. 

With the operations applied in the other order as depicted in Figure 2-3, C would have been 
within the snapping distance of B as B∪C was formed. Thus the result of the calculation of 
A∪(B∪C) is a single contiguous region as seen in Figure 2-4. 

A 
C 

B 

 
Figure 2-4 The Result of A∪(B∪C). 

In this case, there is a qualitative difference in the result, depending on the order of 
calculation. This is a rare case in practice, but there is frequently a numerical difference in 
the calculated result depending on order of calculation. This kind of event effectively 
prevents the "design by contract" approach discussed in Section 1.4.2. For example – the 
receiving party may require that all the regions are contiguous – determined by calculating 
A∪B∪C. The data supplier validates the data by calculating A∪(B∪C), and transmits the 
features – assuming they are correct. The receiving party calculates (A∪B)∪C and rejects 
the regions as non-contiguous. 
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2.2. Case 2. Data Interchange 
Using interchange protocols such as GML (Geography Markup Language)(OGC 2000), 
and the more recent GML3 (ISO-TC211 2004) the transfer of coordinate values is in 
decimal numbers with finite precision. This means that the consistency of the data can and 
does change as a result of the transmission. Thus a feature which is valid before 
transmission may be invalid after transmission. The basic problem is that a Boolean result 
such as a test for validity depends on the results of calculation using finite arithmetic, so 
that even a small calculation or rounding error may lead to a qualitatively different result. 

A possible solution is to apply a tolerance, so that for a feature to be valid1 it must not have 
any points within a distance of ε of any other point or line.  This is the approach suggested 
by Milenkovic (1988), and will be discussed further in Chapter 3. 

 

d

invalid polygon may be invalid  
at tolerance > d 

 
Figure 2-5 Self-intersection in a polygon. 

The polygon on the left in Figure 2-5 is considered invalid, the one on the right is valid, but 
if the points are moved small distances, it may become invalid. If d < ε, the polygon on the 
right would not be considered to be valid at tolerance ε. It could be argued that the 
receiving software could automatically correct the error if d < ε, but this raises further 
issues. Prior to transmission, the polygon on the right is a single connected polygon. If the 
error is corrected, it becomes a pair of polygons in contact. This would not be valid if the 
contract was for a single polygon. 

It might be thought that applying such a tolerance ε, where ε is significantly larger than any 
potential loss of resolution would solve the problem of transmission in some protocol like 
GML. For example, if all features are valid at tolerance ε, and they are transferred with 
sufficient number of decimal digits that the inaccuracy introduced (say r) is less than ε, the 
features will be valid on arrival. This is not a solution per se, since on arrival the features 
can no longer be asserted to be "valid at tolerance ε". While they will be guaranteed to be 
valid at tolerance ε-r, any attempt to standardise the definition of "valid" in terms of a 

                                                           
1 In the Milenkovic Normalisation, this is a validity requirement. It will be suggested later that this be re-
interpreted as a “robustness” parameter – see Section 2.4. 
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single defined tolerance will fail. (See Case 4 – Section 2.4 for further discussion, and an 
alternative statement). 

To completely avoid these issues, a loss-less transfer mechanism would be necessary, in 
which the binary representation of points on arrival are identical to their binary 
representations on the source computer. For GML, if double precision floating point is used 
on the source machine, this means that at least 15 significant digits are required for each co-
ordinate value. This is extremely wasteful, considering that the data itself may be only of 
(say) 6 significant figures accuracy. Since the points that are being transferred as a part of a 
supply of spatial data tend to be clustered, the leading digits will be common, as can be 
seen in the sample in Table 2-1 below. 

Table 2-1: Sample of 15 Digit Coordinates Encoded in GML 

<gml:LineString srsName="EPSG:4326"> 
<gml:coordinates>152.790301174,-
27.616450116,0  
152.79051333737,-27.61524634148,0 
152.78977398616,-27.61514294186,0 
152.78974558452,-27.61530402325,0 
152.78957338685,-27.61527994337,0 
152.78941504725,-27.6161781141,0 
152.78959192319,-27.61620286106,0 
152.78956645744,-27.61634731365,0 
152.7903011747,-27.61645011628,0 
</gml:coordinates></gml:LineString> 
</gml:lineStringProperty 

 

 

Leading digits Significant 
digits 

Pseudo-random (noise) 
digits 

35% 23% 41%

1% 34% 65%

Uncompressed 
data 

Compressed 
data 

1 5 2 .  7 8 9 5 7 3 3 8 3 6 8 5 

 
Figure 2-6 Significance of digits within a 15 digit number. 

Since the extra digits may well be "pseudo-random", that is to say, they cannot easily be 
distinguished from a string of random digits, they are unlikely to be compressed well by 
any compression algorithm (such as GZIP) used for the transmission of GML (Thompson 
and van Oosterom 2006a) As can be seen in Figure 2-6, where the data is compressed for 
transmission, the meaningless digits can account for 2/3 of the quantity of data to be 
transferred. This effect is even more extreme if the transmission is in 64 bit floating point 
binary numbers. 
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2.3. Case 3. ISO 19107 Definition of Equality 
Since the equivalence relation axioms are referred to here and later, and are pertinent to the 
definition of equals()2 in ISO 19107 (ISO-TC211 2001), they are restated here: 

R is an equivalence relation on set X if it is: 

Reflexive:  aRa ∀a∈X 
Symmetric:  aRb ⇒ bRa ∀a, b∈X 
Transitive: aRb, bRc ⇒ aRc ∀a, b, c ∈ X. (Weisstein 1999c)  

One interpretation of the “equal” relational operator a = b between spatial representations 
would be truth of the proposition “a is an equivalent representation of the same (or 
identical) real-world feature as represented by b, and is of the same accuracy”.  

The ISO 19107 definition of equals() (ISO-TC211 2001) uses the phrase "shall return true 
if this GM_Object is equal to another GM_Object", but qualifies this definition with: 
"Since an infinite set of direct positions cannot be tested, the internal implementation of 
equal must test for equivalence between two, possibly quite different, representations. This 
test may be limited to the resolution of the coordinate system or the accuracy of the data. 
Application schemas may define a tolerance that returns true if the two GM_Objects have 
the same dimension and each direct position in this GM_Object is within a tolerance 
distance of a direct position in the passed GM_Object and vice versa" (ISO 19107 Section 
6.2.2.18.3). 

This definition has several weaknesses: 

• The implementation is problematic since the number of possible representations which 
are (set-theoretically) equal to a given polygon, while not actually infinite, is very large. 
In many cases the operation will be implemented by making the assumption that two 
objects are equal if and only if their representations are defined by the same number of 
points in approximately the same positions. If this implementation is used, a redundant 
point such as that introduced in parcel E in Figure 2-8 is significant, but should not be, 
according to the ISO 19107 definition.  

• It is not definitive – the choice of a tolerance value and the technique for applying that 
tolerance are left to the application schema. Thus a pair of objects may be equal in one 
implementation, but cease to be equal in another. 

• It is not transitive – it is quite likely, using this definition that a.equals(b), and 
b.equals(c), but not a.equals(c) For an example using point features, see Figure 2-7. 
(Note that the “ideal” definition given above is transitive). 

                                                           
2 This syntax, of following a function name by a pair of parentheses, is taken from several programming 
languages, and is used in the ISO 19107 standard. 
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c 

 
Figure 2-7 Three points (with tolerance shown) illustrating breakdown of equality. 

In order to further explore this issue, Figure 2-8 has feature A being compared with the 
other features B to F. It is assumed that circled vertices are identical to the corresponding 
vertices in A, but those circled in dotted line (e.g. vertex 3 of D) are only approximately 
equal (differing by a small rounding error). It is further assumed that the direction of 
encoding is standardised (and must be anticlockwise).  
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Figure 2-8 Simple polygon equality. 

A.equals(A) should be true by identity. 
A.equals(B) should be true – B has the identical representation to A. 
A.equals(C) Here the regions are equal as point sets, but the cyclic definition of the 
boundary rings have different starting points. By the ISO definition they should be equal. 
A.equals(D) Here the regions are not exactly equal as points sets, since point 2 has been 
displaced by rounding. By the ISO definition they could be equal depending on a 
decision by the implementer, and the tolerance chosen. 
A.equals(E) Here the regions are exactly equal as point sets (it is assumed that point 5 is 
exactly on the line 1-4, and no rounding errors have been introduced). By the ISO 
definition they are equal. 
A.equals(F) This is similar to E, but (as is more likely) a small rounding error has been 
introduced in the calculation of point 5, and it does not lie exactly on line 1-4. Here the 
regions are not exactly equal as point sets. By the ISO definition they could be equal 
depending on a decision by the implementer. 

There is no provision in the ISO definition of equals to distinguish regions other than by the 
transfinite set of points that are within the regions. Thus the introduction of a redundant 
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point (as in E), or the relabelling of points (as in C) should never be significant. The 
intention of the ISO definition is that all of A to F should test equal to A. 

2.4. Case 4. ISO 19107 Definition of Simplicity 
In the ISO 19107 standard, the operation isSimple() returns true if there is "no interior point 
of self-intersection or self tangency" (multi part objects are allowed but should not overlap). 
Note that in contrast to the definition of "equals()" there is no provision for any tolerance in 
the definition. As a result, the ISO 19107 standard perpetuates the problems described in 
Case 2 Section 2.2. 

 

s im p le  g e o m e t r i e s  n o n -s im p le  g e o m e t r i e s  

a  

b  

c  

d  

e  

f  

g  

h  

 
Figure 2-9 Simple and non-simple geometries. 

Also in contrast to the definition of "equals()", there is no guidance given in the standard 
towards the implementation of an algorithm for testing "self intersection or self tangency". 
This is particularly serious, since many implementations treat the isSimple() requirement 
(or something similar) as necessary for the acceptance of a geometry. For example, polygon 
features cannot be entered into an Informix database (using the spatial datablade) if they 
have a non-simple boundary (see Figure 2-9) (IBM 2002). Note that in the cases of objects f 
and h in the diagram, the overlaps can be invisibly small, and still prevent acceptance. This 
causes problems in the creation of a corporate spatial database, and the error "polygon is 
self-intersecting" is a common one to be seen in the load process. In practice, it can be very 
difficult to locate such an error in a complicated or large feature. The “Design by Contract” 
approach is not possible unless the exact definition of isSimple() can be given such that all 
implementations can be guaranteed to produce the same answer. 

It has been suggested (Thompson and van Oosterom 2006a) that, rather than defining a 
Boolean operation ("isValid()" or "isSimple()" etc.), the tolerance as discussed in Case 2 be 
replaced by a "robustness" parameter ρ, defined such that the movement of all points by a 
distance of < ρ in different directions will be guaranteed to leave the object in a "simple" 
state. A large robustness value would indicate a "robust" representation, while a small value 
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should be a warning of potential problems. In the context of "Design by Contract", if a 
module is intending to undertake some action which may introduce a relative perturbation 
of the points of a region, it should contract for a region with a sufficiently large robustness 
value.  

For example, if a polygon is robust at 10cm, and it is to be transferred in a form that 
introduces errors of up to 1 cm, it can be contracted to arrive valid and simple, but can only 
be asserted now to have a robustness of 9cm, and can immediately be used in any 
application for which a robustness of 9cm is sufficient. It could not have been contracted to 
be delivered using a transport mechanism that could introduce relative errors greater than 
10cm.  Note that on arrival, the robustness parameter could be re-calculated and might be 
found to be better than 9cm. In fact, it could have even improved to 11cm, but the 
important issue is that the data can be used without revalidation. 

2.5. Case 5. Intersection of a Point with a Line 
In ISO 19107, the function line.contains(point) is intended to determine whether a point lies 
within the line. (This function is one of the specialisations of GM_Object.contains(point)3. 
Another specialisation of this parent is the more useful function polygon.contains(point).) 

A function like this is extremely problematic, being sensitive to rounding conditions in its 
computation. This sort of function is usually present for “completeness” – so that, for 
example, a point is either within a polygon, outside the polygon, or on its boundary (thus on 
the line).  In 2D, the relationship between point (x, y) and line (x1, y1) to (x2, y2) might be 
determined by evaluating ))(())(( 112121 xxyyxxyy −−−−− , and interpreting a negative 
result as “left of line”, greater than zero as “right of line” and zero as “on the line”. 

In general, the set of points that would test as “on the line” is sparse in computational 
space. As was noted in Section 1.5.5, in an integer based representation approximately 60% 
of all straight lines will not pass through any grid points apart from the endpoints. The 
calculation of the intersection of two lines will in general produce a point which has been 
approximated to the nearest representable values (as integer or floating point). It is unlikely 
that this point will test as contained by either line.    

Practical GIS implementations “get around” these problems either by breaking lines to 
force them to pass through the point (as described in Case 9, Section 2.9), or complex and 
difficult special case handling, but still problems arise. One example might be that the use 
of a tolerance to determine a point's containment in a line can lead to a situation where a 
point is simultaneously "on" two non-parallel lines while being a considerable distance 
from the point of intersection of those lines.  Without a tolerance, the intersection of two 
lines may not be on the lines, with a tolerance, a point can be on both lines but not be the 
intersection.   These problems can manifest themselves as “bugs”, but are more correctly 
symptoms of failure of the underlying logic. 

                                                           
3 GM_Object is the super class for all geometric objects. I.e. all other geometric objects are subclasses of it. 
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Figure 2-10 Example of a point "on" two lines, but 

not at their intersection. 

The intersection of the lines in Figure 2-10 would probably be calculated as the point 
marked  , but the circled point would be tested as on both lines. See Section 3.2.12 for a 
discussion of these tolerances in terms of the co-Heyting algebra formulation of Worboys 
(1998).   

2.6. Case 6. Narrow Cadastral Parcels 
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q 

 
Figure 2-11 Narrow cadastral parcel and adjoiners. 

In Figure 2-11, parcel E (presumably the result of negotiations following an encroachment) 
is 100mm wide at the top. Note that the lower vertex p is about 100 mm south of the 
common boundary between B and C (point q), and that point q is about 0.3 mm east of the 
common line between A and E. 

This is acceptable to most current systems, but when converted from one datum to another, 
all co-ordinate values are rounded to the nearest integer – of the order of millimetres at 
ground scale. It would normally be thought that 1 mm at ground scale would be accurate 
enough, and in fact it is much finer than the true accuracy of the data, but the result is as 
shown in Figure 2-12 (with the effect exaggerated). 
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Figure 2-12 Narrow cadastral parcel after small perturbation. 

This causes polygon E to become what users call a “butterfly polygon”, and it fails the 
"isSimple()" test, since its boundary is self-intersecting. 

Even without the co-ordinate transformation, given the real case measurements, different 
implementations would give different results for "isSimple()" depending on their internal 
accuracy of calculations and their algorithmic details. This is a specific example of the 
issues raised in Case 4, but shows that the problem can arise within a complete non-
overlapping planar partition. 

2.7. Case 7. 3D Surfaces and Lines 
The equivalent 3D issues are similarly problematic - surface.contains(line), 
surface.contains(point), and line.contains(point) all have the equivalent difficulties to those 
described in Section 2.5. In fact, all of the preceding case studies apply equally in 3D.  

In addition, "Dimensional World" solids are often defined as region bounded by plane 
surfaces which are represented as polygons of four or more points (for example "strata 
parcels" in a cadastre). In general, any collection of four or more points will not necessarily 
be coplanar (especially when rounding is involved in the calculation of point values). 
Common approaches are to represent solids by surface triangles (known as a "Triangulation 
Irregular Network" – "TIN") (de Berg et al. 2000), or to decompose the solid objects into 
tetrahedra (Si and Gärtner 2005; Penninga et al. 2006) to avoid this kind of problem. These 
however, are not always the most appropriate representations for specific applications (see 
Case 10. 3D Cadastre Issues, Section 2.10).  

2.8. Case 8. ISO 19107 Definition of "interior to" 
association 

This association overrides the Set<DirectPosition> interpretation of containment, and 
declares one GM_Primitive to be "interior to" another, "to compensate for inherent and 
unavoidable round-off, truncation and other mathematical problems indigenous to computer 
calculations" (ISO 2001 Section 6.3.10.4). 
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That is to say, since the test of GM_Object::contains() may give an incorrect result, (for 
example, as explained earlier in Section 2.5), the fact of containment must be stored as an 
association.  

The approach is problematic, since it is only required if the contains() does return a wrong 
answer, thus is implementation specific. One particular implementation may correctly 
detect containment, and therefore not deem it necessary to explicitly record the "interior to" 
association. Another implementation which is processing this data may not detect the 
containment using the contains() operation, and infer from the lack of the explicit 
association that containment is counter-indicated. 

Any attempt to encode all “interior to” associations for all objects in a database is quite 
problematic, since for any point in the universe of discourse, there can be a vast number of 
regions that it is interior to – for example, state, suburb, town, country, economic region, 
climatic zone, etc. 

2.9. Case 9. Adjoining polygon points 
In cadastral databases, a common technique to handle the subdivision of an adjacent lot is 
the insertion of an additional point (a node in topologically structured data): 
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Figure 2-13 Subdivision of adjoining parcel.  

In Figure 2-13, after the subdivision of the parcel adjoining A to create parcels B and C, 
Point p is also made a part of the definition of parcel A, which thereby becomes a five-sided 
polygon. This is necessary because the representation of the point p as calculated is 
unlikely to fall exactly on line ab (i.e. ab.contains(p) does not necessarily return true), and 
has several unfortunate effects: 

1. The original line ab, no longer exists in the database, and so any attributes (e.g. 
measured bearing and distance) that attached to it must be managed in some other way.   

2. If a locking strategy is in use, it is necessary to lock parcel A, even though it is not 
really being changed in any way. This can cause escalation of locks, and make 
deadlock more likely. It also creates an update to parcel A. 

3. As discussed earlier, by the ISO 19107 definition of equals() (ISO-TC211 2001), if A is 
the original 4 sided parcel, and A' is the parcel after the update, with point p included in 
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its perimeter, A.equals(A'), since every direct position within A is within an acceptable 
tolerance of some point in A', and vice versa. Thus a parcel has been replaced by an 
equal parcel.  This highlights one of the difficulties which can be caused by confusing 
equality of the digital representation with equality of the mathematical abstraction. 
(See also Case 13, Section 2.13 for programming difficulties this may cause). 

2.10. Case 10. 3D Cadastre Issues 
An equivalent problem to Case 9, of adjoining points in neighbouring objects also arises in 
a 3D cadastre, which is however, more complex and difficult to picture. Frequently the 
solutions chosen to address these problems differ significantly from those conventionally 
used in 2D cadastre.  In practice, where volumetric parcels4 are present, they only constitute 
a small percentage of all property parcels. To represent all parcels in a cadastre as 3D 
objects is impractical at present (and probably not particularly useful). 

Given current technology, hybrid approaches are most appropriate at present, where the 
vast majority of parcels are represented as 2D polygons, with the volumetric lots being 
represented as regions of space bounded by 3D flat polygons (Stoter and Salzmann 2003).  
Of those parcels which are volumetric, the vast majority are defined as prisms, with the 
sides being vertical planes, and the tops and bottoms being horizontal planes. There exists, 
however, a small but significant set of parcels which do not fit this classification. 

As discussed earlier, a polygon of 4 or more vertices will not in general be planar, and a 
triangulated network is usually resorted to when modelling solid objects to prevent 
conflicts.  This is not necessarily the best approach in the case of cadastral parcels. The 
practicality is that the surfaces of the parcels in "Dimensional World" are most usually 
intended to be flat surfaces, and the lack of planarity in the representation is a result of 
measurement errors and/or rounding effects. To break up what should be plane surfaces 
into a triangulation on the basis of measurement or rounding effects would not be 
productive, and would obscure the true situation. 

Where volumetric parcels adjoin normal 2D parcels, a situation analogous to the above 
(Figure 2-13), occurs. 

Figure 2-14 represents a vertical slice (side view) of a section of the cadastre. The majority 
of volumetric parcels are of this form. Parcels 1 and 3 are normal 2D parcels, parcel 2 has 
been subdivided into strata parcels 2a, 2b, 2c and 2d, by defining vertical planes (p-q), (r-s) 
and (t-u). Note that parcels 1, 2d and 3 have no defined top, and 1, 2a and 3 have no 
defined bottom. 

By analogy with Figure 2-13, is it necessary to convert parcels 1 and 3 to 3D 
representations, so that the lines p, q, r, s, t and u are included in their definition? (In order 
that the surface (p-r) be a common boundary between parcel 1 and parcel 2c). 

                                                           
4 Normal cadastral parcels typically are defined by 2D polygons, and are taken to be unrestricted in elevation 
(height or depth). Volumetric parcels are defined as regions of space, bounded by (usually plane) surfaces. 
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Figure 2-14 Volumetric parcels adjoined by normal (2D) parcels, viewed from the 

side. 

2.11. Case 11. Datum Conversion 
During the lifetime of the Digital Cadastral Data Base (DCDB) at the Department of 
Natural Resources & Water in Queensland, it has been necessary on two occasions to 
convert to a new datum (ICSM 2002).  This can be expected to occur again in the future.  
The necessity can arise for one or more reasons: the improvement of measurement 
technologies can make a redefinition of datum desirable; continental drift causes a 
movement of local features relative to distant features; and/or policy decisions could 
mandate a change. 

In the process of a datum change, the coordinate values of all points must be re-calculated, 
and this calculation is necessarily of a certain accuracy. In a database of finite precision, the 
result is then rounded to the accuracy of the database storage. This introduces a pseudo-
random relative movement of points, since the rounding direction may vary from point to 
point. A further effect is that lines that were straight may become bent. This may require 
the insertion of intermediate points in very long lines. (Bent lines may also be straightened 
in some cases, as existing inaccuracies are corrected). It may also be necessary to introduce 
points in long (previously straight) lines where this relative movement would otherwise 
give rise to topology failures caused by the line crossing over, or closely approaching an 
unrelated point.  

Any digital representation of spatial features must be sufficiently robust to allow this sort of 
operation without the problems of Cases 2, 3, 4 and 6 arising. 
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2.12. Case 12. Uniqueness of Representation 

 

Represented as a polygon 
with a hole 

Represented as a polygon 
with a continuous (one 
piece) outer boundary 

 
Figure 2-15 Equal polygons (by ISO definition) with very different definition. 

Where a tolerance is allowed for the test for equality, some counter-intuitive results can 
apply. For example, the two regions as illustrated in Figure 2-15 may be equal to within a 
defined tolerance, but a small miss in the points where the boundary and the internal "hole" 
are in close proximity may lead to a completely different representation. Thus it is possible 
for a region with a single simple boundary to be equal to a region with an inner hole, 
highlighting a difficulty likely to arise in the implementation of the ISO definition of 
equals. 

2.13. Case 13. GeoTools/GeoAPI definition of 
Object.equals() 

The GeoAPI and GeoTools projects (Codehaus 2006; OGC 2006) aim to develop a set of 
Java classes based on the OGC specifications. In the documentation of these classes, is a 
definition of the TransfiniteSet "equals" function, which contains a copy of the OGC (and 
ISO) definition. Since geometric primitive classes are required to implement the 
TransfiniteSet interface, they would be expected to use this definition. 

On the other hand, the geometric primitives are also expected to be classes that inherit from 
the Object class, and so implement "equals" and "hashCode" methods. A hash code is used 
by various collection structures where large numbers of objects are to be dealt with. The 
procedure is that the hashCode method generates a key value that is meaningless except 
that two equal objects must generate the same hash code value. Thus it is possible to use the 
value as a key to provide very fast access to the object in the collection. The requirements 
of the hashCode method are that for two objects a and b: 

 a.equals(b) ⇒ a.hashCode() = b.hashCode() 

 ¬ a.equals(b) “nearly always implies” a.hashCode() ≠ b.hashCode() 
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The “nearly always implies” determines how useful the hash code calculation algorithm is. 
If many unequal objects generate the same hash code, the algorithm is inefficient, and it is 
difficult to imagine any useable routine if the equals test allows a tolerance. For example, 
polygons D, E and F of Case 3 (see Figure 2-8), which fulfil the transfinite set definition of 
equality are difficult to reconcile with any hash code calculation routine based on the 
definition of their vertices. 

2.14. Conclusions 
Much research has been done on the modelling of conceptual world features as 
mathematical constructs. The International Standard ISO 19107 can be seen as a distillation 
of the techniques so far developed.  However, very little work has been done on the 
question of the final digital representation.  As a result, the effects of the finite accuracy and 
granularity of the number representation have been left to individual programmers to solve. 
The ISO standard is silent on these issues, which it characterises as "implementation 
issues", leading to a situation where data which is ISO compliant can be transmitted to a 
system, also ISO compliant, which rejects that data due to different interpretations of 
"tolerance" as allowed by the standard. The same is true of the OGC specifications based 
on the ISO standards. The current situation is that of a well understood mathematical model 
being approximated by a digital representation which is poorly understood. 

The result of this is that all data to be accepted by a client must be validated by that client. 
Even worse, it will have a significant likelihood of failing that validation and there is little 
that the data supplier can do to prevent this apart from either: 

• Validating the data for use by all known software, using that software (which probably 
requires the purchase of a license to use that software), or 

• Defining a private standard or profile, and outputting to that standard – requiring a 
specially tailored data load program to be written by/for the client. 

While the technique of topological encoding can provide a rigorous internal logic for 
dealing with 2D data, the issue of transporting those data between vendors is not solved, 
and the situation in 3D is far from satisfactory. Where topological encoding is not used in a 
spatial database, or where the data are separately sourced, the operations between 
primitives cannot be consistently and rigorously defined. 

One result of this lack of a regime of rigorous definition can be seen in the inconsistencies 
in meaning and behaviour of 2D polygons highlighted by van Oosterom et al. (2004). It is 
essential that such problems be avoided in 3D spatial databases, where the potential for 
confusion is so much higher. 

Several specific cases have been described in this chapter, which illustrate the potential 
results of breakdown of the underlying logic of current practices. The next chapter will 
discuss various alternate approaches that have been used, or are being investigated in the 
search for a consistent and logical approach to spatial data storage and manipulation. 



  

  

 

Chapter 3 

Related Work and Theory 

The previous chapters have introduced the class of issues that this work is addressing. The 
scope of the research has been defined in Chapter 1 and a series of representative “case 
studies” documented as practical examples of the effects of the problem being addressed in 
Chapter 2. These cases indicate that much work is needed on the issue of implementing 
spatial primitives and the operations between them within finite digital equipment. 

This chapter focuses on research that has been carried out in this and related fields, and 
which is relevant to the work in progress. Section 3.1 gives a brief historic perspective on 
the broader field of representation of spatial information. Section 3.2 reviews the literature 
of spatial logic within a mathematical model, with an emphasis on that work that has 
application in the representation of spatial data in digital form. There is a significant body 
of work in this area, so a very brief overview approach is taken. Section 3.3 discusses 
literature pertinent to the numerical accuracy used in calculations and representation. 

Section 3.4 covers the research that has been carried out to date directly relevant to the 
question of carrying the rigorous logic into the computer representation of the data itself, 
and on the issue of drawing inferences from a finite precision digital model. This is a 
significantly smaller body of work, and is accordingly covered in greater detail. Section 3.5 
concludes the discussion. 

3.1. Historic Perspective 
The history of storage, maintenance and analysis of spatial data in a digital computer 
representation can be summarised as a progressive increase in the amount of knowledge 
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and attribution that is associated with the basic mapping data, and a move from personal 
data on a local “desktop” to the recognition of the spatial information as a corporate 
resource, initially as a data base, and more recently as a Geographic Information 
Infrastructure (GII), with the potential for sharing data between organisations. 

3.1.1. Early Representations of Spatial Information 
The largest body of literature relating to this subject is in the domain of representing 
"Conceptual World" spatial phenomena as mathematical abstractions. The earliest 
references are lost in antiquity; in fact, one of the major drivers for the development of 
mathematics itself appears to have been the delineation of property boundaries. “If the river 
carried away any portion of a man’s lot, … the king sent persons to examine, and determine 
by measurement the exact extent of the loss … From this practice, I think, geometry first 
came to be known in Egypt, whence it passed to Greece” Herodotus – quoted by Boyer 
(1985 page 9). The earliest known example of what is, in effect, a cadastral “map” was 
found in the excavation of Catalhoyuk in central Turkey, and dated at about 6200 BCE, 
long before writing was developed (Brock 2001). 

3.1.2. Early Digital Representation 
The earliest attempts to represent geographic data in computer form were limited to storing 
the linework and text of maps (ECU 1970). This kind of approach is characterised by 
standards such as AS2482 (SAA 1984), where the linework of the map is represented, with 
attributes limited to the type of feature represented1. Any names of features are included as 
"annotation", which specifies where and how the text is to be displayed, but with no 
meaning attached, and no semantic connection between text and linework. This approach is 
severely limited, especially in its ability to draw inferences from the data. 

3.1.3. Feature Encoding 
A major improvement came with the introduction of feature encoding. This makes the 
critical connection between the "Dimensional World" feature, and its geographic and other 
stored (attribute) details. Again, this can be characterised by various standards that have 
been written to define interchange of feature information. An example of this type of 
exchange format (which became a de-facto standard) is the Shape file format (ESRI 1998), 
where the spatial (geometric) information of the features is located in one file, with the 
attribute data pertaining to those features stored in an associated dBase format2 file.   This is 
typical of early implementations, which used a database (often relational) to store the non-
geographic information, linked to a spatial data repository.  

                                                           
1 This attribute information is sufficient to determine how the linework should be presented on a printed or viewed 
map. This is, however preferable to the interchange of pure presentation information such as line weights, colour, 
shading etc. without any connection to the thematic and type attributes of the feature. 

2 In the ESRI Shape file white paper (page 25), dBase is described as “a standard DBF file used by many table-
based applications in Windows™ and DOS.” and the format is defined. 
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3.1.4. Topological Encoding 
One of the biggest advances came with the introduction of "topological encoding". This has 
several variants, but in general records the spatial component in a way which builds 
connectivity between features into the data structure (Burrough and McDonnell 1998), and 
avoids redundancy in spatial representations. There are two forms of topological encoding 
in general use currently: 

• Linear networks – where the features are 1D lines joining nodes. This form is frequently 
used for road, rail, utility, watercourse etc. modelling, and has application in route 
planning, electricity supply management etc. 

• Space partitioning (usually in 2D, but also recently extending to 3D), where the region 
of interest is divided into non-overlapping sub-regions which form a complete coverage. 

The spatial partitioning form is of more interest in the current context, and it provides two 
major advantages over discrete polygon storage of coverages: 

• It gives the option of fast neighbour searches (e.g. find adjacent polygons). 

• It reduces the storage requirements for boundary details. 

There are several variants on topological encoding for space partitioning, but all are based 
on the common storage of boundary details, with links between the storage location of the 
boundary, and the details of the region(s) delimited by that boundary. It is in the definition 
of a partition3 that this approach is most significant, where every boundary is used in the 
definition of at least two regions (apart from those few boundaries that surround the entire 
coverage) (Molenaar 1998; Louwsma 2003). 

A 

B 

1 

2 

left 
face 

right 
face 

start node 

end node 

 
Figure 3-1 Two regions delimited by a common boundary line. 

In Figure 3-1, the line string between node 1 and node 2 defines region A to its left and 
region B to its right. It is in cases such as this, where there is some complexity in the 

                                                           
3 In this context, “partition” (or “coverage”) is used to mean that the entire area of interest is divided into non-
overlapping regions (with no gaps between regions). 
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definition of the common boundary, that the greatest advantages of the approach are 
realised. (Since the definition of the line string from 1 to 2 contains many points, which do 
not need to be stored twice as would be the case if A and B were defined as discrete, 
independent polygons). 

The difficulties with topological encoding come from the representation of "Dimensional 
World" measurements as digital values, firstly, in the accuracy, and secondly in the 
quantisation of digital representation of numbers. The accuracy question of topological 
storage has been well researched. e.g. Hunter (1998). The quantisation issue is the subject 
of this research. 

With the move to feature encoding, came the opportunity to derive knowledge from the 
stored data, and this is the major advantage of the "GIS" (Geographic Information System). 
The ability to determine relationships between features (e.g. overlap, nearness etc.) 
provided an additional benefit that helped justify the cost of digital geographic data capture.  

The greatest strengths of the topological approach arise from the fact that it provides some 
degree of logical rigour. It is fairly simple to prove that, for example, a properly constructed 
collection of polygons can form a continuous, non overlapping partition of a plane, and that 
the operations of union, intersection etc. between polygons from within the partition have 
the correct behaviour.  

The difficulty of logic operations on data from different sources is discussed by Burrough 
and McDonnell (1998 page 178). For example: "Polygon overlay can lead to a large 
number of spurious small polygons that have no real meaning and must be removed".  All 
major GIS vendors provide such "cleaning" mechanisms, but the choice of parameters to 
eliminate spurious overlaps without destroying real information is not trivial, and in fact is 
a highly skilled and specialised operation. Note – in discussing "Errors and Quality 
Control", Burrough and McDonnell include rounding errors in the digital arithmetic with 
the other (measurement based) errors. This approach is far from ideal, since the 
characteristics of the different forms of errors are quite different4. 

An investigation into the relationship between lines (Clementini and Di Felice 1998) shows 
the intersection of two linear features can take on a host of complex forms. For example, 
where curved lines are allowed, lines could intersect at a number of points, and some 
intersections may be tangential, in the form of a cusp, etc.  However, this does not address 
the digital representation. The interactions of area and volume features exhibit even more 
complexity. 

A fundamental issue with drawing inferences from geographic data is assessing the "fitness 
for use" of that data (Goodchild 1998). In particular, questions such as connectivity of 
regions can give completely wrong answers if posed loosely using incompatible data5. 

                                                           
4 For example, measurement based errors are generally of a larger magnitude than rounding errors, and usually 
manifest one time only – at the time of data capture. The rounding errors potentially accumulate at every instance 
of data manipulation. 
5 For example, if the polygon overlay "cleaning" mechanism as described above is not wholly successful, spurious 
overlaps can be reported, and connection/adjacency may be missed. 
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Agumya and Hunter (1999) propose a "risk based" approach to the problem. This has merit, 
but does require a clear understanding of risk management issues by the user. 

Jeansoulin discusses the use of explicit spatial constraints in conjunction with computed 
topologic relationships, observing that "The point location tolerance is one of the most 
investigated sources of geographic error. But its consequences on several other geographic 
aspects (topology, network connectivity, etc.) are not easy to automate …" (Jeansoulin 
1998 page 108). An interesting concept in this paper is the use of the term "pre-compiled 
information" to refer to the topological relationships contained in the storage structure of 
topologically encoded data. This is a useful concept, since it highlights the decision making 
processes which are part of the topology cleaning activity, and which may not be 
recognised as such by the user.  

In particular, where a database of spatial information is constructed using topological 
encoding, the division of the database into "structured layers" is a critical decision, since 
the topological relationships are normally only compiled within a single layer. Any cross-
layer relationships are usually to be constructed "on the fly", and are thus subject to the 
failures of rigour associated with non-topologically encoded data. 

The process of compiling topological relationships between regions within the same layer 
(the so-called topology generation or cleaning operation) requires a high level of skill and 
understanding of the problem by the human operator if the correct relationships are to be 
generated.  

3.1.5. 3D Topology 
The use of topological encoding within a database can, as described, provide a limited form 
of rigorous logic (restricted to single layer, single vendor, and only where pre-compiled and 
explicitly stored), but to the present time, this has been commercially implemented in the 
2D case only.  

Current research on the inclusion of 3D objects in a spatial database includes the work of 
Arens, Stoter and van Oosterom (2003). This is a practical approach to the problem, based 
on the requirements of cadastre, telecommunications and town planning, but the topological 
encoding is restricted to being internal to individual objects. Topology between the objects 
is not maintained, although the paper does not close the door on future work in this 
direction. The Oracle corporation has developed a data model based on the GML3 
specification which does include 3D topological encoding (Kazar et al. 2007). 

The “Tetrahedronized Irregular Network” (TEN) is an extension of the “Triangulated 
Irregular Network” (Peucker et al. 1978) into three or more dimensions. Although 3D is the 
most useful in practical problems, the theory is fully general, and makes no assumption of 
restricted dimensionality. The TIN has proved very useful in the representation of a scalar 
(or vector) function of two variables - including, but not restricted to geographic 
coordinates (Tse and Gold 2002). For example, the TIN is frequently used for the 
representation of the elevation of a land surface, on the assumption that there are no 
overhanging or vertical cliffs. The TEN structure decomposes solid objects or regions into 
tetrahedral units (in nD, generalised to simplexes) (Penninga et al. 2006), with each surface 
(hyperplane) encoding the tetrahedron (simplex) on each side of it. This provides a 
topological encoding of adjacency. 
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Research is proceeding on the practical problems of a 3D cadastre (Stoter and Salzmann 
2003; Stoter and van Oosterom 2006), where the inclusion of a relatively small number of 
volumetric objects in what is primarily a 2D polygon coverage is addressed. This research 
highlights the advantages of a topological representation of the 2D objects, but recognises 
the impracticality of a full 3D database. Instead a hybrid approach is recommended. The 
decision as to whether the 3D components should be topologically encoded is addressed in 
these works, but is still the subject of further investigation.  

What has been recognised is that "topological relationships between two arbitrary objects 
(2D or 3D) will preferably be maintained implicitly, built in the geometric data model. 
These relationships can be derived by means of geometry functions and operators and can 
be used in constraints (e.g. to avoid overlaps)" (Stoter and Salzmann 2003 page 407). This 
implies that rigour will be required in the derivation of these relationships. 

3.1.6. Corporate Spatial Databases without Topology 
With the current move to corporate spatial data repositories rather than desktop GIS, it is 
now common (but not universal – see Section 3.1.7) to store individual features without 
topological encoding, making inferences about adjacency, nearness etc. as required rather 
than using a stored topology. This is now directly supported by several relational (and 
"object-relational") database vendors (Informix 2000).  

These approaches are generally optimised for speed of access to and processing of the data, 
and record the attributes of a feature with the spatial representation of that feature. This 
raises the possibility of recording multiple spatial representations of the same feature, for 
example at different accuracy levels (scales), and for different purposes (e.g. a polygon or a 
point representing a city). Typically, features are represented in two dimensions (with a 
possible height attribute on points), with the geometry represented as one or more points, 
lines or polygons. Unfortunately, these terms have very different meanings in different GIS 
environments. In an attempt to standardise these definitions, the Open Geospatial 
Consortium has published a set of discussion papers intended to lead to geospatial 
interoperability (OGC 2003). This refers to, and includes the International Standard ISO 
191076 which gives a detailed description of a set of data types – providing at least a clear 
understanding of the geometric terminology. 

The ISO 10107 standard also attempts to standardise operators between geometric objects, 
and states as two of its goals (ISO-TC211 2001): 

"Define spatial operators unambiguously, so that diverse implementations can be assured 
to yield comparable results within known limitations of accuracy and resolution" (my 
italics). 

and: 

"Define an operator algebra that will allow combinations of the base operators to be used 
predictably in the query and manipulation of geographic data."  

                                                           
6 The Open Geospatial Consortuim Abstract Specification Topic 1: Feature Geometry adopts and reproduces the 
ISO 19107 Spatial Schema. In this thesis, the ISO standard is cited in preference to the OGC specification. 
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 These aims are to some degree incompatible, because if base operators are to be used in 
combination and yield predictable results, the logic of those operations must be rigorous. 
On the other hand, the first goal allows differing implementations (by implication) to yield 
different (but comparable) results. This problem leads to the necessity for certain special 
relationships to be defined explicitly, such as the "interior_to" relationship (see Chapter 2 
Case 8 – Section 2.8).  

A further example of this issue is to be seen in the ISO 19107 standard under "6.2.2.18.3 
equals" (the equals method of the GM_Object class) (see also Chapter 2, Case 3 Section 
2.3): 

"Application schemas may define a tolerance that returns true if the two GM_Objects 
have the same dimension and each direct position in this GM_Object is within a 
tolerance distance of a direct position in the passed GM_Object and vice versa" (ISO-
TC211 2001). 

This is clearly a departure from the actual definition of equals, which requires point set 
equality: that is they must contain exactly the same "TransfiniteSet"7 of direct positions8. In 
fact, the attempt to implement TransfiniteSet in a digital representation is always going to 
be problematic. For this reason, these specifications belong to the category of those that 
deal with the mathematical model rather than the digital representation.  

The categorization of these as "implementation issues", leading to their not being 
considered in the ISO standard leaves a lot to be desired. The results of validation 
operations on receipt of data will depend on the decisions made by the implementers (see 
the case studies, in particular  "is_simple" – Section 2.4 and "interior_to" – Section 2.8), 
and so it becomes impossible to predict whether an attempt to interchange data will be 
successful. This appears to be a serious flaw in the standard. 

One of the results of this looseness of standardisation is to be seen in the GeoTools and 
GeoAPI projects (Codehaus 2006; OGC 2006), which are attempting to develop a set of 
Java classes based on the OGC specifications. There is a clash of definition between the 
"equals" operation as required in any class based on the Object class, and the equals 
operation required by ISO 19107. In brief, any method which over-rides the equals of the 
Object class cannot admit a tolerance. This is discussed in more detail in Chapter 2 Case 13 
Section 2.13. 

The goal of standardisation of definitions is still far short of target. van Oosterom, Quak 
and Tijssen (2003) have shown experimentally that the definitions of valid polygons in 
current use (by Oracle, Informix, PostGIS and ESRI) have significant incompatibilities. 
They have further shown that ISO 19107 and the OGC simple feature definitions (OGC 

                                                           
7 "TransfiniteSet" as defined by the ISO standard 19107 is simply the usual concept of a mathematical set. Since 
some programming languages define "set" to be finite, a different terminology was chosen. The actual definition 
given is:  "a possibly infinite set; restricted only to values.  For example, the integers and the real numbers are 
transfinite sets" (ISO 2001 5.1.4 a).  
8 The actual definition reads “Two different GM_Objects are equal if they return the same Boolean value for the 
operation GM_Object::contains for every tested DirectPosition within the valid range of the coordinate reference 
system associated to the object”. 
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1999b) have diverged, in spite of the Open Geospatial Consortium's adoption of ISO 
19107. It is also of note that none of the three database management systems considered in 
the study implement either the ISO or the OGC definition.  

A theoretical solution to some of these issues has been suggested (Thompson 2003) 
whereby the available validation routines for all clients who are likely to use the database 
are run against feature collections within the database. The results of those tests are then 
recorded in the metadata connected to those feature collections. This metadata is then 
available to determine fitness of purpose for the data. This is obviously a very expensive 
solution, since the exact details of the validation tests is not commonly documented, and so 
the data custodian must resort to purchasing copies of all software that is to be supported 
from each vendor. 

3.1.7. Corporate Spatial Database with Topology 
The next logical step: that of building databases which are capable of storing the topology 
is currently being taken. For example, 1Spatial9, and Oracle 10g have such technology. An 
early review of this can be found in van Oosterom et al. (2002) and in Louwsma (2003). 
The approach is equivalent to the traditional form of topological encoding available in the 
desk-top GIS, but with the advantage of the data being corporately available. 

As described earlier, the topological encoding ensures internal consistency between features 
of the same structured layer, and results in correct behaviour of the operations between 
these features. 

The limitations of the approach are: 

• The correct behaviour can only be guaranteed between features where topology has 
been pre-compiled. Where features are independently defined, any operation between 
them has the same difficulties as a similar operation in a non-topological database.  

• The data, although cleaned, and topologically correct, is still sensitive to small 
perturbations – for example of the sort discussed in Chapter 2 Case 4 Section 2.4, where 
a point movement of as little as 1 millimetre (in ground units) can cause the isSimple() 
test to fail. 

• Data sets which are not topologically pure are excluded from the database. The cost of 
cleaning the data can be very high, and many potential users of the data do not require 
topologically clean data. These users will be denied access to the data until cleaning can 
be completed. 

• The definition of topological purity is that defined by the database vendor. It may not be 
the same definition as is used by other vendors, so that the problems of interchange still 
apply. Even if the interchange is done using an interchange standard that does carry the 
topological encoding (e.g. GML3) (OGC 2004), this does not guarantee that the vendors 
will interpret it in the same way, and all current interchange standards allow 
“implementation specific” decisions to be made (see Section 3.1.6). 

                                                           
9 Previously known as LaserScan 
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3.2. Spatial Logic 
As was discussed in earlier chapters, a significant body of work deals with the 
representation of spatial features in a mathematical model, assuming a real number system, 
leaving the question of the implementation within a computer system less well covered. As 
an introduction to the discussion, it is in order to summarise some of the theories of space 
that have been applied to spatial data representation in computer systems.  

The spatial models to be discussed are the topological space (Section 3.2.1), the metric 
space (Section 3.2.2), the Boolean algebra (Section 3.2.3), the Boolean connection algebra 
(Section 3.2.4), the Egenhofer 9 matrix (Section 3.2.5), the region-connection calculus 
(Section 3.2.8) and the proximity space (Section 3.2.9). In this context, there is also a 
discussion of possible definitions of contact and continuity (Sections 3.2.6 and 3.2.7), 
boundary-free representations and mereotopology (Sections 3.2.10 and 3.2.11) and 
imprecision and region buffering (Sections 3.2.12 and 3.2.13). 

3.2.1. Topological Space 
A topological space is a set X and a family of subsets O (called open sets) (Gaal 1964) such 
that: 

(O.1) ∅ ∈ O and X ∈ O 
(O.2) if O1∈ O and O2∈ O then ∈21 OO I O 
(O.3) if Oi ∈ O for all i ∈ I then ∈

∈
i

Ii
OU O 

Where ∅ is the empty set, and X ∈ O means that the universal set is also open. I is an index 
set, not necessarily countable10. 

A summary of separation axioms on a point set topological space O may be useful. A 
topological space is described as being of type T0 to T4, with definition as follows: 

X is a T0 space if for any two points x,y ∈ X, x≠y, there is an open set O1 such that (x∈O1 
and y∉O1) or (y∈O1 and x∉O1). A T0 space is also known as a Kolmogorov space. 

X is a T1 space if for any two points x,y ∈ X, x≠y, there exist open sets O1 and O2 such that 
x∈O1 and y∉O1 and y∈O2 and x∉O2. A T1 space is also known as a Fréchet or 
accessible space. T1 ⇒ T0. 

X is a T2 space if for any two points x,y ∈ X, x≠y, there exist open sets O1 and O2 such that 
x∈O1 and y∈O2 and O1∩O2 = φ. A T2 space is also known as a Hausdorff, or separated 
space. T2 ⇒ T1. 

X is a T3 space if it satisfies the T1 criteria and is regular. X is regular if for every closed 
set C and every point x∉C there exist two disjoint open sets U and V such that C⊆U and 
x∈V. T3 ⇒ T2. 

                                                           
10 In this discussion, the index set could be considered to be finite – i =1..n, since all digital representations are 
finite, but in the generality of topological theory, countability is not mandated. 
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X is a T4 space if it satisfies the T1 criteria and is normal. X is normal if for any two 
disjoint closed sets C, D there are two disjoint open sets U and V such that C⊆U and 
D⊆V. (Cullen 1968). T4 ⇒ T3. 

Figure 3-2 shows a schematic of the sets that are used to define the separation categories of 
topological spaces. 

x y 
O1 

x y 
O1 O2 

x y 
O1 O2 

T0 space T1 space T2 space 

x 
U C V U C V D 

T3 space T4 space 
 

Figure 3-2 Diagram of required separations for topological spaces. 

 “A space is connected if it cannot be split into two non-empty disjoint open sets.” 
(Hurewicz and Wallman 1948 page 10). Note that any topological space which is regular 
and connected must be infinite. 

A point set topological space also permits the definition of a complement – the complement 
of O is denoted as O  and defined as {x: x ∉ O}. The complement of an open set is closed 
and vice versa. 

The term regular set (as distinct from a regular T3 space as defined above) is defined as a 
set which is equal to the interior of its closure. The definition used here is actually that of 
an “open-regular” set. There is also an equivalent concept – the “closed-regular” set which 
is equal to the closure of its interior. 

3.2.2. Metric Space 
A metric space is a topological space defined from a different set of axioms. For any pair of 
points p1, p2 in the metric space, a distance measure is defined which obeys the following 
axioms:  

(M.1) d(p1, p2) ≥ 0      (non-negativity)  
(M.2) d(p1, p2) = 0   ⇔  p1 = p2      (identity of indiscernibles)  
(M.3) d(p1, p2) = d(p2, p1)     (symmetry)  
(M.4) d(p1, p3) ≤ d(p1, p2) + d(p2, p3)      (triangle inequality).  

If axiom M.2 is omitted, this is known as a pseudo metric space (Gaal 1964), and it can be 
shown that every pseudo metric (and therefore every metric) space can be considered as a 
topological space. 

A Euclidean n-dimensional space is the space described by n-tuples of real numbers (x1,x2, 
…xn), and is denoted R R n 

. It has been shown that RRn  is a metric space, based on the distance 
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function between two points x = (x1, x2, x3, … xn) and y = (y1, y2, y3, … yn) defined as d(x, y) 
= ∑

=

−
ni

ii yx
..1

2)(  and that a metric space is T4. Further that any space which is Tn (n = 1..4) 

is also necessarily Tn-1 (Cullen 1968).  

3.2.3. Boolean Algebra 
It is more common to think of Boolean algebra in terms of number and logic representation 
in digital computers, but Stell (1999) has explored its applicability to spatial data, both 
raster and vector. This will be explored in some detail in Chapters 4 and 6. The axioms for 
a Boolean algebra (Weisstein 1999e) are: 

(BI.1) A∨A = A∧A = A     
(BC.1 A∧B = B∧A  
(BC.2) A∨B = B∨A  
(BA.1) A ∧ (B∧C) = (A∧B) ∧ C   
(BA.2) A ∨ (B∨C) = (A∨B) ∨ C   
(BAb.1) A ∧ (A∨B) = A ∨ (A∧B) = A  
(BD.1) A ∧ (B∨C) = (A∧B) ∨ (A∧C)  
(BD.2) A ∨ (B∧C) = (A∨B) ∧ (A∨C)  
(BB.1) 0 ∧ A = 0  
(BB.2) 0 ∨ A = A  
(BB.3) 1 ∧ A = A  
(BB.4) 1 ∨ A = 1  
(BInv.1) A ∧ Ā = 0  
(BInv.2) A ∨ Ā = 1. 

Where ∨ is the symbol for “or”, ∧ for “and”, and 0 and 1 are the false and true elements. 

3.2.4. Boolean Connection Algebra 
In addition to the axioms for a Boolean algebra, (Roy and Stell 2002) add axioms 
equivalent to the following to define connectivity C, thus creating a Boolean connection 
algebra: 

(B1) C(A, B) ⇒ C(B, A) 
(B2) C(A, A) for A ≠ 0 
(B3) ∀ ),(:)1,0( AACAAA ≠≠  
(B4) ∀ A ≠ 0, B ≠ 0, D ≠ 0: C(A,B∪D) ⇔ [C(A,B) ∨ C(A,D)] 
(B5) ∀ A ≠ 1 , ∃ B ≠ 0 : ¬C(A,B). 

The final axiom requires that the space be continuous, since if A is an atom, there cannot be 
any region B that is not connected to A . (This will be discussed in more detail in Section 
3.2.8, and in Section 6.1.1). 
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3.2.5. The Egenhofer 9 Matrix 
This matrix is frequently used to define specific relations between the mathematical models 
of spatial objects, in situations where a clear definition of a complex relation is required 
(Egenhofer 1994). It consists of a 3×3 matrix of Boolean values, structured as follows 
(Table 3-1): 

Table 3-1: The Egenhofer 9 Matrix  

A \ B Interior Boundary Exterior 

Interior A° ∩ B° not empty A° ∩ δB not empty A° ∩ −B  not empty 

Boundary δA ∩ B° not empty δA ∩ δB not empty δA ∩ −B  not empty 

Exterior −A ∩ B° not empty −A ∩ δB not empty −A ∩ −B  not empty 

 Where A° is the interior of A, δA is the boundary of A, and −A  is the exterior of A. So that, 

for example, 

0 0 1 
0 1 1 
1 1 1  indicates that the interiors of the regions do not intersect, but the 

boundaries and exteriors do. In other words, this is equivalent to external connection. The 
set of relationships defined by the Egenhofer 9 matrix are mutually exclusive and complete.  

The theory of space as defined by the Egenhofer matrix assumes a boundary representation, 
where, in relation to a spatial object, three point sets are defined – those points in the 
interior, those on the boundary, and those in the exterior of the region. These sets are 
assumed to be infinite and smooth. The issue of computer representation is not covered. 

3.2.6. Modes of Connection 
Cohn and Varzi (1999) Explore the meaning of connectivity between two regions as the 
product of two orthogonal modes. The first mode is the ‘variety’ of connection, and is 
determined by whether there is overlap between the regions, or between the closures of the 
regions. These are defined for regions x, y, with closures c(x), c(y) as follows: 

 C1(x, y) ⇔ x ∩ y ≠ ∅ 

 C2(x, y) ⇔ x ∩ c(y) ≠ ∅  or  c(x) ∩ y ≠ ∅ 

 C3(x, y) ⇔ c(x) ∩ c(y) ≠ ∅ 

The other mode is of more interest in this research, and involves the strength of the 
connection. The definitions can be expressed loosely in 3D as: 

Ca if the regions touch (at one or more points or lines – see Figure 3-3). 

Cb if the regions touch at a surface. 
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Cc if the regions touch at the entire boundary of one region (x completely fills a hole in 
y or vice versa).  

Cd if one region completely surrounds the other (x completely fills a hole in y or vice 
versa, and the inner and outer boundaries of the larger region do not touch). 

This gives a total of twelve varieties of connection, based on these two criteria, named Ca1 
to Cd3 as shown in Figure 3-3. Note that these are not mutually exclusive relations, and that: 

Cd ⇒ Cc ⇒ Cb⇒ Ca, and that:  

C1⇒ C2⇒ C3.  

 

y 

x 

y 

Ca 

y 

x 

y 

x x 

Cb Cc Cd

y y 

x x x x 
y y 

y y y y 

x x x x 

C1

C2

C3

 
Figure 3-3 Connection relations Ca1 to Cd3  (Cohn and Varzi 1999). 

The regions used in Figure 3-3 do not themselves overlap, (i.e. in the Cc and Cd cases, y has 
a hole the exact size of x), and the presence or lack of boundary lines should not be 
interpreted as requiring that the sets be completely open or completely closed sets (they 
may be partly open, partly closed – for example, it would not matter whether set y was open 
or closed on the western side in any of the examples.). The presence of boundary line 
indicates that it is the set itself that contributes to the contact, rather than the closure of the 
set. This nomenclature will be used in a modified form, in Chapter 5 and later chapters. 

3.2.7. Dimensionality of Contact 
Connectivity may also be described in terms of the dimensionality of the region of contact 
(Clementini et al. 1993), i.e. whether the region of contact is a point, line, surface or solid. 
In 3D, point and line connectivity are cases of Ca, surface connectivity is Cb, Cc or Cd while 
solid “contact” is overlap. The interrelation of these approaches in shown in Figure 3-4. 
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 Weak Connection 

Ca 
Cb ⇒ Ca

OV ⇒ Cb ⇒ Ca  

Strong Connection Overlap 

0D meet  1D meet 2D meet 3D meet 

1 2 3 4 5
6 

 
Figure 3-4 Modes of connectivity in 3D. 

A major difference should be noted between this approach and that of Cohn and Varzi. In 
this approach the form of connection is disjunct. That is to say, any two regions may meet 
in a single form only – either 0D meet, 1D meet, etc. By contrast, in the Cohn and Varzi 
form, any regions that are Cb connected are also Ca connected – thus the relationships are 
not mutually exclusive.  

3.2.8. Region-Connection Calculus 
An alternative approach (known as "RCC") sees the concept of open, semi-open and closed 
regions as "arguably too rich for our purposes" (Randell et al. 1992). This is certainly the 
case for representation of features within a geographic data base. The user of such data is 
unlikely to be interested in the distinction between a feature, its interior and its closure 
when pursuing a practical problem. Randell, Cui and Cohn, develop a logic which does not 
make an explicit distinction between open, semi-open and closed regions. (Bennett 1995). 
Bennet further explores this logic. This approach does not define any specific 
representation for regions, but shows that a rich and consistent logic is possible which 
dispenses with the need for a boundary point set associated with the geometric 
representation.  

RCC Theory assumes a single primitive relation C(x,y) between regions x and y (meaning 
"x is connected with y"), and the two basic axioms:   

Cref  ∀x C(x, x) (Reflexivity - any region x is connected with itself). 
Csym  ∀xy C(x, y) ⇒ C(y, x)  (Symmetry - x connected to y ⇒ y is connected to x). 

From this basis, a rich series of relationships is defined: 

DC(x,y)  "x is disconnected from y". 
P(x,y) "x is part of y". 
PP(x,y) "x is a proper part of y". 
EQ(x,y) "x is identical with y". 
OV(x,y) "x overlaps y". 
DR(x,y) "x is discrete from y". 
PO(x,y) "x properly overlaps y". 
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EC(x,y) "x is externally connected to y". 
TPP(x,y) "x is a tangential proper part of y". 
NTPP(x,y) "x is a non tangential proper part of y". 

For example, P(x,y) is defined as ∀z[C(z,x) ⇒ C(z,y)] (x is part of y if any region z which 
connects with x must connect with y). These relations are pictured in Figure 3-5, where the 
most basic (disjunct) relations are shown at the bottom. Where two basic relations are 
connected to a higher level (such as TPP and NTPP being grouped under PP) this means 
that the lower two are refinements of the upper. For example P (part of) can be broken 
down into EQ or PP (proper part), which can be further broken down into TPP and NTPP. 
The topmost node, marked “T” is true for all regions. Note also that the -1 superscript in P-1, 
PP-1 etc. does not mean the inverse function (¬P etc.), it indicates the reverse – i.e. P-1(a, b) 
⇔ P(b, a).   

T 

C DR 

OV 

P P-1 

PP PP-1 

TPP NTPP EQ NTPP-1 TPP-1 EC DC PO 

a 

a 
a a a 

a a a 

b 

b 
b b b 

b b b 

NTPP(a,b) TPP(a,b) EQ(a,b) NTPP-1(a,b) TPP-1(a,b) EC(a,b) DC(a,b) 

NTPP(b,a) TPP(b,a) 
≡ ≡ 

PO(a,b) 

 
Figure 3-5 The RCC relations (after Randell et al. 1992). 

The further functions sum(x, y) (equivalent to x ∪ y), compl(x) (the complement of x), 
prod(x, y) (equivalent to x ∩ y), diff(x, y) (equivalent to x ∩ compl(y)), and US (the 
universal set), are similarly defined, but Bennett introduces a slightly different definition, 
which avoids the need for a NULL region (which however requires a sorted logic and some 
modification of the other definitions). 

RCC originally added the further axiom – intended to ensure density of the regions: 

∀x∃y [NTPP(y,x)] (loosely - every region contains a smaller region which is 
completely contained within it). 

In discussing the possibility of atomic regions, Randell et al. (1992) showed that this axiom 
is redundant. Düntsch et al (2002), proved that it can be derived from the other RCC 
axioms. Thus the RCC is incompatible with an “atomic” space unless modified. The 
argument can be summarised as follows: Assume region A to be atomic (i.e. has no proper 
subset apart from the empty region OΦ). Let R be any other region R ≠ OΦ.  
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If R ≠ A, then R is connected to A . If R = A, then R is connected to A . Thus 
),(C),(C: ARARR ⇒∀ therefore AA⊆ . 

The RCC theory is particularly attractive since it makes no assumptions about underlying 
representation beyond this set of axioms. However, a universal region which is not itself 
locally Euclidean can lead to connection definitions that diverge from "common sense" 
(Gotts et al. 1996).11 Thus some modification of the theory will be necessary where finite 
computational representations of regions are to be accommodated. In addition, the theory 
cannot be applied directly to finite representations as discussed above. This will be 
considered in detail in Section 6.1.1. 

3.2.9. Proximity Space 
A closely related, alternative concept for the description of connectivity is that of the 
proximity space (Naimpally and Warrack 1970). Düntsch and Winter (2004) make the 
association between this and the Boolean connection algebra (see Section 3.2.4), and in 
fact, there is little difference apart from the symbolism used. The axioms given for a 
proximity space X with the proximity relation δ, regions A, B, C, E ⊆ X (the universal 
region) and empty region ∅ are (from Naimpally and Warrack): 

(PS1) A δ B ⇒ B δ A 
(PS2) (A ∪ B) δ C ⇔ A δ C ∨ B δ C 
(PS3) A δ B ⇒ A ≠ ∅  ∧ B ≠ ∅ 
(PS4) A δ B ⇒ ∃ E: A δ E  ∧ (X-E)  δ B 12 
(PS5) A ∩ B ≠ ∅  ⇒ A δ B. 

The axiom PS4 is known as the "strong axiom", and a proximity space which does not 
satisfy this axiom is known as a weak proximity space. In effect, this axiom requires a 
dense, non-atomic space.  

3.2.10. Boundary-free Representations 
Although the concept of a boundary as a point-set is useful in describing mathematical 
abstractions, it has no counterpart in the real world.  “… it is nonsense to ask whether a 
physical object occupies an open or a closed region of space, or who owns the 
mathematical line along a property frontier” (Lemon and Pratt 1998 page 10). It might be 
thought that the concept of a boundary would be needed to ensure a definition of such 
concepts as tangential contact, but this is not the case. An alternate approach, from the 
algebras of connectivity, permits such predicates without invoking boundary point-sets. 

                                                           
11 Gotts et al (1996) gives an example of an especially constructed (non Euclidean) universal region that gives rise 
to unexpected definitions of "connected". Lemon & Pratt (1998) define a spatial region which, although it satisfies 
the definition of a regular set within a Euclidean universal region, is problematic. It is to avoid these issues that the 
latter paper introduces the "basic polygon", as a restriction of the regular set. 

12 In this axiom,  δ means “not δ”. 
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One of the distinctions that can be made between the approaches of Egenhofer (Section 
3.2.5) and Cohn and Varzi (Section 3.2.6) on the one hand and the region connection 
calculus (RCC) (Section 3.2.7) and proximity space (Section 3.2.9) on the other, is that the 
first two can be characterised as boundary representations, while the latter are boundary-
free. The conventional, boundary description of a geometric object partitions space into the 
interior, boundary and exterior of that region. The concept of closure of a region is 
introduced – being the region with the boundary points included, as is the concept of 
interior – being the region with boundary points excluded. The alternative comes from the 
field of mereotopology. 

3.2.11. Mereotopology 
There is a significant advantage in taking a mereological approach to spatial logic (Smith 
1997), in that it avoids some of the distinctions between finite and infinite (smooth) sets. 
Thus, concepts such as "set contacts set" and "set includes set" move easily from the 
infinite to the finite realm13, whereas the definition of a region as a collection of points 
bounded by a boundary set of points does not.   

Briefly, the distinction is that point-set topology defines regions as sets of points, with 
boundaries being a separate set of points, either included or not depending on whether the 
region is closed or open. The alternative, mereological approach is to treat the region as the 
fundamental concept, with the boundary arising as a natural consequence of the region 
being limited in extent (Borgo et al. 1996). The difficulty with point set topology as a tool 
for the representation of spatial regions is that a boundary must consist of a dense (possibly 
infinite) set of points, and so a distinction is created between the mathematical model and 
the computational representation. The boundary must be dense, because otherwise there 
will be gaps in the boundary, leaving neighbourhoods where the division of points into 
interior/boundary/exterior breaks down. 

3.2.12. Imprecision and the Indiscernibility Relation 
In an attempt to allow for finite precision of operations, and finite accuracy and resolution, 
Worboys (1998) uses the concept of an "indiscernibility" relation ι where a ι b iff a and b 
are indiscernible within the representation. This is clearly not an equivalence relation, since 
a ι b, b ι c does not imply a ι c. (See discussion of Case 3 – the ISO 19107 Definition of 
equals() in Section 2.3). It does, however lead to a set of formal definitions for the concept 
of environments, or regions with indeterminate boundaries. It may be fruitful to approach 
the issue of the "tolerance" which is applied to many spatial calculations (Thompson and 
van Oosterom 2006a) in terms of the co-Heyting algebra formulation of Worboys (1998). 

 It is possible to define for points a, b that a ι b =def |ab| < δ  or: a is indiscernible from b iff 
the distance between a and b (as calculated using finite precision arithmetic) is less than δ 
where δ is the tolerance. This would allow the question of "on the line" to be replaced by 
"indiscernible from the line". This of course allows the possibility that a point will be 

                                                           
13 Avoiding the problematic boundary point-sets, which as described in Section 1.5.5 may contain very few points 
in a finite representation. 
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indiscernible from the interior of a region, and also indiscernible from the exterior of that 
region, which is acceptable in a co-Heyting algebra (Stell and Worboys 1997). While this 
does not provide any specific mechanisms for dealing with the sorts of issues documented 
in Chapter 2, it does allow a frame of reference for describing concepts such as the ISO 
19117 definition of equals() as an indiscernibility rather than an equivalence relation. This 
will be considered further in Section 6.8.4.  

3.2.13. Buffering of Regions 
In order to allow for imprecision in the definition of objects, and vagueness of definition of 
regions, many conventional GIS provide a buffering operation. The rationale is that when 
doing a search of objects in a region, it is better to include a few marginal objects than to 
omit any that should be included. For example, in determining which properties may be 
affected by a proposed activity, it is better to err on the side of inclusion. 

O3∈R3 

O4∈R4 

O5∈R5 

O1∈R1 

O2∈R2 

W 

 
Figure 3-6 Imprecision in a region search. 

Consider a search region which has been defined and measured to a limited accuracy (see 
Figure 3-6). Assume that to a 90% confidence, the position of all points defining the region 
is accurate to within δ of the correct position. Further, assume that objects Oi in the data 
base have accuracy such that their position is known to with γi, to a 90% confidence. If a 
search for objects is made based on this region, several cases can be identified, including: 

An object can be confidently within the region – all points in the object Oi are within a 
buffered distance of δ+γi within the region. Call this set R1. 

An object can be confidently contacting the region – some point(s) in the object Oi are 
within a buffered distance of δ+γi within the region. Call this set R2. 

An object can be possibly within the region – all points in the object Oi are within a 
buffered distance of δ+γi outside the region. Call this set R3. 
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An object can be possibly contacting the region – some point(s) in the object Oi are 
within a buffered distance of δ+γi outside the region. Call this set R4. 

An object can be confidently excluded – no points of Oi are within a buffered distance 
of δ+γi outside the region. Call this set R5. 

In practice, a particular search would make use of a subset of these regions. For example, a 
request might be made for “all objects within the region”. This would be accomplished by 
determining R1 (objects confidently within), R3 (objects possibly within) and 3R (objects 
not possibly within). Alternatively, a request for “all objects contacting the region”, which 
would use R2, R4 and R5. 

In the simple case being illustrated in Figure 3-6, it has been assumed that all objects in the 
database have an easily assigned positional accuracy γi (indicated by shading surrounding 
the region). In real cases this is more complex due to the nature of the accuracy of extended 
features.  

In practice, there are some significant difficulties in applying this kind of approach. The 
approach frequently taken is that, rather than searching for objects within a defined region 
W, the region buffered by γ+δ where γ = max(γi) is substituted. This is justified by the 
assumption that any object falling outside this buffer is unlikely to be affected. It is also 
common to use a “negative buffer” when only those objects that belong to R1 are wanted. 
The approach to buffering a region often is accomplished by generating a polygon 
approximation of a curved buffer around external vertices, which is quite appropriate for 
the vast majority of situations where a positive buffer is needed, but the negative buffer is 
less satisfactory.  

W 

O3 

p 

O1 

O2 

 
Figure 3-7 Positive and negative buffering of a region. 

For example, in Figure 3-7, a positive buffer around region W will include regions O1, O2 
and O3, as possibly intersecting with W. On the other hand, all will be excluded by the 
negative buffer shown. This is not correct in the case of O3 which has a high likelihood of 
intersecting W. This situation can apply whenever acute angles such as that at p occur in a 
defined region. 
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3.2.14. Fuzzy Logic and Fuzzy Regions 
A region O in a topological space X can be viewed as a Boolean valued function 
f(X)→{0,1}. That is to say, for every point p∈X, a value of 0 or 1 can be assigned with 0 
(false) meaning p ∉ O, and 1 (true) meaning p ∈ O. This crisp formulation can be replaced 
by a fuzzy logic formulation, replacing the Boolean valued function with a real valued 
function μ(X) → [0, 1]. That is, for every point p∈X, a value within the closed interval [0, 
1] is assigned (Dilo 2006). The interpretation of this function is that a point for which the 
value is zero is certainly outside the set, a value of one indicates certainty of inclusion, with 
all intermediate values indicating the degree of certainty. The support set of a fuzzy set is 
defined as the set of points for which μ(x) > 0, while the core is the set for which μ(x) = 1. 
These are both conventional sets. 

Ideally, this could be viewed as a probability density function, with the value at any point 
being the probability that the point belongs to the region. For example, if a 1 dimensional 
region is considered, say the region O = {x ∈ RR1 : x ≥ a}, i.e. those real numbers ≤ a. If the 
determination of the value of a is imprecise and this imprecision is the result of a large 
number of unrelated factors, by the central limit theorem the distribution of the 
measurement approaches the normal distribution. Therefore the probability density function 
of a (assuming the true value of a is μ) approximates to: 
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where σ is the standard deviation of the measurement (Hogg and Craig 1965).  

This means that the probability that a point at position x is within the region O would be: 
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Figure 3-8 1D fuzzy region, interpreted as a probability density function. 

In Figure 3-8, the fuzzy interpretation of region O is depicted as a probability density 
function, with a standard deviation of σ. For comparison, a function with a larger standard 
deviation σ’ is drawn as a dashed line. This would be ideal as a representation of an 
imprecise region, except for some practical considerations: 
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1. The function which defines the probability never reaches either 0 or 1, so that there is 
no core set for such as functionally defined fuzzy set, and its support set is X, the 
universal region. This introduces indexing difficulties, since it is impossible to define a 
useful bounding region around a set with an infinite support set. 

2. The calculation of such a function in the case of a polygonal region in 2D or a 3D 
polyhedron would be difficult. 

3. The probability density function of real measurements is probably not normally 
distributed. 

In practice, simplified functions such as ramps are frequently used.  

The major advantage of fuzzy sets in the context of this research is that if the function being 
approximated is continuous, there will be no gross changes in a result caused by a small 
inaccuracy in a position. Thus quantization effects caused by the finite nature of the 
representation will have limited effect. For example, in Figure 3-8, if the position of a is 
displaced a very small distance due to finite resolution calculations, a correspondingly 
small change in the value of the function will result. This is in contrast to the crisp logic 
situation, where a small positional change can lead to a change in the value of the function 
from true to false or vice versa. 

3.2.15. Single Sorted Algebras 
For reasons of abstraction and approximation14, it is common for a spatial database to 
contain a mixture of features represented by different geometric constructs. For example, 
there may be a polygonal coverage of land surface features, a network of roads represented 
as linear features, and towns represented as point features. This creates many difficulties in 
attempting to define a consistent algebra of operations, particularly when these are 
interpreted as point sets. Some operations may be applied meaningfully between certain 
object types, whereas they are not useful between others.  

 

 
Figure 3-9 The intersection of an area feature with a linear feature – resulting in a 

linear feature. 

                                                           
14 For example, at a certain scale rivers may be sufficiently narrow to be represented as single line features over 
most of their length, but be of sufficient width and detail to need to be area features in other parts. 



Chapter 3 – Related Work and Theory  

68 

Consider the intersection and union operations. These are amongst the most fundamental of 
all the operations on spatial objects, but have different criteria where mixed geometries are 
concerned. The intersection of an area feature with a point, linear or area feature is quite a 
meaningful operation, for example in Figure 3-9, where the intersection of the lightly 
shaded region on the left is formed with the linear feature. The result, as shown in the right 
pane is a linear feature. 

Forming the union of a mixture of geometry types is problematic, as can be seen in Figure 
3-10. Here, in contrast with the intersection which produced a single simple geometry type, 
the result is a single feature of mixed geometry type, or of generic type. 

 

 
Figure 3-10 The union of an area feature with another geometry type. 

Many commercial systems allow this mixed geometry type as a primitive for just this 
reason, and in fact it would be a marketing disadvantage not to provide the type, but there 
are further complications that result. It is highly desirable that a system should provide a 
subtraction operation15 (e.g. find the area of the local government region not under 
cultivation), but this is not readily accomplished where mixed geometries are allowed. For 
example, in Figure 3-11, the mixed geometry object (from Figure 3-10) is subtracted from 
the simple area feature. The result is a set of points within a polygon, but with holes that are 
not simply represented. (In this case, an infinitely thin line which is not part of the region). 

 
Figure 3-11 A mixed geometry subtracted from an area feature. 

                                                           
15 It can be argued that an inverse operation is not really necessary (as the universe excluding the points within the 
region), but a subtraction operation is very useful. 
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In order to ensure closure of the operations of union, intersection and subtraction of mixed 
geometries, it is necessary (in 2D) to provide a primitive which consists of a collection of 
areas, lines and points, with holes that can be areas, lines and points. 

This is known as a single sorted algebra, since there is only one object sort (called 
“geometry”, which is a complex collection of primitives as described above), and each 
operation must be able to be applied to any objects of this sort.  

3.2.16. Many Sorted Algebras 
The alternative approach is to use a sorted algebra, where operations may apply only to 
certain restricted sorts of objects. It is possible for different operations to have the same 
name. E.g. the intersection of two area features has the same name ("intersection") as the 
intersection of two linear features. 

A sorted algebra has a more complex definition and structure, but has advantages in the 
development of a simplified implementation, since the range of operations that need to be 
programmed has been clearly defined, and is restricted in scope. For an example of a many 
sorted algebra, see the discussion of the ROSE algebra in Section 3.4.5. 

Applied to the representation of spatial data, a many sorted algebra allows each sort of 
geometric item to participate in different operations. For example, the union operation 
might be defined for pairs of multi-area features, pairs of multi-line features and pairs of 
multi-point features (the detail is not important here), without necessarily allowing the 
union of a multi-area feature with a multi-line16. This fits well with the object-relational 
approach to database management, where a family of functions or predicates with the same 
name are polymorphically associated with different object types (Stonebraker and Moore 
1996).  

This might appear to be restrictive, but in practice it is not. Where an operation between 
particular sorts of objects is meaningful it can be defined, but where it is not meaningful it 
is not defined, and so there are no problematic operations to be implemented (such as area 
feature minus linear feature). 

3.3. Precision of Calculations and Representation 
Since a real number cannot be directly stored as a value, typically either integer or floating 
point representation will be used (see Section 1.5). This inevitably introduces an 
approximation on initial data capture, and rounding errors in individual calculations. 
Although the errors thus introduced can be made small by using high precision calculation, 
they remain significant as "it is impossible to separate the geometry from the topology since 
arbitrarily small geometry errors can later cause topology errors" (Franklin 1984 page 191). 

                                                           
16 This is not to say that union of mixed object sorts cannot or should not be allowed, but that a many sorted 
algebra allows detailed definition of exactly which operations are allowed and the sorts to which they can be 
applied. 
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Franklin introduces several alternate number representations – for example rational 
numbers of infinite precision, algebraic numbers etc. 

Franklin (1985) also makes the point that floating point numbers violate almost every real 
number axiom. On the other hand, infinite precision rational numbers satisfy the field 
axioms (Patterson and Rutherford 1965; Weisstein 1999d) of number theory17 (see 
Appendix I), and as was shown by Lemon and Pratt (1998) the rational number field can be 
used as the basis for a "rational polygonal domain". 

Dobkin and Silver (1990) apply an experimental approach to the question of accumulation 
of arithmetic errors in an extended calculation, and in keeping control of the accumulated 
error, but this has limited application to the problem being considered here, since even a 
single rounding error can cause the type of topology failure being considered here.  

3.3.1. "Magic Number" Problems 
It might be thought that the issue of rounding errors in calculations is relatively trivial, in 
that such errors are likely to be the order of millimetres or less at ground scale, whereas the 
true accuracy of the data being represented is of a much lower order. This, however, is not 
the case, since an inconsistency of results can lead to gross errors in certain rare cases.  

An example comes from an early edition of Sedgwick (1983) in the "point in polygon" test 
(since corrected in a second edition - 1988). Forrest pointed out a special case that caused 
the original algorithm to fail in very rare cases, and stated that "It is doubtful indeed 
whether any completely successful implementation exists or indeed can ever exist" (Forrest 
1985). 

The algorithm consists of running a ray from the test point due west (or any other 
direction), and counting the number of times the polygon cuts the ray – an odd value of the 
cut count signalling containment. The special cases arise when one or more of the vertices 
of the polygon fall exactly on the ray. 
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Figure 3-12 Point in polygon test - some of the special cases. 

The problem arises since there is a possibility of miscounting the number of times the ray is 
cut by the boundary lines. 

                                                           
17 In summary, these axioms require closure of the operations of addition, subtraction and multiplication, and 
partial closure of division. 
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Figure 3-13 Point in polygon test - more complex special cases.  

 As it happened, Forrest was wrong in this particular case, and a completely satisfactory 
algorithm does exist (Sedgwick 1988). However examples of this class of error are still 
quite common in commercial spatial software, and are given the colloquial name "magic 
number problems". They are categorised by the extreme rarity of failure (often with a 
probability of about 1:109 of occurring in any individual case), and caused by accidental co-
incidences of values. This rarity makes the removal of these "bugs" by classical 
"debugging" techniques totally impractical, based on achievable test data quantities, and 
often the problems remain undetected or are ignored. 

Note – increasing the precision of calculations does not solve this type of problem; it 
merely makes its occurrence less frequent. It also makes this kind of problem less likely to 
be found by testing. 

3.4. The Digital Representation 
The majority of the literature on the representation of spatial information within computers 
has, as this chapter shows, been in the realm of the mathematical model, with such issues as 
rounding, imprecision and calculation errors being largely left to the programmer. This 
section discusses the smaller body of literature that deals directly with the finite precision 
of the computer representation. 

3.4.1. Simulation of Simplicity 
In an attempt to remove problems associated with rounding and accidental coincidences of 
numeric values (see Section 3.3.1), the technique of "Simulation of Simplicity" has been 
developed (Edelsbrunner and Muecke 1988). This uses the concept of a perturbation of the 
case in question by a small amount, so as to prevent any degenerate cases such as the co-
incidence of latitude cited by Forrest (the “magic number” problems discussed in Section 
3.3.1). This perturbation is allowed to be smaller than the minimum resolution that can be 
represented in the digital number system, and is therefore not actually included in the 
calculations, but proves that the algorithm is correct.  

As a simple example, returning to the problem of determining if a point is within a polygon 
(in 2D), the problem of “is point p = (x, y) within the polygon”, the problem is restated as 
“is point p = (x, y+ε) within the polygon”. If ε is smaller than the grid interval, then this is 
an equivalent problem.  
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p = (x, y)  

 

 
Figure 3-14 Using "Simulation of Simplicity" to solve the point in polygon problem. 

One procedure for determining whether a point is within a polygon is to run a ray to the 
west and count the times the polygon boundary cuts the ray. An odd number of cuts 
indicates that the point is within the polygon. Referring to Figure 3-14, if point p had been 
used, and a ray run to the west, the ray would have passed through vertices v1 and v2, 
creating significant special case processing. (For more examples of this issue, and the 
complexity of the special cases, see Section 3.3.1).  By using point p’, by contrast, no 
vertices can ever possibly lie along the ray. The edges that meet a vertex v1 will not be 
counted, while those at v2 will both be counted – so that the parity of the answer will be 
correct. If the value of ε is allowed to approach zero, then p’ approaches p.  

In this case, a simple solution is available which does not include ε in the calculation, but in 
the more general cases, additional resolution is needed in the calculations. Edelsbrunner 
and Muecke postulate a series of primitive functions which parallel the usual mathematical 
functions, but which take account of this perturbation (and thus hide the details from the 
casual user). For example, in place of the “less than” relational predicate, a “Smaller” 
function is defined which eliminates the equality case. Thus ¬a.Smaller(b) ⇒ b.Smaller(a).  
These have additional precision requirements for internal calculations. 

While an extremely powerful technique in tackling individual problems, "Simulation of 
Simplicity" is difficult to apply to "componentised" software, and particularly where the 
nesting of functions is not constrained.  

3.4.2. Milenkovic Normalisation 

Milenkovic defines a set of normalisation rules, based on a parameter ε which is chosen 
using the criterion that the "distance between a point and a line segment can be calculated 
with accuracy ε10

1 " (Milenkovic 1988 page 382). Three of the relevant rules are: 

1. No two vertices are closer than ε. 
2. No vertex is closer than ε to an edge of which it is not an endpoint. 
3. No two edges intersect except at their endpoints 
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For spatial data that satisfies these rules, a random relative movement of points which does 
not exceed ε will not result in an invalid geometry (by the OGC definition of "valid"). This 
clearly prevents interchange problems like those illustrated in the Case Studies 2, 4, 6 and 
12 (Sections 2.2, 2.4, 2.6 and 2.12), provided the magnitude of any perturbation of the point 
positions is < ε.  On the other hand, if data positions are perturbed by a random amount up 
to a maximum distance of δ, on arrival, the data is no longer guaranteed to be valid at a 
tolerance of ε, but at a smaller tolerance ε-δ. 

Thus it is not practical to specify a particular tolerance value ε, and promulgate it as a 
universal definition of validity, since any perturbation in transmission will potentially cause 
the validity test (at tolerance ε) to fail. A preferred practice is to define the “robustness” of 
the data – as the largest possible value of ε for which the data is Milenkovic normal, 
allowing transmission if the transmission accuracy δ is better than ε, and contracting to 
deliver the data as “Milenkovic normal at ε-δ” (Thompson and van Oosterom 2006a). 

Milenkovic normalisation solves many issues of failure of operations, but only where the 
geometric constructs have been normalised prior to those operations. In addition, 
normalisation of a construct exaggerates the movements of points such as seen in Case 1 
(Section 2.1) since the minimum distance ε must be ten times the grid spacing, and so the 
process itself may not be associative. In addition, the process can be difficult, with the 
selection of tolerance parameters not being a trivial exercise. 

3.4.3. Realms 
A direct approach was taken by Güting and Schneider (1993) using the concept of "realms", 
investigating in detail the properties of the representation itself, rather than the 
mathematical abstraction. Realm objects are defined in terms of the finite digital 
representation. In effect, all feature representations on entry to the database are compared 
with all existing representations in the vicinity, and the points of intersection calculated. 
This may be an expensive operation, but results in a closed and correct logic for the 
operations between the objects. Many of the cases discussed in Chapter 1 are successfully 
handled by this approach. (The relationship between this approach, and the approach being 
suggested in this proposal will be discussed in more detail in Chapter 9). 

This approach is taken further by Güting et al (1995) with the definition of a complete, 
numerically robust algebra ("ROSE") (see Section 3.4.5). These papers are restricted in 
scope to 2D, but there is no apparent reason why the "realms" approach should be thus 
limited. There would, however, be a significant increase in complexity involved in 
extending to the additional dimension.  

In order to prevent the problems such as non-associativity of operations (see Section 2.1 - 
Case 1) and other such problems where a movement generated by the calculation of points 
can cause earlier results to become invalidated, the realms approach uses a technique of 
trapping a line within its envelope (Green and Yao 1986) – introducing extra points if 
necessary. 
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Figure 3-15 Calculating the intersection of lines XY and HB, (from Güting and 

Schneider 1993). 
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Figure 3-16 Movement caused by the intersection of two lines. 

Since point E has been inserted into line DX, point A is no longer on the line. 

In Figure 3-15 and Figure 3-16, the line XY, which was initially to the north of point A has 
been broken twice (at D and E) as a result of the two intersection operations. Now the line 
XEDY passes to the south of point A. In order to prevent this, an "envelope" of points 
around the line is defined, and extra vertices, such as A in Figure 3-17, introduced in the 
generated line, so that the new line, in being moved, does not move across any grid point. 
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C X 

 
Figure 3-17 Modified solution – proposed by Green and Yao (1986). 

The line has been broken to include point A. 
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Figure 3-18 Envelope of points surrounding a line. 

Figure 3-18 shows the envelope of points that surround a line. These comprise all the points 
adjacent to the line on each side – that is, all points within one grid interval. These are the 
points that could become intersection points of this line with any other line, and they mark 
the greatest distance the line can be displaced from its original position (the line remains 
within the shaded area no matter how many intersection operations occur). 

This provides a solution, but at the cost of extra complexity in the final geometry. Note 
firstly that the introduction of a point in a "straight" line may involve the introduction of 
several "envelope points" as vertices in the line. It is not clear just how many points could 
be required, and this is an area that has been identified as requiring some further research. 
On the other hand, note that the wanderings of a line caused by these operations cannot 
exceed the grid size, thus a limit has been set on any "creeping" of the data. It also should 
be noted that the final result is dependent on the order of formation of the intersections: 
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Figure 3-19 Intersecting line XY with line AB and then line CD. 

For example, in Figure 3-19 the line XY has been moved to the north, while in Figure 3-20 
it has moved to the south. The total movement is less than a grid interval, and so is within 
the requirements of the realms approach.  
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Figure 3-20 Intersecting line XY with line CD and then line AB. 

In three dimensions, the situation becomes more complex. Presumably, the same form of 
envelope would be defined, and any line or plane surface would be similarly constrained. 
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Figure 3-21 Intersecting plane surface A with the plane surfaces B and C.  

Consider the case depected in Figure 3-21, in which the plane surface A is being intersected 
with surfaces B and C (which are assumed to be coplanar). Even in this simple case, 
snapping of the calculated points a and b may cause envelope points to be generated in the 
perimeter of A. Similarly, the calculation of c may cause point generation of extra points in 
ac and bc. Even more, the movement of the perimeter of A will cause movement of the 
plane itself, so that envelope points may be contacted by the plane A itself. 

The points marked with an “×”, in Figure 3-22 are envelope points of A contacted by the 
plane, and now included in the surface definition. The fine lines are the "crease lines" 
caused by these points. (Only surface A has been used to illustrate the "creasing" effect).  
This is not to say that the approach will not work in 3D. It certainly will, but the complexity 
of the resultant objects would be expected to increase dramatically over the 2D case. 
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Figure 3-22 Additional envelope points included in lines and surfaces. 

3.4.4. The Dual Grid 
The “dual grid” (Lema and Güting 2002) defines points, lines and regions (in 2D) in terms 
of points with rational number coordinates. In order to avoid the movement of line 
segments when they are intersected with other line segments (as described above in Section 
3.4.3), two grid intervals are used. The coarser grid is used to define any points that can be 
the end points of a line segment, while any point that represents the intersection of two line 
segments can be represented by coordinates on the finer grid. This finer grid is based on 
rational numbers, but it should be noted that these rational numbers are of finite precision. 
See Section 4.4 for a definition of domain-restricted rational numbers. 

For example, returning to the example shown in  Figure 3-16, the dual grid approach does 
not force the points of intersection to fall on the points of the same grid as used to define 
the lines. As can be seen in Figure 3-23, the points of intersection (shown as open circles) 
are between the grid points, and are exactly calculated as higher precision rational numbers. 
This means that, again returning to the earlier example, point A remains in the same 
relationship to the line as before calculation of the intersection. The dual grid has, like the 
realms approach, been shown to implement the ROSE algebra. 
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Figure 3-23 The example from Figure 3-16 as represented in the dual grid. 

The points of intersection of lines which do not fall on the first level grid points cannot be 
used as the endpoints to define new lines, as this would lead to unbounded precision 
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requirements. For example, in Figure 3-23, a line cannot be defined with point D as an 
endpoint. 

There is some additional complexity involved in extending the dual grid approach to 3D, 
which will be discussed in Section 7.7.1. 

3.4.5. The ROSE Algebra 
The ROSE algebra (Güting and Schneider 1995) is a many sorted algebra (see Section 
3.2.16) designed for geographic information. It provides for geometries which are 
collections either of points, lines, or regions18, with the operations being defined for these 
types, where applicable. The basic object, the realm, which is used to construct all 
geometric primitives, is a set of points which lie on a discrete grid, and non-intersecting 
lines whose endpoints also lie on this grid. All intersections between line segments are 
assumed to be pre-calculated at the time the representations enter the database, or when 
updates are made. “…there are never any new intersection points computed in query 
processing.” (Güting and Schneider 1993).  

For example, there is an operation union19 defined on two regions values, which returns a 
value of type regions. (The return region is the area that is within either region). Implicit in 
this is a form of normalisation, where the union of two regions is actually defined as the 
closure of the union of the interior of those regions – thus eliminating any lines or points 
from the result.  While there is no mixed geometry type, there are “kinds” such as GEO, 
which allow for polymorphic operations. Thus is possible to define the inside predicate as 
operating on one object of type GEO (points, lines or regions) and one object of type 
regions. The return value is true if the object of type GEO is within the object of type 
regions. 

There are four classes of operations: 

Spatial predicates (e.g. inside, adjacent), 
Operations returning spatial objects (e.g. intersection), 
Operations returning numbers (e.g. length), 
Operations on sets of objects (overlay, fusion). 

It is significant that there is a subtraction operation (difference), returning the difference 
between two objects of the same geometric type, and that the intersection operation comes 
in several varieties – for example, lines intersecting lines give points as a result, regions 
intersecting regions give regions as a result. Regions intersected with lines give lines. 
Intersection is defined on the realms that define a region, so that the intersection of two 
regions is always a region etc., and cannot ever degenerate into the points or lines of 
contact. By contrast, plus (union) and minus (difference) are more restricted, only applying 
to objects of the same sort. Also of significance are the overlay, sum and fusion 

                                                           
18 The algebra as defined is limited to 2D, but would readily extend to 3D or more without requiring any new 
concepts. 
19 The use of bold typeface, italics and underlining in this section follows the usage in Güting and Schneider 
(1995b). 
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operations. Overlay calculates the superimposition of two partitions of the plane, breaking 
all regions into the smallest common regions (e.g. overlaying administrative districts onto 
vegetation types). Sum forms the union of all regions in a set, and fusion combines regions 
according to some common attribute value (e.g. a collection of cadastral parcels could be 
fused into regions of the same town planning code). 

It might be thought that this algebra is more restrictive and less flexible than the single 
sorted algebra discussed above, but this would be to miss the point. The operations that are 
not permitted in the ROSE algebra are not useful, and can produce positively misleading 
results. For example, a calculation of the area of a mixed object such as those in Figure 
3-11 cannot be expected to give a meaningful result. Likewise, the area of a linear feature, 
or the length of an area feature cannot return useful results. 

As was described above, the ROSE algebra also has the track record of having been 
implemented in both the realms approach (Section 3.4.3) and in the dual grid approach 
(Section 3.4.4). 

3.4.6. Infinite Precision Rational Numbers  
The "complete calculus for rational polygonal regions" (Lemon and Pratt 1998) suggests an 
approach built on rational numbers as a basis. "Infinite precision rational numbers", are also 
suggested by Franklin (1984). The biggest advantage of infinite precision rational numbers 
is that they satisfy the mathematical field axioms (see Section 1.5.3, and Appendix I.1). 
That is to say, they form a number system which is closed under addition and 
multiplication, and each number except zero has an additive and a multiplicative inverse 
(Patterson and Rutherford 1965; Weisstein 1999d). Schneider and Praing (2006) develop a 
rigorous logic known as “spatial algebra 2D” (SPAL2D), based on this kind of 
representation. They describe the form of number as “arbitrary, finite length … limited by 
main memory”.  

Infinite precision rational numbers can in fact be represented digitally20. For example, the 
Java package Java.math (Sun 2003) (amongst other environments) provides data types of 
"BigInteger" and "BigDecimal", which allow arithmetic to be performed on numbers of 
arbitrary magnitude up to the memory size available. An infinite precision rational number 
could be defined as the ordered pair of "BigInteger" variables (P, Q), where Q > 0, and 
given the interpretation P/Q. A set of arithmetic operations can be defined such as addition 
and multiplication: 
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 where F2 = largest common factor of P1×P2 and Q1×Q2. 
 

                                                           
20 This is not, strictly speaking, true, but can be treated as being so for this purpose – see Section 1.5.4. 
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Note that the worst case in this definition is when the largest common factor of P1×P2 and 
Q1×Q2 is 1. If P1, P2, Q1 and Q2 are random numbers, the probability of P1 and Q1 being 
relatively prime is about 0.6079 (actually 6/π2 (Castellanos 1988; Weisstein 2006b)), the 
probability of P1 and Q2 is also about 0.6079.  

Therefore the probability of P1 and Q1×Q2 having a common factor is approximately: 
0.3921 + 0.6079 * 0.3921 = 0.6305.   (The probability of P1 and Q1 having a common 
factor plus the conditional probability that P1 and Q2 have a common factor given that P1 
and Q1 do not). 

Therefore the probability of P1×P2 and Q1×Q2 having a common factor is similarly about: 
0.6305 + 0.3695 * 0.6305 = 0.8634 

That is to say, in about 14% of cases, the common factor in the above definition can be 
expected to be one, and no reduction in storage requirements is possible. 

This highlights the disadvantage of the infinite precision rational number approach in that 
any operation between rational numbers is highly likely to increase the precision 
requirements of the result. Thus after a long series of operations, the storage requirements 
of a representation increase (without bound), and processing time requirements for further 
operations increase (also without bound). Note that with numbers of the size found in 
spatial data – where 9 digits resolution is commonplace, the numerators and denominators 
can become very large indeed. The characteristic of unlimited rational numbers is that each 
time a pair of numbers is added, subtracted or multiplied, the denominator is potentially the 
product of both denominators. For example if common factors are not applied in equations 
f3.1 and f3.2 they become:  

(P1, Q1) + (P2, Q2) = (P1 × Q2 + P2 × Q1, Q1 × Q2) 
(P1, Q1) × (P2, Q2) = (P1 × P2, Q1 × Q2) 

A common factor can be found, using the Euclidean Algorithm (Courant and Robbins 
1941; Weisstein 2006a) which allows the fraction to be simplified in some cases, but 
typically, the precision requirements grow linearly (in terms of number of bits required in 
the result) with the number of operations executed.  

For example, in order to calculate a plane that passes through three (non collinear) points 
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), the formula can be given as (Weisstein 2002a): 
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That is to say, in the form Ax + By + Cz + D = 0, with A, B, C, D integers, 

A =  y1 z2 - y1 z3 + y2 z3 – y2 z1 + y3 z1 – y3 z2. (f3.4)  

Where all points have integer coefficients, in the range –M to M, this means that A is an 
integer in the range  -6M2 to 6M2. Similarly, B and C are in the same range, and 

D = x1 (y2 z3 - y3 z2) + x2 (y3 z1 – y1 z3) + x3 (y1 z2 – y2 z1). (f3.5)  
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Thus D is in the range -6M3 to 6M3. As a rough calculation, if the coordinates of points in 
3D are stored as 32 bit integers, the formula for a plane which passes through them in the 
form Ax + By + Cz + D = 0, with A, B, C and D integers will in general require A, B, C to be 
at least 64 bit integers, and D to be 96 bits.  

The point of intersection of three planes defined by A1x+B1y+C1z+D1=0, 
A2x+B2y+C2z+D2=0, A3x+B3y+C3z+D3=0, can be shown to be at point p=(x,y,z) with x = 
Px/Q, y = Py/Q, z=Pz/Q, where:  
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Thus Q is potentially in the range -64M6 to 64M6, and Px, Py and Pz are in the range -64M7 to 
64M7.  

An alternate storage for rational points is the homogeneous coordinate form, as defined in 
the discipline of Projective Geometry (Coxeter 1974), and used for example in the LEDA 
library of geometric tools (Mehlhorn and Näher 1999). In this approach, based on the 
concept of homogeneous coordinates, the rational points are stored as a tuple of integers (X, 
Y, Z, W) with W > 0. The point is interpreted as having rational coordinates (x, y, z) where x 
= X/W, y = Y/W, z = Z/W. This is clearly an efficient way of representing points which are at 
the intersection of three planes since, given the planes as above, the point of intersection p 
can be represented as p = (Px, Py, Pz, Q). The formula for the plane through three points 
(X1,Y1,Z1,W1), (X2,Y2,Z2,W2), (X3,Y3,Z3,W3) becomes: 

0

3333

2222

1111 =

WZYX
WZYX
WZYX
WZYX

 (f3.8) 

Rough calculations show (see Appendix IV.11) that if three planes are intersected to define 
a point, and three such points used to define a plane, the storage requirements for this plane 
are ten times those of the original ones. (For example, if the original planes require 64 bits, 
the next generation of planes require 640 bits per parameter. Thus every operation on a 
three dimensional object defined by unrestricted rational number points potentially creates a 
very large (and multiplicative) rise in the precision requirements. 

Note, however, that this effect is not as extreme in the case of 2D spatial objects, where the 
multiplier effect is smaller. 
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3.4.7. Interval Arithmetic 
Franklin (1984) discusses the use of “interval arithmetic” in the context of preventing 
topological failures caused by finite precision calculations. In effect, this approach 
represents a real number computationally as an ordered pair of floating point numbers, 
representing the minimum and maximum possible value the real number could have. When 
any operation is carried out between two variables, the widest range of values that could be 
generated as a result is determined, allowing for inaccuracies in the calculation and the 
original range of numbers.  

For example, assuming that only 3 decimal digits are available for calculation, a variable 
might be intended to have the value π but be represented as (3.141, 3.142). The variable r 
might be measured, and fall in the range (1.245, 1.246), so that calculation of π.r using 
interval arithmetic would give the result (3.910, 3.915). The first integer represents the 
product of the minimum values, rounded down to three decimal places. The second is the 
product of the maximum values, rounded up. 

Notice that this approach is rigorous, but pessimistic. (In the above example, the range of 
imprecision has increased from 0.001 to 0.005 in a single operation). After a number of 
operations, the true result will be guaranteed to be within the calculated interval, but the 
theory of rounding would have led to significantly smaller estimates of the likely error 
(Goldberg 1991).  

Applied to spatial data, appropriately used, this approach will ensure that no topological 
failures will ever occur undetected, provided that the “worst cases” for every coordinate 
value can be determined. This is not always obvious (see Figure 3-24), and so there is some 
scope for this to be combined with the robustness measure approach discussed in Section 
2.4. As a first test, a tolerance can be determined from the intervals in each point coordinate 
value, and used as the parameter in a test for Milenkovic normalisation. If this succeeds, the 
geometry is valid, and there is no need for more complex calculations.  
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Figure 3-24 Interval arithmetic and geometric validity. 

As an example of the difficulty in determining the worst cases in interval arithmetic, 
consider point 4 in Figure 3-24. In this figure, each point is surrounded by a rectangle that 
represents the interval of its coordinate values. If points 1 and 2 happen to take their 
minimum values, then the worst case for point 4 is the maximum values of its coordinate 
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intervals. On the other hand, it also has a worst case on its southern limit (risking a clash 
with point 9), and its north-western corner (risking a clash with point 6). 

Note that the interval arithmetic range of accuracy is not to be confused with the actual 
positional accuracy of the original data. The range of values in interval arithmetic is a “hard 
edged” range. There is no possibility that the true result could fall outside the limit set by 
the ordered pair of floating point numbers. In general, the measurement of a real-world 
value generates a number with a certain accuracy, often with a normal distribution (Fraser 
1958). This, by contrast is a “soft edged” range, and there is a non-zero probability that the 
true value may be outside the stated range. 

For example, if an object is measured at 134m ± 0.5m, it cannot be claimed that the object 
cannot be less than 133m long. Frequently a confidence limit is stated – for example a 95% 
confidence means that, on average about 5% of measurements will be outside the stated 
accuracy range.  

3.4.8. Constraint Databases 
This is a relatively new approach (Grumbach and Jianwen 1997), extending the well 
accepted relational database model, which can be applied to spatial data by recognising that 
a geographic region can be encoded as a set of constraints which are equations or 
inequalities defining the boundaries of the region (Kanellakis and Golding 1994; Kanellakis 
et al. 1995). Each constraint can be a linear or other inequality which constrains the region 
in space (similar to the concept of "half space" to be introduced in Chapter 4). These 
constraints can be combined using “and” and “or” conditions to define a spatial region. (e.g. 
"Brussels = (y≤13) ∧ (x≤11) ∧ (y≥12) ∧ (x≥10)").  

A linear constraint model has been proposed by Gunther (1988) and by Vandeurzen et al. 
(2001), in which geometric objects are represented as a finite sum of convex "cells" each of 
which is a finite intersection of half planes. Although using the language of 2D, this 
approach has no dimensionality limitations. It can further be shown that it is topologically 
correct in its results. The representation can also be made robust. If the constraints are 
chosen carefully, small changes in the constants will cause commensurately small 
movements of the positions of the boundaries. Furthermore, these movements will not in 
any circumstances cause a region to become invalid.  

There are many variants on the constraint approach, depending on the complexity of the 
allowable constraints - linear, polygonal, non-linear or semi-linear (Vandeurzen et al. 
2001), and no clear indication of which varieties are the most appropriate to a specific 
application. Nevertheless, a prototype known as "Dedale" has been built, and proved to be 
efficient in the 2D case, and showing promise for extension into 3D and higher dimensions 
(Grumbach et al. 1997; Grumbach et al. 1999; Grumbach et al. 2000).  

There is a strong relationship with the current research and the linear constraint model, and 
this will be discussed in some detail in Section 6.9.  
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3.5. Conclusions 
This chapter has addressed existing literature pertinent to this research subject, revealing 
the situation of a well understood and researched theory of space, usually defined in terms 
of an infinite number representation, but with much work needed on the issue of correctly 
implementing it using finite digital equipment. Various models are in common use for the 
digital representation of spatial features, possessing different levels of rigour in their 
definition, but the definition of operations and predicates between objects is far from 
satisfactory. While the technique of topological encoding can provide a rigorous internal 
logic for dealing with single layers of 2D data, the issue of transporting spatial data 
between systems from different vendors is not solved, and the situation in 3D requires 
considerable work.  

One indicator of this lack of a regime of rigorous definition can be seen in the 
inconsistencies in meaning and behaviour of 2D polygons as interpreted by various 
commercial software packages and databases, which has been highlighted by van 
Oosterom, et al. (2003). It is essential that such problems be avoided in future 2D and 3D 
cases, where the potential for confusion is so much higher. A further indicator is that the 
“GML relay” which has been held four times since 2001 maintains its interest (de Vries et 
al. 2005). The aim of this relay is to transfer data between heterogeneous GIS products 
using the GML format without difficulty. It is to be hoped that this kind of activity can one 
day become commonplace. 

Chapter 4 introduces a construct which has potential in addressing these issues. This is 
named the “regular polytope”, and is rigorously defined. The properties are explored, and 
the space of regular polytopes is shown to be a metric topology and a Boolean algebra. In 
addition, the regular polytope is shown to be “regular” in the topological sense (see Section 
1.4.4). Finally, the issue of detection of overlap and equality is explored, first for the purely 
integer representation, and then for a representation based on rational numbers with a 
limited range of quotients and divisors.  This approach which will be shown in later 
chapters to provide an internally consistent logic, providing a consistent basis for storage of 
spatial information, and allowing interchange of data without the potential breakdown of 
validity that is manifested by current technologies. 



  

  

 

Chapter 4 

The Regular Polytope 
Representation 

The previous chapters have illustrated some of the problems that can arise in the 
representation of spatial objects using constructs based on finite precision arithmetic, with a 
particular emphasis on the lack of support for a rigorous algebra. Some alternative 
approaches to the subject have been highlighted, but many issues remain to be solved. This 
chapter will show that a topological space may be defined on a spatial primitive based on 
the union of a set of convex polyhedra, which in turn may be defined as the intersection of 
half spaces defined by parametric equations with integer coefficients (within fixed size 
domain). This construction is referred to as a “regular polytope” (Thompson and Van 
Oosterom 2007), and has been researched to resolve these issues. This approach is related 
in structure to the linear Spatial Constraint database model (Kanellakis and Golding 1994) 
(see Section 3.4.8), and shares with that approach the fact that it defines a topological 
space. A discussion of the relationship between this approach and the linear constraint 
approach can be found in Section 6.9.  

Many of the properties of the regular polytope are independent of the number 
representation used in the computation and interpretation, while some other properties 
depend strongly on representations. For this reason, this chapter discusses the approach in 
terms of integer, floating point and what will be known as “domain-restricted rational” (dr-
rational) numbers. The regular polytope is defined and the basic properties explored in 
Section 4.1. In the first instance, those properties which are independent of the number 
representation are discussed in Section 4.2. The space of regular polytopes is shown to be a 
topological space (Section 4.2.1), a metric space (Section 4.2.2), and to be a Boolean 
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algebra (4.2.4). In addition, the regular polytope is shown to be regular in the topological 
sense in Section 4.2.3, and the issue of detection of overlap and equality is explored 
(Section 4.2.5).  

These properties are then discussed in alternate computational contexts, first for the purely 
integer representation (4.3), and then for an interpretation based on rational numbers with a 
limited range of quotients and divisors - referred to as dr-rational numbers (Sections 1.5.4 
and 4.4). Floating point representation is briefly touched on in Section 4.5, and the chapter 
concluded with a summary of findings (Section 4.6). The proofs of assertions made in this 
chapter can be found in Appendix II, or Appendix IV where dr-rational numbers are 
involved. 

4.1. The Regular Polytope 
A regular polytope representation of spatial objects is defined as the union of a finite set of 
(possibly overlapping) "convex regular polytopes", which are in turn defined as the 
intersection of a finite set of half spaces (in 3D, half planes in 2D). These half spaces 
(planes) are defined by finite precision representations (3 values in 2D, 4 in 3D etc.). The 
term “regular polytope” here does not carry its common meaning as the generalisation of a 
regular polygon/polyhedron (one having equal sides, faces and angles etc.). In the form 
used here, it combines the topological term “regular” (see Section 1.4.4) with the 
conventional geometric meaning of “polyhedron”. 

4.1.1. Arithmetic Axioms 

In the following discussion, to avoid confusion, the symbols ⊕ ⊗ ∅  are used to indicate 
the results obtained by adding, multiplying, dividing, and negating/subtracting using the 
computer hardware, while + . / - are used to indicate the actual sum, product quotient and 
negation/difference of the real numbers or integers that the values represent – thus the 
statement: A⊕B = A+B should be interpreted as an assertion that the computer addition of 
the variables gives the correct result1.  

Rather than assuming a particular number representation within the computer hardware, a 
mathematical approach, of stating the assumptions required for a line of argument as a set 
of axioms that constrain the expected behaviour of the computer hardware, will be 
followed. Prior to the general acceptance of the IEEE floating point standard, this had 
significant difficulties, since the fine detail of the arithmetic operations varied significantly 
from machine to machine. Holm (1980) developed a set of axioms for use in proving 
correct operation of floating point calculations, but they are more general than needed here 
since they allow for this variation of detail. 

 While some variation is still possible, the standard has now been widely accepted, and 
assertions can be made that the representation of a number is unique, and that the numerical 

                                                           
1 This assertion is true of integer arithmetical calculations that do not result in overflow, but is not generally true of 
floating point arithmetic. 
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ordering of numbers corresponds to the computed ordering of their floating point 
representations (Goldberg 1991).  

It can also be asserted that the multiplication, addition, subtraction and division are 
correctly calculated and rounded (Barrett 1989) (the “correctly rounded requirement”). This 
requires that the result of a floating point operation such as A⊕B is exactly as would be 
achieved by an absolutely accurate calculation of A+B, followed by a well defined rounding 
operation to convert the result to floating point format. Note that the set of floating point 
numbers is a subset of the set of rational numbers  QO . Let  FF be the set of rational numbers 
that are exactly representable as floating point numbers, and let round(A) be a function that 
converts a rational number A to floating point. Implicit in this is that round would be 
expected to return the nearest representable floating point number to its argument value, 
and that the computation is repeatable so that A = B ⇒ round(A) = round(B). 

Some of the axioms proposed by Holm can now be restated as assertions of correct 
rounding defining the results of the operations - viz: 

∀A, B ∈  F F A⊕B =def round(A+B) 
∀A, B ∈ F F A⊗B =def round(A×B) 
∀A, B ∈  F F A∅B =def round(A/B) 
∀A, B ∈  F F A  B =def round(A-B) 

It can also be asserted (as Holm assumes) that where IEEE floating point is implemented, 
equality and order relations are correctly evaluated: 

∀A, B ∈  F F  A=B ⇔ A B  
∀A, B ∈ F F  A>B ⇔ A B etc. 

Wilding (1990) simplified these axioms, based on the assumptions above to the following 
shorter set (expressed here in a more familiar notation): 

F.0 A ∈  F F  ⇒ A ∈  QO  
F.1 0 ∈  F F  
F.2 1 ∈  F F  
F.3 ∀A ∈  Q O :  A ∈ FF⇔ reduce(A) ∈ FF  
F.4  fmax ∈  F F  
F.5  A ∈  F F ⇒ fmax ≥ |A| 
F.6  A ∈  F F ∧ A ≠ 0 ⇒ |A| ≥ fmin 
F.7 ∀A ∈  Q O : round(A) ∈  FF  
F.8 ∀A ∈  Q O : A ∈  FF⇔ -A ∈  FF  
F.9 B ∈  F F ∧ A ∈  QO ∧ A ≥ B ⇒ round(A) ≥ B 
F.10 B ∈  F F ∧ A ∈  QO ∧ A ≤ B ⇒ round(A) ≤ B 
F.11 A ∈  Q O , fmin ≤ A ≤ fmax ⇒ round(A) ≥ A * roundmin  
F.12 A ∈  Q O , fmin ≤ A ≤ fmax ⇒ round(A) ≤ A * roundmax  
F.13 0 ≤ fpminspace 
F.14 ∀A ∈  Q O , round(-A) = -round(A) 
F.15 A ∈  F F , δ ∈  QO , δ > 0, δ < fpminspace ⇒ (A + δ) ∉ F F  
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The function reduce(A) in F.3 is defined as the action of removing common factors of the 
numerator and denominator of A. This makes the axiom seem unnecessary if the 
assumption of exact rounding is made (clearly A = reduce(A) if the calculation is exact). 
The numbers fmax and  fmin are the largest and smallest non-zero positive floating point 
values, fpminspace is a positive non-zero value smaller than the distance between any two 
unequal floating point numbers, and roundmax and roundmin bound the inexactitudes 
introduced by the round function. It is unclear why it is necessary to state F.4, without also 
asserting that fmin ∈  F F . In addition, many of the special numbers defined by these axioms 
(such as fpminspace) are not needed for the purpose of the following arguments. 

An alternate approach was taken by Mansfield (1984), of attempting to produce a list of 
axioms that would encapsulate all facts about floating point arithmetic that might be useful 
in proving correctness of any algorithm. This approach leads to 44 axioms, which will not 
be reproduced here.  

It is proposed that the following set of arithmetic axioms be used. These form a small set 
sufficient to prove the assertions to be made in this chapter, and are readily shown to follow 
from the exact rounding assumption, the correspondence of equality and order assumptions, 
and the axioms of Holm, Wilding, or those of Mansfield. For example, the above definition 
of A⊕C as round(A+C) immediately leads to a proof of A4.1. 

In the expressions below, it is intended that the usual rules of operator precedence are 
observed, and that subexpressions in parentheses are evaluated first.  

(a4.1) A=B, C=D ⇒ A⊕C = B⊕D  Addition is repeatable 
(a4.2) A=B, C=D ⇒ A⊗C = B⊗D  Multiplication is repeatable 
(a4.3) A=B ⇔ A B Equals is correctly evaluated 
(a4.4) A>B ⇔ A B Inequality is correctly evaluated 
(a4.5) A = -A Negation is correctly evaluated 
(a4.6) (-A)⊗B = -(A⊗B) Negation distributes over multiplication 
(a4.7) (-A) ⊕ (-B) = -(A⊕B)  Negation distributes over addition 
(a4.8) 0 ⊗ A = 0 Multiplication by zero is correct 
(a4.9) 0 ⊕ A = A Addition of zero is correct 

These assumptions are therefore satisfied by any computer floating point hardware in 
current use that correctly implements the IEEE floating point standard, and could be 
expected to be satisfied by most others. They are also clearly satisfied by integer, fixed-
point decimal or binary arithmetic. Note however that some quite common axioms are not 
present, and are avoided because they are violated in some computations. For example, it 
cannot be assumed that A⊕(B⊕C) = (A⊕B)⊕C where A, B and C are floating point 
numbers. Other axioms are omitted even though they are clearly true, because they are not 
needed herein, for example A⊕B = B⊕A is clearly true, but not used in this thesis. 

The definition given for the regular polytope in the following sections is in terms of integer 
parameters (e.g. A, B, C and D) in all cases because there is no loss of generality in so 
doing (see Section 4.4.1), but there are several interpretations possible for the point sets that 
these definitions create. For example, a region can be interpreted as a set of points (x, y, z) 
where x, y and z are integers, domain-restricted rational numbers or floating point numbers. 
The earlier sections of this chapter attempt to remain general, and to cover all possible 
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interpretations. In later chapters, where this level of generality can no longer be achieved, 
and integer or rational arithmetic is needed, additional axioms will be added that cannot 
necessarily be satisfied by floating point hardware, such as exactness of calculations: A⊕B 
= (A+B) and A⊗B = (A×B). 

4.1.2. Half Space Definition 
In 3D a half space H is defined as a tuple of integers (A, B, C, D) and denoted H(A,B,C,D). 
This may be interpreted as a point set Hps or Hps(A, B, C, D), being the set of all points 
p(x,y,z), with -M ≤ x,y,z < M , with x, y, z integers, domain-restricted rational numbers, or 
floating point numbers (depending on which interpretation is being considered) and for 
which computational evaluation of the following inequalities yields these results2: 

(((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D)  0 or 
[(((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D)  0 and A  0] or 3 
[((B⊗y ⊕ C⊗z) ⊕ D)  0 and A  0 and B  0] or  
[(C⊗z ⊕ D) = 0 and A  0, B  0 and C  0] 
 Where the half-open interval [-M, M) is the range of values allowed for point 
ordinate representations. (def4.1) 

The values of A,B,C and D define the half space. In 3D applications, these are restricted to 
–M < A, B, C < M, -3M2 < D <3M2, in 2D –M < A, B < M, -2M2 < D < 2M2 (C is not 
required in 2D). H(0,0,0,0) is not a permitted half space. It is shown in Appendix II, that 
given any three points with (-M+1 ≤  x, y, z ≤ M-1), a half space with integer A, B ,C and D 
restricted to this range can be generated that is guaranteed to pass within one unit of 
resolution of these points. Where there is no chance of confusion, the symbol H will be 
used for Hps. 

Equivalence relations between half spaces can be defined4: 

H(A, B, C, D) ≡ H’(A’, B’, C’, D’) =def A=A’, B=B’, C=C’, D=D’. (def4.2) 
H(A, B, C, D) ≅ H’(A’, B’, C’, D’) =def ∃ integers I>0, J>0:  
    A⊗I = A’⊗J,  B⊗I = B’⊗J,  C⊗I = C’⊗J,  D⊗I = D’⊗J. (def4.3) 

Note – the equals sign will be used to indicate point-set equality of half spaces – thus: 

H = H’ =def p∈H ⇔ p∈ H’.  (def4.4) 

It is clear from the definition, and from the axioms a4.1 to a4.4 that: 

H ≡ H’ ⇒  H = H’ (f4.1) 

                                                           
2 In Thompson (2005a), an alternative definition using a Boolean parameter “S” was used. This equivalent, but 
simpler form is used here. 
3 This form of the definition with four parts, rather than just (A.X + B.Y + C.Z + D) > 0, is used, as will be 
discussed in Chapter 6, to create a boundary-free representation. The points which would be calculated as lying on 
the surface are allocated to one or other side of the half space. 
4 The symbol “=def” is to be interpreted as “is defined as”.  
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(That is, half space equality implies point set equality. This is proved for integer, rational 
and floating point interpretations in Appendix II). 

It is also clear that where arithmetic is exact – i.e. for integers and rational numbers:  

H ≅ H’  ⇒  H = H’ (f4.2) 
(This does not apply to floating point interpretations). 

Two special half spaces are defined,  

HΦ =def H(0,0,0,-1)(‘empty’ i.e. points for which –1  0).  (def4.5) 
H∞ =def H(0,0,0,1)(‘everything’ i.e. points for which 1  0).  (def4.6) 

It is also clear that: 

∀p, p ∉ HΦ (f4.3) 
∀p, p ∈ H∞ (f4.4) 

The following operations are defined on half spaces: 

H∪H’ =def {p: p∈H ∨ p∈H’} 5 (def4.7) 
H∩H’ =def {p: p∈H ∧ p∈H’} (def4.8) 

The complement of a half space is defined as: 

),,,( DCBAH −−−−= , where ),,,( DCBAH = . (def4.9) 

Referring to the definition of a half space, it can be shown that: 

HpHp ∉⇔∈  (f4.5) 

HH =  (f4.6) 

∞=∪ HHH  (f4.7) 

Φ=∩ HHH  (f4.8) 

(See Appendix II for details of the proofs). That is to say, a half space and its complement 
together comprise a complete non-overlapping coverage of the universal region. This forms 
the basis for a boundary-free representation (see Section 3.2.10), unlike the more traditional 
definitions of regions, which divide space into the region’s interior, its exterior and a 
(possibly infinite) set of points on the boundary between them. It is this representation of a 
dense, potentially infinite, but laminar set of points that is problematic in actual 
implementations. By contrast, this boundary-free approach allows a mereological 
description of the representation, which can be implemented in computational arithmetic. 
This is explored in detail in Chapter 6. 

                                                           
5 The symbols ∨ and ∧ are interpreted as "or" and "and" respectively. 
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4.1.3. Convex Polytope Definition 
A convex polytope is defined as any finite set of half spaces6, and interpreted as their 
intersection; see Figure 4-1 for a 2D and Figure 4-2 for a 3D example. The definition 
proceeds as follows, first using a rigorous set-theoretical form: 

C = {Hi: i=1..n}, (def4.10) 

which can be interpreted as a point set: 

Cps =def {p: p∈Hi, i=1..n}. (def4.11) 

Where there is no danger of confusion, Cps will be denoted as C, and the definition given in 
the shorthand form of: 

i
ni
HC

..1=
= I  where Hi, i=1..n is a set of half spaces.  (def4.12) 

 

 
Figure 4-1 Convex polytopes defined by half planes. 

In Figure 4-1 the solid lines are used to indicate that points which fall along the line in 
question (where ((A⊗x ⊕ B⊗y) ⊕ D)  0) are within the convex polytope being 
highlighted. The dashed lines indicates that these points do not belong (but would belong to 
an adjoining convex polytope on the other side of the line). Likewise, the vertices marked 
with a filled circle are part of the subject convex polytopes. All other vertices in dotted 
open circles are external. Note that in general, the western edges of a convex polytope (in 
the –x direction) are included (solid lines in Figure 4-1), while the eastern edges are 
excluded (dashed lines in Figure 4-1). On an edge that runs exactly east-west, it is included 
if it is a southern boundary. 

                                                           
6 In this work, the term half space will be used generically to indicate half space or half plane depending on 
whether a 3D or 2D geometry is being considered.  Most of the illustrations are 2D for ease of drawing. 
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Figure 4-2 A convex polytope in 3D defined by half spaces. Highlighted surfaces 

indicate the interior. 

Likewise, in Figure 4-2, points which fall along the half plane that are delineated with solid 
lines (where (((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D)  0) are within the subject convex polytope. In 
3D, western boundaries are included, as are southern boundaries that run exactly east-west, 
and bottom boundaries where level (with constant z value).   

Where a convex polytope is not completely bounded, the restriction on the values of the 
point coordinates (-M ≤ x,y,z < M ) ensure that the point set is still finite. This restriction is 
the same as would be achieved by including in the definition of any unbounded convex 
polytope the six (four in 2D) half spaces: 

H1
∞ = (1,0,0,M),  (def4.13) 

H2
∞ = (-1,0,0,M),  

H3
∞ = (0,1,0,M),  

H4
∞ = (0,-1,0,M),  

H5
∞ = (0,0,1,M),  

H6
∞ = (0,0,-1,M). 

These are equivalent to x ≥ -M, x < M, y ≥ -M, y < M, z ≥ -M, z < M respectively, or ∀p = 
p(x, y ,z), –M ≤ x, y, z < M ⇔ p ∈ {Hi

∞: i = 1..6}. 

Operations on convex polytopes: 

'CC
p
I  =def 'CC

s
U  (def4.14) 

C⊆C’ =def ∀p∈C ⇒ p∈C’. (def4.15) 
C=C’ =def C⊆C’, C’⊆C (def4.16) 
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Note – where there is a chance of confusion - as in definition def4.14, symbols such as 
s
Uwill be used for operations on the sets of half spaces, while symbols such as 

p
Iwill be 

used for point set operations. In most cases, the operations on point sets will be intended, 

and the unqualified symbol will be used. Def4.14 could be expressed as: If C = {Hi: i=1..n}, 

C’ = {H’j: j=1..m}: 

'CC
p
I  = {Hi: i=1..n, H’j: j=1..m}. (def4.17) 

This leads immediately to the following: 

p∈C ∧ p∈C’ ⇔ p∈ 'CC
p
I  (f4.9) 

CCC
p

⊆'I  (f4.10) 

Two special convex polytopes are defined, known as the empty and the universal convex 
polytope: 

CΦ =def {HΦ},   (def4.18) 
C∞ =def {} (the empty set).  (def4.19) 

with no half spaces, and therefore no constraints on allowed points. Thus ∀ p: p ∉ CΦ,  p∈ 
C∞ , leading to: 

∀C, CΦ ⊆ C ⊆ C∞. (f4.11) 

An alternative definition C∞ =def {H∞} could have been used, but the simpler form is 
preferred. The definition of C∞  as the empty set is used in the Java proof of concept classes 
described in Chapter 8. For convenience, some further terminology is introduced: 

C∩H =def }{HC
s
U  (def4.20)  

C⊆H =def C = C∩H.  (def4.21)  

It is clear that: 

C⊆H ⇔ ∀p∈C, p∈H. (f4.12) 

This concept is used in implementations to simplify complex polytopes. Clearly if a convex 
polytope C = {Hi: i=1..n} is such that there exists a subset, say C’ = {Hi: i=1..n-1} such that 
C’ ⊆ Hn, then C = C’, and Hn may be removed from the definition of C without affecting its 
point set. Hn is said to be redundant to the definition of C – see Section 4.4.3. The details 
and complexity of the operations required to simplify polytopes computationally will be 
discussed in Chapter 8.  
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4.1.4. Regular Polytope Definition 

 

C2 

C1 

C3 

a 

b 

p 
 

Figure 4-3 Definition of regular polytope from convex polytopes7.  

A regular polytope O is the union of a finite set of non-empty convex polytopes; see Figure 
4-3 for example. As with the convex polytope definition, the regular polytope is defined as 
a set: 

O =def {Ci: i=1..n: Ci ≠ CΦ} (def4.22) 

which can be interpreted as a point set: 

Ops = {p: ∃Ci ∈ O: p∈Ci} (def4.23) 
(That is to say, the set of points that are within at least one of the convex polytopes Ci). 

Note that in Figure 4-3, as in the earlier figures, points that lie along the edges that are 
marked with full lines are within the regular polytope, while those on dotted edges are 
outside. The lines marked as a and b are within convex polytope C2, not C1 or C3, but are 
therefore within the regular polytope. Note that p is not within C2 or C3.  

Where there is no danger of confusion, Ops will be denoted as O, and the definition given in 
the shorthand form of: 

U
mi

iCO
..1=

=  where Ci, i =1..m are non-empty convex polytopes.  (def4.24) 

In this case, unlike in the definition of the convex polytope, there is no danger of confusing 
the operation “union”, as will be seen in the following definition. 

Operations on regular polytopes where O = {Ci: i=1..n}, O’ = {C’j: j=1..m}: 

O ∪ O’ =def {Ci:i=1..n, Cj:j=1..m} (def4.25) 
O ∩ O’ =def {(Ci∩Cj): i=1..n, j=1..m}     (def4.26) 

                                                           
7 Note that the regular polytope could consist of non-contiguous convex polytopes. This is discussed in Chapter 4. 
In addition, the convex polytopes within the one regular polytope may overlap one another. 
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O ⊆ O’ =def ∀p∈O ⇒ p∈O’. (def4.27) 
O = O’ =def O⊆O’, O’⊆O (def4.28) 

Two special regular polytopes are defined,  

OΦ = {} (i.e. a set containing no convex polygons) (def4.29) 
O∞ = {C∞}. (def4.30) 

Thus, ∀p, p ∉ OΦ, p∈ O∞, which leads to: 

∀O, O⊆ O∞. (f4.13) 
∀O, OΦ⊆O. (f4.14) 
and clearly (as point sets), HΦ = CΦ = OΦ, and H∞ = C∞ = O∞. 

Again, the form of definition OΦ = {CΦ} could have been used, but the simpler form is 
preferred and is used in the Java coding described in Chapter 8. The complement of a 
convex polytope C={Hj,j=1..m) is defined as:  

C  =def  {C’j, j=1..m}, where C’j }{ jH=  (def4.31) 

That is to say, the inverse of a convex polytope is a set of convex polytopes each of which 
consists of a single half space – the inverse of an original half space. Note, however, that 
this is not a convex polytope. It is in fact, a regular polytope. This can be restated as: 

}{
..1

j
mj

HC
=

= U  (f4.15) 

This is shown pictorially in Figure 4-4, where a convex polytope defined by four half 
spaces has been used as an example. The result is a regular polytope comprised of four 
(overlapping) convex polytopes, each defined by a single half space. Note that all boundary 
points that were included are now excluded and vice versa. 

 

Convex polytope defined by 
half-planes

Inverse of Convex Polytope   

I
4..1=

=
i

iHC  

}{ 11 HC =  

}{ 22 HC =  

}{ 33 HC =  

U
4..1=

=
i

iCC  

}{ 44 HC =  

 
Figure 4-4 The inverse of a convex polytope. 

Leading to a definition of the inverse of a regular polytope O={Ci, i=1..n} as:  

O =def i
ni
C

..1=
I   (def4.32) 
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For convenience, some further terminology is introduced: 

O∩C =def O∩{C}, C∩O =def O∩{C} (def4.33)  
O∪C =def O∪{C}, C∪O =def O∪{C} (def4.34)  
O - O' =def 'OO ∩  (def4.35) 

Given the above definitions, it can be verified (see Appendix II) that: 

CpCp ∉⇔∈  (f4.16) 

CpCp ∈⇔∉  (f4.17) 

OpOp ∉⇔∈  (f4.18) 

OpOp ∈⇔∉  (f4.19) 
 p ∈ O ∨ p ∈ O’ ⇔ p ∈ O ∪ O’ (f4.20) 
 O ⊆ (O ∪ O’) ∀ O’. (f4.21) 
 p ∈ O ∧ p ∈ O’ ⇔ p ∈ O ∩ O’ (f4.22) 
(O ∩ O’) ⊆ O ∀ O’. (f4.23) 

)( ∞∞ ==∪ COCC  (f4.24) 

)( φφ OCCC ==∩  (f4.25) 

OO =  (f4.26) 

∞=∪ OOO  (f4.27) 

φOOO =∩  (f4.28) 

4.1.5. Disjoint Normal Form 
An important variant on the above strategy is to make the decomposition of the regular 
polytopes into convex polytopes more restricted. The form, known as Disjoint Normal 
Form (DNF) puts the additional requirement on the convex polytopes that they should be 
disjoint – that is: for O = {Ci: i=1..n}, ∀p ∈ O, p∈ Ci, j≠i ⇒ p∉Cj. This is equivalent to the 
DNF of the constraint databases (Van den Bussche 2000). The advantages of DNF are: 

• Calculation of the volume of a regular polytope in DNF is simpler (or area in 2D). The 
volume of each convex polytope can be calculated, and the results summed. 

• Conversion of the regular polytope to a vertex defined polyhedron is simplified, since 
the individual convex polytopes can be converted, and the resultant polyhedra can be 
"dissolved" together. Polyhedron dissolve is a simpler and faster operation than 
calculation of a union.  

On the other hand DNF does have disadvantages: 

• It is not trivial to convert a regular polytope to DNF, or to create it in DNF in the first 
place. 

• The number of convex polytopes in a conventional regular polytope (allowing overlap) 
can be fewer than in the case of DNF (e.g. see Figure 4-5). 
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• The decomposition into disjoint convex polytopes is not unique. Note however that 
Appendix IV.1 defines a maximal decomposition of a regular polytope into convex 
polytopes that may well lead to a unique representation. 

Overlapping Convex Polytopes Disjoint Normal Form Alternative Disjoint Normal 
Form 

 
Figure 4-5 A regular polytope in overlapping, and in disjoint normal forms. 

The rigorous nature of the algebra of regular polytopes ensures that there is an algorithm 
that will convert overlapping convex polytopes to DNF. In its simplest form, it could 
proceed as follows: 

The convex polytopes that comprise the regular polytope are categorised into 
"processed" and "unprocessed" sets. Initially, all convex polytopes are placed in the 
unprocessed set.  

A convex polytope is chosen from the unprocessed set to be the target convex polytope 
C1. 

A "remnants" set is created, initially empty. 

Each other convex polytope in the unprocessed set C2 is subtracted from the target 
convex polytope, and O' = (C1-C2) is calculated. (The result is a regular polytope).  

One (non-empty) convex polytope from this regular polytope C' ∈ O' is chosen, and 
this becomes the target C1. The remaining convex polytopes from O' are added to 
the remnants set.  

The algorithm continues until all convex polytopes in the unprocessed set have been 
subtracted from C1. 

The remnants set members are added to the unprocessed set and the remnants set 
deleted. 

C1 is now added to the processed set and a new target is chosen from the unprocessed 
set. 

The algorithm continues until the unprocessed set is empty.  

This algorithm must terminate because the outer loop, for each target C1, must add a non-
empty convex polytope to the unprocessed set. Since the number of points in the initial 
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regular polytope is finite, this means that in a finite number of steps all points must be 
processed.  

C1 

C2 

C1 

before 
processing 

C1 is 
target 

after 
subtracting 

C2 

remnant  
convex poly after subtracting  

all unprocessed 
set (from target) 

1 
2 

3 
target  

convex poly 

unprocessed  
convex poly 

 
Figure 4-6 – Example of forming DNF. 

As an example, Figure 4-6 shows the formation of a DNF regular polytope which initially 
consisted of two overlapping convex polytopes C1 and C2. Note that the subtraction 
operation C1 – C2 (or 21 CC ∩ ) initially results in two overlapping convex polytopes (here 
shown lightly shaded and hashed grey). Here the hashed convex polytope (2∪3) is chosen 
as the next target, while the shaded one (1∪2) is added back into the unprocessed set. After 
the shaded polytope (1∪2) is subtracted from the hashed polytope (2∪3), convex polytope 
3 becomes the target, and is finally added to the processed set. 

remnant  
convex poly 

processed  
convex poly 

(1∪2) 

3 

C2 

1 
3 

C2 

2 

1 
3 

C2 

new convex 
polytope 3 added 
to processed set 
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from 1&2, and 2 
chosen as target 

result of 
processing 

2 
target  

convex poly 

 
Figure 4-7 - Example of forming DNF continued. 

Continuing with Figure 4-7, convex polytope (1∪2) is now chosen as the target, and C2 is 
subtracted from it. Although it is not necessary, given the un-optimised definition of 
subtraction of convex polytopes, this causes (1∪2) to be split into convex polytopes 1 and 2 
as shown. The process continues until a DNF regular polytope is generated. 

This algorithm is clearly inefficient, but equally clearly it can be improved – for example 
by testing for disjoint convex polytopes early in the process (possibly using limiting 
bounding rectangles). In its current form, it also leads to a result in which the regular 
polytope has been divided into more and smaller convex polytopes than necessary. Some 
additional research in this area could be fruitful, but is beyond the scope of this thesis. 
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4.2. Properties of the Regular Polytope 
Representation 

There are conceptual differences between conventional polyhedra and regular polytopes. 
The latter may be unbounded, and only part of the boundaries belongs to the object. For 
example, in Figure 4-8, both examples are not fully bounded, and points coincident with the 
boundaries shown as dashed do not belong to the regions. The other major difference is that 
only the arithmetic axioms a4.1 to a4.7 have been assumed in this discussion, so that any 
number representation that fulfils these can be used with full rigour, including 
computational representations such as integer or floating point. 

 
 

 
Figure 4-8 Convex polytopes, not fully bounded (left 2D, right 3D). 

4.2.1. Topological Space of Regular Polytopes 
The axioms that define a topological space O in terms of open sets Oi are (Gaal 1964): 

(O.1) OΦ ∈ O and O∞ ∈ O 
(O.2) if O1 ∈ O and O2 ∈ O then ∈21 OO I O 
(O.3) if Oi ∈ O for all i∈I then ∈

∈
i

Ii
OU O 

It is clear that the set of regular polytopes forms a topological space, with regular polytopes 
being open sets with respect to that space. Axiom O.1 follows immediately from the 
definition of OΦ and O∞ (def4.29 and def4.30). Axiom O.2 similarly follows from the 
definition of intersection (def4.26). This can readily be shown by induction to extend to the 
intersection of any countable set of regions. Similarly, the union of two regular polytopes is 
a regular polytope (by definition def4.25). This can likewise be shown by induction to 
extend to any countable set of regions. Note that in contrast to Axiom O.2, O.3 requires 
operational closure under the union of any set (not necessarily countable) of regions. This is 
not an issue in this representation, since there can exist only a finite number of regions. 
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4.2.2. Metric Space of Regular Polytopes 
A metric space is a special case of the more general topological space. It consists of a set P 
and a real valued function d(p1,p2) that satisfies the following axioms (Gaal 1964): 

(M.1) d(p1, p2) ≥ 0      (non-negativity)  
(M.2) d(p1, p2) = 0   if and only if  p1 = p2      (identity of indiscernibles)  
(M.3) d(p1, p2) = d(p2, p1)     (symmetry)  
(M.4) d(p1, p3) ≤ d(p1, p2) + d(p2, p3)      (triangle inequality).  

Considering Ops to be the set of all representable points p = (x,y,z) within the region of 
validity8, -M ≤ x,y,z < M, a metric function can be defined on this space: 

d(p1, p2) = |x2  x1| ⊕ |y2  y1| ⊕ |z2  z1|  
   for p1 = (x1,y1,z1), p2 = (x2,y2,z2). (def4.36) 

Note, that this is commonly called the “Manhattan distance”, and can be calculated exactly 
using integers or rational numbers of finite domain. See Appendix II for further discussion 
of these axioms in relation to the regular polytope. Note also that this cannot be used as a 
metric for floating point x, y, z values, since it fails the triangle inequality (even in 1D 
space). For random floating point numbers, the assertion that |x1-x2|+|x2-x3| ≥ |x1-x3| failed in 
Java on a Pentium computer in about 1.8% of tests. (The normal distance function in 1D:  

also failed the triangle inequality ( ) ( ) ( )231
2

32
2

21 xxxxxx −≥−+−  with 
approximately the same frequency). 

The ε-neighbourhood of a point Sε[p] is defined (by Gaal) as Sε[p] = {p': d(p, p') < ε} for ε 
> 0 (note that ε is a real number), i.e. the set of all points within a distance ε of p. Note that 
the neighbourhood of a point includes the point itself. A subset O of Ops is open if ∀p∈O, ∃ 
ε > 0: Sε[p] ⊆ O. There are several equivalent definitions of "closed", but the most 
appropriate here is that a subset C of Ops is closed if ∀p∉C, ∃ ε > 0: Sε[p] ∩ C is empty.  

As discussed in Section 1.5.5, all computer representations of space are gridded9, and thus 
there are only a finite number of points p ∈ Ops. Also for any p1, p2∈ Ops, p1 ≠ p2:  d(p1, p2) 
> 0 (by M.1 and M.2).  Let γ be the smallest distance between any two points (γ ≤ d(p1, p2) 
∀ p1, p2∈ Ops: p1 ≠ p2): γ is the minimum grid size. Consider Sε[p] where ε < γ. Clearly p is 
the only point p ∈ Ops such that p ∈ Sε[p]. That is to say, each point is an ε-neighbourhood 
of itself.  

For any subset X ⊆  Ops, for any point p∈X, choosing ε < γ, Sε[p] = {p} ⊆  X. Therefore X is 
open. As a consequence any regular polytope O, considered as a point set is open with 
respect to the metric space. 

                                                           
8 Ops can be thought of as the set of all regular polytopes O treated as point sets. 
9 Note that all representations considered in this research are gridded. The integer representation clearly has a grid 
size of γ = 1. A domain-restricted rational number has γ = 1/M'(M’-1) where M' is the largest number that can be 
used as the divisor in the representation (see 4.4.1). A floating point representation has a variable grid size, the 
grid spacing being finer near the origin (see Section 1.6.3). Since it can be argued that the infinite rational 
representation is not gridded, this argument does not apply in that case. 
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Every metric space (such as Ops) can be considered to be a topological space by letting the 
basis of the topology be the set of all ε-neighbourhoods of all points in Ops, but this is not 
necessarily isomorphic to the topological space of regular polytopes. In particular in the 
domain-restricted rational approach to be described in Section 4.4, point sets can exist 
which cannot be represented as a regular polytope. Nevertheless, O (the set of regular 
polytopes) obeys the axioms O.1 to O.3 for open sets, and all regular polytopes are open in 
the metric space sense. Thus the set O, of regular polytopes (interpreted as integer or 
domain-restricted rational point sets) is a metric space, but an unusual one in that it is finite, 
and therefore not Euclidean. This fact is a little unexpected – since metric spaces are 
usually exemplified by Euclidean spaces, but provides some useful results which will be 
highlighted in Section 4.2.3. 

It could be argued that all of the interpretations of the space (integer, rational and floating 
point) are metric spaces on a function such as 12121221 ),( zzyyxxppd −+−+−= or 

( ) ( ) ( )221
2

21
2

21 zzyyxx −+−+− where the result is a real number. This is correct, but the 
assertion made here is stronger – that it is a metric space on a function defined as the result 
of a computational determination of d based on definition def4.36. 

4.2.3. The Regular Polytope as a Closed and Open Set 
It is usual to think of the concept of an “open set” in terms of a Euclidean space (Weisstein 
1999b), but the topological space O defined on regular polytopes clearly cannot be 
Euclidean, being finite. It was shown above that every regular polytope within O is an open 
set. Since the inverse of a regular polytope is also a regular polytope, all regular polytopes 
are also closed within the topological space. Thus all regular polytopes are both open and 
closed, and therefore fit the definition of a regular set as described by (Lemon and Pratt 
1998) (more on this in Chapter 5).  

 

 
Figure 4-9 Point set definition of a regular polytope (as an open and closed region). 

In Figure 4-9, note that all points in the region are either inside or outside the regular 
polytope, and no distinction for points lying on the boundary lines is necessary. This is true 
of any finite representation – whether the point coordinates are stored as integers, floating 
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point numbers, or the domain-restricted rational points to be introduced in Section 4.4.2. In 
the case of floating point number, the grid still exists but is of varying size depending on 
distance from the origin. 

A regular polytope, by this definition, is a finite point set, defined as the set of 
computationally representable points which fall within all of the half planes which define 
any of the convex polytopes. If two polytopes in 3D are separated by a face in common (or 
edge in 2D), there are no points which belong to both, and no points "missing" between 
them. This has been achieved by the definition of half space, which ensures that each point 
on such a face (edge) belongs to exactly one of the adjacent polytopes. Further, this allows 
a complete partition (coverage) of the universal region by a set of regular polytopes to be 
defined with the useful property that each point in the universal region falls within exactly 
one polytope.   

4.2.4. The Boolean Algebra of Regular Polytopes 
A further consequence of the regular polytope being a boundary-free representation is that 
it also satisfies the axioms for a Boolean algebra10. The axioms for a Boolean algebra are 
given in Section 3.2.3 (Weisstein 1999e). It can be verified readily that these are satisfied 
by the set of regular polytopes (see Appendix II). Note – in the application these axioms, 
the operations “∩” (intersection) and “∪” (union) fulfil the role of “∧” (and) and “∨” (or), 
as are used in discussions of Boolean algebra.  

4.2.5. Regular Polytope Overlap 
Two regular polytopes are defined to overlap if their intersection is not empty: 

OV(O1,O2) =def O1∩O2 ≠ Oφ. (def4.37) 

The inequality test in this definition is problematic. It must be defined in point-set terms11, 
and therefore depends on interpretation as integer, domain-restricted rational or other 
points, and is impractical to implement directly. Rather than the more general "not equals" 
relation, it is more convenient to implement a specialized "Empty" function, so that 
definition def4.37 can be re-stated as: 

For U
1..1

11
nj

jCO
=

= , U
2..1

22
nj

jCO
=

=  

  OV(O1,O2) =def ∃ C1i∈ O1, C2j∈ O2 : ¬Empty(C1i∩C2j) (def4.38) 
  where Empty(C) =def ∀p: p ∉ C. (def4.39) 

Since the intersection of two convex polytopes is itself a convex polytope, the 
computability of overlap depends on the computability of a convex polytope “Empty” test. 

                                                           
10 This will be of particular significance in Section 5.5, where it will be shown that the space of regular polytopes 
can be shown to be a type of Boolean connection algebra. 
11 For half planes, "equal" was defined as H = H’  =def  p∈H ⇔ p∈ H’. The equivalent definition for polytopes is O 
= O’  =def  p∈O ⇔ p∈ O’. 
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This is clearly equivalent to the statement that C ≠ Cφ, but is presented in this form to assist 
in the implementation issues to be discussed later. Since the representations here discussed 
are all based on a grid of points, and the tests for equality (and empty) are defined in terms 
of point sets, the determination of a rigorous "Empty" test may not be simple. In this 
discussion, and unless otherwise stated, point set overlap is being considered, so that if 
objects appear to overlap, but by amounts smaller than the grid size (such as in Figure 4-10 
where no grid points fall within the common region) they are not deemed to overlap. (Note 
that Figure 4-10 is not necessarily intended to depict a grid based on integers. It could 
equally be a floating point or rational grid being pictured, but has been drawn with a fixed 
grid spacing for simplicity.) 

HA 

HB 

A

B

 
Figure 4-10 Regular polytopes with no point in common that appear to overlap. 

If we can determine that an algorithm exists to compute the "Empty" test on the convex 
polytope, we can define an Empty test on regular polytopes in the obvious way - “a regular 
polytope O is empty if it contains only empty convex polytopes”. 

We will therefore also be able to define a collection of computable predicates – as follows: 

(Overlap)  OV(O1,O2) as above (see def4.38)   
(Part of) P(O1,O2) =def  ¬OV(O1, 2O ) (def4.40) 
(Equals) EQ(O1,O2) =def P(O1,O2) and P(O2, O1). (def4.41) 

These can be readily verified to correspond to the usual point set definitions – thus: 

OV(O1,O2) ⇔ ∃ p ∈ O1∩O2 

P(O1,O2) ⇔ O1 ⊆ O2 (see def4.27) 
EQ(O1,O2) ⇔ O1 = O2. (see def4.28) 

These can then be augmented by the following definitions: 

(Proper Part)  PP(O1,O2) =def P(O1,O2) ∧¬EQ(O2,O1)  (def4.42) 
(Proper Overlap)  PO(O1,O2) =def OV(O1,O2) ∧ ¬P(O1,O2) ∧¬P(O2,O1) (def4.43) 
(Discrete)  DR(O1,O2) =def ¬OV(O1,O2). (def4.44) 
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These predicates are therefore rigorously defined, and computable. Proper part can be 
simplified for implementation purposes as follows: 

PP(O1,O2) =def P(O1,O2) ∧¬EQ(O2,O1) 
= P(O1,O2) ∧¬(P(O1,O2) ∧ P(O2, O1)) 
= (P(O1,O2) ∧¬P(O1,O2)) ∨ (P(O1,O2) ∧¬P(O2, O1)) 
= P(O1,O2) ∧¬P(O2, O1). 

4.3. Integer Approach 
In the case of integer based interpretation (where A, B, C, D and x, y and z in definition 
def4.1 are restricted to integer values), the points are constrained to an integer grid (see 
Section 1.5.5). Thus the determination of the "Empty" test can be re-stated as an “integer 
programming” problem – to determine if a grid point exists within a convex region. This 
has been well researched in the realm of operations research (Lenstra 1983; Kannan 1987). 
The algorithms are, however, quite complex. 

Thus the integer based interpretation computationally supports the full logic of a 
topological space, and of a Boolean algebra, and provides a fully rigorous implementation 
of the predicates of “overlap”, “part of” and “equals”.  

4.4. Domain-Restricted Rational Number Approach 
The domain-restricted rational (dr-rational) interpretation of the regular polytope avoids the 
problem illustrated in Figure 4-10 by defining equality in terms of rational points of 
unrestricted precision. However, as will be shown in this chapter, it is not necessary to 
assume infinite precision in the calculations, and dr-rational numbers can be used to 
evaluate all of the predicates and functions that the approach supports.  

In the following discussion, unless specified otherwise, capital letters (such as A, B, C and 
D) will be used for to represent computational integers, or the integer values they represent. 
Lower-case letters (such as x, y and z) will be used for rational, dr-rational or floating point 
numbers, particularly for ordinate values. Occasionally particular lower-case letters will be 
used for small integer values (e.g. i=1..n). Predicates such as overlap will be represented by 
non-italic capital letters – e.g. “OV”.  No notational distinction is made in this section 
between computational operations +,-,., =, etc, and the mathematical operations they 
implement, since the integer arithmetic available in computers is exact12 within its domain. 
There is however, a distinction to be made since, for example, it must be remembered that 
x+y as a computational operation may not result in a dr-rational number. 

A simplification of the algorithm to determine “Empty” is possible using dr-rational 
numbers instead of the integer grid based embedding space (as was done above). The 

                                                           
12 By contrast, floating point is not exact, and it cannot be asserted that if a := b*c; (as a computation and 
assignment) then a = bc (as a mathematical equation). 
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motivation for this approach is the fact that this then converts the algorithm from an 
“integer programming” problem into a “linear programming” problem, which has a far 
simpler solution. Following the definition of dr-rational numbers in the next section, the 
simplified algorithm will be discussed. 

4.4.1. Definition of Dr-Rational Numbers and Points 
Given two (large)13 integers N' and N'', a dr-rational number r can be defined as an ordered 
pair of computational integers (0<J≤N', -N''≤I≤N'')14, interpreted as having a value of I/J.  
The reason for the name “domain-restricted rational" (dr-rational) is that the values of I and 
J are constrained to a finite range of possible values. The dr-rational numbers do not form a 
field15 (in contrast to the true rational numbers) (Archbold 1964; Weisstein 2005), and 
therefore cannot span a vector space (by the definition of a vector space) (Patterson and 
Rutherford 1965; Weisstein 1999a).  There are a number of other counter-intuitive 
properties of dr-rational numbers, for example that the sum of dr-rational numbers may not 
be dr-rational. 

In 3D space, a dr-rational point is an ordered triple of dr-rational numbers p = (x, y, z), with 
x, y, z representing the Cartesian co-ordinate values.  Note that there are also counter-
intuitive properties possessed by dr-rational points – e.g. it cannot be assumed that the mid-
point of a line between two dr-rational points is itself a dr-rational point.  The advantage 
possessed by the dr-rational representation is that it is directly implementable in computer 
hardware, and does not lead to a system that slows with age (as a potentially infinite 
rational representation will – see Section 3.4.6 for a discussion of infinite rational number 
representations).  On the other hand, it will be shown that it is possible to calculate the 
vertices of any regular polytope as dr-rational points. 

In defining a half space H(a, b, c, d), the parameters a, b, c, d could have been allowed to 
be dr-rational numbers, however if a = Ia/Ja, b = Ib/Jb, c = Ic/Jc, d = Id/Jd, (Ia, Ja, etc. 
integers) and if J is the lowest common denominator of Ja, Jb, Jc and Jd, then H’(aJ, bJ, cJ, 
dJ) is a half space with integer coefficients, and it is clear that Hps = H’ps. Thus there is no 
loss of generality in assuming all half spaces to be defined on integer coefficients. 

4.4.2. Dr-Rational Interpretation of the Regular Polytope 
In order to avoid the kind of problem illustrated in Figure 4-10, and to avoid the necessity 
for integer programming as described in Section 4.3, it is possible to re-define the 
interpretation of the half space, convex polytope and regular polytope. In this approach, a 
regular polytope definition is as above, the union of a set of convex polytopes, each being 

                                                           
13 The meanings and values of N' and N'' are given in Section 4.4.2 (f4.30 and f4.31). 
14 In the following discussion, the requirement that J>0 is not explicitly addressed in every case. It is assumed that 
in any operation that leads to a rational number r=(I/J) with J<0, it will be converted to a valid dr-rational number    
(-I/-J).  
15 The set of rational numbers  Q O obey the field axioms – see Appendix I.1, including the closure axioms (e.g. a ∈ 
 Q O , b ∈  Q O   ⇒ a.b ∈  Q O ) This is not the case for dr-rational numbers. 
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the intersection of a number of half-spaces. Each half space is defined in terms of 4 finite 
integers A, B, C and D (3 integers in the 2D case). The only difference is in the 
interpretation. Beginning with the half space, half space H(A,B,C,D) is interpreted as the set 
of rational points p = (x,y,z) of arbitrary precision such that –M ≤ x,y,z < M and the 
inequalities of definition def4.1 apply (see Section 4.1.2). 

By this definition, the regular polytope forms the basis of a topological space and a Boolean 
algebra. 

In 3D, the point of intersection of three planes defined by A1x+B1y+C1z+D1=0, 
A2x+B2y+C2z+D2=0, A3x+B3y+C3z+D3=0, can be shown (Weisstein 2002a) to be at point 
p=(x,y,z) with x = Px/Q, y = Py/Q, z=Pz/Q, where: (f4.29) 
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For a valid half space |Ai|,|Bi|,|Ci| < M, |Di|<3M2
  (where |A| is the absolute value of A), 

therefore for the calculation of vertices, |Q| < 6M3, and |Px|, |Py|, |Pz| < 18M4. Thus, the set 
of points which can be at the intersection of three planes forms a subset of the set of 
rational points, since the x, y, and z coordinates share a common denominator |Q| < 6M3. 
Alternatively, it can be stated that all such points may be expressed using homogeneous 
coordinates p = (Px,Py,Pz,Q) where Px, Py, Pz, Q are integers, and |Q| < 6M3, and |Px|, |Py|, 
|Pz| < 18M4. 

This use of integers and dr-rational numbers is analogous to the two grids of the dual grid 
approach (Lema and Güting 2002), with the coarser grid corresponding to the integers 
A,B,C and D, and the finer grid to the dr-rational numbers - representing all possible points 
of intersection of three half space planes.  

In summary, the resolution levels of the dr-rational point interpretation are defined as 
follows: 

• The first order of resolution is based on the set of integers. The coefficients 
A,B,C and D in the half space definitions use this resolution. Points with ordinate values 
based on this level of resolution will be sufficient for most purposes, and the accuracy of 
placement of a point at this grid level is the same as the accuracy of placement of a half 
space. This is referred to as grid1, and notated as p ∈ G1. 

• The second order of resolution is the set of rational points p = x,y,z: –M  ≤  x,y,z  
≤  M which can be the vertices of a convex polytope - that is to say the possible points of 
intersection of three half spaces. This is referred to as grid2, and notated as p ∈ G2 (see 
Appendix IV). All grid 2 points may be expressed in homogeneous coordinates as p = 
(Px, Py, Pz, Q) where Px, Py, Pz, Q are integers, and |Q| < N', and |Px|, |Py|, |Pz| < N''.  

For 3D applications N' = 6M3, N'' = 18M4.  (f4.30) 
Similarly, for 2D applications N' = 2M2, N'' = 4M3.  (f4.31)     

In the dual grid approach (in 2D) of Lema and Güting (2002), the first order of resolution 
represents a grid of points which can be the end points of a line segment. The second order 
grid represent points which could be the point of intersection of two lines. In 2D, 
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converting the definition of a line segment through two points p1 = (X1, Y1), p2 = (X2, Y2) to 
the Ax+By+C=0 form leads to A = Y2 – Y1, B =  X1 – X2, D = X2Y1 – X1Y2. The same is true 
of the regular polytope approach in 2D, where any line through two points with integral X, 
Y can be represented by a half plane with coefficients |A|,|B| < 2M, |D| < 2M2. Thus by 
restricting the initial range of points slightly, an integer representation can be generated 
through any two points. 

In 3D, a half space defined with |A|,|B|,|C| < M, |D|<3M2 cannot be found in general that 
passes through three specific integral grid points. Far larger values of A,B,C and D would 
be needed – leading to even larger values of M' and M''. It can be shown however that a 
plane can be defined with these restrictions on A, B, C and D that passes within one unit of 
resolution (of the integer grid) of any three non collinear points within the range of valid 
points (Appendix II.1).  

4.4.3. Redundancy of Half Spaces 
Restating definition def4.21, a half space Hj is redundant in the definition of C = {Hi: 
i=1..n} 

 if C’ = {Hi: i=1..n: i≠j } = C (point set equality). 

That is, removing Hj from the list of half spaces defining C does not affect the definition of 
C. Equivalently C’ ⊆ Hj.  The determination of redundant half spaces is a critical process in 
the simplification of convex polytopes. To assist with this operation, the concept of vertices 
of a convex polytope is introduced. Loosely, a vertex of a convex polytope is simply the 
vertex of a polyhedron of the same size and shape as the polytope. Note that the vertices 
will not all be within the convex polytope. In Figure 4-11, the vertices that are marked with 
dashed circles are not within C.  

C 

H 

 
Figure 4-11 Vertex test for redundancy. 

Pseudo-closure of a Convex Polytope and Regular Polytope 

The concept of a dr-rational point set interpretation of a regular polytope allows the 
definition of “pseudo-closure” of a regular polytope (the term “pseudo-closure” is used 
since all regular polytopes are closed in a topological sense – as shown in Section 4.2.3). 
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The pseudo-closure of a half-space, H(A,B,C,D), Hpc, is defined as the set of all dr-rational 
points (x,y,z)  such that point (x,y,z) ∈ Hpc if  

–M ≤ x,y,z ≤ M  16 
(Ax + By + Cz + D) ≥  0.  (def4.45) 
(Note the equal sign, which causes all “boundary points” on all sides to be included). 

The pseudo-closure Cpc of a convex polytope C = {Hi: i=1..n ∈H}  is defined as  

Cpc =def {Hi
pc : Hi∈C, Hj

∞pc, j=1..6}.     (def4.46) 
(The set of the pseudo-closures of the half spaces that comprised the original convex 
polytope plus the half spaces at infinity). 

To cover the cases where a convex polytope is not fully bounded, it is necessary to add to 
the definition of the convex polytope the "half spaces at infinity" (see Section 4.1.3, 
definition def4.13). Note - these may generate vertices "at infinity" – with x, y and/or z 
values of ±M. In the case of bounded or partially bounded convex polytopes most or all of 
these will be found to be redundant. 

The pseudo-closure Opc of a regular polytope O = {Cj: j =1,m} is defined as: 

Opc = {Cj
pc : Cj∈O} (def4.47) 

The pseudo-closure of a regular polytope can be thought of as the set of all dr-rational 
points within or on the “boundary” of the regular polytope. This will not be of much use in 
itself, but serves to define the vertices. The additional points that are added to the regular 
polytope to create the pseudo-closure are part of the boundary. While not dense in the 
topological sense (since only a finite number of points fall on the boundary), these 
boundary points are "fairly dense" in the sense that every other pair of half spaces that 
could possibly be defined to intersect this boundary will do so at a dr-rational point. 

It is also possible to define the pseudo-interior in the same way – for H(A,B,C,D), Hpi, is 
defined as the set of all dr-rational points (x,y,z)  such that point (x,y,z) ∈ Hpi if  

–M < x,y,z < M   
(Ax + By + Cz + D) > 0.  (def4.48) 
(Which causes all “boundary points” to be excluded). 

In the same way as in def4.46 and def4.47, Cpi and Opi can be defined. This actually defines 
an alternative topology on the set of regular polytopes. Similarly, (Ax + By + Cz + D) = 0 
can define a pseudo-boundary Hpb, leading to Cpb and Opb. This might provide some 
interesting further research; however it loses the advantages of the boundary-free 
representation, which is central to this thesis. 

 

                                                           
16 Extending the range of x,y,z which was -M≤x,y,z<M. The upper boundaries have been added to the allowed 
range. 
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Vertices of a Convex Polytope 

The useful concept of a vertex can be defined as follows: 

A vertex is a pseudo-rational point v = (x,y,z) ∈ Cpc which is within the pseudo-closure of 
the convex polytope, and  there exist Hi, Hj, Hk ∈ C  i≠j≠k≠i such that: 

Aix + Biy + Ciz + Di  = 0 (f4.34) 
Ajx + Bjy + Cjz + D j = 0 
Akx + Bky + Ckz + Dk = 0 

It is clear that this is just the normal definition of vertex in the classical convex solid 
polyhedron. (Note – in 2D, the vertices each need to be on exactly two half planes). 

C 

 
Figure 4-12 Convex polytope C with vertices circled.  

Figure 4-12 should be interpreted as a 3D convex polytope sliced through the plane of one 
of its half spaces. Thus the circled vertices are the points of intersection of three half 
spaces. The intersections which are not circled are still the intersection of three half spaces, 
but are not within Cpc. 

 

H1 
H2 

C 

H3 

 
Figure 4-13 Convex polytope C with vertices circled. New half spaces H1, H2 and H3 

are to be added to the definition of C. 
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It is a useful property of these vertices that if a half space, which is being added to the 
definition of a convex polytope (such as H1(A1,B1,C1,D1) in Figure 4-13) is such that all 
vertices v = (x,y,z) of the convex polytope satisfy the inequality A1x+B1y+C1z+D1 ≥ 0, then 
H1 is redundant with respect to C, and need not be added. Similarly if for all vertices 
A2x+B2y+C2z+D2 ≤ 0, then H2 is incompatible with C (and if H2 is added to the set C, the 
result will be an empty convex polytope). Note that H3 is redundant to the definition of C 
although it passes exactly through a vertex.  

All vertices must lie on grid2. That is to say, if p = (x,y,z) is a vertex, with x = Ix/Jx, y = Iy/Jy, 
z = Iz/Jz then |Ix|, |Iy|,|Iz|<N”, and |Jx|, |Jy|, |Jz| < N’, with N’ and N” as defined in f4.30 and 
f4.31. 

Vertex Test for Redundant Half Spaces 

If all existing vertices of a convex polytope are within the pseudo-closure of a half space, 
then the half space is redundant to the definition of the convex polytope. That is, all points 
within the convex polytope fall within the half space. (See Appendix IV.1 for the proof of 
this assertion).  

Vertex Test for Incompatible Half Spaces 

If all vertices of a convex polytope are within the pseudo-closure of the inverse of a half 
space, then the half space is incompatible with the convex polytope. That is there is no 
point within the convex polytope which is within the half space. (See Appendix IV.2 for 
proof).  

4.4.4. Empty Test for a Convex Polytope 
The vertex test for incompatible half spaces allows a definition of the “Empty()” test for 
convex polytopes. A convex polytope C = {Hi: i=1..n} is empty if it has no vertices. That is 
to say, that for any point p = (x, y, z) that is the point of intersection of any three half spaces 
of C (including the half spaces at infinity if necessary) there exists Hj = H(Aj, Bj, Cj, Dj) 
such that Ajx+Bjy+Cjz+D < 0. 

In practice, it is not necessary to apply this test explicitly. As a convex polytope is 
constructed, half spaces are added to it one by one. As half space H(A, B, C, D) is added, it 
can be compared with the vertices of the convex polytope as it existed before the addition. 
If all vertices v = (xk, yk, zk) are such that Axk+Byk+Czk+D ≥ 0 then H is redundant and need 
not be added. If all vertices are such that Axk+Byk+Czk+D ≤ 0 then H is incompatible with 
the existing half spaces, and the convex polytope becomes empty. 

As described in Section 4.2.5, this allows a rigorous definition of the overlap, part of and 
the equals predicates, and the additional predicates of proper part, proper overlap and 
discrete from, in terms of dr-rational points of grid2. 



Chapter 4 – The Regular Polytope Representation 

111 

4.4.5. Uniqueness of Convex Polytope Representation 
The justification of the approach is that, even though the definitions are framed in terms of 
dr-rational points, they can be shown to apply to all rational points regardless of precision. 
Thus it can be shown that for well defined half spaces: 

H ≅ H’ ⇔ ∃ p ∈  Q Q 3 

: (p ∈ H ⇔ p ∈ H’). (f4.35) 
where H ≅ H’ is as defined in def4.3: 
H(A, B, C, D)  ≅  H’(A’, B’, C’, D’)  =def  ∃ integers I > 0, J > 0:  
    AI = A’J,  BI = B’J,  CI = C’J,  DI = D’J. 

A well defined half space is defined as one which contains at least one dr-rational point. 

It can also be shown (Appendix IV.4) that the definition of a convex polytope is unique, in 
that if two convex polytopes define the same rational point set, and all redundant half 
spaces are omitted, the resultant convex polytopes will be defined by the same number of 
half spaces, which are pairwise equal.  

4.5. Floating Point Number Approach 
There is no theoretical reason that an approach based on the floating point number 
representation (either of A, B, C and D, or of the point coordinate values) could not be 
developed. Note, however, that it is not achievable by assuming that floating point is 
equivalent to real number arithmetic. Since the definitions of the algebra is in terms of point 
sets, it is vital that inclusion or exclusion of points in a set can be rigorously determined. 
Thus, if an algorithm can be developed for the rigorous determination of point set 
membership, a floating point approach would be possible. Note that this interpretation does 
not lead to a metric space as described in Section 4.2.2. 

The definition and exploration of such an approach is outside the scope of this thesis. 

4.6. Conclusion 
The concept of the regular polytope has been defined and its basic properties explored. The 
space spanned by regular polytopes has been shown to be a topological space, a metric 
space (apart from the floating point interpretation), and a Boolean algebra. The integer and 
dr-rational interpretations have been discussed in some detail, and a rigorous test for 
equality has been made available, along with a set of basic topological operations and 
predicates. It has been noted that there are clear advantages associated with the dr-rational 
interpretation of the regular polytope definition. 

The next chapter will consider the important issue of connectivity between regions in 
relation to the regular polytope representation.   





  

  

 

Chapter 5 

Connectivity in the Regular 
Polytope Representation 

The previous chapter defined the concept of a regular polytope and the basic topological 
functions and predicates between regular polytopes. The regular polytopes were shown to 
span a metric and topological space, and a Boolean algebra. The integer and dr-rational 
interpretations were defined, and discussed in some detail. 

This chapter explores the important concepts of internal contiguity of regular polytopes, 
and connectivity between regular polytopes. Again, the integer and dr-rational forms are 
addressed, with the advantage of the latter being more strongly reinforced.  

The concept and meaning of connectivity in general is discussed in Section 5.1, with a 
particular reference to connectivity of spatial regions as defined in geographic data models. 
In seeking a useful definition, it is found that a single definition is not sufficient to all 
requirements, so the two most useful (to be known as weak or Ca and strong or Cb 
connectivity) are defined and discussed in detail. 

In Section 5.2 these definitions are applied to the convex polytope representation of spatial 
regions, using the integer and the dr-rational interpretations as presented in Chapter 4. It is 
shown that the Ca definition can be implemented using integer or dr-rational form, but that 
Cb is only completely satisfactorily supported by the dr-rational interpretation. These 
definitions are extended to the regular polytope in Section 5.3. Section 5.4 discusses the 
properties of the connectivity predicates as applied in this way, and Section 5.5 extends 
connectivity and overlap to a rich set of additional predicates. Section 5.6 introduces the 
issue of forming a partition of space into multiple regions using the regular polytope 
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approach. This issue will be discussed again in Chapter 8 from an implementation 
standpoint. Section 5.7 discusses the robustness of the regular polytope representation with 
regard to small perturbations in the definition of the half spaces. 

5.1. Connectivity of Geometric Objects 
One of the more important properties of geometric objects is that of connectivity.  Loosely, 
this can be thought of as the property that a geometric object has if it is “in one piece”; see 
Figure 5-1.  It is the aim of this research to formalise this definition for regular polytopes in 
order to support robust determination.  

In the polygon representation, as defined by standards such as ISO 19107 (ISO-TC211 
2001), the connectivity of a polygon is mandated by requiring one (or zero) outer boundary, 
with zero or more inner boundaries.  This does require further qualification to cover the 
cases of tangential connectivity. The regions in Figure 5-2 are not considered continuous by 
the ISO 19107 definition, because their interiors are not connected, but they are each 
defined using a single outer boundary.  Egenhofer et al (1994) discuss the type of 
geometry, where parts of the boundary of a hole may be collinear with parts of the outer 
boundary (Figure 5-2 left region), and do consider it to be connected. 

 

 
Figure 5-1 Examples of Connected Polygons. 

A fuller discussion can be found in van Oosterom et al. (2004) with the following condition 
recommended for a valid polygon: “… any point inside or on the boundary of the polygon 
can be reached through the interior of the polygon from any other point inside or on the 
boundary of the polygon, that is, it defines one connected area”.  The polygon on the right 
in Figure 5-1 is connected, but this definition eliminates the more problematic examples in 
Figure 5-2 and Figure 5-4. Frequently, where more than one outer boundary can exist, the 
geometry is known as a “multi-polygon” (OGC 1999b). 
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Figure 5-2 Discontinuous regions with single outer boundaries. The circled points are 

supposed to coincide exactly, but have been drawn slightly separated for clarity.   

It is clear that connected regions alone cannot provide a basis for a topological space, since 
the union or intersection of two connected regions need not be connected. That is to say the 
operations of union and intersection are not closed as the result type is not the same as the 
input type (i.e. not connected); see Figure 5-3. The word "closed" is used here in the sense 
of operator closure – see Section 1.4.3 – Nomenclature. 

 

A ∪ B not connected A ∩ B not connected 

A A BB

 
Figure 5-3 Non-closure of union and intersection operations. 

5.1.1. Topological Definition of Connectivity 
The topological definition of connectivity is: “A connected set is a set that cannot be 
partitioned into two non-empty subsets which are open in the relative topology induced on 
the set. Equivalently, it is a set which cannot be partitioned into two non-empty subsets 
such that each subset has no points in common with the set closure of the other” (Insall and 
Weisstein 1999). This is not a useful definition in the context of the finite digital computer 
for which the regular polytope is designed, since any half space that cuts a regular polytope, 
by definition cuts it into two non-overlapping, open regions.  
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5.1.2. Alternative Definitions of Connectivity 
In order to provide a rigorous and useful definition of connectivity in the realm of regular 
polytopes, it is important first to decide what we wish to mean by “connected”.  It is 
suggested1 that regions such as those pictured in Figure 5-2 should not be considered to be 
connected, but note that these regions contain a mixture of 1D and 2D parts and are 
therefore not regular in the topological sense (see Section 5.1.3). A more difficult issue is 
whether shapes such as those in Figure 5-4 should be considered to be internally connected, 
that is where the region of contact is not the same dimensionality as the regions themselves. 

 

 
Figure 5-4 Marginal ‘connectivity’. 

Cohn and Varzi (Cohn and Varzi 1999) identify twelve varieties of connection, based on 
two criteria (see also Section 3.2.6). The first criterion is determined by whether it is the 
interiors of the regions, the closures of the regions, or the regions themselves which 
connect. This is not an issue with the regular polytope representation, since a regular 
polytope has no boundary points. Thus only the second criterion need be considered. This is 
represented as Ca, Cb, Cc and Cd  in Figure 5-5. 

y 

x 

y 

Ca 

y 

x 

y 

x x 

y 
x 

Cb 
Cc

Cd
OV 

 
Figure 5-5 Connection relations Ca to Cd (Cohn and Varzi 1999), with overlap (OV) 

depicted (based on Figure 3-3). 

                                                           
1 Following the OGC Simple Feature Specification usage. 
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 Weak Connection 

Ca 
Cb ⇒ Ca

OV ⇒ Cb ⇒ Ca  

Strong Connection Overlap 

0D meet  1D meet 2D meet 3D overlap 

1 2 3 4 5 6 

 
Figure 5-6 Modes of Connectivity in 3D (based on Figure 3-4). 

Alternatively, connectivity may be described in terms of the dimensionality of the region of 
contact (Clementini et al. 1993), as discussed in Section 3.2.7. The interrelation of these 
approaches in shown in Figure 5-6. 

The regions used in Figure 5-5 to illustrate Ca to Cd do not themselves overlap, (i.e. in the 
Cc and Cd cases, y has a hole the exact size of x). The definitions can be expressed loosely 
in 3D as: 

• Ca if the regions touch (at one or more points, lines or surfaces – in Figure 5-6, the 
regions marked 1 and 2 meet at a point, 3 and 4 meet at a line). 

• Cb if the regions touch at a surface in 3D or a line in 2D (in Figure 5-6, the regions 
marked Cb meet at a surface). 

• Cc if the regions touch at the entire boundary of one region (in this case x 
completely fills a hole in y). (The inner and outer boundaries of y may touch).  

• Cd if one region completely surrounds the other (x completely fills a hole in y and 
the inner and outer boundaries of y do not touch). 

• OV if one region completely or partially overlaps the other (in Figure 5-6, the 
regions marked OV have volume in common). 

The Cc and Cd varieties of connection are clearly too strong for most practical uses. These 
would normally be characterized by the word “enclosure” rather than “connection”. The Cb 
form of connection is clearly useful; it is the mode Ca which is more problematic. Borgo et 
al (1996) use the concept of “strong connection” (effectively Cb) to restrict the definition to 
what is intuitively a “physical connection” rather than mere contact. The analogy used is 
that a worm should be able to pass from one region to the other without exposing itself to 
the outside world. This is the form suggested by van Oosterom et al. (2004).  

Commercial GIS and spatial DBMS products, ISO 19107 (ISO-TC211 2001) and the OGC 
Simple Feature Specification (OGC 1999b) are at considerable variance in their approaches 
to this question, and indeed, are often internally inconsistent (e.g. allowing contact between 
points on inner rings but not outer boundaries) (van Oosterom et al. 2004). Ultimately, the 
decision as to what variety of connectivity should be supported should be based on the 
“usefulness” of the result, with both being appropriate in different contexts. However 
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awareness of the issue and the existence of rigorous definitions helps to avoid some of the 
current interoperability issues. 

In Chapter 6, the nomenclature of the region connection calculus (RCC) (Randell et al. 
1992) is used to underpin the development of the algebra of the space of regular polytopes. 
For consistency with the RCC, Ca and Cb are taken to be implied by overlap. The 
definitions are not mutually exclusive. Thus: 

Ca if the regions touch (at least at one point) or overlap. 
Cb if the regions touch at a surface (line in 2D) or overlap. 
Therefore: OV ⇒ Cb ⇒ Ca.  

Arguments for Weak Connectivity - Ca 

In the Cadastral information domain, connectivity of type Ca is argued for on the basis that 
any change in the definition of a parcel will affect all neighbours, including the “corner” 
neighbours. 

 

A 

D 

B 

C 

p 

E 
Road

q 

F 

 
Figure 5-7 Cadastral Parcels.  A resurvey of parcel A could affect parcels C and F as 

well as B, D and E. 

The fact that a parcel is defined by a point which also is part of the definition of another 
parcel, could be taken as reason to assert that the parcels are connected. In Figure 5-7, the 
point p participates in the definition of parcels A, B, C and D, therefore its re-definition by a 
resurvey will affect all these parcels. 

Difficulties with Ca 

Although counter-intuitive, it is possible for two Ca connected regions to cross each other 
without their interiors intersecting (see Figure 5-8).  This seems to be an undesirable 
property.  
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Figure 5-8 Two Ca connected regions crossing without intersecting. 

Returning to Figure 5-7, a lot consisting of the amalgamation of parcels A and C would be 
Ca connected, as would the amalgamation of B and D, and these two lots would cross 
without overlapping. 

Summary of Conclusions on Weak Connectivity 

In summary, Ca is most likely to be useful when dealing with the connectivity between 
multiple regions, while Cb is more suitable for defining the internal connectivity of regions. 
It is apparent that both forms are useful and should be supported, and an awareness of the 
distinction is important in certain applications. The dimension of contact approach makes a 
finer distinction which could be important in certain problem domains. 

5.1.3. Connectivity as Applied to the Regular Polytope 
In order to remove arbitrary distinctions between regions, based on concepts that have no 
real-world importance, [“… it is nonsense to ask whether a physical object occupies an 
open or a closed region of space, or who owns the mathematical line along a property 
frontier” (Lemon and Pratt 1998) page 10)], Lemon & Pratt invoke the concept of a regular 
set – see Section 1.4.4. A regular set is equal to the interior of its closure. In particular, the 
interior of the closure of any set is a regular set (possibly empty).  Note that this interior 
may be disconnected. 

The process of forming a regular region in this way removes some kinds of pathological 
connection such as those in Figure 5-2 (observe the result of these two cases in Figure 5-9). 
However this operation (‘make regular’) does not simplify the issue of point wise 
tangentiality as in the right polygon in Figure 5-1 and the polygons in Figure 5-4.  
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Figure 5-9 The shapes from Figure 5-2 and Figure 5-4 regularised. 

The real issue with regular polytopes is whether a rigorous definition of connectivity can be 
formed.  

5.1.4. Half Space Connectivity Issues 
In defining connectivity in the context of the regular polytope, it is essential that if a 
connected region is bisected by a half space (and its complement), then the two regions so 
created are connected to one another.  

 

H 
H

O∩H

O∩H

 
Figure 5-10 A regular polytope bisected by a half space and its complement. 

If O is a regular polytope, and it is divided by a half space H, then: 

If HOOh ∩= , and HOOh ∩= ,  
)()( HOHOOO hh ∩∪∩=∪  

)( HHO ∪∩=   
= O     (by the definition of complement of a half space) 
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Thus any definition of connectivity must require that )(C)(C hh OOO ∪⇔ . Note that by 
the definition of a half space and its complement there are no points common to both. This 
means, for example, that it is possible for two regular polytopes to be connected while 
having no points in common.  

5.2. Connectivity of Convex Polytopes 
Before considering the question of connectivity between or within regular polytopes, it is 
useful to consider the question of connectivity between convex polytopes. As in Chapter 4, 
this will be considered in relation to the integer and the dr-rational number interpretations. 
The floating point interpretation is outside the scope of this thesis. In both cases, the issues 
of Ca and Cb continuity will be considered (but not Cc or Cd which are considered less 
useful in practice).  

5.2.1. Connectivity in the Integer Interpretation 
Using the integer representation2 as introduced in Section 4.3, a definition of connectivity 
can be developed in terms of the minimum distance between points of the sets. For 
example: convex polytope A is Ca connected to B if there exists a point a∈A and a point 
b∈B, such that the distance between a and b is less than some defined constant ε. By this 
definition, it is obvious that OV ⇒ Ca. 

Connected regions 
 (minimum dist = 1 unit) 

Disconnected regions 
 (minimum dist > 2  units) 

 
Figure 5-11 Inconsistent results for Ca with ε = 2 . 

As can be seen in Figure 5-11, the choice of ε is important, but not obvious. A small value 
such as 1 or 2 (in terms of the grid1 unit size) can lead to a non-robust definition – in 
Figure 5-11, the case on the right is only a slight variation on that on the left, but the 

                                                           
2 Or in fact, using any other gridded representation. This approach could also be used for the dr-rational 
representation, but as will be seen below, better definitions are possible. 
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minimum distance has changed from 1 to 5 . On the other hand, a larger value of  ε is 
likely to lead to spurious detection of contact in the case of near objects which do not touch. 

One approach to defining Cb is to extend each convex polytope by a buffer the width of the 
grid interval, form the intersection of these extended convex polytopes, and count the grid 
points in the region of intersection of each convex polytope with the buffered version of the 
other.  

To approximately buffer a convex polytope, it is simply necessary to decrease the value of 
Di in the definition of each half space Hi=H(Ai,Bi,Ci,Di). Replace the convex polytope 

i
ni
HC

..1=
= I  by a larger one defined as '

..1
' i

ni
HC

=
= I , where ),,,( ''

iiiii DCBAHH =  and 

( )iiiii CBADD ,,max' −= . This in effect, moves each half space one grid interval out 
from the convex region. This is clearly a convex polytope, and so the region of intersection 
is a convex polytope. It has been shown that it is possible to count the grid points in a 
convex region in polynomial time (Dyer 1991) in 3D (or 4D, or in any fixed number of 
dimensions by Barvinok (Barvinok 1994) ). This form of approximate buffering extends the 
convex polytope by one unit parallel to the x, y or z axis – depending on which of A, B or C 
has the largest absolute value. It is not possible to use buffering with a constant width 
(normal to the half space) as this requires D to be decreased by a multiple of 

222 CBA ++ , which is not possible in general for integral D.   

B 

C 

A’ B’

C’

A 

D 
D’

 
Figure 5-12 Overlap of buffered convex polytopes. 

It could be decided, for example, that if the number of points in the intersections of the 
buffered regions is less than (say) 26 (eight in 2D), then Ca is indicated. If the number is 26 
or more, then Cb is indicated. The number 26 could be chosen because an overlap such as 
between A’ and B’ in Figure 5-12 (but in 3D) can cover up to that number of points, while 
still being clearly Ca. In the case of overlap, if p is the point in common between the two 
convex regions, then it is possible that not all of its 26 neighbouring points will be in the 
buffered overlap, so that it is necessary to include the requirement that OV ⇒ Cb as part of  
the definition. There are other clear deficiencies in this test. It is possible for two regions 
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such as B and D to be detected as Cb when in fact they really only nearly meet along a 
sufficiently long line (and should be only Ca).  

Using the above definition, Cb cannot be guaranteed to support the following axiom, which 
is required by some of the algebras to be discussed in Sections 6.4 and 6.5: 

 (B4) ∀ X ≠ OΦ,Y ≠ OΦ,Z ≠ OΦ: C(X,Y∪Z) ⇔ [C(X,Y) ∨ C(X,Z)]. 

That is, if a region is connected to the union of two regions, it must be connected to at least 
one of them and vice versa. This axiom is included in the definition of a Boolean 
connection algebra (Section 3.2.4). An equivalent axiom (PS2) is used in the definition of a 
proximity space (Section 3.2.9). 

Figure 5-13 illustrates a case where this axiom for Cb can break down. It is clear that Ca 
does satisfy this axiom, since the single point in the union that is adjacent to the other 
region must belong to at least one region. 

B 
C 

A 

 
Figure 5-13 Breakdown of Axiom B4 (or PS2) in the integer interpretation of Cb. 

An alternate approach to defining Cb in the integer interpretation is to determine if one or 
more half spaces from each convex polytope are separating them.  

For C1 = {Hi: i=1..n1}, C2 = {Hj: j=1..n2},  if OV(C1, C2) or 

 ∃ Hi ∈ C1, Hj ∈ C2: ji HH ≅ such that: 
letting C1’ = C1 – {Hi}, C2’ = C2 – {Hj} and C’ = C1’ ∪ C2’  
C’ ∩ C1 ≠ CΦ, 
C’ ∩ C2 ≠ CΦ. 
Then Cb(C1, C2). 
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C1’

C2’ 
H9 

C1

C2

C’

H1 
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H5 

H6 

H7

H8 

 
Figure 5-14 Alternative definition of Cb for the integer interpretation. 

For example, in Figure 5-14, H3 and H9 are removed from C1 and C2 respectively (H9 is the 
complement of H3). The remaining half spaces then make the intersection C’ = {H1, H2, H4, 
H5, H6, H7} (H2 and H8 are redundant in the definition of C’). In this case, C’ ∩ C1 ≠ CΦ and 
C’ ∩ C2 ≠ CΦ, so that Cb(C1, C2). 

This definition has some advantages over the other, in that it more directly models what is 
meant by Cb. On the other hand, it is dependent on the representation of the convex 
polytopes rather than their point set definitions. It is possible to generate a case where A = B 
as point set equality, but Cb(A, D) and ¬Cb(B, D).  

H1 

D 

A 

H2 

H3 

D’ 
A’ 

H1 

H2 
H3 D 

B 

B’ 

 
Figure 5-15 Although A in left figure equals B on right, 

Cb(A, D) (left) but not Cb(B, D) (right). 

For example, in Figure 5-15, 21 HH ≅ , and as point sets, A = B, but the overlap region in 
the left diagram intersects both A (in the region circled as A’) and D (in the region circled as 
D’). In the figure on the right, the overlap region does not intersect D. This in turn means 
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that the axiom B4 cannot be guaranteed to be satisfied. These are serious flaws in the 
definition, but do not prevent its use. 

Thus we have at least two possible definitions for Cb in the integer interpretation, neither of 
which is entirely satisfactory.  

5.2.2. Summary of Integer Interpretation Issues 
These definitions, for Ca and Cb, in conjunction with the definitions of union, intersection 
and inverse, allows the relations of the RCC to be implemented as is described in Chapter 
6, however the algorithms for determining whether a convex polytope is equal to CΦ and 
the determination of Ca and Cb are complex. In addition, there is no clear qualitative 
difference between the situation between regions B and C in Figure 5-13 (which test as Ca 
but really should be Cb), and between the regions B and C in Figure 5-12 (which are clearly 
Cb). Similarly there is no qualitative difference in Figure 5-15 between A and D on the left, 
and B and D on the right. For these reasons, and because of the inherent lack of robustness 
of the integer based approach, the following dr-rational number based approach has been 
investigated. 

5.2.3. Dr-Rational Definition of Ca 
Many of the difficulties with the integer interpretation can be relieved by using the dr-
rational approach defined in Section 4.4. In that discussion it was noted that the algorithm 
to determine overlap was far simpler than in the integer approach. In a similar way, the 
approach simplifies the determination of connectivity. 

Pseudo-closure of a Convex Polytope. 

The concept of a dr-rational point set interpretation of a regular polytope allows the 
definition of “pseudo-closure” of a convex polytope (see Section 4.4.3). The pseudo-
closure of a convex polytope can be thought of as the set of all dr-rational points within or 
on the “boundary” of the convex polytope. As was described in Section 4.1.3, a convex 
polytope contains all dr-rational points on its western edges, southern edges and bottom 
edges. This adds all points that also lie on the eastern and other edges. 

 

 
 

p p 

p 

C1 C1 C1 C2 C2 
C2 

 
Figure 5-16 Examples of Ca connection that is not Cb or overlap. 

Two convex polytopes C1 and C2 are considered to be Ca connected if there exists a dr-
rational point p such that p is within C1

pc and within C2
pc: 
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Ca(C1, C2) =def  ∃p: p ∈ C1
pc ∨ p ∈ C2

pc. (def5.1) 

This will be denoted as Ca(C1,C2). Figure 5-16 illustrates three cases where Ca applies, but 
not any stronger type of connection. In all cases, the point marked p is part of region C2, but 
not region C1. It is within the pseudo-closure of C1 in all cases. Clearly, if OV(C1,C2), then 
∃ p ∈ C1∩C2. This p is clearly within C1

pc and within C2
pc therefore OV(C1,C2) ⇒ 

Ca(C1,C2). Note that in the alternate topology generated by the pseudo-interior and pseudo-
closure operations, as mentioned in Section 4.4.3, this is just the conventional topological 
definition of connection as stated in Section 5.1.1. 

Dr-Rational Definition of Cb 

By contrast, the definition of Cb does not use the pseudo-closure. Instead, an axiomatic 
definition is used: 

Cb(C1, C2) =def  ∃C: C ⊆ C1∪C2 ∧ C∩C1 ≠ CΦ  ∧ C∩C2 ≠ CΦ. (def5.2) 

Note that C1 and C2 do not need to overlap, but a convex polytope must fit within the union 
of C1 and C2 and must cross the boundary, as shown in Figure 5-17. The actual 
implementation of Cb takes a slightly different form from this definition, but can be shown 
to be equivalent.  

C1 

C2 
C 

 
Figure 5-17 Cb Connectivity - C lies within C1 ∪ C2, and overlaps C1 and C2. 

If C1 and C2 overlap, i.e. C1∩C2 ≠ CΦ, then letting C = C1∩C2, it is clear that C ⊆ C1∪C2, 
C∩C1 ≠ CΦ and C∩C2 ≠ CΦ. Therefore OV ⇒ Cb. 
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The implementation of the Cb predicate takes this form (see Figure 5-18):  

If C1 and C2 overlap, then Cb(C1,C2) - done.  
Otherwise, if there exists one mutually anti-equal pair of half spaces3 (one half space 

from each convex polytope) Hi∈C1, Hj∈C2, ji HH ≅ , then 
Form the intersection of all the remaining half spaces:  
 C = {Hk ∈ C1: k≠i, Hl ∈ C2: l≠j}.  

 If this convex polytope is cut by Hi and Hj, that is to say,   
C∩Hj ≠ CΦ and C∩Hj ≠ CΦ, then Cb(C1,C2) - done.  

 (Clearly, from this definition: C ⊆ C1∪C2, and  
 C∩Hj=C∩C1 ≠ CΦ and  
 C∩Hj=C∩C2 ≠ CΦ). 
Otherwise ¬Cb(C1,C2) - done 

 

C1 

C2 C 

C1 

C2 
C 

Hi 
Hi 

Hj 
Hj 

Cb(C1,C2) ¬Cb(C1,C2) 
 

Figure 5-18 Forming the connection region from convex polytopes. 

Equivalently - for C1={Hi, i=1..n}, C2={Hj,j=1..m} 

Cb(C1,C2) =def OV(C1, C2) ∨ (∃Hi∈C1, Hj∈C2: ji HH ≅ ∧ C∩Hj≠ CΦ  ∧ C∩Hj ≠ CΦ), 
where C = {Hk ∈ C1: k≠i, Hl ∈ C2: l≠j}. (f5.1) 

If there is no anti-equal pair of half spaces, and C1 and C2 do not overlap, then they cannot 
be Cb connected. If more than one pair of anti-equal half spaces exists, then the convex 
polytopes definitely are not Cb connected. 

Note - in Figure 5-18, the region C (shown dotted) can be formed in each case by forming 
the intersection of the two convex polytopes (omitting the anti-equal half space pair), but 
only in the left hand case does the half space divide C.  

If Cb(C1,C2), and not OV(C1,C2), letting p be a point on the plane of Hi within pcC1 and pcC2  

(i.e. p(x,y,z) is such that Aix+Biy+Ciz+D=0, and p∈ pcC ) it is clear that Ca(C1,C2).  

                                                           
3 For ease of computation, C1 and C2 should be normalised by the removal of redundant half spaces.  
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Thus OV ⇒ Cb⇒ Ca.  (f5.2) 

For convenience, the empty convex polytope CΦ as defined as not being connected to any 
convex polytope. i.e. Ca(CΦ,C) = false and Cb(CΦ,C) = false. This will be further discussed 
in Chapter 6. 

Using the dr-rational interpretation, it is clear that Ca and Cb connectivity support the 
axiom: 

(B4) ∀ X ≠ OΦ, Y ≠ OΦ, Z ≠ OΦ: C(X,Y∪Z) ⇔ [C(X,Y) ∨ C(X,Z)]. 

Although this resembles the second definition of Cb in the integer interpretation, as 
described in Section 5.2.1 it does not share its problems, because of the uniqueness of the 
convex polytope representation in the dr-rational interpretation, as shown in Appendix 
IV.4. It is also important to note that the details of the interpretation, particularly the use of 
dr-rational numbers, and pseudo-closure are in some sense “under the covers”. To the 
outside observer, the definition of half space, and therefore convex and regular polytopes is 
in terms of integers. It is only when connection or overlap is to be determined that dr-
rational arithmetic is required. 

5.3. Connectivity of Regular Polytopes 
In either the integer or the dr-rational interpretations, two regular polytopes O1 and O2 are 
considered to be Ca or Cb connected if there exists a pair of convex polytopes C1 ∈ O1, C2 ∈ 
O2, such that Ca(C1,C2) or Cb(C1,C2). Note that this does not require that O1 or O2 are 
internally connected. In Figure 5-19, regular polytopes A (hashed) and B (shaded) are Cb 
connected to each other, but B is not internally connected. 

A 

B

B

B

 
Figure 5-19 Regular polytope connectivity. 

For convenience, as with convex polytopes, the empty regular polytope OΦ is defined as not 
being connected to any regular polytope. i.e. Ca(OΦ,O) = false and Cb(OΦ,O) = false.  This 
will be further discussed in Chapter 6.   
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5.3.1. Internal Connectivity of Regular Polytopes 
A regular polytope can be defined as “internally Ca connected” by induction as follows: 

A Ca connection S within convex polytope O = {Ci: i=1..n} is defined as a set of convex 
polytopes S ={Ci: i=1..m: Ci∈O} such that: 

S  is a Ca connection if m =1. 
S’ ={Ck, Ci: i=1..m} is a Ca connection if {Ci, i=1..m} is a Ca connection,  
 Ck∈O and  
 ∃ i ≤ m such that Ca(Ck, Ci). 

Figure 5-20 shows a regular polytope of 7 convex polytopes. These are grouped into three 
Ca connections. 

A regular polytope i
ni
CO

..1=
= U is Ca connected if {Ci, i=1..n} is a Ca connection.  

 

 
1  

2  

3  

2 b  

2 a  

 
Figure 5-20 Regular polytope containing three Ca connections. 

Internal Cb connectivity can be defined in the same way for regular polytopes. Note that the 
regular polytope in Figure 5-20 has four parts which are Cb connections, marked 1, 2a, 2b 
and 3. Note that 2a and 2b are separate Cb connections because under the Cb criteria they 
are separated (¬Cb). Under the Ca criteria they are connected, and therefore belong to the 
same Ca connection. 

5.4. Properties of CA and CB 
It is clear that in both the integer and the dr-rational interpretations the axioms required for 
a region connection calculus apply: 

(Cref) Ca(O1,O1) and    
(Csym) Ca(O1,O2) ⇒ Ca(O2,O1), 

and that the same apply to Cb. These axioms are basic to the RCC theory (Bennett 1995), 
which will be discussed in Chapter 6. 
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It is also clear from the similar results for convex polytopes that for the integer 
interpretation (see Appendix III for further details):  

OV(O1, O2) ⇒ Cb(O1, O2), (f5.3) 
Cb(O1, O2) ⇒ Ca(O1,O2), (f5.4) 
∀ O≠OΦ, O≠O∞, Ca ),( OO ,  
∀ X,Y,Z∈O: Ca(X,Y∪Z) ⇔ [Ca(X,Y) or Ca(X,Z)]. (f5.5) 

For the dr-rational interpretation (see Appendix IV):  

OV(O1, O2) ⇒ Cb(O1, O2), (f5.6)  
Cb(O1, O2) ⇒ Ca(O1,O2), (f5.7) 
∀ O≠OΦ, O≠O∞, Ca ),( OO , (f5.8) 

∀ O≠OΦ, O≠O∞, Cb ),( OO , 
∀ X,Y,Z∈O: Ca(X,Y∪Z) ⇔ [Ca(X,Y) or Ca(X,Z)], (f5.9) 
∀ X,Y,Z∈O: Cb(X,Y∪Z) ⇔ [Cb(X,Y) or Cb(X,Z)]. (f5.10) 

5.5. Further Connectivity Relations 
Just as in Chapter 4, where P (part of), PP, (proper part of), PO (proper overlap), EQ 
(equal), and DR (discrete from) were defined in terms of the OV (overlap) relation, in this 
chapter we can define: 

DCa (fully disconnected from) as: 
 DCa(O1, O2) =def  ¬Ca(O1, O2) (def5.3) 
ECa (externally weakly connected) as  
 ECa(O1, O2) =def  Ca(O1, O2) and ¬OV(O1, O2)  (def5.4) 
TPPa (weakly tangential proper part) as  
 TPPa(O1, O2) =def  PP(O1, O2) and Ca(O1, 2O ) (def5.5) 
NTPPa (non-tangential proper part) as  
 NTPPa(O1, O2) =def  PP(O1, O2) and ¬Ca(O1, 2O ) (def5.6) 
DCb (partially disconnected from) as  
 DCb(O1, O2) =def  ¬Cb(O1, O2)  (def5.7) 
ECb (externally strongly connected) as  
 ECb(O1, O2) =def  Cb(O1, O2) and ¬OV(O1, O2)  (def5.8) 
TPPb (strongly tangential proper part) as  
 TPPb(O1, O2) =def  PP(O1, O2) and Cb(O1, 2O ) (def5.9) 
NTPPb (not strongly tangential4 proper part) as  
 NTPPb(O1, O2) =def  PP(O1, O2) and ¬Cb(O1, 2O ) (def5.10) 

                                                           
4 Names such as this can be confusing, so that the terminology “non-tangential B proper part” will be used in this 
thesis. 
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Figure 5-21 Further connectivity relations based on weak and strong connectivity. 

5.6. Partitioning of Space 
Many applications require that a complete non-overlapping coverage of the region of 
interest be maintained. For example, a cadastral database in 2D may require that the area of 
the jurisdiction be divided into land parcels, such that any point in the region can be said to 
fall within a single parcel, and can only belong to more than one if it falls on the boundary 
between two or more parcels. Using the regular polytope approach, this can be tightened to 
the requirement that every point in the region of interest falls within one and only one 
parcel. That is we wish to divide the domain of interest OR into regular polytopes Oi: i = 
1..c such that: 

i ≠ j ⇒ Oi ∩ Oj = OΦ, (f5.11) 
Ri

ci
OO =

= ..1
U . (f5.12) 

It is possible to create such a coverage of regular polytopes, and ensure its completeness by 
virtue of the fact that the algebra is rigorous. Thus if we begin with a database consisting of 
one parcel only, being the OR, the domain of interest and add regular polytopes representing 
parcels to it using the following algorithm, a complete, non-overlapping coverage results.  

Let P be the set of parcels in the database (where each parcel is a regular polytope). 
For every parcel O to be added to P:        

Ensure that O ⊆ OR. 
Subtract O from each parcel already in P (i.e. for Oi∈P, replace Oi with Oi-O).  
Finally, add O to P. 

This is similar to the algorithm used in the cellular model to insert feature shapes into a 
space partition (Bidarra et al. 1998).  
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Figure 5-22 Building a coverage. 

This is by no means a complete answer to the issue of building a complete coverage in 
practice. As is illustrated in Figure 5-22, where it is assumed that the parcels have been 
entered in alphabetic order of their label, collisions and slivers can occur between parcels 
which might be intended to be adjacent. For example, inaccuracies in the placement of 
parcel D have resulted in a gap between it and parcel C. Points in this gap will remain part 
of the remainder parcel (shown shaded). This same inaccuracy has resulted in the eastern 
edge of D being shaved off by parcel E. Corners of parcels may be lost – as in the case of 
parcel F (shown exaggerated), and the point of common contact between a number of 
parcels can create a hiatus such as is shown at point p. It is presumed that p should 
represent a single point, but here, the overlap of the parcels has created a complex set of 
nearby points. There is also the question of the efficiency (or more correctly the speed of 
operation) of such an algorithm. These issues will be addressed in Chapters 7 and 8 as part 
of the discussion of the practicality of the regular polytope representation.    

5.7. Robustness of Regular Polytopes 
As is the case for all representations of spatial data, it is important to know whether the 
representation is robust. That is to say “Is it sensitive to small inaccuracies of measurement 
and changes due to re-calculation of parameters?” It is assumed here that the resolution of 
the base units (grid1) is small compared with the true accuracy of the data (see Section 
1.5.5 for discussion of integer and fixed-point representations). This is in common with all 
spatial data representations, where the resolution of storage and accuracy of calculations 
should be finer than the actual accuracy of the data to avoid degrading the data.  

In this section, only the dr-rational interpretation is considered. Note that perturbations of 
the kind being considered here cannot cause a regular polytope to become invalid (as in the 
case of narrow cadastral parcels - Case 6 Section 2.6). What could occur is that a regular 
polytope could become disconnected, or a convex or regular polytope could become empty. 
In essence, this section looks at the question of topological changes occurring as a result of 
small perturbations – much smaller than the accuracy of the data. 
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5.7.1. Perturbation of a Half Space 
It is instructive to discuss the effect of small variations in the values of A, B, C and D in the 
definition of the half spaces that define a regular polytope.  

For half space H = H(A, B, C, D), assume without loss of generality that |B| ≥ |A| and |B| ≥ 
|C|. If this is not the case, replace B with A or C in the following discussion, depending on 
which has the largest absolute value. (And replace x with y or z respectively). 

If B = 0, then A = C = 0, then H = HΦ or H = H∞, and any change in the value of D does not 
change the meaning unless D changes sign, or becomes zero.  

If B ≠ 0, consider H’ = (A+δ, B, C, D) for integer δ. If p = (x,y,z) is a dr-rational point on 
the defining plane of H, then consider  p’ = (x,y’,z) on the defining plane of H’.  

Ax + By + Cz + D = 0 
(A+δ)x + By’ + Cz + D = 0 
(A+δ)x - Ax + By’ - By = 0 

Δy =  y’ - y =  x
B
δ

−  (f5.13) 

Thus the displacement of the plane caused by a perturbation of δ in the value of A is 
no greater than x

B
δ

− . 

Similarly, replacing C with C+δ gives Δy =  y’ - y =  z
B
δ

−  (f5.14) 

Consider H’ = (A, B+δ, C, D), with p’ = (x,y’,z) on the defining plane of H’. 

Ax + By + Cz + D = 0 
Ax + (B+δ)y’ + Cz + D = 0 
(B+δ)y’ - By = 0 

y’ =  y
B

B
δ+

 

y’ - y =  y
B

BB
δ
δ)(

+
+−  

Δy =  y’ - y =  y
B δ
δ
+

−  (f5.15) 

Consider H’ = (A, B, C, D+δ), with p’ = (x,y’,z) on the defining plane of H’. 

Ax + By + Cz + D = 0 
Ax + By’ + Cz + (D+δ) = 0 
By’ – By + δ = 0 

Δy =  y’ - y =  
B
δ

−  (f5.16) 

Note that the displacement of the plane caused by variations of A, B and C increases for 
points further from the origin. Note also that the larger the values of |A|, |B|, |C| and |D| are, 
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the less sensitive the final result is to perturbation. Also note that it is always possible to 
ensure that max(|A|,|B|,|C|) > ½M, because it is always possible to multiply all of the 
coefficient values by a positive constant without changing the half space.  

For large M, and max(|A|,|B|,|C|) > ½M, the greatest displacement of the plane of H by 
varying A, B, C, and D each by a maximum of δ occurs at a point with x, y, or z = ±M 
which, substituting f5.13 to f5.16 above gives 

displacement < 
22212

δδδδ
MMMM MMM +++

+
 ≈ 6δ. (f5.17) 

Note that even though this result is derived for dr-rational points, it also carries over to the 
integer interpretation, but the movement of the plane may not be a whole number of grid 
intervals. 

5.7.2. Robustness of Convex Polytopes 
It is of interest whether the perturbation of the half spaces that define a convex polytope C 
can cause it to become empty. Assume the half spaces are perturbed so that the maximum 
movement of the surface of any half space within the range of the convex polytope is δ. 
This can be formalised as saying that if any point p ∈ C is at least δ units from all half 
spaces then p will be guaranteed to be within the perturbed convex polytope. 

C H 
v1 

v2 

δ 

 
Figure 5-23 A regular polytope which is not robust with respect to perturbation of 

more than  δ units. 

For example, in Figure 5-23, the half space H is less than 2δ units from vertices v1 and v2 
(the dashed lines indicate a buffer of δ units inside and outside H). Thus there can be no 
point p which is more than δ units within all half planes within C. If all half planes are 
moved by δ units in the worst direction, this convex polytope could become empty. Note, in 
Figure 5-23 the dotted lines showing the limit of perturbation of H should not be interpreted 
as indicating that only parallel movement of H is possible. What is being considered is any 
movement of H that does not cause it to move by more than δ units in the neighbourhood of 
the regular polytope. 

For a convex polytope, as a quick test for robustness in 2D, if the area A of the enclosed 
region divided by its perimeter P is greater than δ, the convex polytope is robust. In 3D, if 
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the volume V divided by the surface area S is greater than δ, the convex polytope is robust. 
This test is pessimistic, and in 2D it is possible for a convex polytope to have A/P of δ/2 
and still be robust. Likewise, in 3D V/S of δ/3 could be robust. Some cases are illustrated in 
Figure 5-24, remembering that if δ < h/2, the convex polytope is robust. Note that it is 
relatively easy using conventional geometric formulae to calculate the volume and surface 
area of a 3D convex polytope, as it is to calculate the area and perimeter of a 2D convex 
polytope. 

h 

h 

h 
h 

A = ½Bh, P ≈ 2B 
h ≈ 4A/P 

A = Bh, P ≈ 2B 
h ≈ 2A/P 

V = Ah/3, S ≈ 2A 
h ≈ 6V/S 

V = Ah, S ≈ 2A 
h ≈ 2V/S 

 
Figure 5-24 Limiting cases of robust convex polytopes in 2D and 3D. 

5.7.3. Robustness of Ca Connected Convex Polytopes 
If two convex polytopes are Ca connected, but not Cb, then they must meet at a single 
vertex or at an edge between two vertices. This means that they are not robustly connected, 
since perturbation in the wrong direction of any of the half planes defining the point or edge 
of contact will break the connectivity. Thus two Ca connected convex polytopes are 
robustly connected only if they are robustly Cb connected. 

It could be argued that a robust Ca connection is possible, since any anti-equal pair of half 
spaces is unlikely to be generated accidentally. Thus for example, in Figure 5-25, the 
polytope on the left has two pairs of anti-equal half spaces, 52 HH ≅ and 63 HH ≅ . The 
polytope on the right has no anti-equal pairs. A case could be made for a robustness 
criterion to consider that anti-equal pairs of half spaces are perturbed as a unit – leading to 
the polytope on the left being considered to be robustly connected. Section 7.3 discusses a 
particular data model which supports this definition of robustness. 
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Figure 5-25 Robust and fragile Ca connectivity. 

5.7.4. Robustness of Cb Connected Convex Polytopes 
As described in Section 5.2.3, the test for Cb connectivity between two convex polytopes C1 
and C2 is in two parts – they may overlap or have a pair of half spaces in common.  

Overlapping Convex Polytopes 

In the case of overlap, the convex polytope of overlap is calculated C = C1 ∩ C2. If this 
convex polytope C is robust in respect to perturbations of up to δ, then the Cb connectivity 
can be taken as robust up to a displacement of δ. Note that a convex polytope must itself be 
robust if it is to overlap another robustly. 

Non-Overlapping Convex Polytopes 

If Cb(C1, C2) and not OV(C1, C2), then there exist H1 ∈ C1 and H2 ∈ C2 such that H1 ≅ 2H  
and if C’1 is C1 – {H1}, and C’2 is C2 – {H2}, and C’ = C’1∩ C’2, then by the definition of 
Cb connectivity: 

C”1 = C’ ∩ C1 ≠ CΦ, and 
C”2 = C’ ∩ C2 ≠ CΦ. 

The connectivity can be called robust (at measure δ) if C”1 is robust at measure δ, and C”2 
is robust at measure δ. Again, note that a convex polytope must itself be robust if it is to be 
robustly connected to another. This is based on the assumption that any anti-equal pair of 
half spaces are intended to be anti-equal and do not become separated. The data model 
described in Section 7.3 supports this concept. 

Thus we can define a regular polytope to be internally connected at measure δ if the convex 
polytopes that comprise it are pathwise robustly connected at measure δ. If Cδ is taken to 
mean “robustly connected at measure δ”, it is clear that: 

Cδ(C1, C2) ⇒ Cb(C1, C2) ⇒ Ca(C1, C2). 
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5.8. Robustness of Connected Regular Polytopes 
In certain applications it may desirable to mandate that a feature must be connected, where 
such connectivity is an intrinsic attribute of the type of object being represented.  We can 
define a robustly connected regular polytope at measure δ using an inductive definition as 
was used to define a Ca or Cb connected polytope in Section 5.3.1. A regular polytope can 
be defined as Cδ (robustly connected at measure δ) by induction as follows: 

A Cδ connection S within convex polytope O = {Ci: i=1..n} is defined as a set of convex 
polytopes S ={Ci: i=1..j: Ci∈O} such that: 

S  is a Cδ connection if j=1 and Cj is robust at measure ≥ δ. 
S’ = {Ck, Ci: i=1..j} is a Cδ connection if S = {Ci, i=1..j} is a Cδ connection, 
 Ck∈O and  
 ∃ i ≤ j such that Cδ(Ck, Ci). 

A regular polytope i
ni
CO

..1=
= U is Cδ connected if {Ci, i=1..n} is a Cδ connection.  

For example, in Figure 5-26, this regular polytope is robustly connected, in spite of the 
weak connection between convex polytopes A and E; because a strong connection is 
available via a path ABCDE. In this example, the limiting connection is between B and C, 
and if Cδ(B, C) then we can say the regular polytope is internally Cδ connected. 

A 

B 
C 

D 

E 

 
Figure 5-26 Robust connection of a regular polytope composed of five convex 

polytopes. 

This discussion has assumed that the value of δ has been decided, and the connectivity is 
being tested against the chosen value, but this can be turned around as suggested in Case 4 
Section 2.4 and in Thompson and van Oosterom (2006a), to define a robustness attribute ρ 
of O as the maximum value of δ for which there exists a path through all Ci ∈ O, with each 
connectivity being at measure δ or better. This is not a simple determination, since in the 
general case, it will require a “best path” traversal of the convex polytopes in order to 
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determine which possible path gives the largest value of ρ, but a well known algorithm is 
available. 

5.9. Conclusions  
The definition of the regular polytope has been extended to include the question of 
connectivity and it has been shown that the weak (Ca) and strong (Cb) varieties can be 
supported rigorously. Using the integer based interpretation, the full capabilities of Ca can 
be realised, but there are some restrictions on the Cb form such as the failure of the Boolean 
connection algebra axiom B4 (see Section 6.4).  

By contrast, the dr-rational interpretation of the regular polytope supports a fully rigorous 
implementation of Ca and Cb. It has further been shown that a rich set of functionality can 
be defined in terms of these and the topological operations described in Chapter 4. The 
issues of the robustness of the representation and robustness of connectivity have been 
explored. 

The following chapter discusses in detail the formal algebras that can thus be supported, 
with emphasis on the region connection calculus, the Boolean connection algebra and the 
proximity space.  



  

 

 

Chapter 6 

Algebras of  Connectivity 

In the earlier chapters, a construct known as the regular polytope has been defined, and 
augmented by a set of topological and connectivity operations and predicates which have 
been shown to be implementable using integer or fixed precision rational arithmetic. It has 
further been shown that using the integer based interpretation, the full capabilities of weak 
(Ca) connectivity can be realised, but there are some restrictions on the strong (Cb) form. By 
contrast, the dr-rational interpretation of the regular polytope supports a fully rigorous 
implementation of strong and weak connectivity.  

This chapter discusses the formal algebras that can thus be supported, and investigates the 
expressivity of the regular polytope approach, comparing its functionality against, for 
example: 

the region-connection calculus (Randell et al. 1992), 
the proximity space (Naimpally and Warrack 1970), 
Boolean connection algebra (Düntsch and Winter 2004). 

Use is also made of the "Egenhofer 9 matrix" (Egenhofer 1994) in these discussions for 
comparison purposes. The regular polytope representation is evaluated in its ability to 
support a range of topological and geometric functions, and to support imprecise 
relationships and fuzzy logic.  

Section 6.1 reviews the region connection calculus (briefly introduced in Section 3.2.8) in 
comparison with related work. Section 6.2 uses the framework of the RCC operations and 
predicates to formalise the logic of the regular polytope, while an alternate approach – 
involving the dimensionality of contact is considered briefly in Section 6.3. The 
relationship with the proximity space (Section 3.2.9) and the Boolean connection algebra 
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(Section 3.2.4) are investigated, and the other topological attributes are summarised in 
Section 6.6.  

Section 6.7 investigates the rigorous definition and computability of the convex hull, which 
creates some difficulties for the regular polytope representation, and this theme is continued 
in Section 6.8, where the expressiveness of the approach is investigated in terms of the 
additional functions that can be supported. Section 6.8.3 addresses the representation’s 
ability to support imprecise regions and Section 6.8.4 considers fuzzy logic. Section 6.9 
compares this approach with the constraint database approach. Section 6.10 concludes the 
discussion of the algebras of connectivity supported by the regular polytope representation. 

6.1. The Region Connection Calculus (RCC) 
As was discussed in Section 3.2.8, Randell, Cui and Cohn (Randell et al. 1992) showed that 
a significant number of useful relations could be defined based on the concept of 
connectivity. The "connects to" relation is axiomatically defined as fulfilling the following: 

Cref  ∀x C(x, x) 
Csym  ∀xy[C(x, y)→C(y, x)]. 

These are then used to define a significant set of spatial predicates as shown in Table 6-1.  

Table 6-1: The Basic Relations of RCC 

Operation Definition Named Relation 
C(p, q)  connects to meet(p, q) ∨ overlap(p, q) 
DC(p, q)  (disconnected from)  ¬C(p, q) disjoint(p, q) 

P(p, q) (part of) ∀z[C(z, p) ⇒ C(z, q)] inside(p, q) ∨ coveredBy(p, q) ∨ 
equal(p, q) 

PP(p, q) (proper part) P(p, q) ∧ ¬P(q, p)  inside(p, q) ∨ coveredBy(p, q)   
EQ(p, q) (equality) P(p, q) ∧ P(q, p)   equal(p, q) 

OV(p, q) (overlaps) ∃z[P(z, p) ∧ P(z, q)] 
overlap(p, q) ∨ contains(p, q) ∨ 
inside(p, q) ∨ coveredBy(p, q) ∨ 
covers(p, q) ∨ equal(p, q) 

EC(p, q) (externally connected) C(p, q) ∧ 
¬O(q, p)  meet(p, q)  

TPP(p, q) (tangential proper part) PP(p, q) ∧ 
∃z[EC(z, p) ∧ EC(z, q)] coveredBy(p, q) 

NTPP(p, q) (non-tangential proper part) PP(p,q) 
∧ ¬∃z[EC(z, p) ∧ EC(z, q)] inside(p, q)  

PO(p, q) (proper overlap) O(p, q) ∧ ¬P(p, q)  
¬P(q, p)   

overlap(p, q)  
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At first sight, this may seem to be a small number of relations compared to the 512 that can 
be identified using the Egenhofer 9 matrix (Egenhofer 1994), but as has been shown by 
Egenhofer and Franzosa (1995) only eight of them are distinct and applicable to pairs of 
contiguous surfaces in 2D, or pairs of contiguous solids in 3D (see Table 6-2). These have 
been named, and are more basic than the RCC relations in that they are disjunct and 
complete (exactly one relation is true for any pair of operands). For example, the "meet" 
relationship means meet without overlap, while the "connects to" relation means meet or 
overlap. The relationship between the named relations and the RCC relations is also shown 
in Table 6-1. 

Table 6-2: The Named Relations  

Named 
Relation 

Matrix and Sketch RCC 
Equivalent 

disjoint  0 0 1
0 0 1
1 1 1

A B
 

DC(A,B) 

contains  1 1 1
0 0 1
0 0 1

A B

 

NTPP(B,A) 

inside  1 0 0
1 0 0
1 1 1

B A

 

NTPP(A,B) 

equal  1 0 0
0 1 0
0 0 1

A B
 

EQ(A,B) 

meet  0 0 1
0 1 1
1 1 1

A B
 

EC(A,B) 

covers  1 1 1
0 1 1
0 0 1

A B
 

TPP(B,A) 

coveredBy  1 0 0
1 1 0
1 1 1

B A
 

TPP(A,B) 

overlap  1 1 1
1 1 1
1 1 1

A B
 

PO(A,B) 
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The asymmetric relations inside(p, q) and coveredBy(p, q) are equivalent to the other pair 
of relations contains(q, p) and covers(q, p) respectively. Note the difference between the 
RCC "overlaps" from the "overlap". Thus all of the discrete relations between connected, 
bounded regions of the same dimensionality can be represented by the RCC algebra. The 
predicates C, P, PP and OV are composite relationships. 

Based on a spherical universe (Egenhofer 2005), an additional three relations are possible 
(Figure 6-1). 

 

attach entwined embrace 
 

Figure 6-1 The additional three topological relations realised in a spherical space, 
adapted from Egenhofer (2005). 

The 512 relations have been further analysed, to determine which are possible given 
regions of different dimensionality (2000; Zlatanova et al. 2002), however if regions are 
permitted to be unbounded, omitting Zlatanova's condition C1 (“The exteriors of two 
objects always intersect”), there are additional relations that are expressible in the 
Egenhofer matrix beyond those named above. These are shown for regions of the same 
dimensionality in Table 6-3, where the outer rectangle is used to represent the universal 
region (and the heavier shading represents the region of overlap of A and B). In the RCC, 
they are recognized simply as EC, and O. In the regular polytope algebra, the complement 
predicate could be defined as ),(EQ BA , unbounded overlap covering space as ),(PP AB . 
The other unbounded overlap predicates are not particularly useful. 
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Table 6-3 Additional Relationships where Regions may be Unbounded 

1 1 1 
1 0 1 
1 0 1 

1 1 1 
1 0 1 
1 1 1 

entwined  
1 1 1 
1 1 1 
1 0 1 

unbounded 
overlap 
covering space 

1 1 1 
1 0 0 
1 0 0 

B A 

1 1 1 
1 1 0 
1 1 1 

unbounded 
overlap 

1 1 1 
1 0 0 
1 1 1 

A B 

0 0 1 
0 1 0 
1 0 0 

B A 

B A 

B A 

A 

A 

B 

B 

B A 

entwined  

unbounded 
overlap 

unbounded 
overlap 

complement 

entwined 
covering 
space 

1 1 1 
1 1 0 
1 0 0  

The convergence between the functionality of the Egenhofer relations and the RCC 
relations is particularly significant, because it must be remembered that the former are 
defined in terms of the boundaries, while the RCC does not build on the concept of a 
boundary. That is to say, the concepts of adjacency, contact and overlap can be fully 
developed in a mereological sense (see Section 3.2.11), without assuming the existence of 
infinite boundary sets. 

6.1.1. Region Connection Calculus in a Finite Space 
As discussed in Section 3.2.8, a major complication is that the sequence of definitions as 
given in Randell et al (1992), is not compatible with a finite topological space. The original 
(RCC) approach was to define the “part of” relation P(X, Y) (also represented as X ⊆ Y) in 
terms of the connection relation. The definition was: 

P(X,Y) =def ∀Z[C(Z,X)→C(Z,Y)] (f6.1)  

This definition had the unwanted and surprising side effect that it required the space to be 
non-atomic – that is, every region can be subdivided into smaller regions. The argument 
(Randell et al. 1992) can be summarised as follows: assume region A to be atomic (i.e. has 
no subset apart from the empty region OΦ). Let R be any other region R ≠ OΦ. If R ≠ A, then 
R is connected to A . If R = A, then R is connected to A . Thus 

),(C),(C: ARARR ⇒∀ therefore AA ⊆ . 
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 The paper (Randell et al. 1992) discussed the possibility of an “atomic” RCC theory, 
defining a non-atomic ("proper") region as: 

PROP_REGION(X) =def ∃Z:NTPP(Z,X) (f6.2) 

However the argument by Düntsch et al (2002), shows that this definition is redundant, and 
that all regions in an RCC are proper. Roy and Stell (2002) discuss this in a context of a 
discrete space, and conclude that this approach cannot be maintained. The approach of Roy 
and Stell uses a dual pseudo-complement lattice (Balbes and Dwinger 1974) to deal with 
the boundary point sets, but this is unnecessary in the case of the regular polytope topology. 

The definition of half space, which eliminates any boundary point sets, allows the simpler 
Boolean connection algebra to be used (Section 3.2.4), with the only variation being that 
the axiom B5, which ensures an infinitely smooth space, is omitted (see Section 3.2.4).  

In the regular polytope approach, the “part-of” predicate P is not defined in terms of 
connectivity so that this pitfall is avoided. Instead, part-of is defined in terms of overlap. 
(See Section 4.2.5). 

6.2. The Spatial Relations on Regular Polytopes 
The nomenclature of the relations between regular polytopes as used in this thesis follows 
those defined by Randell, Cui and Cohn (1992), however the semantics are slightly 
different. In particular, for reasons as discussed above (Section 6.1.1), the sequence of these 
definitions could not follow the order of definition they described. As a practical 
implementation strategy the following sequence is observed: 

• The basic functions: intersection, union and negation on regular polytopes are 
defined first (Section 4.1). 

• The isEmpty(P) test on regular polytopes is defined (Section 4.2.5). 
• These are used to define part of, overlap and equality (Section 4.2.5). 
• Connectivity is defined as Ca or Cb as required (Sections 5.3 and 5.3). 
• These are then combined to define the remaining RCC relations (Section 5.5). 

Note that the RCC makes no distinction between weak and strong connectivity, and in fact 
does not assign any restriction on what can be called a connection relation apart from 
needing to satisfy the axioms. Therefore since both Ca and Cb satisfy Cref and Csym, the 
theory can be applied to either form. 

6.2.1. The Empty and Universal Regular Polytopes 
As was noted in the preceding chapter, the approach taken here handles the empty regular 
polytope OΦ and the universal regular polytope O∞ as follows, leading to the consistent (but 
not necessarily obvious) results: 

∀O, ¬Ca(OΦ, O);  ∀O≠OΦ, Ca(O∞, O);  (f6.3) 
∀O, ¬Cb(OΦ, O);  ∀O≠OΦ, Cb(O∞, O);  (f6.4) 
∀O, OΦ ⊆ O ⊆ O∞; (f6.5) 
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∀O, ¬OV(OΦ, O); ∀O≠OΦ, OV(O∞, O);  (f6.6) 

That is to say, the empty regular polytope is not considered to connect to or overlap any 
other regular polytope (including itself), but it is a part of every regular polytope. All other 
regular polytopes connect to, overlap and are part of the universal regular polytope. This 
leads to some exceptional cases, but maintains consistency with the proximity space, and 
the Boolean connection calculus axioms (see Sections 3.2.9 and 3.2.4). As an example of 
the exceptions this causes, consider that several algebras have the axiom that a region 
should be connected to its inverse, but therefore need to exclude OΦ and O∞ from the 
statement. 

6.2.2. Summary of Basic Function Definitions 
The relations and functions equivalent to the region connection calculus are rigorously 
defined as summarised below (Table 6-4): 

Table 6-4: Implementing the Basic Operations and Predicates1. 

Operation/ 
Predicate Description Return 

Value 
See 
Section 

¬p  Complement  regular 
polytope 4.1 

p ∩ q Intersection   regular 
polytope 4.1 

p ∪ q Union   regular 
polytope 4.1 

OV(p, q) Overlaps  Boolean 4.2.5 
Ca(p, q)  Weak connection – Ca  Boolean 5.2 
Cb(p, q)  Strong connection – Cb  Boolean 5.2 
DCa(p, q)  Disconnected A [=def ¬Ca(p, q)] Boolean 5.5 
DCb(p, q)  Disconnected B [=def ¬Cb(p, q)] Boolean 5.5 

P(p, q) Part of [=def ¬OV ),( qp ]  Boolean 4.2.5 

PP(p, q) Proper part of [=def P(p, q) ∧ ¬P(q, p)]  Boolean 4.2.5 
EQ(p, q) Equal to [=def P(p, q) ∧ P(q, p)] Boolean 4.2.5 

ECa(p, q) Externally connected A [=def Ca(p, q) ∧ 
¬OV(p, q)] 

Boolean 5.5 

ECb(p, q) Externally connected B [=def Cb(p, q) ∧ 
¬OV(p, q)] Boolean 5.5 

                                                           
1 As was described in Chapter 5, the relations derived from Ca and Cb can be subscripted in the same way – e.g. 
DCa and DCb.  
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TPPa(p, q) 
Tangential proper part A [=def PP(p, q) ∧ 
Ca(p, q )] Boolean 5.5 

TPPb(p, q) 
Tangential proper part B [=def PP(p, q) ∧ 
Cb(p, q )] Boolean 5.5 

NTPPa(p, q) 
Non-tangential proper part A [=def PP(p, 
q) ∧ ¬Ca(p, q )] Boolean 5.5 

NTPPb(p, q) 
Non-tangential proper part B [=def PP(p, q) 
∧ ¬Cb(p, q )] Boolean 5.5 

PO(p, q) Proper overlap [=def OV(p, q) ∧ ¬P(q, p) 
∧ ¬P(p, q)]  Boolean 4.2.5 

DR(p,  q) Discrete from [=def  ¬OV(p, q)]  Boolean 4.2.5 

6.3. Dimensionality of Overlap 
An equivalent approach could have been used based on the dimensionality of the region of 
contact between the regular polytopes (Clementini et al. 1993). Following this approach, 
the predicates C0, C1, C2, C3, … can be defined, where the subscript is the dimensionality of 
the overlap. Thus C0(A, B) means that pseudo-closures of regular polytopes A and B meet at 
a 0D region – a point, C1 – at a line etc. In a 2D embedding space, therefore C0 is 
equivalent to (Ca ∧ ¬Cb) (strictly weak connection only), C1 ≡ (Cb ∧ ¬OV) and C2 ≡ OV 
(overlap) (see Figure 6-2). Thus in 2D, all the arguments for the rigorous logic based on Ca, 
Cb and OV can be applied, with the difference being nomenclature only. 

C1 = Cb 
(1D meet) 

C2 = OV 
(2D meet) 

C0 = Ca 
(0D meet) 

 
Figure 6-2 Dimensionality of overlap (in 2D). 

In a 3D embedding space, C0 and C1 are different forms of weak connection – Ca, while C2 
≡ (Cb ∧ ¬OV) and C3 ≡ OV. Figure 6-3 (which is an extended version of Figure 3-4) shows 
the correspondence in 3D. 
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 Weak Connection 

Ca 

Cb ⇒ Ca

C3 = OV ⇒ Cb ⇒ Ca  

Strong Connection Overlap 

0D meet  1D meet 2D meet 3D meet 

C0 C1 C2

 
Figure 6-3 Dimensionality of overlap (in 3D). 

Thus, to provide a logic on this basis, it is necessary in 3D to distinguish between a point of 
contact, and a line of contact. Using the integer representation, this is problematic, but the 
dr-rational approach allows a clean definition. For the dr-rational representation of convex 
polytopes in 3D, C0 connectivity can be defined as C0(C1, C2) if there is at least one vertex 
of C1 within C2

pc, or vice versa. C1 connectivity can be defined as requiring exactly two 
vertices, however these could be two vertices from C1 within C2

pc, or vice versa, or one 
vertex from each within the other (not at the same location). The non-degeneracy of the 
convex polytope means that this cannot lead to any problematic special cases.  

O1 O2 

C0 

O1 O2

C1 

O1 O2

C2 

O1 
O2

C3 
 

Figure 6-4 Dimensionality of overlap of regular polytopes. 

The connectivity between two regular polytopes is defined as the maximum dimensionality 
of contact between any convex polytopes that comprise them (see Figure 6-4). By contrast, 
the internal connectivity of a regular polytope is defined as the weakest connection along a 
path between its component convex polytopes (see Section 5.3.1). 

6.4. Proximity Space 
As described in Section 3.2.9, the axioms given for a proximity space X with the proximity 
relation δ, regions A, B, C, E ⊆ X and empty region ∅ are (Naimpally and Warrack 1970): 

(PS1) A δ B ⇒ B δ A 
(PS2) (A ∪ B) δ C ⇔ A δ C ∨ B δ C 



Chapter 6 - Algebras of Connectivity 

148 

(PS3) A δ B ⇒ A ≠ ∅ ∧ B ≠ ∅ 
(PS4) 2 A δ B ⇒ ∃ E: A δ E  ∧ (X-E) δ B  
(PS5) A ∩ B ≠ ∅ ⇒ A δ B. 

The axiom PS4 is known as the "strong axiom", and a proximity space which does not 
satisfy this axiom is known as a weak proximity space. In effect, this axiom requires a 
dense space, and so is not satisfied by the regular polytope space.  

6.4.1. Integer Interpretation 
It can be shown (see Appendix III.4) that a weak proximity space can be generated by the 
integer interpretation using Ca. As was discussed in Section 5.2.1, using the integer 
representation, the Cb connectivity cannot be guaranteed to support PS2, which is 
equivalent to the Boolean connection algebra axiom B4.  

6.4.2. Dr-Rational Number Interpretation 
It can also be shown (see Appendix IV.10) that the space of regular polytopes based in the 
dr-rational representation satisfies the axioms for a weak proximity space, using either the 
Ca or the Cb form of connectivity. This is a further reason for preference being given to the 
dr-rational approach.  

6.5. Boolean Connection Algebra 
As was discussed in Section 4.2.4, with proof in Appendix II.11, the space of regular 
polytopes satisfies the axioms for a Boolean algebra. Roy and Stell (2002) also add axioms 
equivalent to the following to define connectivity, thus creating a Boolean connection 
algebra: 

(B1) C(X, Y) ⇒ C(Y, X) 
(B2) C(X, X) for X ≠ OΦ 
(B3) ∀ ),(:),( XXCOOXX ∞Φ≠  
(B4) ∀ X ≠ OΦ, Y ≠ OΦ, Z ≠ OΦ: C(X,Y∪Z) ⇔ [C(X,Y) ∨ C(X,Z)]. 
(B5) ∀ X ≠ O∞ , ∃ Y ≠ OΦ : ¬C(X,Y). 

The final axiom requires that the space be continuous, since if X is atomic, there cannot be 
any region Y that is not connected to X. It is relatively easy to show that axioms B1 to B4 
are satisfied by regular polytopes over the dr-rational interpretation, and using Ca or Cb (see 
Appendix IV.9), so that the space of regular polytopes could be considered as a discrete 
Boolean connection algebra (BCA).  As was discussed above, using the integer 

                                                           

2 In this axiom,  δ means “not δ”. 
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interpretation, only Ca can be used to define a discrete BCA (Appendix III.3), since the 
axiom B4 cannot be guaranteed by Cb connectivity. 

6.6. Properties of the Space of Regular Polytopes 
It has been shown above that the space of regular polytopes obeys the axioms for the region 
connection calculus, and that it forms a weak proximity space and a Boolean connection 
algebra3. It is important to remember that this is the computational representation that 
satisfies the axioms, not an abstraction which is approximated by the computational 
representation. Thus it is possible to computationally apply the operations in any 
combination with complete confidence that no logic failure can result. Some further 
properties of the space of regular polytopes follow, but first some terminology is included. 

6.6.1. Disconnected Space 
“A space is connected if it cannot be split into two non-empty disjoint open sets” 
(Hurewicz and Wallman 1948 Page 10). Since any half space does this (H and H are both 
open sets), this implies that the space of all regular polytopes is not connected. That is, it 
has dimension = 0 in the topological sense. Note that the set of all rational numbers is 0D, 
and the set of all computer representable points is also 0D. 

6.6.2. The Space of Regular Polytopes 
The space of regular polytopes has been shown to be metric, and therefore is T0 to T4 (see 
Sections 3.2.1 and 3.2.2). It is also disconnected, as mentioned above.  Since any regular 
and connected space must be uncountable, the countability of the space of regular polytopes 
implies its disconnectedness. Thus the set of regular polytopes forms a finite, disconnected 
non Euclidean metric space (which is also therefore normal, regular, Hausdorff, etc.). 

6.6.3. Atomicity of the Space  
A space is described as non-atomic if every region can be subdivided into smaller sub-
regions. In terms of the RCC, a region is described as “proper” if it contains at least one  
non-tangential proper part (Randell et al. 1992).  In an atomic space, there must exist 
regions – known as atoms, which cannot be further subdivided. Since the number of points 
that can be represented in any computer is finite (albeit very large), the space of regular 
polytopes cannot be non-atomic. This has already been discussed in Section 6.1.1 in the 
context of the region connection calculus.  

                                                           
3 Except that as described above, the integer representation cannot satisfy the latter two using Cb connectivity. 
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6.7. The Convex Hull 
Randell, Cui and Cohn (1992) present a rigorous (axiomatic) definition of the concept of a 
convex hull, so it is reasonable to ask whether the regular polytope represents this 
definition correctly. Unfortunately, this definition is problematic for the regular polytope in 
the dr-rational or integer representation. The axioms given in Randell, Cui and Cohn for 
CONV(X), the convex hull of region X are: 

CH1. ∀X: P(X, CONV(X))  (X is part of its convex hull)    
CH2. ∀X: P(CONV(CONV(X)), CONV(X)) 4 
CH3. ∀X∀Y∀Z [[P(X, CONV(Y)) ∧ P(Y, CONV(Z))] → P(X, CONV(Z))] 
CH4. ∀X∀Y [[P(X, CONV(Y)) ∧ P(Y, CONV(X)) ] → OV(X, Y)] 
CH5. ∀X∀Y [[DR(X,CONV(Y)) ∧ DR(Y,CONV(X))] → DR(CONV(X), CONV(Y))] 

The definition for a convex polytope is simple, but the problem is that a regular polytope 
with concavities will require one of more half planes to be used to “paper over” these 
concavities. To be exact and to satisfy these axioms exactly, these will need to meet the 
existing edges exactly.  

 
p 

q 

r 
s 

H 

J 

A 

B 

C 

D 

E 

regular 
polytope 

X 
F 

 
Figure 6-5 Forming an exact convex hull. 

For example, in Figure 6-5, to cover the concavity at faces C and D of regular polytope X, it 
is necessary to generate half spaces H and J which pass exactly through points p, q, r and p, 
s, q respectively. Unfortunately, as discussed in Section 3.4.6, since these are dr-rational 
points, the new half spaces require a significantly larger domain to store their parameters. 
Thus the resulting convex hull is therefore not a convex polytope (by definition). If two or 
more convex hulls are then used in union and/or intersection operations, a new geometry 
type will result, similar to a regular polytope, but requiring increased domain in the 
definition of its parameters. If an attempt is then made to form the convex hull of this new 

                                                           
4 Note, that this also implies that EQ(CONV(CONV(X)), CONV(X)), or more simply, CONV(CONV(X)) = 
CONV(X). 
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object, then a convex hull with even larger domain will be needed – leading to an 
unbounded increase in requirements similar to that found in the “infinite precision” rational 
number approach of Section 3.4.6. 

6.7.1. An Approximate Convex Hull 
While it is not possible in general in the dr-rational representation to develop an exact 
convex hull to satisfy the above axioms, a useable alternative is available. The difficulty 
arises because in general, it is not possible to define a half space that passes exactly through 
three dr-rational points of grid2. The best that can be asserted is that a half space can be 
generated that includes all three points, and the defining plane passes within one unit of 
resolution of grid1 of the points. To ensure that CH1 is satisfied, it is therefore necessary to 
enclose a larger space than would be enclosed by a convex space defined on the real 
numbers. For example, in Figure 6-6, the half spaces H and J have been shifted away from 
the regular polytope X (relative to their position in Figure 6-5) in order to encompass points 
p, q, r and s which may therefore not lie on the planes of H or J. Thus there will be points 
within H and J that are not strictly within the convex hull. 

 
p 

q 

r 
s 

H 

J 

A 

B 

C 

D 

E 

p’ 

q’ 

s’ 
r’ regular 

polytope 
X F 

t 

 
Figure 6-6 Forming an approximate convex hull. 

In Figure 6-6, for a regular polytope X consisting of two convex polytopes (in this case, 
tetrahedral) the final (approximate) convex hull CONVA(X) would be a convex polytope 
consisting of the half spaces defined by faces A, B, the hidden faces (E and F), and two new 
half spaces, needed to cover the concavity at faces C and D. The new faces H and J have 
been drawn, but these may not pass exactly through the vertices p, q, r and s.  These new 
half spaces will be chosen so that CONVA(X) = {A, B, E, F, H, J}, which is a convex 
polytope such that  X ⊆ CONVA(X), satisfying CH1. The vertices of the new convex 
polytope CONVA(X) are p’, q’, r’, s’ and t. 

Axiom CH2 is satisfied because CONVA(X) is a convex polytope, and the convex hull of a 
convex polytope is itself. Thus CONVA(CONVA(X)) = CONVA(X). 
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The remaining three axioms cannot be satisfied in general. For a counter example to axiom 
CH3 see Figure 6-7. Here X is part of the convex hull of Y, and Y is part of the convex hull 
of Z, but X is not within the convex hull of Z. Note – these are drawn in 2D, but really 
represent a slice through 3D polytopes. 

Z Y X

 
Figure 6-7 : P(X, CONVA(Y)) ∧ P(Y, CONVA(Z)) ∧ ¬ P(X, CONVA(Z)). 

With axiom CH4, it is difficult to show a clear picture of a violation, and the axiom would 
follow in all reasonable cases, but if extremely thin regular polytopes are involved, it would 
be possible to construct a case such as in Figure 6-8, where X and Y do not overlap, but 
each is included within the convex hull of the other. In this case, both regions must be 
thinner than the grid size of the coarsest grid (less than one grid unit wide). (These are 
clearly not useful representations, and would not be robust as defined in Section 5.7. The 
case is only constructed to illustrate the breaking of the axioms.) 

X 

Y 

 
Figure 6-8 Two non-overlapping regular polytopes each enclosed by the other's 

convex hull. 

For a counter-example of axiom CH5, see Figure 6-9. Here the two regions are discrete (not 
connected) from each other's convex hulls, but their convex hulls overlap. 
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X 

Y 

CONVA(X) CONVA(Y) 

 
Figure 6-9 : DR(X, CONVA(Y)) ∧  DR(Y, CONVA(X)) ∧ O(CONVA(X), CONVA(Y)). 

Thus this approximation of the convex hull is not a true conforming definition. It is, 
however, a practical approximation which remains within one unit of resolution of the true 
convex hull. Thus, while it could be used for certain purposes, it cannot be relied on for 
rigorous logic operations. 

6.7.2. The Convex Enclosure 
An alternative approach is to define a convex enclosure function of a regular polytope 
CONVE(O), which returns a convex polytope, and obeys axioms such as: 

CE1.  ∀O: O ⊆ CONVE(O)  (O is part of its convex enclosure)    
CE2.  ∀C (C is a convex polytope) CONVE(C) = C 
CE3.  ∀O (O is a regular polytope), C' ⊂ CONVE(O) ⇒ ¬(O ⊆ C'), where C' is a 
convex polytope. 

(For clarity, the proper part operation – PP(C’, C) is denoted C’ ⊂ C – see Section 6.1). 
This in effect would define a convex enclosure as the smallest convex polytope that 
encloses the regular polytope. This would be an acceptable replacement for the convex hull, 
and would be indistinguishable from it in any practical situation, but provides an axiomatic 
definition that could be used to extend the algebra in a rigorous fashion. It is not known at 
present if this can be implemented in practice, but it is clear that a unique convex enclosure 
exists for every regular polytope.  

Assume C and C1 are convex polytopes which form enclosures of regular polytope O (i.e. O 
⊆ C, O ⊆ C1). If any point p exists such that p ∈ C1, p ∉ C, then form the intersection C ∩ 
C1. Note that p ∉ O. Now C ∩ C1 is a proper subset of C which is also an enclosure of O. 
Replace C with C ∩ C1.   

This procedure can be repeated for any other convex polytopes that enclose O. Since the 
number of possible convex polytopes that can be represented is finite, this procedure must 
terminate. Note that this is an existence proof, not necessarily a practical algorithm, since 
the number of half spaces so generated could be very large. 

Assume that this procedure has been done twice, and C1 and C2 are the final products, and 
assume C1 ≠ C2. ∃ p: p ∈ C1, p ∉ C2 or p ∈ C2, p ∉ C1. In either case, p ∉ C1 ∩ C2 and p ∈ 
O.  Thus C1 ∩ C2 ⊂ C1 or C1 ∩ C2 ⊂ C2 and O ⊆ C1 ∩ C2. This is a contradiction to the 



Chapter 6 - Algebras of Connectivity 

154 

assumption that C1 and C2 were each end results of the process. Thus the convex enclosure 
of a regular polytope exists, and is unique. Note also that for any half space H, O ⊆ H ⇒ 
CONVE(O) ⊆ H. 

Z Y 

p

H 

 
Figure 6-10 Axiom CH3 in the CONVE function. 

Clearly, axioms CE1 and CE2 imply CH1 and CH2 respectively, but in addition, the 
convex enclosure also satisfies axiom CH3. Referring to Figure 6-10,  

Let Y ⊆ CONVE(Z).    

Assume ∃ p, p ∈ CONVE(Y), p ∉ CONVE(Z), then  

∃ H (a half space): H ∈ CONVE(Z), p ∉ H. 
But Y ⊆ CONVE(Z) ⇒ Y ⊆ H.    
Therefore CONVE(Y) ⊆ H, (because CONVE is minimal) 
and so  p ∉ CONVE(Y)  - contradiction. 
So that X ⊆ CONVE(Y), Y ⊆ CONVE(Z) ⇒ X ⊆ CONVE(Z). 

It seems likely that axioms CH4 and CH5 are not necessarily satisfied by CONVE, and 
there may not be any practical algorithm for its calculation. This could be considered as a 
subject for further research. 

6.8. Expressiveness of the Relations and Functions 
Spatial relationships and in particular predicates to be used in searching data are 
fundamental to spatial databases. As such, a rich set must be provided by any system that 
purports to support spatial data storage and retrieval. On the other hand, there is no 
definitive set of such required functionality, merely a widely accepted set of functions that 
have been found useful. This section discusses some of the relations which have been or 
could be defined, and which may be useful in certain problem domains. There are two 
broad classes of spatial function to be considered here – the topological and the geometric. 
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6.8.1. Topological Functions and Predicates 
The RCC relations are described in Section 6.2.2 above, and are all rigorously supported by 
the regular polytope approach. Other collections of topological relations, operations and 
predicates can be supported by the regular polytope representation as described below. 

Topological Relationships Defined Using the Egenhofer Matrix 

In addition to the RCC relations, there are some relationships that can be defined by the 
Egenhofer matrix, where the regions in question are not themselves internally connected 
(Egenhofer 1994) or are not bounded.  

 

A 

B B 

 
Figure 6-11 Non RCC Relationship between regions. 

For example, the relation ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

111
100
111

can be satisfied by two regions A and B in Figure 6-11 

where one part of region B overlaps region A. This is only possible because the region B is 
not internally connected, allowing the interiors of A and B to intersect without their 
boundaries meeting. This would simply be detected in the regular polytope space as 
OV(A,B), however an additional test such as "isConnected(A∪B)" could make the 
distinction if it is deemed important. There are many such relationships that can be posited, 
and in general, they cannot be distinguished by a single RCC predicate. 

Topological Relationships not Discriminated by the Egenhofer 3 × 3 
Matrix 

There are some useful relations that cannot be discriminated by the Egenhofer 9 matrix, 
although they are covered in an extension to the theory (Egenhofer et al. 1994). These 
relations are also not discriminated by the RCC theory. For example, the regions in Figure 

6-12 are just disconnected - DC(A,B), and the Egenhofer matrix is ⎟
⎠

⎞
⎜
⎝

⎛
111
100
100

, which is the 

same as that of DC(A,B). The regular polytope representation would not detect this 
situation without specific coding. 
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d i s c o n n e c t e d  s u r r o u n d e d  b y  

A  

B  

A  

B

 
Figure 6-12 "Surrounded by" and “disconnected” relationships. 

In addition, the four forms of connectivity discussed in Section 3.2.6 after Cohn and Varzi  
(1999), cannot be distinguished by the Egenhofer 9 matrix. All of the relationships shown 

in Figure 6-13 would be characterised by the matrix ⎟
⎠

⎞
⎜
⎝

⎛
111
110
100

. The regular polytope makes 

no attempt to distinguish the Cc and Cd forms of connectivity. (In any case, they do not 
appear to be of much practical significance). 

y 

Ca 

y 

Cb 

y 

Cc 

y 

Cd x 

x x 

x 

 
Figure 6-13 The connection relations Ca to Cd (see also Chapter 3). 

6.8.2. Geometric Functions and Predicates 

The RCC Spatial Relationships 

As discussed in Section 6.2, the basic relations of the RCC are all supported by the regular 
polytope representation, apart from the convex hull. This is only handled as an 
approximation by the regular polytope approach. Thus the "Within Convex Hull" predicate 
is not available rigorously. This also implies that the GEO-INSIDE predicate defined in 
(Randell et al. 1992) can only be approximated. See Figure 6-14. 

Measurement-Based Geometric Relationships 

The distance function is most useful in practical situations, but cannot be provided as a 
mathematically exact number by any computer-based calculation. This is obvious from the 
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fact that the square-root must be calculated in the process. The regular polytope clearly 
shares this restriction with all other systems, but provided it is remembered that the result is 
approximate, and not needed in further exact calculations, this is not seen as a restriction. 

On the other hand, it is possible to determine buffered predicates (e.g. find all features 
within 1km of a feature) exactly and rigorously in the dr-rational representation, provided 
that additional precision of calculation is available. If it is necessary to determine whether 
two points are within distance r of one another, r2 can be calculated and compared with a 
measure defined as: for p1 = (x1,y1,z1), p2 = (x2,y2,z2): 

2
12

2
12

2
12212 )()()(),( zzyyxxppd −+−+−=  (def6.1) 

So that, if p1 and p2 are such that d2(p1, p2) < r2, then the points are sufficiently close. It is 
fairly simple to extend this approach to convex polytopes, and therefore to regular 
polytopes. 

Likewise, angular measures in general cannot be calculated exactly in terms of the bearing 
in degrees between two points, between the origin and a point, or between a line segment 
and an axis5. Again, an approximate measure can be calculated, as in conventional vertex-
based representations and it is possible to define exact and rigorous directional predicates of 
a specific (restricted, but useful) type. Any half space defines a region, and can be used in 
the same way as a regular polytope in a predicate. For example, the predicate – “A is above 
1000m” is equivalent to A ⊆ H, where H is the half space H(0,0,1,t) – with t being 1000m 
in the units of resolution. Many of the useful directional predicates can be expressed in this 
fashion as half spaces or combinations of them – e.g. “north of”, “south east of”, “above”. 
In addition, slopes defined in terms of their gradient (“gradient of 1 in 30”), (i.e. tan(s) 
where s is the slope angle) can be rigorously represented.  

Other Geometric Relationships 

There are many other geometric relationships that can be imagined, some of which are 
supported in currently available software, and some which are not. In Figure 6-14, some of 
these are illustrated simply to highlight that the conventially provided set of predicates is 
not definitive. GEO-INSIDE and TOPO-INSIDE (or “surrounded” – see Section 6.8.1) are 
discussed by Randell, Cui and Cohn, but the others are included just for discussion. 

The TRAPPED predicate could possibly be useful, and is intended as indicating that region 
B cannot be moved through the gap in A. The OBSCURED predicate is one that could also 
potentially be useful in GIS applications, where the region B cannot be seen by an observer 
who is not GEO_INSIDE(A). 

                                                           
5 This is true of angles in 2D and in 3D. 
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Figure 6-14 Some other possible region predicates. 

As discussed above, the GEO-INSIDE predicate is not rigorously definable using the 
convex hull axioms (see Section 6.7), but may be definable using the CONVE function. 
The remaining predicates may be rigorously definable, but this question is beyond the 
scope of this thesis. 

6.8.3. Imprecise Relationships 
The convex polytope representation is well suited to the representation of imprecise 
regions. It must be remembered that the rigorous nature of the representation is needed to 
ensure internal reliability of the logic, and does not in any way suggest that the original data 
are highly accurate. The approaches to dealing with imprecision carry over directly from 
the conventional vertex representations, with some care. 

It is possible to buffer any half space by simply adding to the D value of the half space 
definition – i.e. if  H = H(A, B, C, D), then H’ = (A, B, C, D+δ), δ > 0 is a larger half space 
H ⊂ H’. An approximate buffer about d units wide can be generated around a convex 
polytope C = {Hi: i = 1..n}, where Hi = (Ai, Bi, Ci, Di) as:  

C’ = {H’i: i = 1..n} where  

 H’i = ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ++− 222NINT,,, iiiiiii CBAdDCBA . (def6.2) 

It is assumed that the square root function, and its product with d can be calculated using 
floating point arithmetic, and that the NINT function returns the nearest integer to the 
result. If the floating point operations are done in 8 byte precision, the resultant buffer will 
be almost within ½ of a grid1 spacing from the true buffer width. The buffered region from 
a regular polytope is simply the union of the buffered convex polytope that comprises it. 
This is an approximate buffer only, but since the resultant object is a regular polytope, can 
be used rigorously in all calculations, and therefore all further operations are fully defined.  
There is a potential issue with acute corners, as can be seen around corner p in Figure 6-15, 
where the buffers around C1 and C2 extend beyond what would be thought of as the buffer 
around the regular polytope, and at corner q, where the new vertex is considerably further 
from q than the buffer width d.  
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Figure 6-15 Approximate buffering of a regular polytope. 

A preferable approach is to use the measure defined in def6.1 which was: 
2

12
2

12
2

12212 )()()(),( zzyyxxppd −+−+−=   
for p1 = (x1,y1,z1), p2 = (x2,y2,z2). (def6.3) 

In this approach, a pair of regular polytopes O1, O2 can be determined as being within 
distance r of one another if there exist points p1 ∈ O1

pc, p2 ∈ O2
 pc such that d2(p1, p2) ≤ r2. 

Equivalently: 

d2(O1, O2) = min[d2(p1, p2)]: p1 ∈ O1
pc, p2 ∈ O2

 pc. (def6.4) 

Using the symbology of Section 3.2.13 as illustrated in Figure 6-16, for region R defined as 
a regular polytope, at an imprecision of δ,  R4 can be defined as: 

R4(R, δ) = {O: d2(O, R) ≤ δ2}. (def6.5) 

O3∈R3 

O4∈R4 

O5∈R5 

O1∈R1 

O2∈R2 

W 

 
Figure 6-16 Imprecision in a region source (from Figure 3-6). 

The negative buffer sets of regions R1 and R2 are not so easily defined. In the same way as 
the vertex representations, the negative buffer of an acute angled corner does not provide a 
good model of a negative buffer. For example, in Figure 6-17, if the buffer width represents 
the imprecision of measurement of the vertices, both regions A and B should be recognised 
as overlapping region C, no movement of the vertices of the order of the imprecision will 
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cause the regions not to intersect. The negative buffers of each are disjoint from C, so they 
will be detected as uncertain overlap (R4 instead of R2 as described in Section 3.2.13). Note 
that in the case of region B no vertex lies within C. This is an issue that needs further 
research, and the regular polytope shares this difficulty with all other representations (see 
also Figure 3-7). 

A B 

C 

 
Figure 6-17 Negative buffering difficulties. 

6.8.4. Fuzzy Logic 
An alternate approach to limited precision of regions is the use of fuzzy logic, as discussed 
in Section 3.2.14. In relation to the current subject, this can be summarised as the 
replacement of the concept of hard edged sets with sets which have imprecise boundaries, 
defined by a characteristic function. A classical set A in Rn can be described as a function 
χA: Rn → {0, 1}. That is to say, each point in Rn is assigned the value 1 = true or 0 = false, 
indicating that the point is within A or not. (Dilo 2006). In the fuzzy logic approach, a real-
valued function μ: Rn → [0, 1] is used. This is interpreted as point p is definitely within the 
set if μ(p) = 1, p is definitely outside if μ(p) = 0, and any other value of μ(p) indicates the 
degree of certainty of containment (with the larger value meaning more certain). 

The first issue is that a real-valued function cannot be directly represented within a 
computer system, so that in the regular polytope representation, the function μ is replaced 
by a many valued function. This has no significant effect except where discontinuities 
occur in the function μ. At such points of discontinuity, the effect is the same as in the crisp 
logic, that a small change in position causes a discontinuous result.  

It is useful in this context to compare the definition of a half space with the Hessian normal 
form (Weisstein 2002b) definition of a plane. In this form, real numbers a, b, c and d 
correspond to the integer coefficients A, B, C and D with (a, b, c) constituting a unit vector 
normal to the plane such that: 

a = 
222 CBA

A

++
, b = 

222 CBA

B

++
, c = 

222 CBA

C

++
and 

d = 
222 CBA

D

++
. 
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The advantage of Hessian form is that the value of d is the distance from the origin to the 
nearest point on the plane of H. In addition, for any point p = (x,y,x), h = ax+by+cz+d is the 
distance between point p and the plane of H, with a positive value of h meaning the point is 
within the half space. By comparison, the distance between p = (x, y, z) and the plane of a 
half space H(A, B, C, D) is: 

222 CBA

DCzByAxh
++

+++
=  (f6.7) 

Clearly, this can only be calculated approximately in a digital representation, for example 
as a floating point number, but this is acceptable in the fuzzy logic approach. A half space 
could be interpreted as “fuzzy” if the definition from Chapter 4 were replaced by:  

μ(x, y, z) = 2
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where r is a “fuzziness parameter”, a floating point number (a larger value of r means a 
less well defined boundary). This is illustrated in Figure 6-18, where the half space H is 
replaced by the function μ(x, y, z). 

H 

μ = 1 

μ = 0 
r 

Cross section of μ(x,y,z) along the 
dashed line.

r 

H
μ = 1 

μ = 0 

 
Figure 6-18 Fuzzy interpretation of a half space H. 

An alternate form of the function μ could be: 

μ(x, y, z) = due
r

du

∫ ∞−

⎟
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⎛ −

−
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 (f6.9) 

where r = 
222 CBAr

DCzByAx

++

+++  (f6.10) 

The rationale for this characteristic function is that it represents the probability that a point 
p would be within the half space H(A, B, C, D) if the position of the half space is 
inaccurately determined with a normal distribution with standard deviation of σ (Fraser 
1958) (see Section 3.2.14).  The shapes of these functions are shown (f6.8 and f6.9) in the 
1D case in Figure 6-19. This figure could also be interpreted as a cross section of a 2D 



Chapter 6 - Algebras of Connectivity 

162 

fuzzy half plane, or a 3D fuzzy half space. The difficulty in using this function is that it 
never reaches 0 or 1, and so cannot define regions such as those shown in Figure 6-16. That 
is to say, its transition zone extends to infinity. 

d r 

σ

 f6.8  

 f6.9  

transition zone 

 
Figure 6-19 Characteristic functions of a fuzzy half line in 1D. 

Other functions could be devised, some more appropriate, but the following will assume 
that the function being used has the following characteristics: 

It is monotonic in terms of x, y and z. 
It is continuous at all points –M ≤ x, y, z < M. 

These fuzzy half spaces can be combined to form “fuzzy convex polytopes” and “fuzzy 
regular polytopes” as described in chapter 4, and a form of fuzzy algebra could be defined. 
Each object has a characteristic function μ. For example, letting the function that 
corresponds to Hi = H(Ai, Bi, Ci, Di) be: 

μ1(x, y, z) = 2
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Then the defining function for the fuzzy convex polytope C = {Hi: i = 1..n} could be defined 
as: 

μC(x, y, z) = ( )),,(μmin
..1

zyxini=
 (f6.12) 

Similarly the defining function for the fuzzy regular polytope R = {Cj: j = 1..m} could be 
defined as: 

μR(x, y, z) = ( )),,(μmax
..1

zyx
jCmj=

 (f6.12) 

As a simple example, in Figure 6-20, a fuzzy convex polytope is formed in 2D from four 
fuzzy half spaces. The “side view” is intended to show how the value of μ varies from 1 
within the region through intermediate values to 0 at the exterior of the region. 
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Figure 6-20 A "fuzzy convex polytope" in 2D. 

However there is an important consideration in this definition. Consider a fuzzy half space 
as defined by either of the functions defined above. If H is a fuzzy half space defined by 
either function μ as defined in f6.8 or f6.9, considering this as a function of A, B, C and D, 
it can be readily verified that: 

∀ x, y, z: μ(A, B, C, D) = 1 - μ(-A, -B, -C, -D). (f6.13) 

Thus it can be seen that if μ(A, B, C, D) is a characteristic function for H, then μ(-A, -B, -C, 
-D) will provide a good characterisation of H , the inverse of H. This is suitable, and fits well 
with the definition of the (crisp) regular polytope and probability theory, but not 
particularly well with conventional fuzzy logic theory. 

The fuzzy union   of two fuzzy sets μ and ν is usually defined as μ   ν =def max(μ, ν). This 
means that if a fuzzy polytope is constructed that consists of the union of a fuzzy half space 
and its inverse, as depicted in Figure 6-21; it will have a “groove” along the plane of the 
half space where the value of the characteristic function is ½.  

H (heavy line) H 

H 

H 

H H 

side view of fuzzy half planes at arrows.
 

Figure 6-21 Characteristic function of the union of a half plane and its inverse. 

Using the probability interpretation pr(A or B) = pr(A) + pr(B), provided that A and B are 
independent. Thus if we know that regions A and B are independent, it would be preferable 
to use: μ   ν = μ + ν, so that H    H  would be 1 over the entire space. This is an area of 
research that could well be fruitful, but is beyond the scope of this thesis. 
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6.9. Relationship with Constraint Databases 
As has been shown in Chapters 4 and 5, the regular polytope approach defined a rigorous 
algebra. It shares this with the constraint database approach, with the underlying 
mechanism being the same in each case.  

 

B 

A 

 
Figure 6-22 Calculation of intersection points. 

The cases of algebraic breakdown that were documented in Chapter 2 all stem from the fact 
that calculations made with computer hardware do not necessarily produce exact real 
number results. Both the constraint database and the regular polytope approach solve this 
problem by deferring calculation of points of intersection. For example, in calculating A∪B 
in Figure 6-22, it is the calculation of the circled points that often leads to the breakdown in 
the algebra. In both approaches, the intersection points are not calculated as part of the 
process of determining the union of the regions. 

The study of the Constraint database is a wide-ranging subject (Kuper et al. 2000), 
including linear and polynomial forms (FO+LIN and FO+POLY) and based on integers, 
rational numbers or floating point definitions of coordinates. For example FO+LIN is a 
restriction of the more general unrestricted constraint database, requiring first order logic 
and linear constraint definitions. In the same way, the regular polytope can be expressed as 
a further restriction on the FO+LIN statement. While FO+LIN allows any linear 
combination of x,y,z and the parameters, joined by the arithmetical (e.g. plus. minus, 
multiply) and relational operators (< > ≤ ≥ = etc. ), the regular polytope restricts the 
permissible relational operators as in def4.1. Thus a constraint database (FO+RP) could be 
constructed. 

The regular polytope is thus more limited in scope, but allows more detailed investigation 
of such issues as modes of connectivity and relationship with the region connection 
calculus and Boolean connection algebras. It has been shown that no significant loss of 
functionality has resulted, at least in terms of the interrelationships of volumetric regions 
(or area regions in 2D) from this restriction, and a useful form of representation has 
resulted. 
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It also will be shown in the next chapter that the regular polytope provides a link between 
the constraint databases and the dual grid (Lema and Güting 2002). Many of the findings of 
the research into the regular polytope will be directly applicable to both of these 
representations.  

6.10. Conclusions 
Using the mereological approach, and the contrasting point set definitions, the regular 
polytope representation has been shown to support a rigorous algebra, which has been 
shown to cover the axiomatic definitions of the topological space, metric space, the region 
connection calculus, the discrete Boolean connection algebra and the weak proximity space. 
Some limitations of the approach have been explored in relation to the convex hull, and 
certain topological and geometric predicates. Finally, the relationship of this approach with 
imprecision, fuzzy logic and the constraint database formulation has been addressed. 

The following chapters move on to practical issues of computation and realisation of the 
approach in a model suitable for implementation of a spatial database. 

  





  

 

 

Chapter 7 

The Data Model 

The previous chapters have introduced the regular polytope approach, and shown it to 
implement a closed, rigorous algebra. This ensures that there can be no logic breakdown to 
invalidate analytic results. Nevertheless, some practical issues remain with the 
implementation of this approach within a database management system (Thompson and 
Van Oosterom 2007). This chapter will address these, and propose possible alternative data 
models.  

This chapter deals with the dr-rational representation only.  

For comparison purposes, a brief summary of the conventional vertex representation of 
polyhedra is included in Section 7.1. A basic data model for storage of spatial data in 
regular polytope form is described in Section 7.2. The issue of topological encoding by the 
sharing of the definition of equal and anti-equal half spaces is explored in Section 7.3. An 
alternative model, the “approximated polytope”, is introduced in Section 7.4 which, while 
retaining the rigour of the regular polytope, will address some practical issues, using a 
storage form more closely aligned to the point/line/polygon/polyhedron paradigm. In 
Section 7.5, alternate strategies for topological encoding within the approximated polytope 
form are introduced, with a discussion of practical issues raised by that model. Section 7.6 
discusses the indexing of objects in regular polytope form. Section 7.7 compares these 
various database implementation strategies with some similar approaches – in particular the 
dual grid. Section 7.8 briefly addresses the data storage requirements of the regular 
polytope. Section 7.9 concludes the discussion of data models. 

Appendix VII contains detailed calculations of estimated storage requirements for the 
various schemata outlined in this chapter, accompanied by the assumptions that have been 
made in the determination of these estimates. 
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7.1. Vertex-based Representations 
In two-dimensional applications, the “point/line/polygon” paradigm for the representation 
of spatial features is well entrenched, albeit with some significant variations (van Oosterom 
et al. 2004), and provides a degree of comfort in the mind of the user. This is in spite of 
some serious difficulties in terms of rigorous definitions of concepts such as validity, and 
equality (see Chapter 2). The equivalent 3D structures take various forms (Arens et al. 
2003), with no one having proved to be the best in all circumstances (Zlatanova et al. 
2004).  

In this paper, the term “vertex based” representation is used to cover all ways to model 
spatial data in two or more dimensions based on point coordinates of vertices as the major 
determinants of the shape and position of the objects. The vertices are defined as points 
with coordinates (x,y,z), or (x,y) in 2D, while all other geometric objects are defined in 
terms of sets of vertices or higher order constructive objects. This is true of virtually all two 
and three dimensional spatial data models, regardless of the level of topological encoding 
supported (Ellul and Haklay 2005). 

This section will discuss the basic extension of the point/line/polygon paradigm into 3D, 
the topological encoding of a planar partition in 2D, and how this approach has been 
extended into 3D. Finally the storage requirements of vertex encoding schemes are roughly 
estimated, to be used for comparison with various regular polytope storage schemes. 

7.1.1. Point/Line/Polygon/Polyhedron Paradigm 
One major challenge for 3D modelling is the fact that any definition of a face by more than 
three vertices runs the risk that that face may not be unambiguously planar. This could 
occur in two ways – the point values can be incorrectly calculated, or measurement or 
rounding errors can cause a small departure from planarity. Two different approaches may 
be taken: 1) a tolerance value may be applied (provided that the departure of the face from 
planarity does not exceed a given tolerance, it is accepted); 2) the faces may be triangulated 
(see Figure 7-1) (since any three points are always co-planar). 

 

(Only faces towards the viewer are shown).  
Figure 7-1 Triangulation of faces of a polyhedron to ensure planarity. 
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The first of these approaches adds a certain level of extra complexity, and like all 
approaches that use a tolerance, raises issues of non-transitivity of operations (e.g. where A 
= B, B = C, but A ≠ C). The second strategy, of triangulation or tetrahedronisation of the 
objects, is quite acceptable for topographic applications, but in many applications, the loss 
of identity of the faces is significant, possibly requiring an additional object class to group 
triangles into faces.    

7.1.2. Topological Encoding in 2D 
For the purpose of comparison with the regular polytope approach, a brief summary of 
topological encoding of 2D area features in a planar partition is in order. The linear network 
topology is not discussed here. Different implementations of the planar partition topology 
vary in the detail (van Oosterom et al. 2002), but the overall concept is common (Baars 
2003). The basic principal is the sharing of definitions of boundary linestrings (Watson 
2002; Worboys 2004). Specifically, where a region is a direct neighbour of another, the 
linestring geometry that represents the boundary between them is stored once only, with a 
linkage between each of the region records and the boundary.  
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Figure 7-2 Topological encoding in 2D. 

For example, in Figure 7-2, Line segment 1 (in the direction indicated by the arrow), has 
region A on the left, and region B on the right. One difference between encoding schemes 
arises in cases where redefinition of regions as sub-regions is allowed. These can be 
generated by the overlaying of single valued vector maps (SVVM) to produce multi-valued 
vector maps (MVVM) (Molenaar 1998).  

For example, if region e is a sub-region of B (it could for example, be a particular crop type 
within a farming property), the linestring 2 would have A on its left, but both e and B on its 
right. The issue is whether one only left and right link is allowed, or a multiplicity of each. 
Line segment 7 would have e and B on its left, and B on its right. The algorithm for 
determining a region as an anticlockwise polygon is to: 

Locate and reverse all line segments with the region on the right. 
Locate all segments with the region on the left. 
Combine and sort the results, detecting individual outer and inner boundaries (if any). 
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A feature of this approach is that distinction is made between nodes and simple points 
along linestrings. For example, in Figure 7-2, the points marked n1, n2 ... are characterised 
by the fact that more than two lines meet at these positions. This is in contrast to the other 
points that fall along, and describe the shape of the linestrings – for example between n1 
and n2.  

This single storage of common elements, such as the nodes and linestrings, is the principal 
advantage of the approach, leading to possibly reduced storage requirements, but more 
importantly, meaning that the definitions of what is a single line cannot become de-
synchronised – leading to slivers and overlaps between what should be adjoining features. 
A further advantage is that holes and islands within regions are handled naturally, with no 
special case logic required. The main disadvantage is that, since each line segment is part of 
the definition of more than one region, the boundaries of a specific region cannot be 
clustered within the storage medium as completely as they can in the discrete polygon 
storage scheme – where all boundary details for a particular polygon can be physically 
located with that polygon. 

7.1.3. Topological Encoding in 3D  
The same general principle applies in 3D. That is to say that the surface that forms the 
separating boundary between two spatial regions should be stored once only, and linked to 
the region above and the region below it. Typically, a surface would be composed of 
"patches" which may be planar1, but together define a surface. There are some obvious 
differences that result from the move from 2D to 3D: 
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Figure 7-3 Surface composed of patches. (A is the volume is above the surface, B 

below). 

1. As discussed above (see Section 7.1.1), a planar patch can be difficult to keep planar 
unless triangulated.  

                                                           
1 For the purposes of this discussion, for simplicity, only surfaces composed of planar patches with polygonal 
edges will be considered. 
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2. There is no natural ordering of the patches that compose a surface (by contrast with the 
line segments that comprise a linestring), e.g. in Figure 7-3, there is no reason the 
patches should be numbered as they are. 

3. There is no 1-1 correspondence between patches and the edges (as there is in 2D 
between edges and points that define them), e.g. in Figure 7-3, patch 5 has seven edges. 

As a result, there is significantly more variation in the proposed implementations of 3D 
topology than is the case in 2D (Breunig and Zlatanova 2006), for example, in the 3D FDS 
(Formal Data Structure) (Molenaar 1990), and the “Simplified Spatial Model” (SSM) 
(Zlatanova et al. 2002).  

7.1.4. Storage Requirements 
In order to make comparisons with the data models discussed below, some representative 
vector based schemata have been analysed, with the details of the assumptions and 
calculations being given in Appendix VII.   

Case 1: A 2D conventional polygon stored with no topological connection to neighbours. 

Case 2: A 2D polygon stored as part of a single layer coverage with topology. Each 
polygon has on average 4 direct neighbours. 

Case 3: A 3D conventional polyhedron stored with no topological connection to 
neighbours. 

Case 4: A 3D polyhedron stored as part of a single layer partition of space with 6 direct 
neighbours. The figure being considered is a distorted cube – with 6 surfaces, 8 corner 
vertices, 12 edge line segments. The six surfaces are broken up into a number of surface 
patches. 

In each case, three objects are considered, the first being of limited complexity – a 4-sided 
polygon in 2D or a 6-face polyhedron in 3D. The second has 100 vertices, while the third 
has 10000 vertices. The storage requirements of these cases are tabulated in Appendix VII, 
and will be quoted below in comparison with various regular polytope storage schemata.                                                   

7.2. The Discrete Regular Polytope Model 
This is perhaps the simplest structure, with the most redundancy of storage, and no 
topological encoding. Each regular polytope is stored as a unit, containing its component 
convex polytopes and their defining half spaces. 
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Possibly not stored in database, 
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Figure 7-4 The regular polytope model (see also Thompson 2005a). 

Figure 7-4 shows, in the unified Modelling Language (UML) (OMG 1997), a possible 
implementation of the regular polytope representation discretely encoded (in 3D). Key 
points in the interpretation of this diagram are  that: 

• The ConvexPolytope class is a specialization of RegularPolytope. 

• The HalfSpace class is a specialization of ConvexPolytope (which means it is also a 
RegularPolytope). 

• A regularPolytope object consists of zero or more convexPolytopes. Note that zero 
defines the empty RegularPolytope. 

• A convexPolytope object consists of zero or more halfSpaces. Note that zero defines the 
infinite ConvexPolytope. 

• The HalfSpace class has the integer attributes A, B, C and D.  

The face and vertex objects are derivable from the regularPolytope, convexPolytope and 
halfSpace objects, and therefore are redundant. It is an implementation decision whether 
they are stored in the database or not. 

• Each halfSpace object corresponds to exactly one face. 

• Each face object is composed of three or more vertices (some of which may be “at 
infinity” – see Section 4.1.3 definition 4.13). 
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• Each vertex carries as attributes the dr-rational x, y and z values of its coordinates. 

The "Face" and "Vertex" object classes are not necessary to the definition of a regular 
polytope, but as discussed below may be of use in improving the performance of the 
implementation. Since these faces and vertices will need to be calculated in a range of 
operations, the calculation times may be sufficient to justify the additional storage required 
by what is in effect a materialised view in the database. This decision needs to be based on 
experimental evidence (see Chapter 8). The algorithm for the calculation of faces and 
vertices is, in outline:  

For each convex regular polytope in the regular polytope definition, calculate the 
intersections between the half planes that compose it and form a set of conventional 
polygons. There will be one polygon for each original half space unless the half-space 
was redundant (and can be removed). These polygons are assembled to form a 
conventional convex polyhedron. 
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Figure 7-5 Calculation of polygonal faces of a convex polytope. Note that half space B 

is redundant – therefore does not generate a face. 

In Figure 7-5, face a is calculated by intersection of half space A with the other half spaces 
of this convex polytope. Note that the half space B contains all the other vertices, and is 
redundant, so no face is generated. B can therefore be dropped from the convex polytope 
definition. The vertex test for redundancy (see Section 4.4.3 and Appendix IV.1) is useful 
in detecting such half spaces, and the complexity of the routines that are needed to 
determine redundancy are discussed in Chapter 8. 

Given this and other forms of the regular polytope data model, there is the potential to 
include attributes within the regularPolytope, convexPolytope and halfSpace objects. This 
ensures a very flexible attribution structure, allowing, for example, attributes such as 
surface cover, quality of data, reflectance, texture etc. to apply only to specified surfaces of 
a solid.   

The model as described here makes no distinction between connected and disconnected 
regular polytopes. It is possible to calculate whether a regular polytope is connected or not, 
but it may be worthwhile pre-calculating and storing this fact (for both weak and strong 
connection). This was done in the proof of concept Java classes described in Chapter 8 (see 
Section 8.2.2) to give instant determination of connectivity. 
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Figure 7-6 Calculating the intersection of two regular polytopes. 

In calculating the intersection of region B with region A in Figure 7-6 (shown above split 
into two convex polytopes A1 and A2), even though all the half planes which define A1 
intersect all the half planes that define B (since they are not parallel, and the half-plane 
definition is theoretically infinite), it can be determined by a conventional polygon overlap 
test that all the vertices of A1 are completely separated from the vertices of B – therefore 
A1∩B is empty. This kind of logic can be used to pre-eliminate large numbers of the partial 
intersections. (This could be preceded by a comparison of bounding boxes, to further 
improve the calculation speed). 

7.2.1. Model Restrictions 
This model is the most basic, intended for demonstration purposes only. In practice, 
additional classes would be added to improve speed and responsiveness. For example, a 
convex polygon might be associated with an approximate bounding rectangle, which is the 
basis for a spatial index. Note that the bounding box can be computed with a function and 
that the spatial index may be created on the return value of that function. That is, the 
bounding box need not be stored if a functional spatial index is used.  

A demonstration system has been developed in Java based on this simple model and is 
discussed in Chapter 8. There are a number of issues remaining that apply to this base level 
model: 

• The regular polytope storage mechanism differs from the more familiar 
point/line/polygon/polyhedron paradigm commonly used in GIS, and requires non-
trivial conversion routines to allow interoperability.  

• The calculation of vertices requires the use of very large precision integer arithmetic (as 
does the dual grid approach, and to an even larger extent, the rational polygon - see 
Chapter 3). 

• The storage requirements are larger than required for simple polygon/polyhedron 
encoding (even if redundant storage of faces and vertices is not used). (This is roughly 
quantified in Section 7.2.3 Table 7-1). 

• It is not easy to map this storage form to/from the topological encoded form of a 
polygonal partition of space (Louwsma 2003). (This was discussed in Section 5.6). 
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• Some analytic operations, such as those that require volumes, areas etc., are 
inconvenient in the regular polytope representation (requiring significant processing). 
This can be alleviated by storing the redundant face and vertex objects. 

7.2.2. Model Advantages 

• Data retrieval can readily be optimised since each regular polytope can be stored as an 
individual self-contained record on disc, and indexed using standard techniques such as 
R-Tree (Guttman 1984). 

• All RCC and topological predicates and functions can be rigidly supported in the 
computer-based representation. 

7.2.3. Storage Requirements 
For comparison with the conventional approaches, as discussed in Section 7.1.4, six 
examples are considered as tabulated below: 

Table 7-1: Independent (Non-topological) Storage 

 Vertex Defined Regular Polytope 

2D, 4 sides 96 bytes2 144 bytes3 

2D, 100 sides 864 bytes 1860 bytes 

2D, 10000 sides 80 kb 165 kb 

3D, 6 faces 404 bytes4 212 bytes5 

3D, 100 faces 5686 bytes 2344 bytes 

3D, 10000 faces 560 kb 207kb 

In Table 7-1, it can be seen that in 2D the regular polytope requires rather more than twice 
the storage of the conventional approach. By contrast, this is a reduction of the storage in 
comparison to the conventional simple polyhedron structure in 3D. This should be treated 
with some caution, since the structure used for estimation has a lot of redundancy, and 
would not be likely to be used in a practical database. It should be noted that in this very 
simple schema there is little difference in storage requirements between the 2D and the 3D 
regular polytopes.  

                                                           
2 The schema used for these estimates can be found in Appendix VII.3.1. 
3 The schema used for these estimates can be found in Appendix VII.4.1. 
4 Note – this is a completely redundant form of storage, where each vertex is stored for each face of each 
polyhedron. See Appendix VII.3.3 for details of the schema assumed. 
5 The schema used for these estimates can be found in Appendix VII.4.2. 
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7.3. Topological Encoding of Regular Polytopes 
In the storage schemes that are appropriate to the regular polytope representation, there are 
several possible analogues to topological encoding, but one in particular is quite promising 
for use in the field of cadastral data (Figure 7-7). This approach treats each half space as a 
common object, stored once only (in the way a common boundary is as described in 
Section 7.1.2), with links to each convex polytope that it bounds. The convex polytope may 
be bounded by the half space or by the complement of the half space. 

A, B, C, D 
extents

* 1..* 

complement: 
Boolean 

HalfSpace 

Orientation 
RegularPolytope 

ConvexPolytope 
* 

 
Figure 7-7 Regular polytope schema with common storage of half spaces. 

As an example from the cadastral domain, consider a series of property parcels with a 
common road frontage as depicted in Figure 7-8. The single halfSpace XY participates in 
the definition of the road, and its complement in the convex polytopes A, B1, C1, D and 
E1. This ensures that: 

• There are no gaps or overlaps possible between the parcels and the road. 

• The road frontages are straight. 

Since the true definition of the parcels from the survey plan was probably in terms of a 
bearing and distance measurement from point X to point Y, this is a particularly appropriate 
representation, and allows the option of storing such measurement details as metadata 
within the halfSpace record. This halfSpace XY would be linked by the direct connection to 
the road section 1, and via the “complement = true” link to convex polytopes A, B1, C1, D 
and E1. Note that halfSpaces can be used more than twice, in contrast to the traditional 
encoding of topology based on edges, where a common edge is always exactly used twice 
(positive and negative). 
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Figure 7-8 Cadastral data in the topologically encoded regular polytope form. 

Even where straight sections of frontage are non-contiguous, the halfSpace record can be 
used in common. For example, the halfSpace marked YZ defines the road section 2, with its 
complement defining E1, F, road section 3, G etc. 

A 

B1 

C1 

D 

E1 

F 

X - Y 

G 

Road1 

Road2 

Road3 

Y - W 

Y - Z 

C 

C 

C 
C 

C 

C 
C 

C 
C 

C 

Convex 
Polytopes 

Half Spaces Convex 
Polytopes 

 
Figure 7-9 Object diagram showing some of the connections in Figure 7-8. (The 

linkages marked "C" are links with “complement = true” as in Figure 7-7). 

In full 3D parcels, the same is possible, with a half space being able to define a number of 
parcels in strata, as well as defining a non-stratum (2D) parcel adjoining it. In Figure 7-10, 
the half space marked as XY, is the boundary of “2D parcel” A, and its complement is the 
boundary of strata parcels B1 to B5. 
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B1 

C 

B2 

B3 

B4 

B5 X 

Y 

 
Figure 7-10 3D parcels encoded using topologically encoded regular polytopes. 

The halfSpace record also should carry attributes defining its extents of use. This would 
probably be in the form of a minimum bounding box and would be used for two purposes: 

• To distinguish between half spaces which are only co-incident by chance (in which case 
dual representation of the same halfSpace is more practical). For example, it is possible 
that two boundaries many kilometres apart have the identical A,B,C,D values, but 
which are not in any way related, and should not be linked. 

• To allow easy application of adjustments such as datum changes. Where an adjustment 
can be approximated by a “block shift”, the new definition of the half spaces in a block 
can be calculated using the localisation provided by the extents.  

The advantages that are created by using conventional topological encoding also apply to 
the topologically encoded regular polytopes as well as the rigorous logic of the regular 
polytope, so that: 

• Some redundant storage is eliminated. 

• Fast neighbour searches are facilitated. 

• Accidental creation of overlaps and gaps is prevented. 

• Frontages are kept straight. 

• Robustness in the Ca connectivity can be defined. 
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Figure 7-11 Perturbation of connected objects preserving connectivity 

The final point in the above list is significant. As was discussed in Section 5.7.3, Ca 
connectivity is naturally not a robust concept, and Cb connectivity is only robust if the 
adjacent anti-equal half spaces can be guaranteed to remain anti-equal. This form of 
topological encoding can ensure that truly robust connectivity is possible in both forms, 
since the anti-equal pair of half spaces is stored and can be manipulated as a single object. 
For example, in Figure 7-11, Even though both figures are perturbed, since the common 
anti-equal pairs (H2, H5) (H3, H6) and (H10, H13) are stored in common they are maintained 
as anti-equal. Thus the connectivity can be robust. 

It is unlikely that there will be much, if any, saving in storage requirements using this 
structure, since the cost of storing a halver redundantly is quite low, and largely offset by 
the keys and indexing needed to support the encoding. This is also true of the conventional 
form of topological encoding, and in both approaches the advantages are not to be found in 
storage savings, but in the ease of update, while retaining correct adjacency (consistency 
within the model). 

As a minor but significant variant on this approach, the whole of space can be subdivided 
into convex polytopes, which are grouped into regular polytopes, thus forming a complete 
partition of space equivalent to a restricted form of cellular model as described by Bidarra 
et al (1998). In such a partition, all half spaces (apart from the half spaces at infinity) will 
be present as an anti-equal pair, and an efficient storage regime should result. 

7.3.1. Storage Requirements 
For comparison with the vertex representations approaches, as discussed in Section 7.1.4, 
six examples are considered, as tabulated in Table 7-2. These compare a topologically 
encoded vertex representation in 2D and 3D with the shared half space regular polytope 
encoding.  
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Table 7-2: Topologically Encoded Storage 

Regular Polytope  Vertex Defined 

no topology shared half space topology 

2D, 4 sides 148 bytes6 144 bytes 147 bytes7 

2D, 100 sides 532 bytes 1860 bytes 1927 bytes 

2D, 10000 sides 40 kb 165 kb 172 kb 

3D, 6 faces 230 bytes8 212 bytes 196 bytes9 

3D, 100 faces 1734 bytes 2344 bytes 2148 bytes 

3D, 10000 faces 160 kb 207 kb 187kb 

In Table 7-2, it can be seen that in 2D the regular polytope requires significantly more 
storage than the conventional topologically encoded approach (except in the simple case). 
By contrast, in 3D, there is little difference between the requirements for the two 
approaches. As in the discrete regular polytope schema, there is little difference between 
the requirements of the 2D and the 3D shared half space schemata. 

7.4. The Approximated Polytope Model 
In order to address some of the issues with the regular polytope representation raised in 
Section 7.2.1, in particular the difficulty of converting to and from conventional vertex 
representation, visualisation computations and the calculation of areas and volumes, a 
model known as the “approximated polytope” has been investigated (Thompson et al. 
2006c). This is a structure without topological encoding and with each feature encoded as a 
separate object (here referred to as a “body”). The extension of this structure to topological 
encoding is discussed in Section 7.5. This first model chosen for discussion is not 
particularly elegant, and contains redundant storage, but is fairly simple to describe and 
investigate. Note that the convex polytopes are not represented explicitly in this model. 

                                                           
6 The schema used for these estimates can be found in Appendix VII.3.2. 
7 The schema used for these estimates can be found in Appendix VII.4.3. 
8 The schema used for these estimates can be found in Appendix VII.3.4. 
9 The schema used for these estimates can be found in Appendix VII.4.4. 
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Figure 7-12 The simplified model 

The classes are: 

Body: is the volume of space which represents a feature. This can represent any regular 
polytope, not necessarily internally connected. 

Face: is a geometrically flat facet of the bounding surface(s) of a body. (Note – a body 
can have internal surfaces – faces of an inner shell – like the interior of a tennis 
ball).  

Boundary: is a planar ring which defines the edges of a face, stored anticlockwise for 
an outer boundary, clockwise for inner - as viewed from outside the body. (For an 
inner face, the outermost boundary will be anticlockwise, when viewed from within 
the void). 

Edge: is a single directed line segment in a boundary – there will always be a pair of 
opposite edges for the junction of two faces. 

ApproximatedPoint: is a representation of the points where faces meet. These would 
be stored redundantly, and assist with the fast approximate results (see below). 

ExactPoint: is an exact representation of the intersection of three faces, the face with 
which it is stored, and the “other face” of the two edges that meet at this point. It is 
represented as a set of 3 dr-rational numbers. Exact points would not be stored in the 
database, being only used when intersection or union operations are being 
calculated. 

DrRationalNumber: is a representation of a dr-rational number. It consists of two 
extended precision integers –M' ≤ I ≤ M', 0 < J ≤ M", interpreted as I/J.  
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The associations are: 

Body “bounded by” face – to link the body to the faces that define it. 

Face “limited by” boundary – each face is limited by one or more boundaries.  

Boundary “composed of” edges – each boundary is a ring comprised of a connected set 
of edges. 

Face “other face” of Edge – each edge is defined as the intersection of the face it 
defines with another face. Note – this relation is not defined for the purpose of 
carrying topological connectivity. It is purely to define the edge. 

Edge “reverse of” Edge – each edge has another which is the exact reverse of it, the 
start and end points are identical (but reversed), and the boundary face of one will be 
the “other face” of the other (and vice versa). This relationship would probably not 
be explicitly stored. 

Figure 7-12 shows a simplified model for discussion here. A body is considered to be 
defined by a number of faces. Each face has attributes of A, B, C and D, with the same 
interpretation as half spaces (see Chapter 4) and is bounded by one or more boundaries 
(with at least one being an outer boundary). An edge is the junction of exactly two faces, 
and defines the boundary of one of them. (Note that edges are thus stored twice, but each 
edge has just one point. This will be discussed further in Section 7.4.3).  

Since the aim of this representation is to support the operations of the regular polytope, and 
the regular polytope is not necessarily fully bounded, it is necessary to define “faces at 
infinity” based on the half spaces at infinity H1

∞ (see Chapter 4 definition 4.13). Likewise, 
points with one or more of the x,y,z coordinates equal to ±M are considered to be “points at 
infinity”. The universal regular polytope O∞ can be represented as a body object (the 
universal box B∞), with six faces. Each face has a single outer boundary consisting of four 
edges. Each edge starts and ends at a point at exactly (±M, ±M, ±M).  

The point-set definition of a body is simply the set of points which satisfy the “point in 
body” test. Briefly, for point p = (xp, yp, zp), this consists of running a ray in the -x direction, 
from the point and counting the faces it cuts. A face is deemed to be cut if the x intercept on 
this ray is ≤ xp. (note the equality is included). To cut a face, the point of intersection of the 
ray on the face must be within the boundaries of the face. This is tested by running a ray in 
the –y direction along the face, and counting the boundary edges it cuts. An edge is deemed 
to cut this ray if the y intercept is  ≤ yp. The edge must also be such that zmax > zp and zmin ≤ 
xp where zmax and zmin are the max and min z values of the edge. Note – the detail of the use 
of > and ≤, and the direction of the rays is important in showing the equivalence of this 
approach with the regular polytope approach, but other strategies could be adopted – such 
as running in the –z direction first if this were not an issue. 

In order to ensure that the rigorous logic of the regular polytope can be transferred to this 
representation it is necessary to show either that: 

This representation can be mapped reliably to and from the regular polytope 
representation, or 

The operations union, intersection and inverse can be implemented rigorously. 



Chapter 7 - The Data Model 

183 

Clearly, 1 => 2 above, since if two-way mappings are available, then union, intersection 
and inversion can be implemented by mapping to the regular polytope representation, 
applying the operation, and then mapping back. 

The other side of the equivalence (2 => 1) can be shown by considering the following: 

By calculating where the half space H = (A,B,C,D) intersects the universal box B∞, a body 
can be generated BH. Thus a half space can be represented as a body, as shown in Figure 
7-13. The body that represents a half space can have from four to seven faces. It can readily 
be verified that if p = (x,y,z) ∈ H, (-M ≤ x,y,z < M) ⇔ p ∈ BH. 

H

BH 

x
y

z

(M,M,-M) 

(M,M,M)

(-M,-M,-M) 

B∞

 
Figure 7-13 The universal box B∞, and a half space H represented as a body BH. 

If i
ni
HC

..1=
= I is a convex polytope, and Bi is the body representation of Hi, then we can 

define i
ni

C BB
..1=

= I as the body representation of C. It can readily be verified that p ∈ C ⇔ 

p ∈ BC. By a similar argument, the union of any set of convex polytopes can be represented 
as a body. Therefore any regular polytope can be represented as a body using this structure. 

In the reverse direction, if a body is convex (that is all faces meet at edges so that the 
dihedral angle of that meeting is less than 180°), then the body defines exactly that set of 
points which would be defined by a convex polytope bounded by the faces. 
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Figure 7-14 Convex body defining a convex polytope. 

For a non-convex body, if m pairs of faces meet at a dihedral angle of > 180°, then one of 
those faces can be converted into a half space and its inverse, and therefore into a 
complementary pair of bodies that covers the universal box. The original body is then 
replaced by two bodies – each being the intersection of the original body with one of the 
complementary pair. By this process, two bodies are created that each have at most m-1 
pairs of faces with dihedral angle of > 180°. Continuing this process, we are left with a set 
of convex bodies whose union is the original body. This can then be expressed as a regular 
polytope (see Figure 7-15). 

A

H1

A
B

H1

H2 

A B 

C

Non-convex body with 
two planes of concavity 

One concavity resolved, 
by splitting along H1 

Second concavity resolved, 
by splitting along H2 

 
Figure 7-15 Cutting a non-convex body into convex sub-regions. 

Using dr-rational arithmetic, the operations of union, intersection and inverse can be 
defined, and by careful considerations of the rules of inclusion, it can be verified that the 
results of the operations are consistent with the results of those same operations on the 
regular polytope representation. Thus this representation is logically equivalent to the 
regular polytope. It can therefore be asserted that this approach supports the algebras 
discussed in Chapter 6. The use of dr-rational numbers requires some care in the 
specification of the algorithms, since it is necessary to verify that the results of any 
calculations do not violate the domain limits, but the algorithms themselves are 
significantly simpler than those often employed in floating point arithmetic, because no 
calculation or rounding errors need be accommodated. 
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7.4.1. The Approximation 
The approach has been called “approximated polytope”, but so far, all discussion has been 
of exact operations.  The approximation takes the form of an approximated point – stored 
instead of the dr-rational points. This allows a form of the body representation to be 
available for “everyday use”.  It is envisaged that these points would be used for 
visualisation, the analytic operations (overlap, proximity, containment etc), geographic 
search and indexing and other such purposes. In fact, all operations except those involving 
the exact generation of new objects. It is possible for these approximated points to be stored 
in integer or floating point form, at whatever accuracy is desired, and the calculation of 
them from dr-rational numbers can be highly accurate. If integers are used, the 
approximated point may be determined to within one unit of resolution of the exact point in 
x, y, and z.  

Using the “point within body” test as described above, but using the approximated points 
for calculation (and not needing dr-rational arithmetic), it can be seen that the correct result 
will be obtained provided the test point is not within one unit of resolution of the surface of 
the body. It can further be seen that it is possible to determine whether the point is within a 
specified distance from the surface. It is thus possible to convert from this representation to 
a more conventional (point location based) representation, simply by using these 
approximated points. Note however that while the faces themselves are flat by definition, 
the approximated points may lie up to one unit of resolution off the flat plane, so the usual 
issues of faces defined by more than three points not being planar will then apply (see 
Figure 7-16). It is also the case that two or more points may approximate to the same value, 
so the interpretation into conventional form must be carefully approached (see Section 
7.4.3).  

 
Figure 7-16 Approximated  points used in place of dr-rational vertices. 

The presence of approximated vertices within the representation makes the application of 
this approach to classic GIS-type analysis considerably simpler. The accuracy of the 
approximation is high, and for such operations as the calculations of areas, volumes, linear 
sizes, distance between objects, etc. they would be appropriate in the vast majority of cases. 
In addition, operations such as overlap, containment, above/below, within (convex hull), 
etc. can be implemented using conventional (and well optimised) algorithms. All of these 
will be accurate to within the basic grid size, and therefore valid for the majority of analysis 
work. 
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7.4.2. Converting Vertex Representations to Approximated 
Polytope in 3D 

It is important that spatial features that are currently stored in conventional vertex form can 
be converted into regular polytope form. In particular, the data from conventional cadastral 
databases and topological databases will be in that form. It is also likely that data from 
surveys will be available, which combines the vertex described form with additional data 
that describes lines (such as bearing and distance).  

There are some important issues to be considered in this conversion. It is assumed that the 
conventional form is defined by the point locations of vertices, with sufficient face 
definition to construct the bodies. It must be remembered that the basic primitive for this 
representation is the half space. In 3D, a half space defined by integer coefficients cannot in 
general be found to pass through any three points – the best that can be guaranteed is that a 
half space can be found that will pass within one unit of resolution of any three points (see 
Appendix II.1). Thus there is some approximation involved in the calculation of the regular 
polytope10. An outcome of this is that, if a regular polytope is converted from a vertex-
defined representation, the dr-rational vertex points may differ from the original vertices, 
and so the approximated points could also differ (see Figure 7-17).  This is not a serious 
issue, since the accuracy of the data is usually significantly lower than the resolution used 
to store that data11, but has to be considered in algorithms, since it could cause points to 
merge.  

1) original point (integer 
coordinates)

2) dr-rational 
point 

3) approximated 
point 

original face 
defined by 
vertices 

face defined as a half space 
with integer coefficients 

 
Figure 7-17 Movement of points in the approximation process in 3D. 

If it is considered necessary to ensure that all planes pass through vertices defined by 
integer coefficients, the accuracy requirements increase sharply. For example for a half 

                                                           
10 Also, of course, it must be verified that any face defined by four or more vertices is sufficiently close to being 
planar. 
11 And the displacement of any surface will never be greater than the unit of resolution. 
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space to pass within 1 resolution unit of three points (defined by 4 byte integer 
coefficients): 

• A, B and C must be 4 byte, and D must be 8 byte integers. 

• The dr-rational numbers (p/q) used to represent vertices in this case p requires 16 bytes, 
and q requires 12 bytes, with equality testing needing 28 byte arithmetic. 

If a half space is to pass exactly through three integer coefficient points: 

• A, B and C need 8 byte, and D 12 byte integers. 

• In this case, the requirement for p is 28 bytes, for q is 24 bytes, with equality testing 
needing 52 bytes. 

A further issue is that an edge is defined by the meeting of exactly two faces. It is not 
possible in general to generate another face that passes through the edge of intersection of 
two existing faces (see Figure 7-18). This does not significantly affect the model being 
discussed here, but will have an impact on topological encoding (see Section 7.5.3 below).  

existing faces 

edge of intersection 
of existing faces 

new face 

 
Figure 7-18 In general, in 3D, a face cannot be guaranteed to pass through the edge of 

intersection of two other faces. 

Note that none of these issues apply in the 2D case. In 2D, for any two points with integer 
coefficients, a half plane can be generated that passes exactly through them. Thus, for a 2D 
vertex represented polygon, a regular polytope can be generated that exactly represents it 
(apart from those points that lie on the boundary of the original polygon). 

7.4.3. Practical Questions 
It is considered unnecessary to store the exact dr-rational vertices in the database, since they 
can be recalculated as necessary in O(v) time, where v is the number of vertices. Since the 
dr-rational numbers are of finite precision, the operations are of constant duration (unlike 
the unrestricted rational numbers, where the time of calculation of arithmetic operations 
depends on the magnitude of the numerators and denominators). Calculations using dr-
rational numbers in demonstration classes (see Chapter 8) implemented in Java are quite 
slow, since for ease of implementation they have used the readily available BigInteger 
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class, which is potentially infinite in precision. In a practical implementation a faster (finite) 
arithmetic could be used.  

In the schema described here (in Figure 7-12), the edge of intersection between two faces is 
recorded as a pair of edge objects, one per face, each the reverse of the other. This is 
obvious duplication, and could be addressed in any practical implementation. (The 
described schema being for “proof of concept” only).  

7.4.4. Storage Requirements 
For comparison with the vertex representations approaches, as discussed in Section 7.1.4, 
three cases are considered as tabulated in Table 7-3. These compare a topologically and 
non-topologically encoded vertex representation 3D with the approximated regular 
polytope (non topological) encoding. It was not considered to be useful to compare the 2D 
cases, since the 2D and 3D requirements for the regular polytope are fairly similar. 

Table 7-3: Approximated Polytope Storage 

 Non-Topo see 
Appendix VII.3.3 

Topo see 
Appendix VII.3.4 

Approximated Polytope see 
Appendix VII.4.5 

3D, 6 faces 404 bytes 230 bytes 620 bytes 

3D, 100 faces 5686 bytes 1734 bytes 9268 bytes 

3D, 10000 faces 560 kb 160 kb 920 kb 

In Table 7-3, it can be seen that in all cases, the approximated regular polytope requires 
significantly more storage than the conventional encoded approaches. This schema also 
requires a considerable increase in storage over the earlier regular polytope approaches and 
is only justified if the speed improvement over them is significant. The large storage 
requirement is a function of the large amount of redundancy that this approach 
incorporates. 

7.5.  Extension to Topological Encoding 
The approximated polytope has a significant amount of redundancy in storage, and a 
topologically encoded form of storage must be considered. As with conventional vertex-
represented structures, this could take several forms, two of which are considered here. The 
principal investigation of these has been in 3D, since this is the more complex case. The 2D 
equivalents follow fairly obviously by comparison. 

7.5.1. Shared HalfSpace Topology 
One possible form of topology for the approximated polytope model is the equivalent to 
that described in Section 7.3. Figure 7-19 shows a simplified model for discussion here. A 
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body is considered to be defined by a number of facets. Each facet is defined by a single 
half space, which has attributes of A, B, C and D, (see Section 7.3) and is bounded by one 
or more linear boundaries (rings - with at least one being an outer boundary and the other, 
optional, rings representing inner boundaries). The Boolean attribute “complement” in the 
facet record indicates whether the facet is based on the halfSpace, or the complement of it.  

Body 
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4..* 
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11..* 

Edge

3..*
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ApproximatedPoint 

X, Y, Z:   integer1

ExactPoint1
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bounded by 

 limited by 
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 other face
reverse of /derived

/derived

/derived
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HalfSpace
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extents 
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1

* 

 
Figure 7-19 The approximated polytope model including topological encoding of half 

spaces. 

An edge is the junction of exactly two faces, and defines the boundary of one of them. 
(Note that edges are thus stored twice). Since the edges that delimit a boundary are stored in 
order, only one point needs to be associated with each.  

7.5.2. Storage Requirements 
For comparison with the vertex representations approaches, as discussed in Section 7.1.4, 
three cases are considered as tabulated in Table 7-4. These compare a topologically and 
non-topologically encoded vertex representation 3D with the approximated regular 
polytope encoding with shared half spaces. 
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Table 7-4: Approximated Polytope Storage 

Vertex Representation Approximated Polytope  

Non-Topo 
App VII.3.3 

Topo 
App VII.3.4 

Non-Topo 
AppVII.4.5

Shared HalfSpace Topo 
See Appendix VII.4.6 

3D, 6 faces 404 bytes 230 bytes 620 bytes 626 bytes 

3D, 100 faces 5686 bytes 1734 bytes 9268 bytes 9368 bytes 

3D, 10000 faces 560 kb 160 kb 920 kb 930 kb 

This is not significantly different from the version of regular polytope storage which does 
not share half spaces, and the use of this approach would be considered rather for its 
convenience in applying updates (as was discussed in Section 7.3). 

7.5.3. Shared Surface Topology 
Figure 7-20 shows an alternative approach to topological encoding, which is more akin to 
the conventional vertex based approaches, and requires that a set of faces be grouped into a 
compound surface while bodies are defined by the surfaces that surround and separate them 
from other bodies. A surface is linked to the body above (+) or below (-) it. 

Surface 

 

Body

1..21..* 

+ / -

Face 

A, B, C, D:   int 

1..* 

Boundary 

 

1..* 
ApproximateEdge ApproximatedPoint 

X, Y, Z:   int

2* *left/right 

 
Figure 7-20 The model including topological encoding. 

The objects are: 

Body: a volume of space 

Surface: a 2D surface comprised of a series of flat faces which separates two bodies. 

Face, Boundary and ApproximatedPoint are the same as defined in Section 7.4, but 
since the approximatedEdge objects are shared between boundaries, each edge must 
be linked to two approximatedPoint objects. 
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The edge is represented by the class: 

ApproximatedEdge: an edge between two faces which may or may not be part of the 
same surface. Unlike the exact edge, this does not need an alternate face link. Also 
unlike the edge described in Section 7.4, this is shared between two or more 
boundaries objects. 

The topological connectivity is provided in two ways – each body is linked to the surfaces 
that define it. These surfaces are in turn linked to the bodies on the other side. In addition, 
each nodal approximatedEdge object is linked (via the boundary, face and surface objects) 
to the three or more bodies that meet there. 

A B 

C 

f4 

s1 

f5 
n1 

e1 

f1 

f2 

f3 

s4 

s5 f6  
Figure 7-21 Example of bodies, faces and edges. 

For example, in Figure 7-21, bodies A and B are separated by surface s1, which is composed 
of faces f1, f2 and f3. A and C are separated by surface s4, which is composed of face f4. B 
and C are separated by surface s5 consisting of faces f5 and f6. ApproximatedEdge e1 is on 
the common boundary between the faces f1 and f2 and is thus within surface s1, while 
approximatedEdge n1 lies approximately along the faces f2, f4 and f5 and is considered 
nodal. The requirement is that a “nodal edge”, be defined as the meeting of three or more 
faces, which raises difficulty in the approximated polytope approach, since at most two 
faces can be guaranteed to meet exactly at a single edge (see Figure 7-18).  

A 

B

C
S1

S2S3

e

f1
f2

f3
f4

 
Figure 7-22 Topological encoding of bodies by surfaces. 
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For example, in Figure 7-22, surface S1 has C to the left, A to the right. S2 has B to the left 
and C to the right. S3 has B to the left, and A to the right. But note that S1 consists of two 
faces f1 and f2, the second of which is very small and is coplanar with f3. Also note that 
nodal edge e is defined by three faces, but two of them are coplanar. Small faces such as f2 
can be omitted from the approximation form of the polytope, since the faces can be 
guaranteed to be within one unit of resolution of a specific point. Thus the approximate 
points for the edges that nearly meet at a nodal edge can be chosen so that the approximate 
edge is common to all the boundaries. Thus an approximatedEdge record can be created 
that approximates the individual exact edges. For example, returning to Figure 7-22 there 
would be a record for an approximatedEdge e which is linked to a boundary record within 
f1, f3 and f4. Because the face f2 is degenerate, although it is still stored in the model, it is not 
linked to the edge e.   

7.5.4. Storage Requirements 
For comparison with the vertex representations approaches, as discussed in Section 7.1.4, 
three cases are considered, as tabulated in Table 7-5. These compare a conventional 
topologically encoded vertex representation 3D with the approximated regular polytope 
encoding with shared surfaces and edges. 

Table 7-5: Approximated Polytope Storage 

Vertex 
Representation 

Approximated Polytope  

with topology 
App VII.3.4 

no topology 
App VII.4.5 

shared half-space 
topology 
Appendix  

VII.4.6 

shared surface 
topology 
Appendix 

VII.4.7 

3D, 6 faces 230 bytes 620 bytes 626 bytes 488 bytes 

3D, 100 faces 1734 bytes 9268 bytes 9368 bytes 3432 bytes 

3D, 10000 faces 160 kb 920 kb 930 kb 325 kb 

This is an improvement on the version which does not share half spaces, and approaches 
the storage requirements of the conventional schema with topological encoding. In 2D it 
would be expected to compare less favourably with the conventional approach. 

7.5.5. Summary of Topology in the Approximated Polytope 
In summary, there is nothing to prevent a data structure with topological encoding being 
developed, but some care is required in the handling of nodal edges, both on import from 
and on export to conventional vertex-based representations. Several different approaches to 
the topological encoding of objects in 3D have been compared by Zlatanova et al (2002), 
and in a similar way, many of the details of the models given above could be varied to suit 
individual problem domains. 
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7.6. Spatial Indexing of the Regular Polytope 
All of the variations on the regular polytope that have been described in this chapter share 
the need for spatial indexing. At the minimum, it is necessary to provide a fast algorithm to 
locate the representations of features that overlap or connect with a defined region. 
Fortunately this is relatively easy, using readily available indexing strategies such as the R-
Tree (Guttman 1984). In this, as with many other strategies, the individual objects are 
represented in the index by limiting bounding boxes. The search proceeds in two parts. The 
index is used to determine a list of all objects that could possibly contact the search region. 
The second phase determines which objects do in fact satisfy the actual spatial predicate. 
For example, if all regular polytopes are wanted that are non tangential proper parts (NTPP) 
of a given search area, the bounding box is used to find all regular polytopes whose 
bounding rectangles intersect that of the search region. 

This list could contain many other regular polytopes – some of which may overlap the area 
but not in an NTPP relationship. There may even be regular polytopes which are disjoint 
from the actual area. Since the calculation of the exact predicates is more expensive than 
calculation of overlap of rectangles, an index with good powers of discrimination is an 
advantage. Note that the bounding box or rectangle can be defined as a convex polytope, so 
that the rigour of the operations therefore applies. 

The decision to be made in the regular polytope representation is whether to index the 
regular polytopes or the convex polytopes that comprise them (or both). The advantage of 
indexing only the regular polytope itself is that a more compact index results. The 
advantage with the convex polytope is that the index is more discriminating. In practice, 
this decision will be part of the database design decision required for any particular 
application. Note that if the disjoint normal form of the regular polytope is used (Section 
4.1.5), the discrimination of a convex polytope based index is improved. 

7.7. Relationship with Other Approaches 
Several schemata have been discussed, and in the process of investigation, certain 
properties of the representation have been developed. In particular, the approach known as 
the “approximate polytope” has been developed in various forms, which have a different 
appearance from the original regular polytope structure, but have the same algebraic 
behaviour.  

In 2D, this approximated polytope has some parallels with the dual grid12 approach, and of 
the Queensland Digital Cadastral Data Base, which are discussed in this section.  

                                                           
12 See Section 3.4.4 for a summary of the dual grid approach. 
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7.7.1. Relationship of Approximated Polytope Approach with 
Dual Grid 

The two approaches have much in common – both in effect use dr-rational numbers for the 
fine grid, and integers (or fixed-point numbers) for the coarse grid. In 2D, both have the 
same precision requirements. 

Definition of Points, Lines, Polygons and Polyhedra 

In 2D the approaches are very closely related with regard to the definition of polygons. The 
approximated polytope approach so far has not yet been extended to points and lines.  

In 3D, there is a significant difference (if the natural extension of the dual grid to 3D is 
taken – defining the surfaces by lines and/or vertices as is done in 2D). The regular 
polytope approach (and therefore the approximated polytope approach) defines the surfaces 
as Ax + By + Cy + D = 0 with integer values of A, B, C, D. To define the surfaces by triples 
of integer-valued points would require another order of magnitude increase in the precision 
of arithmetic required to support it.  

It is probably unfair to speculate on the extension of dual grid to 3D, since this has not been 
done yet and may take the face definition approach – but this does not seem to be in 
keeping with the 2D formulation. Also, the face definition formulation does not lend itself 
naturally to the dimensional boundary logic, which seems to underpin dual grid. 

Algebra 

The dual grid is what is here termed a vertex-defined representation, and has boundaries. A 
boundary of a 2D object is a set of 1D objects (lines). These lines are defined by two end 
points, and made up of a “lot of” intermediate points. Being a finite representation, the set 
of points on a line is not dense in the real number or rational number sense, but it contains 
every possible point where any other line (defined by integer coefficients) could intersect 
this line. (A “lot of” points - see 7.7.2 below).  

Thus, for every polygon, there exists a point set which is its interior, a point set which is its 
exterior, and a point set which is its boundary. This is similar to the classic Euclidean space 
that is used to analyse much of the current geographic information theory. But it is not 
Euclidean. 

The regular polytope – and therefore the approximated polytope representations do not 
have any points in the boundary – by virtue of the definition of the half space, and by virtue 
of the careful use of < vs ≥ in the definition of point containment. This means that the 
polygons in 2D, or polyhedra in 3D have only two point sets associated – the interior and 
the exterior. This allows their definition as regular sets, and also leads to the identification 
of the space as a Boolean algebra. 

In generating an analogue for the region connection calculus (Randell et al. 1992) that 
allows for finite sets, (Roy and Stell 2002) make clear the fact that the definition of “part 
of” in terms of connection is untenable in a finite representation. These papers consider the 
dual grid approach in detail, and suggest a modification to the Boolean connection algebra 
(Stell 1999), which introduces a special type of region known as an atom, and replaces the 
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Boolean algebra axioms with those of a “dual pseudocomplemented distributive lattice” 
This does not necessarily possess a true complement, but has a dual pseudocomplement 
which satisfies (if R* is the dual pseudocomplement of R) R ∨ R* = 1 but not necessarily R 
∧ R* = 0. 

In this approach, an atom is distinguished from other types of region in that (by a side-
effect of one of the axioms) an atom is part of its own dual pseudocomplement. This then  
leads to a connection algebra – which is no longer Boolean, and has the non-atomic axiom 
omitted. (B5. ),(:, yxCRyRx ¬∈∃∈∀ ).  

This pseudocompliment is not necessary in the case of the approximated polytope or the 
regular polytope approach. The Boolean connection algebra can be used simply by omitting 
the non-atomic axiom (B5). The definition of “part of” in terms of connection is also 
untenable - but this must be the case for any finite representation (Roy and Stell 2002 page 
283). Thus it can be stated that the approximated polytope – like the regular polytope 
approach is a “finite BCA” where this is taken to mean the BCA with the non-atomic axiom 
omitted.13  

7.7.2. Note on Density of Points 
It is well known that there are significantly more irrational numbers than there are rational 
numbers, and that the rational numbers are dense. That is to say, for any interval, there is an 
infinite number of rational numbers in that interval.  

The dr-rational numbers do not have this property, since there exist pairs of unequal dr-
rational numbers that have none between them. For example the numbers 0 and 1/M' have 
no dr-rational numbers between (where M' is the largest denominator allowed). 

They do, on the other hand possess a kind of density, because (in 2D) any line that can be 
represented that intersects the line we are considering, will intersect it at a dr-rational point.  
(This applies equally to the finer grid in the dual grid approach). In 3D, this is even more 
dramatic, because for any three planes, defined using integer coefficients A, B, C and D that 
meet at a real point p = (x,y,z) (-M≤ x,y,z < M); p is a representable dr-rational point. This 
means that the number of dr-rational points on any part of a plane surface is “very large” 
indeed, but, of course, still finite.  

7.7.3. Relationship with the Queensland DCDB Structure 
The Queensland DCDB (Digital Cadastral Data Base) (NRW 2005) can be viewed as a 
boundary-free representation. Each parcel that makes up the base cadastral coverage is 
defined by its bounding vertices. Adjoining parcels are constrained by the update process so 
that their vertices in common have exactly the same (integer) representations (redundantly 

                                                           
13 I prefer to avoid the term “atomic BCA”, because there is no need to refer to atoms in its definition – merely 
omit the non-atomic axiom. In fact, both of these terms are flawed, because an infinite, non-atomic BCA by this 
definition would also be a “finite BCA” or an “atomic BCA”. A new term is needed! (“not-necessarily-infinite 
BCA”, “not-non-atomic BCA” or “possibly finite BCA” … “BCA-nA”) 
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stored). This is a very common form of storage, but the “boundary-free” characteristic 
comes from the definition of point-set inclusion. 

Point p = (x,y) is considered to be within parcel A if the cut count c from the following 
algorithm is an odd number. 

 c ← 0; 
 For each line (x1,y1) (x2,y2) of A 
  If max(y1 , y2) ≥ y and min(y1,y2) < y 
   If (y-y1)*(x2-x1) < (y2-y1)*(x-x1) 
    Add 1 to c 
   End if 
  End if 
 End for 

This is just the usual Jordan curve test for inclusion, but it can be shown that every point 
within the region of interest lies, as determined by this test, within one and only one base 
parcel. This even applies to points that lie exactly on edges or vertices. It can be shown that 
these points will give the odd cut count for one parcel only.  

This is an advantage in programming – because “find parcel at point” can be guaranteed to 
return a singleton in every case. It is possible to show that with a suitable definition of “part 
of”, and connectivity, the DCDB as implemented in Queensland can support the RCC8 
relations. What this structure cannot support is a rigorous calculation of intersection, union 
and inverse (in common with most geographic information databases). 

7.8. Summary of Data Volumes 
The estimated storage requirements of the various proposed schemata, are tabulated in 
tables 7.6 and 7.7 for convenience. 

Table 7-6 - Vertex Representations 
 2D 

Simple 
2D 

Moderate 
3D 

Large 
3D 

Simple 
3D 

Moderate 
3D  

Large 
No topology 96 b 864 b 80 kb 404 b 5668 b 560 kb 

With topology 148 b 532 b 40 kb 230 b 1736 b 160 kb 

Table 7-7 – Regular Polytope Representations 
 2D 

Simple 
2D 

Moderate 
3D 

Large 
3D 

Simple 
3D 

Moderate 
3D 

Large 
No topology 144 b 1860 b 165 kb 212 b 2344 b 207 kb 

Shared halver topology 147 b 1927 b 172 kb 196 b 2148 b 187 kb 
Approximated – no 

topology 
   620 b 9268 b 920 kb 

Approximated – with 
shared halver 

   626 b 9368 b 930 kb 

Approximated – with 
shared surfaces 

   488 b 3432 b 325 kb 
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In summary, in 2D, the regular polytope can be expected to require slightly more than 
double the storage of the conventional polygon, while in 3D, the difference is not as 
pronounced. 

7.9. Conclusions 
This chapter has defined and compared several alternative schemata to the database 
representation of spatial objects in regular polytope form. In addition to the basic schema, a 
version with topological encoding has been discussed. A major alternative, the 
approximated polytope, has also been introduced and some of its characteristics explored. 
The rigorous algebras discussed in Chapter 6 are all implemented by the regular polytope 
approach, and likewise by this approximated polytope model. Also common to both 
representations is a rigorous and calculable equality test. 

The approximated polytope approach has in addition, advantages for visualisation and 
analytic predicates such as proximity, containment, overlap, above/below etc, where a 
degree of approximation is permissible, and where the existence of the approximate vertices 
allows for the conventional (and well optimised) algorithms to be used. The calculation of 
area, perimeter, volume and angular bearings is also simplified. Finally, it is possible to 
implement efficient layer overlay functionality with the approximated vertices being used 
for a “first cut”, eliminating those pairs of features which could not possibly overlap, and 
with the actual intersections of pairs of features being calculated rigorously.  

Storage requirements have been considered, and it has been shown that, while in general, 
the regular polytope approaches (including the approximated variation) require more 
storage than conventional vertex representations, this difference is not particularly 
significant in view of the advantages that a rigorous algebra brings. Indexing has been 
considered, and the approaches have been compared with the dual grid and Queensland 
DCDB. 

In the next chapter will be found the description of a set of “proof of concept” Java classes, 
which have been developed to investigate the algorithmic complexity of the structures 
defined in this chapter. 





  

 

 

Chapter 8 

Implementation Issues 

The previous chapters have described the regular polytope, its logic and data models. The 
regular polytope has been shown to be a promising candidate for the rigorous 
representation of geometric objects in a form that is computable using the finite arithmetic 
available on digital computers. This is in contrast to the current practise where geometric 
algorithms are based on infinite precision mathematical axioms, which do fail in 
“exceptional” cases due to the finite digital arithmetic implemented by computers. 

In order to explore practical issues in the regular polytope representation, a series of classes 
have been written in the Java programming language (Thompson and Van Oosterom 
2006b), based on the simple model documented in Section 7.2 and cadastral features 
encoded using these classes have been stored using an Informix database. The data chosen 
were cadastral property boundaries, since large volumes of data were available, and this 
topic presents some unique challenges, in particular the mix of 3D and 2D data that is 
involved (Stoter 2004). The regular polytope representation provides a particularly elegant 
solution to this issue. In these Java classes, only the dr-rational interpretation of the regular 
polytope is addressed. 

This chapter describes the implementation, and discusses some of the practical 
considerations that arose as a result, giving an indication of the requirements of a full 
implementation and what further development is needed. Section 8.1 explains the rationale 
for the choice of a problem domain for this proof of concept. Section 8.2 gives a summary 
of the Java classes that were developed for this study. Section 8.3 discusses the data used to 
test the concept. Section 8.4 concentrates on the complexity of the algorithms and their 
potential for practical implementation. Section 8.5 discusses the benefits that can be gained 
by careful implementation of the model and control of the regular polytope structure. 
Section 8.6 highlights the question of loading a database in the regular polytope format 
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from a source in conventional polygonal form. Section 8.7 summarises and concludes the 
discussion. 

8.1. Rationale for the Approach Taken 
It was felt that, while the regular polytope can clearly be used to represent various 
geometric constructs, it is only by applying the representation to a practical problem that its 
true worth can be verified. For that reason, it was decided to load approximately a thousand 
cadastral parcels from the Queensland Cadastre, over a semi-urban region of average 
density and complexity. The region chosen contains primarily base (2D) parcels, but also 
has a smaller number of easements, and several 3D parcels. It consists of properties 
associated with residential, light commercial, light industrial, and recreational land usage. 

The base cadastral parcels are known as 2D parcels, but as pointed out by Stoter (2004), the 
property is actually the right to a volume of space, with the height and depth restrictions not 
explicitly stated. Thus it is the representation of the property that is 2D, not the property 
right itself.  The regular polytope, since it does not need to be bounded on all sides is a 
natural representation for a mix of 2D and 3D parcels – considering the 2D parcels as 
prisms with vertical sides and no defined top or bottom. It is quite meaningful in this 
context, to ask whether a 2D base parcel intersects a 3D volumetric parcel. For example in 
Figure 8-1, parcels A and B do not intersect C, but D and a section of road do. (The shaded 
area below C represent the “footprint” of C at the base level). 

A 
B 

C 

D 

 
Figure 8-1 Mixing 2D and 3D Cadastre.  

The Java objects as developed parallel the definitions of the components of the regular 
polytope, and are categorised as: 

• The half space (or half plane),  

• The convex polytope, 

• The regular polytope.  
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This object model is intended for manipulation purposes in the processing software, and so 
differs from the various models given in Chapter 7, which were intended primarily to 
illustrate a data storage strategy. The Java classes are set up to facilitate the mixing of 2 and 
3 dimensional data.  

This implementation only models 3D and 2D objects, with no extensions to either lower or 
higher dimensionality. An extension into the time dimension will be discussed in Section 
10.2.2. Since this is intended to explore practical issues associated with cadastral data, no 
attempt has been made to produce a fully general n-dimensional model. Also there is no 
provision made for lower-dimensional objects (such as lines, points and surfaces) to be 
embedded in the space. A discussion of these issues will be found in Section 10.1. 

8.2. Description of the Java Objects 
These classes and interfaces were developed to demonstrate the implementation of the logic 
defined in Chapter 6 for regular polytopes. The Java classes contain redundant information 
and constructs to assist with these calculations, which are not necessarily intended to be 
stored permanently and therefore not written to the database in this implementation. 
Likewise, links that are described below may not be of a permanent nature – for example 
the link marked “surrounded by” is not written to the database in the proof of concept 
coding. 

8.2.1. Classes and Relations 

surroundedBy 

1 

A, B, D:  int; 
p1, p2:  Point2R 

HalfSpace 
3..* 

A, B, C, D: int; 
p: Point3R[3..*] 

Halver 

 

HalfPlane 

 
Figure 8-2 The Halver, HalfSpace and HalfPlane classes. 

As noted above, and as is clear from Figure 8-2, this implementation is restricted to 2D and 
3D only – in line with the chosen problem domain. It would be possible to extend the 
dimensionality, and in particular to include the time dimension, but this is outside the scope 
of this thesis (see Section 10.2.2). The half space/plane object is characterised by classes 
based on the Halver as shown in Figure 8-2 described below: 
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HalfSpace: Defines a 3D half space (see Section 4.1.2), and carries the parameters A, B, 
C and D, which are integers – A, B and C requiring 32 bits and D requiring 64 bits. 
The array of dr-rational points p define the edges of the actual face of the convex 
polytope within this halfSpace boundary. These are for calculation purposes, and not 
written to the database. 

HalfPlane: Defines a 2D half plane and carries the integer parameters A, B, and D. A 
and B require 32 bits and D requires 64 bits. Parameter C is not needed in 2D. The 
dr-rational points p1 and p2 define the ends of the edge within this halfPlane. These 
are for calculation purposes, and not written to the database. 

Halver: An abstract class, from which the HalfSpace and HalfPlane classes are defined. 
This class is never instantiated. 

Point2R and Point3R are dr-rational point classes. They consist of a tuple of rational 
numbers (2 or 3 respectively), each number consisting of a pair of integers (using the 
Java BigInteger). BigInteger is a convenient method of dealing with the large 
precision required by this approach, being effectively unlimited in precision. 
Unlimited precision is not strictly necessary, since the precision requirements, 
though large, are constant and known in advance. 

The associations in Figure 8-2 are: 

SurroundedBy This is a redundant one-way linkage, from a halfSpace, to the 
halfSpaces that adjoin and define it. It is needed during the calculation of vertices, 
and each time a new halfSpace is added to a convex polytope. In modifying a 
halfSpace to take account of a new halfSpace, it may be necessary to calculate two 
new dr-rational points. These are the points of intersection of this halfSpace, the new 
halfSpace, and existing halfSpaces that surround the face. For example, in Figure 
8-3, a half space H is being added to the definition of a 3D convex polytope. This 
requires the new points p, q and r to be created. Point p can be calculated as the 
point of intersection of half spaces H, H2 and H4. Point q is the intersection of H, H3 
and H4. The relation is not needed in the 2D case, since only two half planes are 
needed to define a point in 2D – the half plane that defines the edge and the new half 
plane. 

H4 

H2 

H1 

H 
p1 

p4 

p3 

p2 

p 

H3 

q r 

H5 H6 

 
Figure 8-3 Adding a new half space to the definition of a convex polytope 
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Note – the surroundedBy association is not strictly necessary. An alternative strategy is 
possible, by simply calculating the points of intersection from the dr-rational points that 
define the face. In Figure 8-3, point p can be calculated as the point of intersection of the 
line from p3 to p4 with the half space H. This does however generate very large integers 
during the calculation of the new points. It might be thought that this would mean that the 
new point p would not be a valid grid2 dr-rational point, because p would be calculated as 
rational numbers x = Ix/Jx, y = Iy/Jy and z = Iz/Jz and  the I and J values could not be 
guaranteed to be within the range required for a dr-rational number (because p2 and p3 are 
already grid2 dr-rational points and can have very large numerators and denominators). 

Nevertheless, the calculation is exact, and so the position of point p, as the point of 
intersection of three planes, can be represented as a grid2 dr-rational number. Therefore 
there must exist integers Kx, Ky and Kz such that K x I’x = Ix, K x J’x = Jx, K y I’y = Iy etc. and 
(–N''≤I’x, I’y, I’z≤ N'', 0<J’x, J’y, J’z ≤ N'). That is to say, there must be common factors that 
allow the coordinates to be reduced to a valid grid2 point. The disadvantages of this 
approach is that very large integers are needed for the initial calculation of the point 
coordinates, and then an algorithm to find the common factors of these large integers is 
needed. This algorithm can be time-consuming given the size of numbers in use. 

Figure 8-4 shows the classes that are used to construct a regular polytope object. This is just 
the discrete regular polytope model as discussed in Section 7.2, but with some redundant 
fields to assist with calculation, and with subclassing used to allow the mixing of 2D and 
3D features. 

* 
* 

Polytope 

nrUnitsA: int; 
unitNrA[*]: int; 
nrUnitsB: int; 
unitNrB[*]: int; 
MBR: box; 

ConvexPoly 

MBR: box 

RCC predicates 
Topological fn’s 

{dimensionality of 
ConvexPolys must 

match dimensionality 
of Polytope} 

{dimensionality of 
Halvers must match 

dimensionality of 
ConvexPoly} 

Halver 

 

Polytope2 

 

ConvexPoly2 

 

ConvexPoly3 

 

 

Polytope3 

 

 
Figure 8-4 The Polytope and ConvexPoly classes. 

The abstract classes are: 

Polytope: Represents the regular polytope, and contains a collection of convexPoly 
objects. In this implementation, all convexPoly objects in a particular polytope 
object must be 2D or all must be 3D. The Polytope is subclassed as Polytope2 or 
Polytope3 depending on the dimensionality of the convexPoly objects that comprise 
it. 

ConvexPoly: Represents the convex polytope, and contains a collection of halver 
objects.  A convex poly must contain all 2D or all 3D halvers (and is sub-classed as 
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ConvexPoly2 or ConvexPoly3 respectively depending on the dimensionality of the 
halver objects).  

Halver: has been described above.  

The associations in Figure 8-4 are: 

Polytope – ConvexPoly: This is simply the set of convex polytopes that define a 
regular polytope. An empty set defines the polytope as empty (= OΦ). 

ConvexPoly – Halver: This defines the halvers that define the convex polytope. An 
empty set defines the universal convex polytope (= C∞), but at times this is re-
represented as a set of the six half spaces (four half planes in 2D) at infinity {Hi

∞, i = 
1..6}, see Chapter 4 definition 4.13. 

8.2.2. Attributes of Objects 
MBR: This is an approximated enclosing rectangle or box. It is guaranteed that in the 

case of a convex polytope, all vertices will be within the box. For a regular polytope 
all vertices of all convex polytopes are within the box.  Thus the minimum X, Y, and 
Z integer values that define the box are less than or equal to those of any vertices, 
while the maxima are greater than or equal. This means that if the MBR’s of two 
objects do not intersect, the objects cannot. 

nrUnitsA: This is used in the determination of connectivity within the regular polytope, 
and is re-calculated each time a ConvexPoly is added. It is the number of Ca 
connection regions that are made up by the convex polytopes within the regular 
polytope (see Section 5.3.1). The addition of a convex polytope to a regular polytope 
can either increase or decrease nrUnitsA. In the proof of concept Java classes, the 
dr-rational interpretation of connectivity is implemented. 

unitNrA: Is an array of unit numbers – one for each convex polytope in the regular 
polytope. In this context, a unit is a connection within the regular polytope.  

nrUnitsB: This is the equivalent for Cb connectivity. 

unitNrB: This is the equivalent for Cb connectivity. 
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Figure 8-5 Division of regular polytope into connection units. 
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Ca connectivity within a regular polytope is defined as nrUnitsA = 1. Cb is defined as 
nrUnitsB = 1. Since Cb is a stronger form of connectivity, Cb ⇒ Ca, and therefore nrUnitsA 
≤ nrUnitsB. For example, the regular polytope depicted in Figure 8-5 will have nrUnitsA = 
3, and nrUnitsB = 4. The values of unitNrA (grey circled numbers in Figure 8-5) and 
unitNrB (black numbers) could be as in Table 8-1: 

Table 8-1 – Unit Numbers for the Regular Polytope in Figure 8-5 

Convex Polytope unitNrA unitNrB 
C1 1 1 
C2 2 2 
C3 2 2 
C4 2 3 
C5 3 4 
C6 3 4 
C7 3 4 

8.2.3. Methods 
Only the more important methods are described in this section. The Java documentation of 
the main classes can be found in Appendix V.  

Persistence Methods 

The main classes based on Polytope, ConvexPoly, and Halver have methods which convert 
them to and from database form. In this demonstration suite, only the bare minimum is 
stored in the database – the A, B, C and D values of the halvers, and the structure of the 
regular polytope. For the purpose of the demonstration, and to assist with development, 
encoding was via a simple text string (see Appendix VII), but in a final system, a more 
sophisticated storage mechanism would be used. The MBR of the regular polytope is also 
stored in the database to allow for indexing, although this has not been implemented yet. 
Vertices and other redundant information could also be stored for speed of processing, but 
this would need experimental justification. 

Polytope Methods 

A regular polytope is constructed by creating an empty regular polytope OΦ, with no 
convex polytopes, and extending it using Polytope.addConvexPoly(C). The methods 
provided in the regular polytope classes provide the full implementation of the RCC theory 
(Randell et al. 1992) – see Table 8-2, where p and q represent polytopes.   
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Table 8-2 Implementation of the Basic Predicates of RCC theory 

Operation Description Implementation 

Ca(p, q)  p is weakly connected 
to q 

p.connectsToA(q) 

Cb(p, q)  p is strongly connected 
to q 

p.connectsToB(q) 

DCa(p, q)  p is not weakly 
connected to q 

¬p.connectsToA(q) 

DCb(p, q)  p is not strongly 
connected to q 

¬p.connectsToB(q) 

P(p, q) p ⊆ q p.isWithin(q) 

PP(p, q) p ⊂ q  p.properPartOf(q) 

EQ(p, q) p = q p.equals(q) 

OV(p, q) p ∩ q ≠ Oϕ p.intersects(q) 

ECa(p, q) ),(OV),(Ca qpqp ¬∧
 

p.externallyConnectedToA(q) 

ECb(p, q) ),(OV),(Cb qpqp ¬∧
 

p.externallyConnectedToB(q) 

TPPa(p, q) ),(Ca qpqp ∧⊂  p.tangentialProperPartOfA(q) 

TPPb(p, q) ),(Cb qpqp ∧⊂  p.tangentialProperPartOfB(q) 

NTPPa(p, q) ),(Ca qpqp ¬∧⊂  p.nonTangentialProperPartOfA(q) 

NTPPb(p, q) ),(Cb qpqp ¬∧⊂  p.nonTangentialProperPartOfB(q) 

PO(p, q) p ∩ q ≠ Oϕ, p⊄q, q⊄p, 
p≠q 

p.properOverlap(q) 

Note that by RCC theory, all of these relations can be generated from the "connects" 
relation. In practice, some are directly calculated (such as “intersects” – for reasons as 
given in Section 6.2), but most are simply implemented as their definition suggests.  

For example, the isWithin predicate: 

/** Determines if this regular polytope is within the other 
    * @param other The other regular polytope 
    * @return True if this regular polytope is within the other */ 
public boolean isWithin(Polytope other) { 
  Polytope otherM = other.inverse(); 
  otherM = otherM.intersection(this); 
  return  (otherM.convexPolys.size() == 0);  } 
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and the equals predicate: 

/** Determines if this regular polytope is equal to the other 
    * @param other The other regular polytope 
    * @return True if every point in this regular polytope is 
    *  within the other and vice versa.   */ 
public boolean equals(Polytope other) { 
  return (this.isWithin(other) && other.isWithin(this));  } 

The additional predicates p.isConnectedA() and p.isConnectedB() are provided to 
determine the internal connectivity of the regular polytope. 

Table 8-3 Topological Functions on Regular Polytopes 

Function Description Implementation 

Complement ¬p p.inverse() 

Union p ∪ q p.union(q) 

Intersection p ∩ q p.intersection(q) 

The basic functions of regular polytopes that return a regular polytope as a result are 
implemented as designated in Table 8-3. 

In the demonstration software there is no provision for updating or modifying a regular 
polytope, convex polytope or halver in memory. For example, there is no provision to 
remove a convex polytope from a regular polytope, or to adjust the A, B, C, D of a half 
space. All such modification is accomplished by creating a new regular polytope as the 
result of operations between existing ones, or by creating and assembling new objects using 
basic constructors. This is not seen as a restriction, and any practical implementation would 
probably use this approach. 

8.3. Proof of Concept Data 
Approximately one thousand parcels were selected from the Queensland Cadastre. The area 
chosen was the region surrounding the “Gabba” cricket grounds in Woolloongabba 
Brisbane, because this area contains some 3D parcels of non-trivial shape (Thompson 
2005b). The parcels obtained from the database are 2D only, but do include secondary 
interests (such as easements). Thus overlapping 2D areas exist. There were several 3D 
parcels in the region. Two associated with the cricket stadium, and one with a restaurant 
were hand encoded. 

In the original data, some inaccuracies had been introduced in the past through rounding, so 
there are slight overlaps and mismatches between the edges which have not been corrected. 
This will be discussed further in Section 8.6. 
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Figure 8-6 Overview of the test region. 

8.3.1. Presentation of Regular Polytopes 
Figure 8-6 shows the data in question. The 2D parcels have been represented by colouring a 
plane (at z = 0) with a randomly selected colour. To further show the division between 
parcels, a vertical “fence” of the same colour has been drawn. Since the colour of the parcel 
on each side of the fence is different, some interfering visualisation effects can occur. The 
algorithm to convert from conventional polygon to regular polytope used a scan-line 
approach, from north to south. Each time a concavity is detected, a convex polytope is 
generated, and the scan continues. This is far from optimal, and there is scope for 
considerable improvement in this algorithm (see Section 10.2.6).  
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Figure 8-7 Detail of two 3D parcels (red and green) with a third (blue) in the 

background. The vertical grey cylinder indicates the Z axis. 

Figure 8-7 shows a detail of some of the 3D parcels (which abut without overlapping). (See 
also (Stoter 2004) pages 269-272 for a view of these same parcels. The encoding used in 
the red parcel is shown in Appendix VI Figure VI-3. 

 
Figure 8-8 3D parcel amongst 2D parcels. (Parcel A and 2D parcel E together 

comprise a restaurant. Parcel A overhangs the roadway represented by parcels B, C 
and D).  

Figure 8-8 depicts a 3D parcel A overhanging the roadway, and exactly abutting the 2D 
parcel E directly below the open space partially enclosed by it. 

A
B

C

D

E 
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In the proof of concept Java classes, the 3D regular polytopes, were first converted to 
polygon form before presenting in VRML (see above figures). If this had not been done, 
and each convex polytope had been drawn individually, the internal divisions would have 
cluttered the presentation. For example, the complex parcel in the foreground of Figure 8-6 
(shown in light blue) would have internal “fences” criss-crossing its interior. 

By contrast, the 3D regular polytopes were presented in VRML by simply encoding the 
faces of all of the convex polytope (the same colour for each convex polytope within a 
particular regular polytope – see Figure 8-8). This was quite suitable for viewing them from 
outside, and in relation to other objects, but did not make any attempt to suppress inner 
faces (for example, where two convex polytopes abut, as in parcel A Figure 8-8). Thus, 
when zooming in, and through a face, the internal structure of a regular polytope becomes 
visible, and can be very confusing. This is an issue that may become important in a 
production system. 

8.3.2. Data Quantities 
One of the reasons for conducting this investigation was to determine the storage 
requirements of this approach. Had a more rural region been chosen, the averages below 
may have been less attractive, and this could be the subject of further investigation. The 
parcels in the test region required the following representation (Table 8-4): 

Table 8-4 Average Complexity of Semi-urban Parcels 

 2D Case 
1044 parcels 

3D Case 
3 parcels 

Average convex polytopes per regular polytope 1.3 3.3 
Average halvers per regular polytope 5.3 23.6 
Average halvers per convex polytope 4.0 7.1 
Worst case convex polytopes per regular polytope 44 5 
Worst case halvers per regular polytope 81 17 
Worst case halvers per convex polytope 11 8 
Average corners per conventional parcel 6.3 36 
Maximum corners per conventional parcel 100 42 

8.4. Algorithmic Complexity 
Java is a difficult language from which to obtain clear timing tests, since it is interpretive, 
and uses various strategies of partial compilation. It also uses a “garbage collector” form of 
memory management, leading to unpredictable timings of operations. For this reason, no 
strict timing tests were done. On the other hand, the actual algorithms are available for 
complexity analysis, and this leads to the suggestion that a practical implementation is 
possible. In the following, only the critical and potentially complex routines of the current 
implementation are discussed. The documentation headers from the significant Java classes 
have been included in Appendix V. 
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8.4.1. ConvexPoly.compareWith(ConvexPoly) 
This determines the relationship between two convex polytopes, returning the possible 
results: DISJOINT, CONTACTSa, CONTACTSb, INTERSECTS, CONTAINS, 
CONTAINED or EQUAL, and is probably the most critical method, since it is used in 
nearly all other operations (multiple times). Inspection of the code shows that this operation 
will execute in O(f1f2p2) time, where f1, f2 are the number of half spaces or planes in the 
convex polytope, and p is the average number of vertices in a face. In 2D, p = 2, so this 
becomes O(f1f2). 

In 3D, it could be expected that the number of vertices on a face would be fairly constant in 
the range of about 3 to 6, so this becomes O(f1f2). Thus it is important that in a practical 
system, the complexity of a convex polytope be kept limited. Fortunately, this is possible 
simply by dividing any highly complex convex polytopes into multiple smaller convex 
polytopes. 

Thus, if the convex polytope is restricted to a specified maximum complexity, this routine 
is O(1) (i.e. constant) in complexity. (The cost of this simplification is an increase in the 
complexity of the regular polytope, that is, more convex polytopes will be needed). 

8.4.2. Constructing a Regular Polytope 
As a regular polytope is constructed, each convex polytope must be compared with the 
convex polytopes previously added (to determine connectivity). This operation is thus of 
O(n2) where n is the number of convex polytopes in the regular polytope1. Since each 
convex polytope is a well defined geometric object, convex, and contains a MBR (see 
Section 8.2.2), it is relatively easy to optimise this operation. For example an in-memory 
spatial index could be used to reduce the search-time from O(n2) to O(n log n). 

8.4.3. Polytope.intersection(Polytope) 
This operation involves the calculation of the intersection of the Cartesian product of the 
sets of convex polytopes. Thus it is by nature a O(nm) operation, however the construction 
of the resultant polytope from this Cartesian product raises this to O(nm log nm).    

8.4.4. Polytope.inverse() 

For regular polytope i
ni
CO

..1=
= U , with j

mj
i HC

i..1=
= I the first step is to calculate: 

j
mj

ii HCO
i..1=

== U  for i = i..n. (f8.1) 

Thus, since each mi ≤ c (by the assumption of the limited complexity of half spaces – see 
Section 8.4.1), this results in n regular polytopes, each of up to c convex polytopes. Each 

                                                           
1 This is assuming that the convex polytope complexity has been controlled as described above. Otherwise it 
would be O(n2f2) in 3D. 
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convex polytope consists of one half space only. Thus, this first part of the operation is 
O(nc) = O(n) (because c is constant). Note that the inverse of a convex polytope consists of 
a regular polytope with up to c convex polytopes, each defined by one half space (see 
Figure 4-4 Chapter 4). 

The second phase consists of forming the intersection of the n regular polytopes 

i
ni
OO

..1=
= I . If approached without any optimisation, this would be disastrous – leading to 

an operation of order cn. Fortunately, the algorithm can avoid this. It proceeds as: 

let R = O1; (f8.2) 
for i = 2..n, let R = R ∩ Oi; (f8.3) 

At each step in the algorithm, a large number of convex polytopes that are generated by the 
intersection operation are discarded. At the end of the process, assume there are l convex 
polytopes left. If it is assumed that the number of convex polytopes in R remains fairly 
constant during the process, this means that the cost of each operation at f8.3 will be O(l 
log l). Since there are n operations, this gives O(nl log l). Note that l in this formula, like n 
is the measure of the complexity of a single regular polytope. Nevertheless, this is an 
algorithm which could well repay some optimisation effort beyond the simple version used 
in the demonstration software. 

8.4.5. Other Regular Polytope Operations 
All of the other regular polytope operations (as shown in Tables 8.1, 8.2 and 8.3) are simple 
combinations of other operations (e.g. see Section 8.2.3). So that the worst cases will be of 
no higher complexity than Polytope.inverse or Polytope.intersection – that is O(n2 log n), 
where n is a representative size of a single regular polytope in terms of the number of 
convex polytopes. 

8.4.6. Indexing and Searches 
The programs as developed as a proof of concept do not yet use any database spatial 
indexing, and so are not efficient for doing spatial searches. On the other hand, they do 
generate a minimum bounding rectangle (or solid) with approximated X, Y and Z integer 
values surrounding the vertices of each regular polytope and each convex polytope, and so 
a standard R-Tree algorithm can be used. 

8.4.7. BigInteger Arithmetic 
One of the advantages of implementing these routines in Java was the availability of the 
BigInteger object class. This makes available a complete set of arithmetical operations on 
an integer representation with (effectively) no limit on the size of operands. The 
disadvantage of BigInteger is the slow speed of the operations, and the fact that the speed of 
operations is dependent on the size of the numbers involved.  

In order to implement this software in a language other than Java (e.g. C), some of this 
functionality will need to be implemented, but fortunately not all. It is not necessary to 
allow for potentially infinite operands – although large numbers are involved, they are 
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constrained. (In order to give millimetre precision in a region the size of Queensland, 96 bit 
integers are needed in 2D and 160 bit integers in 3D). Further, not all arithmetic operations 
need be implemented – negation, addition and multiplication are needed, but division is not 
(this is a considerable simplification). An approximation of a BigInteger as a double 
precision floating point number is also needed for display and conversion purposes. 

8.4.8. Java Code Tuning 
The use of more appropriate implementations of the collection class in the Java code could 
lead to a very easy speed improvement. In the demonstration system, the "Vector" class 
was used for all collections of objects rather than the most appropriate class. In some cases, 
this will have caused a significant speed reduction - since, for example, the "insert" 
operation on a vector is of O(n) where n is the current number of objects in the vector – a 
linked list in a similar operation is of O(1). The reason for this inappropriate use of vector 
was simply that it is much easier to view the contents of a vector in debug mode. 

8.5. Optimising the Model 
Optimising techniques would benefit from control of the complexity of the individual 
convex polytopes. The calculation of the vertices of a convex polytope is a significant 
process, strongly dependent on the cardinality of the set of half-spaces in a convex 
polytope. Restricting this cardinality as shown in Figure 8-9 can control this complexity, 
even at the cost of increasing the cardinality of the set of convex polytopes in a regular 
polytope.  

c is a 
chosen 
limit on the 
cardinality 
of the 
relation 

RegularPolytope 

ConvexPolytope 
0:* 

1:* 
HalfSpace 

A, B, C, D 

Regular Polytope  

RegularPolytope 

ConvexPolytope 
0:* 

1:c 
HalfSpace 

A, B, C, D  

Regular Polytope 

 
Figure 8-9 Left - general regular polytope, right – limited convex polytope form. 

For example, in Figure 8-10, assuming that regular polytope O1 has been split into four 
complex polytopes just to simplify the convex polytopes that comprise it, the split can be 
carried out in such a way as to improve the selectiveness of the MBR’s of the convex 
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polytopes. Thus the operation of forming the union or intersection of O1 and O2 is much 
more efficient, since it is clear that C1, C2 and C3 are disjoint from O2. 

C1 C2 C3 C4 O2 

O1 

 
Figure 8-10 Union of regular polytopes O1 and O2. 

It is significantly easier to optimise the operations between convex polytopes, for example, 
by using an in-memory spatial index to eliminate cases where two convex polytopes cannot 
intersect (see Section 8.4.2). 

While not necessary in the theory, it may improve the efficiency of many operations if the 
disjoint normal form (DNF) (see Section 4.1.5) is used in representing regular polytopes. In 
this form, the convex polytopes that comprise a regular polytope are mutually disjoint – so 
that all overlaps between convex polytopes are replaced by Cb connectivity. There are two 
advantages to this form: 

• It is far easier to calculate the volume of a regular polytope already in DNF. 

• The indexing and comparison of convex polytopes can be improved, since the disjoint 
convex polytopes will have smaller minimum bounding rectangles. 

The only disadvantage is that on initial data uptake, and following certain operations (in 
particular union and complement) the disjoint form must be generated. A sketch of the 
algorithm to convert a regular polytope to DNF can be found in Section 4.1.5. 

A2 

A1 

B

 
Figure 8-11 Calculating the intersection of two regular polytopes. 
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In calculating the intersection of region B with region A in Figure 8-11 (shown above split 
into two convex polytopes A1 and A2), even though all the half planes which define A1 
intersect all the half planes that define B (since they are not parallel, and the half plane 
definition is theoretically infinite), it can be determined by a conventional polygon overlap 
test that all the vertices of A1 are completely separated from the vertices of B – therefore 
A1∩B is empty. This kind of logic can be used to pre-eliminate large numbers of the partial 
intersections, and could be augmented by an in-memory spatial index – e.g. an R-Tree 
based on the minimum bounding rectangles (shown as dashed lines) to further improve the 
calculation speed. 

8.5.1. Optimisation of Convex Polytope Shapes. 
In 3D, it might be considered that a regular polytope representation based on tetrahedral 
convex polytopes (or triangular in 2D) would be particularly useful. A tetrahedron fulfils 
the requirements of a convex polytope, and various algorithms exist to “tetrahedronise” a 
general polyhedron (or triangulate a polygon). These techniques have been extensively 
studied, and optimised for various criteria. 

Unfortunately, while it is quite possible to define tetrahedral convex polytopes a tetrahedral 
decomposition is not possible in general. Consider the intersection of two triangular convex 
polytopes as in Figure 8-12. (Using a 2D example for simplicity of depiction). In general, 
this will result in a null region or a convex polytope with 3, 4, 5 or 6 sides. For closure of 
the representation, it would be necessary to split this into triangles. 

 
Figure 8-12 Two triangular regions with a hexagonal intersection. 

To split a convex polytope into triangular regions, it would be necessary to construct pairs 
of half planes that divide the region at the existing vertices. This is equivalent to 
determining integer values A,B and D such that  

Ax1+By1+D = 0 and 
Ax2+By2+D = 0 for dr-rational numbers x1, y1, x2 and y2. 

These integers can always be found, but the requirements that –M < A,B < M, -2M2 < D < 
2M2 (in 2D) cannot be guaranteed. Thus, as can be seen in Figure 8-13, it is not possible in 
this way to guarantee to divide a region into triangles. If the dividing line cannot be 
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guaranteed to pass through two vertices, a pentagon can only be divided into a quadrilateral 
and a pentagon. (Note that the region on the left after the division still has 5 sides). This is 
not to say that the regular polytope cannot be used to represent a land surface (for example), 
but that such a representation will not be based on a triangulation, or will have small 
overlaps at the junction of regions. 

 

 
Figure 8-13 Attempting to divide a pentagon. 

8.6. Data Load Issues 
In the proof of concept programs, a conversion routine was developed to transform 
polygons into 2D regular polytopes. The routine as developed was not ideal. Using a scan-
line approach, it has a strong tendency to generate convex polytopes that are extended in an 
east-west direction. This militates against efficient processing later, since badly formed 
bounding rectangles result. Although as discussed in Section 8.5.1, it is not possible in 
general to maintain a triangular or tetrahedral convex polytope decomposition within the 
domain restriction, this approach will still be useful in the optimal conversion of polyhedra 
into regular polytopes. There are techniques available (Garey et al. 1977; Narkhede and 
Manocha 2004) to decompose a polygon into triangles, with various criteria for evaluating 
the decomposition. Variants of these routines can operate in 3D. 

It seems likely that there is an optimum number of half spaces per convex polytope, 
balanced against the decomposition of regular polytopes into convex polytopes, and that an 
algorithm that first decomposes the polyhedra, and then selectively recombines them based 
on certain criteria may lead to this result.  

A major issue in the conversion of existing data into regular polytope form is the lineage of 
that data. Once the geometry is expressed in regular polytope form the operations between 
geometric regions are guaranteed to be rigorously correct, but the quality of the source data 
must be considered. Approximations may well have been made, and inaccuracies 
introduced to allow the data to be stored in the previous form, and this may create 
difficulties in data uptake. 
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8.6.1. Introduced Inaccuracy 
In many systems, calculation of the point of intersection between lines introduces rounding 
errors as in the circled points on the road frontage in Figure 8-14, which was intended to be 
a straight line connecting A and B. In addition, to avoid later topological failures – as 
described in Case 6 – Chapter 2, a further displacement of the calculated point is often 
applied, as pictured in Figure 8-15.  

A 

B 

 
Figure 8-14 Points moved slightly in the calculation of intersections (shown 

exaggerated). 

This assumes that the data is to be loaded from an existing spatial database. In some cases, 
it may be possible to capture from the original source – e.g. the survey data. Unfortunately, 
while it would have been ideal to have captured original data in its uncompromised form, 
this is rarely the case, and much processing has been done to data before it reached the 
database. For example, bearings and distances will have been adjusted to “close”, 
elevations of 3D points will have been calculated from the raw field notes, horizontal 
displacements will have been calculated from slope distances, etc. Note that there is a trend 
in which the original observations and measurements are more often stored in the 
(cadastral) database, in addition to the resulting interpretations (parcels) (Tarbit and 
Thompson 2006). 

A 

B 

C 

E 

p 

q 

l 

 
Figure 8-15 Polygon point q has been inserted into line l. 
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Ideally, before such parcels are converted into regular polytope form, the lines which were 
once straight (such as l in Figure 8-15), and were intended to be straight should be 
identified, and be represented as a single half plane (or at least half planes having the same 
A, B, D values). As was mentioned above in Section 8.3, this was not done in the 
demonstration software, resulting in small overlaps and mismatched edges between 
adjoining regular polytopes. These gaps and overlaps can, however be detected by the 
standard and rigorous operators available in the regular polytope representation, and the 
corrections made. 

8.6.2. 2D Data Conversion to Regular Polytope 
In the 2D version of the regular polytope, there is no difficulty generating a half plane 
whose edge passes exactly through any two points with integral coefficients. In the same 
way, any 2D data that is currently encoded using integer coefficients will create a 3D 
regular polytope with vertical walls with no loss of precision. In summary, it is possible to 
generate a half plane in 2D, or a half space parallel to the z axis through any two points 
with integral coefficients. 

 

(x1,y1) 
(x2,y2) 

(x3,y3) 

(x4,y4) 

(x,y,z) 

z=0 

A1x+B1y+C1z+D1=0 

A2x+B2y+C2z+D2=0 

 
Figure 8-16 3D planes based on incoming 2D data. 

For example in Figure 8-16, the incoming data is based on lines (x1,y1) (x2,y2) and (x2,y2) 
(x3,y3). The planes can be defined as A1 = y1 - y2, B1 = x2 - x1, C1 = 0, and D1 = x1y2 - x2y1, 
and A2 = y3 – y2, B2 = x2 – x3, C2 = 0, and D2 = x3y2 – x2y3. Clearly any point on the 
intersection of these planes will have x = x2 and y = y2.  

Thus, any 2D data currently in a conventional format should easily be converted into 
regular polytope form in 2D or 3D with no loss of resolution, and no movement of vertices 
provided that integer representations are used for each. That is to say, if no attempt is made 
to straighten road frontages as part of the data load (as described above in 8.6.1), existing 
2D cadastral data can be loaded with no difficulty. This is not necessarily the case with 3D 
data. 
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8.6.3. 3D Data Conversion to Regular Polytope 
Where 3D data is to be converted to regular polytope form, some care is needed. In contrast 
to the 2D case where a half plane can be guaranteed to pass through any two integral co-
efficient points, the best that can be asserted in 3D is that a half space can be generated 
whose boundary plane passes within one grid1 unit of resolution of each of the points. In 
many special cases – specifically where the half space is parallel to any of the axes – much 
better results can be expected, but the worst case is one unit error. If a situation such as that 
of Figure 8-15 occurs in a 3D situation, and the bend at point q is straightened, the actual 
position of point p (as a point of intersection) is subject to a large variation. 
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Figure 8-17 Imprecision in the placement of the point of intersection. (This diagram 

should be interpreted as a slice through a 3D situation). 

In Figure 8-17, where the half spaces that define region E have a possible imprecision of 
one unit, their line of intersection at p has a much larger possible error (shaded). If this is a 
critical issue, it may be solved by introducing a deliberate bias to the approximation, and an 
additional half space to limit the position of p. The bias is needed to extend the convex 
polytope because the addition of a half plane will not be effective if it is redundant to the 
convex polytope definition. 

new half plane 
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Figure 8-18 Half space introduced to constrain the point position. 
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For example, in Figure 8-18, the boundary of region E has been extended (still within one 
unit of resolution), and the acute angle at point p has been truncated. This procedure – of 
truncating any acute dihedral angles – could be used as a general procedure in converting 
geometric objects into regular polytope form where the point or line of intersection is 
known, and must be maintained. Note that objects with very acute angles have many 
unfortunate and unexpected properties in any geometric representation (see also Section 
6.8.3). It is common for objects with very acute angles to be the subject of validation on 
data uptake, since such angles are often the result of mistakes or inaccuracies in data 
capture. 

8.7. Conclusions 
The regular polytope approach is shown to be practical, and could be rigorously 
implemented as a large-scale database (with proven functionality and without unpleasant 
surprises due to the mismatch of infinite real number mathematics and the finite digital 
computer). While some more optimisation in the area of the regular polytope algorithms 
could yield speed improvements; for at least the sort of data used in this pilot system, 
acceptable results were obtained. In the test region, it was possible to run any combination 
of the standard RCC and topological functions, and the combination and nesting of 
functions gave completely predictable results. The indication is that a full implementation 
could be developed with query and analysis, and edit/update functionality. 

It is expected that, as described above, restricting the complexity of convex polytopes will 
lead to practical speeds. In the case of 2D polytopes, several thousand half planes per 
complex polytope should be practicable. In 3D, the number is probably several hundred. 
This is appropriate particularly for cadastral data, whereas the parcels with large numbers 
of points (more than 2000) required in their definitions generally occur in rural areas, and 
are all 2D. Otherwise, complex convex polytopes can be artificially subdivided into a 
number of simpler convex polytopes. 

The overwhelming advantage of the regular polytope approach is in the rigorously correct 
logic that it supports, and this justifies some additional data storage requirements (see 
Appendix VII and Chapter 7), and the potentially slower processing times, but there is still 
much potential to improve the implementation of some of the operations – in particular, 
Polytope.intersection(), and Polytope.inverse(). 

The next chapter reviews the case studies that were introduced in Chapter 2, in light of the 
findings that have been presented in this thesis, and the functionality of the regular polytope 
representation. 



  

 

 

Chapter 9 

Review of  Case Studies 

The preceding chapters have defined the regular polytope representation, and have explored 
its functionality and expressivity. This chapter reviews the specific cases that were cited in 
Chapter 2 as showing common deficiencies in current systems in light of their solutions 
using the regular polytope. Each case is directly referred to the corresponding section in 
Chapter 2. 

9.1. Case 1. Polygon Union 
In the regular polytope representation, it has been shown in Appendix II.11 (see also 
Section 4.1.4) that all the operations that have been implemented are mathematically 
rigorous. Thus, for example, the union operation is associative i.e. 

CBACBA ∪∪=∪∪ )()( . In general, the result of calculation of i
ni

A
..1=
U cannot depend on 

the order of execution. 

9.2. Case 2. Data Interchange 
If spatial features are encoded and interchanged in a form such as that used in the 
demonstration software, and defined in Appendix VII, the regular polytopes will arrive in 
an identical form, with no loss of resolution, and clearly with no change to the topology of 
the regions. This is not, however, a complete answer, since it must be possible to transfer 
features between systems with different available resolutions. For example, if the A,B and 
C values are stored as 32 bit integers, and the D as 64 bit, it may be necessary to transmit 
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the features to a system that uses smaller integer representations (for example 16 and 32 
bits respectively).  

Any reduction in the available resolution will potentially result in loss of precision, and so 
this will by nature be a so-called "lossy" transmission. One possible approach to this is to 
use a rounded floating point "normalised" transmission strategy. 

Such a strategy could be as follows:  Operating in floating point arithmetic, a, b, c, and d 
are calculated as A, B, C and D, divided by 222 CBA ++ . Thus, -1 ≤ a, b, c ≤ 1. It may 

be necessary to use extended precision floating point to calculate 222 CBA
Dd

++
= .  These 

numbers are then rounded to an appropriate number p of decimal places for transmission 
and converted to integer by multiplying by p10 . Provided the floating point operations are 
sufficiently accurate, the result will be that all of the parameters will on arrival have been 
perturbed by some small amount (less than p−10 in relative terms).  

On arrival, after a “lossy” transmission, the geometry will certainly have changed slightly, 
but will still be valid – since any possible intersection of half spaces is a valid convex 
polytope, and any union of convex polytopes is valid as a regular polytope. There is the 
possibility that a previously connected regular polytope could become not connected on 
arrival, and it is possible that a convex polytope could become empty in transmission (see 
also Case 4 Section 2.4) It is also possible that a half space could become redundant to the 
definition of a convex polytope. 

The robustness approach described in Section 5.7 is indicated where lossy transmission or 
reduction in resolution is needed, but it must be remembered that even in the event of 
fragile convex polytopes and fragile connectivity, a regular polytope cannot become invalid 
due to perturbation. 

9.3. Case 3. ISO 19107 Definition of equals() 
The definition of equals as developed in this research has been shown for the dr-rational 
interpretation (in Chapter 4) to be a true equivalence relation, and that: 

EQ(O1,O2) ⇔ (∀p, p∈O1 ⇔ p∈O2)  (i.e. EQ is equivalent to point-set equality). 

This means that issues such as the failure of transitivity exhibited in this case study cannot 
occur.  

It is clearly still possible to define an "approximately equal" test, allowing a tolerance, and 
an "identically equal" test to determine that the representation is the same (see Case 13 
Section 9.13). 
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9.4. Case 4. ISO 19107 Definition of isSimple() 
There is no need for a test of this kind in the regular polytope representation. The 
representation is sufficiently robust to ensure that small knots will not cause breakdown of 
the software. There may still be a need to detect and warn of small convex polytopes, and 
cases of weak connectivity within a regular polytope, in order to detect data capture 
deficiencies. For example, in many problem domains (for example, cadastre), if a regular 
polytope is not robustly internally connected (see Section 5.7), or contains non-robust 
convex polytopes, it is likely that a data capture error has occurred.  In contrast to the vertex 
representation cases, this is not needed to ensure correct processing, but is only to attempt 
to correct encoding errors. 

 

vertex representation polytope representation 

a 

b 

c 

 
Figure 9-1 Non-simple and weakly connected geometries represented as polytopes. 

Referring to Figure 9-1, cases such as a, (sometimes known as a "butterfly polygon") must 
be corrected by the conversion to regular polytope form, since the half spaces that define a 
convex polytope have a specific inside. Figure 9-1 Case b, where a small knot is in the 
positive, anticlockwise direction, a separate weakly connected convex polytope is 
generated. If this is extremely small, it may be preferable for it to be either discarded, or 
flagged for manual investigation. Figure 9-1 Case c, where the boundary lines of the 
original polygon do not cross would not be detected as a failure of the isSimple() test. As a 
regular polytope, it would be represented as the union of two convex polytopes, which are 
Cb connected (since they meet at more than a single point). Nevertheless, this is a situation 
that should be brought to a data custodian’s attention, because the connection is not robust 
(see Section 5.7). A small perturbation of the half spaces that define the region could easily 
change the Cb connection to Ca or no connection at all. The approach of Section 5.7 allows 
a robustness parameter to be assigned as suggested by Thompson and van Oosterom 
(2006a).  
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9.5. Case 5. Intersection of a Point with a Line 
The regular polytope representation, in common with the dual grid approach, ensures that 
every possible point of intersection of two lines (in 2D), or three planes (in 3D) is 
representable as a point on the second level of resolution (grid2) (see Section 4.4.2), 
provided that the rules for the definition of the lines/planes are followed. 

In the case of the approximated polytope, and the topologically encoded representations, a 
reduced accuracy representation of the dr-rational points is also stored. This semi-redundant 
storage is linked within the data model in a way analogous to the ISO19107 "interior to" 
(see also Section 2.8). These reduced accuracy points are useful in the calculation of 
approximate volumes, surface areas, distance between features etc., and can be used for 
first pass indexing operations (for example, they can be used to show that a feature 
definitely does not intersect a search region). They should not, however, be used to define 
actual half spaces, in the process of defining new regular polytopes, unless it is recognised 
that this is an approximation process.  

9.6. Case 6. Narrow Cadastral Parcels 
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Figure 9-2 Narrow cadastral parcel and adjoiners. 

This case is stated in 2D, and is simply handled using the regular polytope approach, since 
it is possible to generate a half plane whose edge passes exactly through points p and r, and 
one through p and s. If the non-topologically encoded form of regular polytope is being 
used to represent a collection of regions such as depicted in Figure 9-2 (reproduced from 
Figure 2-11) (with no adjacency information compiled into the database), each region can 
be represented adequately by a single regular polytope. The only potential problem is that 
region E has a non-robust Cb connection to C, and so the connectivity may be broken by 
any small perturbation of the definitions. The definitions would still be valid after 
perturbation in all cases, but connectivity could be lost. This situation could be detected, 
and a warning of non-robustness given at data uptake time in the same way as was 
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described in the discussion of Case 4. If the objects were being stored in a topologically 
encoded form, as described in Section 7.3, the lines pq and qr would be represented by a 
single half space record.  

9.7. Case 7. 3D Surfaces and Lines 
The equivalent issues to the above in 3D are equally well handled in the regular polytope 
approach. Also, because all surfaces are built from half space definitions, no lack of 
planarity can be introduced by errors or imprecision in encoding. Since the 2D situation in 
the regular polytope representation is in effect seen as a special case of the 3D 
representation, there is no difficulty in carrying arguments into the 3D cases. 

The only additional issue in the case of 3D data is that, while in 2D, a half space can be 
generated which exactly passes through two points which have integer coordinates, in 3D it 
can only be guaranteed that a half space (in the form described in this thesis) will pass 
within one grid1 unit of three given points. This means that there is an element of 
approximation involved in conversion from a vertex-based representation to a regular 
polytope representation. 

9.8. Case 8. ISO 19107 Definition of "interior to" 
Association 

The regular polytope representation does not have the concept of a line or a surface (in 3D) 
as a point set feature. Thus it is not meaningful to ask whether a point is interior to a line or 
surface. In addition, there is no concept of a boundary point set. The question of whether a 
point is “interior to” a regular polytope is rigorously answered. 

In the case of the approximated polytope and the topologically encoded representations, a 
reduced accuracy representation of all vertices is stored. These are linked within the data 
model to their defining half spaces, and are asserted to be within a defined unit of 
resolution of all the half spaces that define them. This is analogous to the ISO19107 
"interior to" association but the linkage is maintained in every case, not merely when there 
is a possibility of error. This only applies to the approximated points, and not to the basic 
regular polytope representation. 

9.9. Case 9. Adjoining Polygon Points 
Using the basic non-topologically encoded regular polytope representation there is no need 
for any change to the definition of parcel A in Figure 9-3 (reproduced from Figure 2-13). 
The common boundary between A and B and the boundary between A and C will be exact, 
and have exactly the same parametric definition after the subdivision as before. Parcel A 
remains as a single convex polytope defined by four half planes. 

In the topologically encoded representation of Section 7.3, a single half plane record 
defines the faces ap and pb (as part of the definition of C and B) and the face ba as part of 
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the definition of A.  This half plane would be encoded for example linked to convex 
polytopes B and C, and linked (as a complement) to convex polytope A. Thus the 
boundaries of A with B and C are by definition exactly co-planar. In the discrete model 
shown in Section 7.2, the parameters of the faces are stored separately on each face record, 
but programmed constraints can be introduced to ensure coverage as described in Section 
5.6. This is a matter of detail in the data model, and the decision would depend on the 
detailed requirements of the application 
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Figure 9-3 Subdivision of adjoining parcel.  

9.10. Case 10. 3D Cadastre Issues 
The equivalent problem in 3D has exactly the same solution in the regular polytope 
representation as the 2D problem. 
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Figure 9-4 Volumetric parcels adjoined by normal (2D) parcels, viewed from the side. 

Figure 9-4 represents a vertical slice (side view) of a section of the cadastre (reproduced 
from Figure 2-14). In any of the regular polytope data models discussed in Chapter 7, the 
parcels 1 and 3 can be represented as simple prisms with no top or bottom, and with no 
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reference to the edges p, q, r, s, t, u. Parcels 2a to 2d only differ in having one or two 
horizontal half spaces in their definition. The models which use shared half space topology 
are particularly suited to this type of situation.  

9.11. Case 11. Datum Conversion 
The process of a change of datum will require calculation and rounding of the parameters of 
the half spaces that define the regular polytopes. As such, the issues discussed in Case 2 
and Case 4 above apply. In addition, there is a further factor to be considered. A datum 
change will involve the shifting of coordinate values by differing amounts in different parts 
of the region of interest, and in theory at least, the bending of previously straight lines. 
Thus there will be localized stretching, rotation, and warping of the geometry. In the vertex 
based representations, it is usual to re-calculate the positions of the vertices, and simply 
assume that the lines or surfaces joining them remain straight. This is usually a good 
enough approximation, and the same approach can be used in the regular polytope 
representation1.  

In effect, the approximate vertices are calculated, and the datum change is applied to them. 
The deltas of this movement are then converted back into changes in the parameters (A, B, 
C and D) of the half spaces. It is possible that two half spaces with the same parameters, but 
defining regions which are far apart, may become unequal as a result of this operation (if 
the amount of movement in each area is different). 

9.12. Case 12. Uniqueness Of Representation 
The rigorous definition of the test for equality means that this is not an issue. It is common 
for regular polytopes to have different possible representations, but to be equal. 

9.13. Case 13. GeoTools/GeoAPI definition of  
Object.equals() 

As described in Section 2.13, a calculated hash code is used by various collection structures 
in Java to provide fast access to members. The function hashCode must generate a key 
value such that: 

a.equals(b) ⇒ hashCode(a) = hashCode(b) (f8.1) 
¬ a.equals(b) <nearly always implies> hashCode(a) ≠ hashCode(b) (f8.2) 

The “nearly always implies” determines how useful the hashCode algorithm is. It should be 
relatively rare that two unequal objects have the same hash code.  

                                                           
1 Where this approximation is not acceptable: in the case of long straight lines, or regions of large relative 
distortion, as in the case of vertex representations, it will be necessary to re-calculate the representation. 



Chapter 9 – Review of Case Studies 

228 

There are practical reasons for providing an "equals" test which is more restrictive than the 
equality operation EQ(A, B) defined in Section 4.2.5. Consider a database, in which 
updated objects are to be posted back to the database, but only if they have been changed 
(where the pre-image is unequal to the post image). If a regular polytope is extracted and 
changed so that its representation is changed, but it is still equal to its earlier form (by the 
EQ operation), then the change will not be written back to the database. For example, a 
process that extracted regions, converted them to disjoint normal form, and then posted 
them back would surprise the operator by not making any changes. Thus “equals()” as 
required in the Java object class is a different concept from EQ – which is defined as point-
set equality. 

For this reason, it may be necessary to define a.equals(b) as requiring that the 
representation of a and b be identical in terms of the break up of a and b into convex 
polytopes, and in terms of the half space parameters used to define those convex polytopes. 
If this is the case, a simple hashCode() routine can be based on the critical parameters (e.g. 
hashing the A, B, C, D values of all half spaces in all convex polytopes).  

If this consideration does not apply, and the point set definition of equals is desirable – 
where a.equals(b) ⇒ (∀p, p∈a ⇔ p∈b), then a compatible definition of hashCode() will be 
necessary. This will need to be based on the actual points, but could be something like a 
hash of the x,y,z coordinates of all of the external dr-rational vertices of the regular 
polytope. (Where an external vertex of a regular polytope is defined as any vertex of a 
convex polytope that is not within the pseudo-closure of any other convex polytope). Other 
more easily calculated hash routines could be proposed. 

9.14. Conclusions 
The regular polytope representation has been shown to address many of the kinds of 
problem that exist in current software. The rigorous logic underpinning the representation 
ensures that the gross failures caused by apparently trivial rounding and calculation effects 
do not occur. This means that a toolkit of functions and predicates can be assembled, with a 
guarantee that they can be used and combined in any way without danger of failure. 

This approach can also be used to define rigorously a set of validity and robustness criteria 
that will greatly assist the effort to make spatial data interchangeable.  

The next chapter summarises this research, and suggests some further work that could be 
undertaken to complement and continue it. 



  

 

 

Chapter 10 

Conclusions 

In the previous chapters, the regular polytope representation of spatial objects has been 
introduced, and its characteristics explored in some detail. The investigation has 
concentrated on the algebraic completeness of the approach, and the rigour that can be 
achieved, with particular attention having been placed on the question of connectivity. In 
the previous two chapters, practical issues of implementation were considered. 

Chapter 1 introduced the main topic of this research, and defined the scope. Chapter 2 
contained a selection of case studies that illustrated the problems that can be caused by 
breakdown of the internal logic of representations. Chapter 3 contained a review of existing 
approaches to the issue. 

Chapter 4 defined the regular polytope and presented some of the basic topological 
behaviour of the approach. Chapter 5 continued this into the issue of connectivity, and 
Chapter 6 discussed the algebras that the representation supports. 

Chapter 7 presented some alternative database schemas that could be developed, and 
Chapter 8 documented the set of “proof of concept” Java classes that were developed in the 
process of this research. Chapter 9 reviewed the case studies of Chapter 2 in light of the 
regular polytope representation. 

This chapter summarises the findings in terms of the research question and the results 
obtained and discusses potential for further research. Section 10.1 discusses extension of 
the representation to geometric objects of lower dimensionality than that of the embedding 
space (for example, surfaces in a 3D world). 

Section 10.2 summarises the findings of the research, with a particular emphasis on those 
topics that are potential subjects for further investigation, and finally Section 10.3 presents 
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the conclusions that can be drawn from this research, and the contribution that this research 
has made to the field of spatial data representation. 

10.1. Application of the Regular Polytope to Lower 
Dimensionality 

As defined in the earlier chapters, the regular polytope is restricted to the representation of 
regions of the same dimensionality as the spaces in which they are embedded – solids in a 
3D space, area features in a 2D space. Before discussing the extension of the approach to 
lower dimension objects, it is important to consider what these objects are, and how they 
become an issue in a spatial database. There are two broad categories of lower dimensional 
objects, and each has its own issues in representation. An object can be represented at such 
a small scale that there is no value in recording its thickness or extent. For example, a road 
that is captured at a scale of 1:2,000,000 is adequately represented as a linear feature. 
Likewise a small town may be represented as a point.  

The other broad class of lower dimensionality objects are the boundaries of higher 
dimensional objects, where these boundaries are to be stored as features in themselves, 
possibly because they carry their own attributes (e.g. quality, date of survey …). For 
example a state border is often stored as a linear feature, whereas in fact it is the boundary 
between two area features. 

As discussed in Section 7.2 The regular polytope representation does permit the halver 
objects to carry individual attributes that do not apply to the volume of the convex or 
regular polytope as a whole.  

10.1.1. Boundary Objects 
The discipline of Mereotopology treats a boundary as a special kind of object – to quote 
Smith (1997) "Boundaries of bodies are actual parts of the bodies which they bound. But 
they are not just any sort of part; rather they are parts which, as a matter of necessity, can 
exist only as proper parts of things of higher dimension which they are the boundaries of 
(where from the set-theoretical point of view, isolated extensionless points are presented as 
existing in complete independence of any larger wholes)". 

There is not complete agreement on whether a boundary should be considered part of the 
object (as in the case of two billiard balls in contact – each having its own boundary), or a 
common object delineating the division between two objects (such as a state border). The 
mereological approach is that the boundary is a part of the object, but two boundaries can 
be defined by the same set of points. This is in contrast with the principle of topological 
encoding, where a boundary is treated as a single discrete object with a positive and a 
negative side, which links to and serves to define the two (or more) regions. 

It may be that this dichotomy in the view of boundaries reflects the size of the object being 
considered – with hard edged boundaries being applicable to small objects (such as an 
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apple), and softer edged boundaries being appropriate between large scale features (Frank 
1995). 

The regular polytope approach is a boundary-free representation as was described earlier, 
but it is still possible to represent a boundary type object, by simply representing all or part 
of the solid object. For example, a 3D regular polytope can be used to represent a 2D 
surface topography, which forms the top surface of the regular polytope – as pictured in 
Figure 10-1. In this context, it must be remembered that there is no need for a regular 
polytope to be bounded on all sides (so that no bottom surface need be modelled). Also 
note that there is a surface object in the topological form of storage that was outlined in 
Chapter 7. If required, specific attributes can be attached to the top surfaces in Figure 10-1, 
as discussed in Section 7.2, for example to indicate areas of grassland, water, road, etc. 

 
Figure 10-1 A regular polytope used to define a land surface topography. The convex 
polytopes are delineated with solid lines to show their upper surface and dashed lines 
to delineate their vertical faces. They have no lower faces, being unbounded below. 

The critical factor in regard to this kind of object is that the fundamental question is not 
whether a point lies within the boundary object, but rather whether a point lies within the 
region that is defined by the boundary. 

10.1.2. Thin Features 
Where features are represented at lower dimensionality than the space in which they are 
embedded simply because of the scale of representation, they should behave in a manner 
consistent with other larger features. For example, a road that is represented as a single line 
geometry should participate in operations in largely the same way as one that is represented 
as having width. However, this cannot be expected of all operations. Clearly the area of a 
road can be calculated if it is stored as a region, but not if it has a single-line representation. 

This argues for a sorted algebra of the ROSE type (see Section 3.4.5), as giving the 
necessary flexibility to mix objects of different geometric representation, but maintaining 
control of the operations that can be applied between geometry types. As defined, the 
ROSE algebra (Güting and Schneider 1995) is restricted to two dimensions, but this is not 
an intrinsic limitation – it would be a relatively simple extension to produce a three 
dimensional version, by including an additional primitive type "bodies". (This could be 
called the ROSE3 algebra). This would require a fairly mechanical extension of the 
definitions of various operations to allow them to apply to the new geometry type.  
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The ROSE algebra has already been shown to be implementable using the realms approach 
(Güting et al. 1995), and by the dual grid approach (Lema and Güting 2002). As these are 
quite different forms of representation, this further argues for the flexibility of the ROSE 
algebra and its suitability to the extended regular polytope context. 

10.1.3. Definition of Primitives 
It is not the intention to pursue this in great detail here, merely to indicate a possible line of 
further research based on the 3D dr-rational representation of regular polytopes. The 3D 
primitive has already been defined – the regular polytope itself.  

The 2D convex primitive could be defined in 3D space as the dr-rational points p = (x,y,z) 
where Ax + By + Cz + D = 0. In the dr-rational representation, this is a finite set of points 
(as are all computer representations), but as described in Section 7.7.2, the set is “fairly 
dense”, containing a large number of dr-rational points. This is an unbounded plane, but if 
it is intersected with one or more half spaces Hi: i = 1..n, a partially or fully bounded 
"convex surface patch" can be defined. Surface patch P is defined by A, B, C  & D and Hi: i 
= 1..n such that  

 p ∈ P if Ax + By + Cz + D = 0 and p ∈ Hi: i = 1..n. 

Note that this is a point set, and that the set of half spaces can be viewed as a convex 
polytope {Hi: i = 1..n} (not necessarily explicitly fully bounded except by the “universal 
box” – see def4.13). That is to say, a convex surface patch is defined as the intersection of 
an unbounded plane with a convex polytope. The 2D primitive "surface" in 3D space can 
then be defined as the union of the points in a number of convex surface patches. 

In a similar way, the 1D (convex) line segment could be defined as the points satisfying 
A1x+B1y+C1z+D1= 0 and A2x+B2y+C2z+D2= 0, delimited by a number of half spaces (two 
would be sufficient). 

The 0D primitive could be defined using three equations, but more simply as a dr-rational 
point. 

Ca would be defined as before as the existence of a point within the pseudo-closure of each 
primitive, while Cb would be defined as Cb(x, y) if a convex primitive z of the same 
dimension as either x or y can be found that is entirely within x∪y and x∩z is not empty and 
y∩z is  not empty. (If x and y are solids, then z must be a solid. If a solid and a surface, then 
z would have to be a surface etc). As can be seen in Figure 10-2, this definition of Cb leads 
to rather unusual results. For example, the two regions of Case 7 by this definition would be 
Cb connected. For this reason it would be preferable instead to use the form of continuity 
defined by Clementini et al (1993), shown in Figure 10-2 as C0, C1 or C2 (or C3 = overlap) 
where the subscript defines the dimensionality of the overlap between the pseudo-closures 
of the regions.  
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1 6 543 2 8 7

 
Figure 10-2 Connectivity of objects with the same or different dimensionality. 

10.2. Learnings and Future Research 
The regular polytope representation has proved to be useful in analysing the possibilities of 
applying rigorous logic to computer representations. It has also shown the potential to be a 
useful representation in its own right. There is, however much more that can be done in this 
regard, as is described here. 

10.2.1. Optimisation 
It is expected that, as described in Section 8.4.1, restricting the complexity of convex 
polytopes will lead to practical speeds of processing. In the case of 2D polytopes, several 
thousand half planes per convex polytope is expected to be practicable, but this needs to be 
verified, and more experimentation on varieties of data needs to be carried out. In 3D, the 
number is probably several hundred. This is appropriate particularly for cadastral data, 
where the parcels with large numbers of points (more than 2000) required in their 
definitions generally occur mainly in rural areas, and are all 2D.  

The overwhelming advantage of the regular polytope approach is in the rigorously correct 
logic that it supports, and this justifies the additional data storage requirements as described 
in Section 7.8, and the potentially slower processing times, but there is still much potential 
to improve the implementation of some of the operations – in particular, 
Polytope.intersection, and Polytope.inverse. (See Sections 8.4.1, 8.4.3 and 8.4.4). 

A practical implementation would probably be best developed as a series of C or preferably 
C++ routines embedded in a database engine (such as the IBM Informix ORDBMS) which 
allows extension of data types and their behaviours.  

An issue that would repay further investigation is that of determining the optimum 
decomposition of regular polytopes into convex polytopes. This has been mentioned earlier 
in Section 4.1.5, where it was noted that the disjoint normal form (DNF) has certain 
advantages, but does not necessarily have a natural unique form. Related to this is the 
possibility of recombining adjacent convex polytopes within the one regular polytope, 
based on additional rules, and optimised towards producing a particular pattern of 
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decomposition. This might seem to be of little value, but can in fact be vital to prevent the 
database from “ageing”.  

 

O1 

C1 

C2 
O’ = O2∩O1

C4 

C3 

O2

 
Figure 10-3 Convex polytopes in 2D that could be recombined. 

For example, in Figure 10-3, it is assumed that O’ is the result of forming the intersection 
of a convex polytope O2 (stippled) with O1, which completely contains O2. The result is 
naturally that O’ = O2, but while O2 consisted of a single convex polytope, O’ now has been 
divided into two. This has been noticed frequently in the proof of concept algorithms 
discussed in Chapter 8, and if left unchecked could lead to a database of objects that grow 
more complex as time goes by. An algorithm to detect and recombine convex polytopes 
such as C3 and C4, could prevent this. Note – that the concept of an anti-equal pair of half 
spaces is ubiquitous in the discussion of regular polytope processing, and an efficient 
algorithm for detecting such pairs would be beneficial. 

10.2.2. Temporal Issues 
There is scope for extension of the approach to include the temporal dimension. This could 
be accomplished by merely extending the approach to a 4D regular polytope, but it is not 
necessarily the case that this is the most appropriate or efficient path. It is more likely that a 
create/destroy timestamping system will be appropriate to practical situations. This 
approach can provide a historical representation of a complex situation, and allow the 
viewing of that situation “as at” times in the past (van Oosterom 1997; Thompson 2003; 
van Oosterom et al. 2006). 

10.2.3. Non-linear Boundaries 
It may be fruitful to extend the definition of a half space to allow certain classes of non-
linear functions. In particular, it may be of value to consider a representation based on polar 
coordinates (Latitude, Longitude and Elevation).  
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10.2.4. Spatial Indexing Details 
The actual details of appropriate spatial indexing algorithms have not been investigated. It 
is felt that in the majority of situations, no particularly novel requirements are likely to 
apply specifically to the regular polytope. The basic algorithm would be that the initial 
search would be done using an approximation such as a limiting bounding rectangle to 
determine which features could possibly contact the region being searched, and then the 
rigorous predicates could be used to decide which features are in fact required. The decision 
whether to index the regular polytope, or each individual convex polytope is yet to be 
made. An associated question is whether to enforce disjoint normal form. 

There is one specific aspect that may need special consideration in the development of an 
indexing strategy, and that is the potentially unbounded nature of the regular polytope. If a 
database is built which may have a significant number of unbounded regions, then the 
simple bounding box approach can lose efficiency. This is a subject that could be 
researched further. 

10.2.5. Presentation Issues 
The research documented in this thesis has not addressed any specific issues of presentation 
of regular polytopes to a user in a graphical user interface. Section 8.3.1 discussed the use 
of VRML for the visual presentation of the test data, and the issue of suppressing the 
internal structure (the convex polytope decomposition) of the regular polytopes was raised. 
In the proof of concept coding, the 2D polytopes were processed to suppress the internal 
structure, but not the 3D polytopes. Further research could produce algorithms to remove 
the internal structure of 3D regular polytopes to allow cleaner zooming through the surfaces 
of objects. 

10.2.6. Data Conversion 
Section 8.3 raised the issue of converting polygon and polyhedron encoded data to regular 
polytope form. A basic algorithm was implemented in the proof of concept Java classes, but 
it was felt that significant improvements are possible in this area: 

• The basic algorithm only operated in 2D (all 3D objects were manually 
decomposed) 

• The basic algorithm divides a polygon  into more convex polytopes than are strictly 
necessary. 

• The basic algorithm produces convex polytopes that tend to be extended in an east-
west direction. Ideally, more compact convex polytopes could be generated. 

10.2.7. Update and Editing 
The dr-rational approach does not suffer from the problem of increasing precision 
requirements in an ageing database, as can be expected in unconstrained precision rational 
number representations. However the fragmentation of convex polytopes can result from 
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operations as discussed in Section 10.2.1. Updates as a result of datum changes and 
refinement of positional measurements were addressed in Section 9.11. 

Most update and editing activities will be accomplished by either forming new regular 
polytopes as a result of combining existing objects using the topological functions, or by 
adjusting the parameters of the half spaces. This latter has not been investigated in this 
research, and is a fruitful field of future work. 

10.2.8. Interchange of Spatial Data 
As was discussed in Section 9.2, the regular polytope representation is an appropriate form 
for spatial data interchange, both in the form of loss-free and “lossy” transmission. The 
concept of robustness of the regular polytope has also been defined and discussed in 
Section 5.7. Another consideration, which raises a possible line of future research is that the 
regular polytope concept can be used as a means to define and document the concepts of 
validity and robustness to be used to monitor transmissions of spatial data between 
conventional vertex representations. 

In the present systems and standards, little progress has been made in the definition of 
validity (see Sections 2.4 and 2.8). Usually, diagrams are provided showing examples of 
various sorts of “hanging lines”, unclosed polygons, etc, or a mathematical definition which 
relies on real number theory is given, allowing some unspecified tolerance. The regular 
polytope raises the prospect of validity definitions which are fully rigorous, while also 
being computable.     

10.3. Conclusion 
The regular polytope has been shown to be a viable and robust model for the representation 
of spatial objects. This representation has been shown to possess a closed, rigorous, simple 
and useful spatial logic which can be realised using finite computational arithmetic. The 
technique has been shown to be computable, both theoretically – using rigorous proofs, and 
practically – using demonstration Java programs. 

This provides the framework for the storage, retrieval and interchange of representations of 
spatial features which is robust, useful, internally consistent, and predictable in its results, 
in contrast to the vertex-based point/line/polygon/polyhedron solutions used in current 
practice. The regular polytope representations are capable of correctly modelling the 
behaviour of a range of conceptual world features, and the relationships between those 
features. 

The approach is practical, and could be implemented as a database capable of handling 
practical quantities of data. While some more optimisation in the area of the regular 
polytope algorithms could yield speed improvements, for at least the sort of data used in 
this pilot system, acceptable results were obtained. In the test region, it was possible to test 
and manipulate the data quite readily (detecting and correcting overlaps) using the standard 
RCC and topological functions, and the combination and nesting of functions gave 
completely predictable results. 
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10.3.1. Model Design 
Objective 1 (see Section 1.1.4) was to “determine a method of representing spatial data 
which supports a closed formal logic”. Chapter 2 showed some examples of the failings in 
existing technologies which prevent the drawing of inferences from computer-represented 
spatial data. In Chapters 4 to 6, a definition of a potential solution, known as the regular 
polytope representation has been defined, and the logic that it supports has been explored. 
This was supported by axiomatic proofs (in Appendices I to IV), and has been rigorously 
developed.  

At this stage of research, only regular polytopes with linear boundaries have been 
considered. Various database schemas have been designed and presented, each likely to be 
appropriate to different classes of data and different applications. 

10.3.2. Model Exploration 
Objective 2 was to “explore these representations, and determine their usefulness and 
limitations”.  

The algebraic formalisms that can be addressed by the regular polytope representation are 
discussed in some detail in Chapter 6. Included in this objective is the need to show how 
the proposed solution can be applied to practical problems, such as the representation of 
cadastral data – especially where a combination of 3D volumetric parcels and the more 
common 2D parcels are present. This has been discussed in detail in Chapters 7 and 8, 
where it was shown that the regular polytope approach is particularly well suited to such a 
combination of dimensionality.  Since the regular polytope representation can be viewed as 
being intrinsically less rich in its selection of geometric primitives than some of the 
representations in current use, extensions and alternatives, such as lower dimension 
primitives were suggested in Section 10.1.  It is noted that the boundary-free nature of the 
regular polytope representation does not in any way reduce the functionality of the 
approach. 

10.3.3. Model Verification 
Objective 3 was to “prove that these representations are consistent, robust and practical”. 
This has been achieved both by formal proof (in Appendices I to IV) and by 
implementation of Java classes (see Chapter 8). 

The consistency of operations defined on regular polytopes are ensured by the axiomatic 
proof as part of the model design, but to show that the representations do not increase 
disproportionately in complexity as a result of operations, proof of concept algorithms have 
been developed which show that the complexity of the representation can be controlled, and 
that acceptable access times can be achieved. Storage requirements of several possible 
database schemas have been analysed, and compared with more traditional approaches. 
This has shown that, while in general the regular polytope does require more space, the 
difference is not particularly great, and certainly not enough to preclude a practical 
implementation. 
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Further investigation has shown that the representation is consistent and robust in the 
presence of small perturbations in the relative positions of points such as can occur as a 
result of transformation of the data to different datums or projections, or as a result of the 
use of limited precision data exchange formats. 

10.3.4. Main Contribution of this Research 
The main contribution that this research makes is twofold: 

It has shown that a rigorous trail of argument can be applied in the computation 
representation of spatial objects from the very basic level of how numbers and arithmetic 
are implemented up to the visible behaviour of the object representations. It is strongly 
felt that this level of rigour is needed in all such representations, as the unexpected “side 
effects” of current technology is not acceptable. 

It has demonstrated a particular representation – the regular polytope, and in particular 
the domain-restricted rational number interpretation of that representation to the point 
where it can be considered to be a candidate for full development as a practical spatial 
database management system, and for spatial data handling in general. 

The principal benefits of the rigorous approach are in the confidence that is engendered in 
any software that is so produced. Since the rules of logic can be followed through the chain 
of proofs, a computed assertion (for example that a region is contained within another 
region) can be traced back through the assumptions made in data capture, to allow a 
confident claim about a real world phenomenon. This is in contrast to the kinds of issues 
documented in the case studies of Chapter 2. 

The costs of this rigour are:  

1. The regular polytope requires more storage space than conventional vertex based 
approaches. This has been shown in Chapter 7 and in Appendix VII not to be 
particularly severe – especially in 3D cases.  

2. The regular polytope can be more compute intensive, and so potentially slower. This 
has been shown to be solvable with some additional development.  

3. The classes of geometry that can be represented are less rich than those provided by 
conventional vertex representations, as objects of lower dimensionality than the 
embedding space are not addressed. This has been shown to be not as restrictive as it 
first seems – since lower dimensionality objects that represent boundaries can be 
accommodated. It has also been shown that there is a possible extension in the dr-
rational representation to represent surface, linear and point objects in a 3D space.   

Most importantly, this approach can lead to the situation that has eluded the industry since 
the first attempts to process spatial information. That is the provision of a toolkit of objects 
and techniques that can be used in any combination, and are fully predictable in behaviour.



  

 

Bibliography 

Agumya, A. and G. J. Hunter (1999). "A Risk-Based Approach to Assessing the "Fitness 
for Use" of Spatial Data." URISSA Journal 11(1): 33-44. 

Archbold, J. W. (1964). Algebra. Pittman & Sons, London. 

Arens, C., J. Stoter and P. van Oosterom (2003). Modelling 3D Spatial Objects in a Geo-
DBMS Using A 3D Primitive. Association Geographic Information Laboratories 
Europe, Lyon, France. 

Baars, M. (2003). "A comparison between ESRI geodatabase topology and Laser-Scan 
radius topology." from http://www.gdmc.nl/publications/. 

Balbes, R. and P. Dwinger (1974). Distributive Lattices. University of Missouri Press. 

Barrett, G. (1989). "Formal methods Applied to a Floating-Point Number System." IEEE 
Transactions on Software Engineering 15(4): 611-621. 

Barvinok, A. I. (1994). "A Polynomial Time Algorithm for Counting Integral Points in 
Polyhedra when the Dimension is Fixed." Mathematics of Operations Research 
19(4): 769-779. 

Bennett, B. (1995). Carving up space: Existential axioms for a formal theory of spatial 
relations. The IJCAI95 Workshop on Spatial and Temporal Reasoning, Montreal, 
Canada. 

Bidarra, R., K. J. de Kraker and W. F. Bronsvoot (1998). "Representation and management 
of feature information in a cellular model." Computer-Aided design 30(4): 301-
313. 

Black, P. E. (2001). "Dictionary of Algorithms and Data Structures." Retrieved 19 Jan 2004 
from http://www.nist.gov/dads/HTML/polytope.html. 

Borgo, S., N. Guarino and C. Masolo (1996). A Pointless Theory of Space Based On Strong 
Connection and Congruence. 6th International Conference on Principles of 
Knowledge Representation and Reasoning (KR96), Morgan Kaufmann. 

Boyer, C. B. (1985). A History of Mathematics. Princeton University Press, Princeton, New 
Jersey. 

Breunig, M. and S. Zlatanova (2006). 3D Geo-DBMS. Large Scale 3D Data Integration: 
Challenges and Opportunities. S. Zlatanova and D. Prosperi. Boca Raton, Taylor 
& Francis CRC. 

Brock, J. F. (2001). The Oldest Cadastral Plan Ever Found: The Catalhoyuk Town Plan of 
6200 BC. 42nd Australian Surveyors Congress, Brisbane Qld. 



Bibliography 

240 

Burkill, J. C. (1964). A First Course in Mathematical Analysis. Cambridge University 
Press, Cambridge. 

Burrough, P. A. and R. A. McDonnell (1998). Principles of Geographical Information 
Systems. Oxford University Press, Oxford. 

Castellanos, D. (1988). "The Ubiquitous pi (Part II)." Mathematics Magazine 61(3): 148-
161. 

Clementini, E., P. Di Felice and P. van Oosterom (1993). A Small Set of Formal 
Topological Relationships Suitable for End-User Interaction. Third International 
Symposium on Advances in Spatial Databases, Singapore. 

Clementini, E. and P. Di Felice (1998). "Topological invariants for lines." IEEE 
Transactions on Knowledge and Data Engineering 10(1): 38-54. 

Codehaus. (2006). "GeoTools: The Open Source Java GIS Toolkit." from 
http://geotools.codehaus.org/. 

Cohn, A. G. and A. C. Varzi (1999). Modes of Connection. Spatial Information Theory. 
Proceedings of the Fourth International Conference, Berlin and Heidelberg, 
Springer Verlag. 

Courant, R. and H. Robbins (1941). What is Mathematics? Oxford University Press, New 
York. 

Coxeter, H. S. M. (1974). Projective Geometry. Springer-Verlag, New York. 

Cullen, H. F. (1968). Introduction to General Topology. Heath, Boston MA. 

de Berg, M., M. van Kreveld, M. Overmars and O. Schwarzkopf (2000). Computational 
Geometry Algorithms and Applications 2. Springer-Verlag, Berlin. 

de Vries, M., W. Quak and P. van Oosterom (2005). "Running a GML Relay; 
Interoperability Tests with Live Audience " GIM International 19(12): 69-71. 

Dilo, A. (2006). Representation of and reasoning with vagueness in spatial information. 
Department of Earth Observation Science. Enschede, Wageningen University. 

Dobkin, D. and D. Silver (1990). "Applied Computational Geometry: Towards Robust 
Solutions of Basic Problems." Journal of Computer and System Sciences 40: 70-
87. 

Düntsch, I., H. Wang and S. McCloskey. (2002). "A Relation-Algebraic Approach to the 
Region Connection Calculus." from http://citeseer.ist.psu.edu/264027.html. 

Düntsch, I. and M. Winter (2004). "Algebraization and Representation of Mereotopological 
Structures." Relational Methods in Computer Science 1: 161-180. 

Dyer, M. (1991). "On counting lattice points in polyhedra." SIAM journal on computing 
20(2): 695-707. 

ECU (1970). Automatic Cartography and Planning. Experimental Cartography Unit, Royal 
College of Art, London. 



Bibliography 

241 

Edelsbrunner, H. and E. P. Muecke (1988). Simulation of Simplicity: A Technique to Cope 
with Degenerate Cases in Geometric Algorithms. ACM Symposium on 
Computational Geometry. 

Egenhofer, M. J. (1994). "Deriving The Composition Of Binary Topological Relations." 
Journal Of Visual Languages And Computing 5(2): 133-149. 

Egenhofer, M. J., E. Clementini and P. Di Felice (1994). "Topological Relations between 
Regions with Holes." International Journal of Geographical Information Systems 
8(2): 129-142. 

Egenhofer, M. J. and R. D. Franzosa (1995). "On the Equivalence of Topological 
Relations." International Journal of Geographical Information Systems 9(2): 133-
152. 

Egenhofer, M. J., J. Glasgow, O. Gunther, J. R. Herring and D. J. Peuquet (1999). "Progress 
in computational methods for representing geographical concepts." International 
Journal of Geographical Information Science 13(8): 775-796. 

Egenhofer, M. J. (2005). "Spherical Topological Relations." Journal of Data Semantics III: 
25-49. 

Ellul, C. and M. Haklay (2005). Deriving a Generic Topological Data Structure for 3D 
Data. Topology and Spatial Databases Workshop, Glasgow, UK. 

ESRI. (1998). "ESRI Shapefile Technical Description." Retrieved Mar 2007 from 
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. 

Forrest, A. R. (1985). Computational Geometry in Practice. Fundamental Algorithms for 
Computer Graphics. R. A. Earnshaw. Berlin, Springer-Verlag: 701-724. 

Frank, A. U. (1995). The Prevalence of Objects with Sharp Boundaries in GIS. Geographic 
Objects with Indeterminate Boundaries. P. A. Burrough and A. U. Frank, Taylor 
& Francis. 

Franklin, W. R. (1984). "Cartographic errors symptomatic of underlying algebra problems." 
International Symposium on Spatial Data Handling, Zurich, Switzerland: 190-208. 

Franklin, W. R. (1985). Problems with Raster Graphic Algorithms. Data Structures for 
Raster Graphics, Steensel, The Netherlands. 

Fraser, D. A. S. (1958). Statistics: An Introduction. Wiley & Sons, New York. 

Gaal, S. A. (1964). Point Set Topology. Academic Press, New York. 

Garey, M. R., D. S. Johnson, F. P. Preparata and R. E. Tarjan (1977). "Triangulating a 
Simple Polygon." Information Processing Letters. 

Goldberg, D. (1991). "What Every Computer Scientist Should Know About Floating-Point 
Arithmetic." Computing Surveys. 

Goodchild, M. F. (1998). "'Uncertainty' The Achilles Heel of GIS?" Geo Info Systems 
Journal: 50-52. 



Bibliography 

242 

Gotts, N. M., J. M. Gooday and A. G. Cohn (1996). "A Connection Based Approach to 
Common-Sense Topological Description and Reasoning." The Monist 79(1): 51-
76. 

Green, D. and F. Yao (1986). Finite resolution computational geometry. 27th IEEE 
Symposium on Foundations of Computer Science, Los Alamitos. 

Grumbach, S. and S. Jianwen (1997). Queries with arithmetical constraints. Theoretical 
Computer Science, Elsevier. 173: 151-181. 

Grumbach, S., P. Rigaux, M. Scholl and L. Segoufin (1997). DEDALE, A Spatial 
Constraint Database. 6th International Workshop on Database Programming 
Languages Estes Park, Colorado, USA. 

Grumbach, S., P. Rigaux, M. Scholl and L. Segoufin. (1999). "The Design and 
Implementation of DEDALE." from 
http://gemo.futurs.inria.fr/dedale/references.html. 

Grumbach, S., P. Rigaux, M. Scholl and L. Segoufin (2000). The Dedale Prototype. 
Constraint Databases. G. M. Kuper, L. Libkin and J. Paredaens. Berlin, Springer. 

Gunther, O. (1988). Efficient Structures for Geometric Data Management. Springer Verlag, 
Berlin. 

Güting, R. H. and M. Schneider (1993). Realms: A foundation for spatial data types in 
database systems. 3rd International Symposium on Large Spatial Databases 
(SSD), Singapore. 

Güting, R. H., T. deRidder and M. Schneider (1995). "Implementation of the ROSE 
algebra: Efficient algorithms for realm-based spatial data types." Advances in 
Spatial Databases 951: 216-239. 

Güting, R. H. and M. Schneider (1995). "Realm-Based Spatial Data Types: The ROSE 
Algebra." VLDB Journal 4(2): 243-286. 

Guttman, A. (1984). "R-Trees: A Dynamic Index Structure for Spatial Searching " ACM 
SIGMOD 13: 47-57. 

Hammer, E. M. (1995). Logic and Visual Information. Centre for the Study of Language 
and Information (CSLI) and The European Association for Logic, Language and 
Information (FoLLI), Stanford, California. 

Hogg, R. V. and A. T. Craig (1965). Introduction to Mathematical Statistics Second 
Edition. The Macmillan Company, New York. 

Holm, J. E. (1980). Floating-Point Arithmetic and Program Correctness Proofs, Cornell 
University. PhD: 133. 

Hunter, G. J. (1998). "Managing Uncertainty in GIS." NCGIA Core Curriculum in 
Geographic Information Science. 

Hurewicz, W. and H. Wallman (1948). Dimension Theory. Princeton University Press. 

IBM. (2002). "IBM Informix Spatial DataBlade Module." Version 8.20. Retrieved Aug 
2004 from http://publib.boulder.ibm.com/epubs/pdf/9119.pdf. 



Bibliography 

243 

ICSM. (2002). "Geocentric Datum of Australia Technical Manual." Revision 2.2. Retrieved 
June 2007 from http://www.icsm.gov.au/icsm/gda/gdatm/gdav2.2.pdf. 

Informix (2000). Informix Geodetic DataBlade Module User's Guide. Menlo Park, 
Informix Corporation. 

Insall, M. and E. W. Weisstein. (1999). "Connected set." Retrieved 2 Feb 2007 from 
http://mathworld.wolfram.com/ConnectedSet.html. 

ISO-TC211 (2001). Geographic Information - Spatial Schema. IS19107. Geneva, 
International Organization for Standards. 

ISO-TC211 (2004). Geographic information - Geography Markup Language (GML3). 

Jeansoulin, R. (1998). Using spatial constraints as redundancy information to improve 
geographical knowledge. Data Quality in Geographic Information. M. Goodchild 
and R. Jeansoulin. Paris, Editions Hermes. 

Kanellakis, P. C. and D. Q. Golding (1994). Constraint programming and database query 
languages. 2nd Conf in Theoretical Aspects of Computer Software, Sendai Japan, 
Springer Verlag. 

Kanellakis, P. C., G. M. Kuper and P. Z. Revesz (1995). "Constraint query languages." 
Journal of Computer and System Sciences 51: 26-52. 

Kannan, R. (1987). "Minkowski's Convex Body Theorem and Integer Programming." 
Mathematics of Operations Research 12(3): 415-440. 

Kazar, B. M., R. Kothuri, P. van Oosterom and S. Ravada (2007). On Valid and Invalid 
Three-Dimensional Geometries. 2nd International Workshop on 3D Geo-
Information: Requirements, Acquisition, Modelling, Analysis, Visualisation. Delft. 

Kuper, G. M., L. Libkin and J. Paredaens (2000). Constraint Databases. Springer, Berlin. 

Lema, J. A. C. and R. H. Güting (2002). "Dual grid: A new Approach for Robust Spatial 
Algebra Implementation." GeoInformatica 6(1): 57-76. 

Lemon, O. and I. Pratt (1998). "Complete logics for QSR [Qualitative Spatial Reasoning]: 
A guide to plane mereotopology." Journal of Visual Languages and Computing 9: 
5-21. 

Lemon, O. and I. Pratt (1999). "Logics for Geographic Information." Journal of geographic 
Systems (Springer-Verlag). 

Lenstra, H. W. (1983). "Integer Programming with a Fixed Number of Variables." 
Mathematics of Operations Research 8(12): 538-548. 

Lott, R. (2004). "OGC Abstract Specification Topic 2, Spatial referencing by coordinates." 
04-046r3. Retrieved May 2007 from 
http://portal.opengeospatial.org/files/index.php?artifact_id=6716. 

Louwsma, J. H. (2003). "Topology versus non-topology storage structures." from 
http://www.gdmc.nl/publications/2003/Topology_storage_structures.pdf. 



Bibliography 

244 

Mansfield, R. (1984). "A Complete Axiomatization of Computer Arithmetic." Mathematics 
of Computing 42(166): 623-635. 

Mehlhorn, K. and S. Näher (1999). LEDA: A Platform for Combinatorial and Geometric 
Computing. Cambridge University Press. 

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall. 

Milenkovic, V. J. (1988). "Verifiable implementations of geometric algorithms using finite 
precision arithmetic." Artificial Intelligence: 377-401. 

Molenaar, M. (1990). A formal data structure for 3D vector maps. Proceedings of EGIS’90, 
Amsterdam. 

Molenaar, M. (1998). An Introduction to the Theory of Spatial Object Modelling for GIS. 
Taylor and Francis, London. 

Naimpally, S. A. and B. D. Warrack (1970). Proximity Spaces. University Press, 
Cambridge. 

Narkhede, A. and D. Manocha (2004). "Fast Polygon Triangulation based on Seidel's 
Algorithm." 

NRW (2005). DCDB Documentation, Queensland Department of Natural Resources and 
Water (Internal Report). 

OGC. (1999a). "The Open Geospatial Consortium Abstract Specification Topic 5: 
Features." Retrieved 10th Oct 2003 from 
http://portal.opengeospatial.org/files/index.php?artifact_id=890. 

OGC. (1999b). "Open GIS Simple features Specification for SQL." Revision 1.1. Retrieved 
15th Oct 2003 from http://www.opengis.org/specs/?page=specs. 

OGC. (1999c). "The Open GIS Abstract Specification Topic 10 - Feature Collections." 
Version 4. Retrieved May 2006 from 
http://portal.opengeospatial.org/files/?artifact_id=897. 

OGC. (2000). "Geography Markup Language (GML) 1." from http://www.opengis.org/. 

OGC. (2002). "The Open Geospatial Consortium Abstract Specification Topic 2: Spatial 
Referencing by Coordinates." Version 1.0.2. Retrieved 10th Oct 2003 from 
http://www.opengis.org/specs/?page=abstract. 

OGC. (2003). "Open Geospatial Reference Manual." Retrieved 2003-04-22 from 
http://www.opengis.org/info/orm/. 

OGC. (2004). "Geography Markup Language (GML)." GML-3.1.0.doc Retrieved Mar 2007 
from http://www.opengeospatial.org/standards/gml. 

OGC. (2006). "The GeoAPI Project." Retrieved 2007 from 
http://geoapi.sourceforge.net/stable/site/index.html. 

OMG. (1997). "UML 1.5." Retrieved 2004 from 
http://www.omg.org/technology/documents/formal/uml_2.htm. 



Bibliography 

245 

Patterson, E. M. and D. E. Rutherford (1965). Elementary Abstract Algebra. Oliver and 
Boyd, Edinburgh and London. 

Penninga, F., P. Van Oosterom and B. M. Kazar (2006). A TEN-based DBMS Approach 
for 3D Topographic Data Modeling. Spatial Data Handling 06. 

Peucker, T. K., R. J. Fowler, J. J. Little and D. M. Mark (1978). The triangulated irregular 
network. Digital Terrain Models Symposium (American Society for 
Photogrametery). St. Louis. 

Randell, D. A., Z. Cui and A. G. Cohn (1992). A spatial logic based on regions and 
connection. 3rd International Conference on Principles of Knowledge 
Representation and Reasoning, Cambridge MA, USA, Morgan Kaufmann. 

Roy, A. J. and J. G. Stell (2002). A Qualitative Account of Discrete Space. GIScience 2002, 
Boulder, Colorado, USA. 

SAA (1984). Interchange of Feature Coded Digital Mapping Data. AS2482-1984, Standards 
Association of Australia. 

Schneider, M. and R. Praing. (2006). "Efficient Implementation for Topological Predicates 
on Complex Spatial Objects: The Exploration Phase." Retrieved May 2007 from 
http://www.cise.ufl.edu/submit/files/file_294.pdf. 

Sedgwick, R. (1983). Algorithms 1st edition. Addison - Wesley, Reading Mass. 

Sedgwick, R. (1988). Algorithms 2nd edition. Addison - Wesley, Reading Mass. 

Si, H. and K. Gärtner (2005). Meshing Piecewise Linear Complexes by Constrained 
Delaunay Tetrahedralizations. 14th International Meshing Roundtable, San Diego, 
California. 

Smith, B. (1997). Boundaries: An Essay in Mereotopology. The Philosophy of Roderick 
Chisholm. L. Hahn, LaSalle: Open Court: 534-561. 

Stell, J. G. and M. F. Worboys (1997). The Algebraic Structure of Sets of Regions. COSIT 
'97, Laurel Highlands, Pennsylvania. 

Stell, J. G. (1999). "Boolean Connection Algebras: A New Approach to the Region-
Connection Calculus." Artificial Intelligence 122: 111-136. 

Stonebraker, M. and D. Moore (1996). Object-Relational DBMS's: The Next Great Wave. 
Morgan Kaufmann, San Francisco. 

Stoter, J. and M. A. Salzmann (2003). "Towards a 3D cadastre: Where do cadastral needs 
and technical possibilities meet?" Computers, Environment and Urban Systems 27: 
395-410. 

Stoter, J. (2004). 3D Cadastre. Delft, Delft University of Technology. 

Stoter, J. and P. van Oosterom (2006). 3D Cadastre in an International Context. Taylor & 
Francis, Boca Raton FL. 



Bibliography 

246 

Sun. (2003). "Class BigInteger." JavaTM 2 Platform, Standard Edition, v 1.4.2 API 
Specification Retrieved Mar 2007 from 
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigInteger.html. 

Tarbit, S. and R. J. Thompson (2006). Future Trends for Modern DCDB's, a new Vision for 
an Existing Infrastructure. Combined 5th Trans Tasman Survey Conference and 
2nd Queensland Spatial Industry Conference. Cairns, Queensland, Australia. 

Thompson, R. J. (2003). Metadata and Timestamping in RIME. Spatial Sciences 2003, 
Canberra. 

Thompson, R. J. (2005a). 3D Framework for Robust Digital Spatial Models. Large-Scale 
3D Data Integration. S. Zlatanova and D. Prosperi. Boca Raton, FL, Taylor & 
Francis. 

Thompson, R. J. (2005b). 3D Cadastral Issues Within NR&M. Brisbane, Department of 
Natural Resources and Mines (Internal Report). 

Thompson, R. J. and P. van Oosterom (2006a). Interchange of Spatial Data – Inhibiting 
Factors. 9th AGILE International Conference on Geographic Information Science, 
Visegrád, Hungary. 

Thompson, R. J. and P. Van Oosterom (2006b). Implementation Issues In The Storage Of 
Spatial Data As Regular Polytopes. UDMS 06, Aalborg. 

Thompson, R. J., P. van Oosterom and D. Pullar (2006c). Robust Representation and 
Analysis of Geo Information. AutoCarto, Vancouver, Washington, USA. 

Thompson, R. J. and P. Van Oosterom (2007). Mathematically provable correct 
implementation of integrated 2D and 3D representations. 3D geoinfo 07, The 2nd 
International Workshop on 3D Geo-Information: Requirements, Acquisition, 
Modelling, Analysis, Visualisation. Delft, the Netherlands. 

Tse, R. and C. Gold (2002). "TIN Meets CAD - Extending the TIN Concept in GIS." 
Future Generation Computer Systems 20(7): 1171-1184. 

Van den Bussche, J. (2000). Constraint Databases, Queries, and Query Languages. 
Constraint Databases. G. M. Kuper, L. Libkin and J. Paredaens. Berlin, Springer. 

van Loenen, B. (2006). Developing geographic information infrastructures. Delft 
University Press, Delft, The Netherlands. 

van Oosterom, P. (1997). Maintaining Consistent Topology including Historical Data in a 
Large Spatial Database. Auto Carto 13, Seattle, WA. 

van Oosterom, P., J. Stoter, W. Quak and S. Zlatanova (2002). The Balance Between 
Geometry and Topology. 10th International Symposium on Spatial Data Handling, 
Ottawa, Canada, Springer-Verlag, Berlin. 

van Oosterom, P., W. Quak and T. Tijssen (2003). Polygons: The unstable foundation of 
spatial modeling. International Society of Photogrammetery and Remote Sensing, 
Quebec. 



Bibliography 

247 

van Oosterom, P., W. Quak and T. Tijssen (2004). About Invalid, Valid and Clean 
Polygons. Developments In Spatial Data Handling. P. F. Fisher. New York, 
Springer-Verlag: 1-16. 

van Oosterom, P., H. D. Ploeger, J. Stoter, R. J. Thompson and C. Lemmen (2006). Aspects 
of a 4D cadastre: a first exploration. XXIII International FIG congress, Munich, 
Germany. 

Vandeurzen, L., M. Gyssens and D. Van Gucht (2001). "On the expressiveness of linear-
constraint query languages for spatial databases." Theoretical Computer Science 
254(1-2): 423-463. 

Veregin, H. (1998). "Data Quality Measurement and Assessment." NCGIA Core 
Curriculum in Geographic Information Science from 
http://www.ncgia.ucsb.edu/giscc/units/u100/u100_f.html. 

Watson, P. (2002). Topology and ORDBMS Technology, Laser-Scan Ltd. 

Weisstein, E. W. (1999a). "Vector Space." MathWorld -- A Wolfram Web Resource from 
http://mathworld.wolfram.com/VectorSpace.html. 

Weisstein, E. W. (1999b). "Open Set." MathWorld -- A Wolfram Web Resource. Retrieved 
2006 from http://mathworld.wolfram.com/OpenSet.html. 

Weisstein, E. W. (1999c). "Equivalence Relation." MathWorld -- A Wolfram Web Resource 
Retrieved 2004 from http://mathworld.wolfram.com/EquivalenceRelation.html. 

Weisstein, E. W. (1999d). "Field Axioms." MathWorld -- A Wolfram Web Resource from 
http://mathworld.wolfram.com/FieldAxioms.html. 

Weisstein, E. W. (1999e). "Boolean Algebra." MathWorld -- A Wolfram Web Resource 
Retrieved 20 Jan 2007 from http://mathworld.wolfram.com/BooleanAlgebra.html. 

Weisstein, E. W. (2002a). "Plane." MathWorld -- A Wolfram Web Resource Retrieved Mar 
2007 from http://mathworld.wolfram.com/Plane.html. 

Weisstein, E. W. (2002b). "Hessian Normal Form." MathWorld -- A Wolfram Web 
Resource Retrieved June 2007 from 
http://mathworld.wolfram.com/HessianNormalForm.html. 

Weisstein, E. W. (2005). "Rational Number." MathWorld -- A Wolfram Web Resource 
Retrieved 23 May 2005 from 
http://mathworld.wolfram.com/RationalNumber.html. 

Weisstein, E. W. (2006a). "Euclidean Algorithm." MathWorld -- A Wolfram Web Resource 
Retrieved Mar 2006 from 
http://mathworld.wolfram.com/EuclideanAlgorithm.html. 

Weisstein, E. W. (2006b). "Greatest Common Divisor." MathWorld -- A Wolfram Web 
Resource Retrieved Mar 2007  from 
http://mathworld.wolfram.com/GreatestCommonDivisor.html. 

Wilding, M. (1990). A Mechanically-Checked Correctness Proof of a Floating-Point Search 
program, Computational Logic Inc. 



Bibliography 

248 

Worboys, M. F. (1998). Some Algebraic and Logical Foundations for Spatial Imprecision. 
Data Quality in Geographic Information: From Error to Uncertainty. M. 
Goodchild and R. Jeansoulin, Hermes. 

Worboys, M. F. (2004). GIS: A Computing Perspective. Taylor & Francis. 

Zlatanova, S. (2000). 3D GIS for Urban Development. Graz, Graz University of 
Technology. 

Zlatanova, S., A. A. Rahman and W. Shi (2002). Topology for 3D spatial objects. 
International Symposium and Exhibition on Geoinformation, Kuala Lumpur. 

Zlatanova, S., A. A. Rahman and W. Shi (2004). "Topological models and frameworks for 
3D spatial objects." Journal of Computers & Geosciences 30(4): 419-428. 

 

 



  

  

Appendix I Definitions and Axioms 

For convenience, the definitions and axioms mentioned in the text of the preceding chapters 
have been repeated here. They will be referred to in the following appendices in the proofs 
of assertions.  

I.1. Axioms for a Field 

(Patterson and Rutherford 1965; Weisstein 1999d) (See also Section 1.4.2) 

(F.1) a + b = b + a Addition is commutative 
(F.2) (a + b) + c = a + (b + c) Addition is associative 
(F.3) a.(b + c) = a.b + a.c Addition/multiplication are distributive 
(F.4) a + 0 = a = 0 + a Additive identity 
(F.5) a + (-a) = 0 = (-a) + a Additive inverse 
(F.6) a.b = b.a Multiplication is commutative 
(F.7) (a.b).c = a.(b.c) Multiplication is associative 
(F.8) a.1 = a = 1.a Multiplicative identity 
(F.9) a.a-1 = 1 = a-1.a if a ≠ 0 Multiplicative inverse 

I.1. Axioms for Arithmetic Operations 

The following set of computational arithmetic axioms have been chosen, as a small set 
sufficient to prove the following assertions (see Section 4.1.1). These can, in general, be 
expected to be satisfied by all computer hardware. Circled operations indicate the results of 
computer evaluation of the equivalent mathematical operation: 

(a4.1) A=B, C=D ⇒ A⊕C = B⊕D  Addition is repeatable 
(a4.2) A=B, C=D ⇒ A⊗C = B⊗D  Multiplication is repeatable 
(a4.3) A=B ⇔ A B Equals is correctly evaluated 
(a4.4) A>B ⇔ A B Inequality is correctly evaluated 
(a4.5) A = -A Negation is correctly evaluated 
(a4.6) (-A)⊗B = -(A⊗B) Negation distributes over multiplication 
(a4.7) (-A) ⊕ (-B) = -(A⊕B)  Negation distributes over addition 
(a4.8) 0 ⊗ A = 0 Multiplication by zero is correct 
(a4.9) 0 ⊕ A = A Addition of zero is correct 
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I.2. Half Space Definitions 

(See Section 4.1.2). In 3D a half space H(A,B,C,D) is defined as the set of all points 
P(x,y,z), -M ≤ x,y,z < M for which computational evaluation of the following inequalities 
yields these results: 

(((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D)  0 or 
[(((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D)  0 and A  0] or  
[((B⊗y ⊕ C⊗z) ⊕ D)  0 and A  0 and B  0] or  
[(C⊗z ⊕ D)  0 and A  0, B  0 and C  0] 
Where M is range of values allowed for point representations. (def4.1) 

Half Space Equality: 

H(A, B, C, D) ≡ H’(A’, B’, C’, D’) =def A=A’, B=B’, C=C’, D=D’. (def4.2) 
H(A, B, C, D) ≅ H’(A’, B’, C’, D’) =def ∃ integers I>0, J>0:  
    A⊗I = A’⊗J,  B⊗I = B’⊗J,  C⊗I = C’⊗J,  D⊗I = D’⊗J. (def4.3) 
H = H’ =def p∈H ⇔ p∈ H’.  (def4.4) 

Empty and universal half spaces: 

HΦ =def H(0,0,0,-1) (‘empty’ i.e. points for which –1  0). (def4.5) 
H∞ =def  H(0,0,0,1) (‘everything’ i.e. points for which 1  0). (def4.6) 

The following operations are defined on half spaces: 

H∪H’ =def {p: p∈H ∨ p∈H’} 1 (def4.7)  
H∩H’ =def {p: p∈H ∧ p∈H’} (def4.8)  

The complement of a half space is defined as: 

),,,( DCBAH −−−−= , where ),,,( DCBAH = . (def4.9) 

I.3. Convex Polytope Definition 

(See Section 4.1.3). A convex polytope is the intersection of any finite number of half 
spaces: 

C = {Hi: i=1..n} (def4.10) 
Cps =def {p: p∈Hi, i=1..n}. (def4.11) 

Where there is no danger of confusion, Cps is denoted as C, and the definition given in the 
shorthand form of: 

i
ni
HC

..1=
= I  where Hi, i=1..n is a set of half spaces.  (def4.12) 

 

                                                           

1 The symbols ∨ and ∧ are interpreted as "or" and "and" respectively. 
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The half spaces at infinity: 

H1
∞ = (1,0,0,M),  (def4.13) 

H2
∞ = (-1,0,0,M),  

H3
∞ = (0,1,0,M),  

H4
∞ = (0,-1,0,M),  

H5
∞ = (0,0,1,M),  

H6
∞ = (0,0,-1,M). 

Operations on Convex Polytopes: 

'CC
p
I  =def 'CC

s
U  (def4.14) 

C⊆C’ =def ∀p∈C ⇒ p∈C’. (def4.15) 
C=C’ =def C⊆C’, C’⊆C (def4.16) 

Def 4.14 could be expressed as: Where C = {Hi: i=1..n}, C’ = {H’j: j=1..m},  

'CC
p
I  = {Hi: i=1..n, H’j: j=1..m}. (def4.17) 

CΦ =def {HΦ}   (def4.18) 
C∞ =def {}.   (def4.19) 

I.4. Regular Polytope Definitions 

(See Section 4.1.4). 

O =def {Ci  ≠ CΦ: i=1..n} (def4.22) 
Ops = {p: ∃Ci ∈ O: p∈Ci} (def4.23) 

Where there is no danger of confusion, Ops is denoted as O, and the definition given in the 
shorthand form of: 

U
mi

iCO
..1=

=  where Ci, i =1..m are convex polytopes, Ci  ≠ CΦ.  (def4.24) 

Operations on Regular Polytopes (where O = {Ci: i=1..n}, O’ = {C’j: j=1..m}):  

O ∪ O’ =def {Ci:i=1..n, Cj:j=1..m} (def4.25) 
O ∩ O’ =def {(Ci∩Cj): i=1..n, j=1..m}     (def4.26) 

Note that this is could be expressed as: 

O ⊆ O’ =def ∀p∈O: p∈O’. (def4.27) 
O = O’ =def O⊆O’ ∧ O’⊆ O (def4.28) 
OΦ = {} (i.e. a set containing no convex polygons) (def4.29) 
O∞ = {C∞}. (def4.30) 
C  =def  {C’j, j=1..m}, where C’j }{ jH=  (def4.31) 
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This can be expressed as: 

}{
..1

j
mj

HC
=

= U  (f4.15) 

 (Note that C is a regular polytope – not a convex polytope) 
O =def i

ni
C

..1=
I   (def4.32) 

For convenience, some further terminology is introduced: 

O∩C =def O∩{C}, C∩O =def O∩{C} (def4.33)  
O∪C =def O∪{C}, C∪O =def O∪{C} (def4.34)  
O - O' =def 'OO ∩  (def4.35) 

Regular Polytope Overlap 

OV(O1,O2) =def O1∩O2 ≠ Oφ (def4.37) 

This can be restated as: 

OV(O1,O2) =def ∃ C1i∈ O1, C2j∈ O2 : ¬Empty(C1i∩C2j).  (def4.38) 
where Empty(C) =def ∀p: p ∉ C.  (def4.39) 

Other RCC relations 

Part of P(O1,O2) =def  Empty(O1 ∩ Ō2)  (def4.40)  
Equals EQ(O1,O2) =def P(O1,O2) and P(O2, O1) (def4.41) 
Proper Part  PP(O1,O2) =def P(O1,O2) ∧¬EQ(O2,O1)  (def4.42) 
(can be restated as)  PP(O1,O2) =def P(O1,O2) ∧¬P(O2, O1) 
Proper Overlap  PO(O1,O2) =def OV(O1,O2) ∧ ¬P(O1,O2) ∧¬P(O2,O1) (def4.43) 
Discrete  DR(O1,O2) =def ¬OV(O1,O2). (def4.44) 

I.5. Topological Space Axioms 

(See Section 3.2.1). A topological space is a set X and a family of subsets O (called open 
sets) (Gaal 1964) such that: 

(O.1) ∅ ∈ O and X ∈ O 
(O.2) if O1∈ O and O2∈ O then ∈21 OO I O 
(O.3) if Oi ∈ O for all i ∈ I then ∈

∈
i

Ii
OU O 

Where ∅ is the empty set, and X ∈ O means that the universal set is also open. I is an index 
set, not necessarily countable. 
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I.6. Metric Space Axioms 

(Gaal 1964) (See Section 3.2.2): 

(M.1) d(p1, p2) ≥ 0      (non-negativity)  
(M.2) d(p1, p2) = 0   ⇔  p1 = p2      (identity of indiscernibles)  
(M.3) d(p1, p2) = d(p2, p1)     (symmetry)  
(M.4) d(p1, p3) ≤ d(p1, p2) + d(p2, p3)      (triangle inequality).  

Definition of metric: 
2

12
2

12
2

1221 )()()(),( zzyyxxppd −+−+−=  (def4.36) 

I.7. The Axioms for a Boolean Algebra 

(Weisstein 1999e) (See Section 3.2.3):  

(BI1) A∪A = A∩A = A     
(BC1) A∩B = B∩A  
(BC2) A∪B = B∪A  
(BA1) A∩(B∩C) = (A∩B)∩C   
(BA2) A∪(B∪C) = (A∪B)∪C   
(BAb1) A∩(A∪B) = A∪(A∩B) = A  
(BD1) A∩(B∪C) = (A∩B) ∪ (A∩C)  
(BD2) A∪(B∩C) = (A∪B) ∩ (A∪C)  
(BB1) 0∩A = 0  
(BB2) 0∪A = A  
(BB3) 1 ∩ A = A  
(BB4) 1 ∪ A = 1  
(BInv1) A∩Ā = 0  
(BInv2) A∪Ā = 1  

I.8. Dr_rational Number Definitions 

(See Section 4.4). A dr-rational number r can be defined as an ordered pair of 
computational integers (I,J) interpreted as r = I/J:  

–N''≤I≤ N'' 
0<J≤ N' 
For 3D applications use N' = 6M3, N'' = 18M4.   (f4.30) 
For 2D applications use N' = 2M2, N'' = 4M3.   (f4.31) 

The first order of resolution, grid1 or G1 is based on the set of integers. The coefficients 
A,B,C and D in the half space definitions use this resolution.  

The second order of resolution, grid2 or G2 is the set of rational points p = x,y,z: –M  ≤  
x,y,z  ≤  M which can be the vertices of a convex polytope - that is to say the possible points 
of intersection of three half spaces.  
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I.9. Pseudo-Closure and Vertices 

The pseudo-closure of a half-space, H(A,B,C,D), Hpc, is defined as the set of all dr-rational 
points (x,y,z)  such that point (x,y,z) ∈ Hpc if  

–M ≤ x,y,z ≤ M  2 
(Ax + By + Cz + D) ≥  0.  (def4.45) 

The pseudo-closure Cpc of a convex polytope C = {Hi: i=1..n ∈H}  is defined as: 

Cpc =def {Hi
pc : Hi∈C, Hj

∞pc, j=1..6}     (def4.46) 
Where Hj

∞, the "half spaces at infinity" are as above (def4.13): 

The pseudo-closure Opc of a regular polytope O = {Cj: j =1,m} is defined as: 

Opc = {Cj
pc : Cj∈O} (def4.47) 

A vertex of a convex polytope C is a pseudo-rational point v = (x,y,z) ∈ Cpc where there 
exist Hi, Hj, Hk ∈ C  i≠j≠k≠i such that: 

Aix + Biy + Ciz + Di  = 0 
Ajx + Bjy + Cjz + D j = 0 
Akx + Bky + Ckz + Dk = 0 (f4.34) 

I.10. Connectivity Definitions for Integer Representation 

Convex polytope A is Ca connected to B if there exists a point a∈A and a point b∈B, such 
that the distance between a and b is less than some defined constant ε. 

Two definitions are given for Cb connectivity – see Section 5.2.1, but these are not used in 
the appendices to follow. 

I.11. Connectivity Definitions for Dr-Rational Representation 

I.11.1. For Convex Polytopes: 

Ca(C1,C2) =def  ∃p: p ∈ C1
pc ∧ p ∈ C2

pc. (def5.1) 
Ca(C1,C2) =def  ∃C: C ⊆ C1 ∪ C2 ∧ OV(C,C1) ∧ OV(C,C1) . (def5.2) 

I.11.2. For Regular Polytopes 

A Ca connection S within convex polytope O is defined as a set of convex polytopes S = 
{Ci: i=1..m, Ci∈O} such that: 

S  is a Ca connection if m=1. 
S’ ={C, Ci,C∈O, i=1..m} is a Ca connection if  {Ci, i=1..m} is a Ca connection , and ∃ i ≤ 
m such that Ca(C, Ci). 

                                                           
2 Extending the range of x, y, z which was –M ≤ x,y,z < M. 
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A regular polytope i
ni
CO

..1=
= U is Ca connected if {Ci, i=1..n} is a Ca connection.  

Cb connectivity has the equivalent definition. 

I.12. The Egenhofer Matrix 

(See Section 3.2.5). Consists of a 3×3 matrix of Boolean values (Egenhofer 1994), 
structured as follows (Table I-1): 

Table I-1: The Egenhofer 9 Matrix  

A \ B Interior Boundary Exterior 

Interior A° ∩ B° not empty A° ∩ δB not empty A° ∩ −B  not empty 

Boundary δA ∩ B° not empty δA ∩ δB not empty δA ∩ −B  not empty 

Exterior −A ∩ B° not empty −A ∩ δB not empty −A ∩ −B  not empty 

Where A° is the interior of A, δA is the boundary of A, and −A  is the exterior of A. 

I.13. The Region Connection Calculus (RCC) 

(Randell et al. 1992) (See Section 3.2.8): 

(Cref)  ∀x C(x, x) 
(Csym)  ∀xy [C(x, y)→C(y, x)]. 

I.14. Other RCC Relations 

(See Section 3.2.8) 

DCa(O1, O2) =def  ¬Ca(O1, O2) (def5.3) 
ECa(O1, O2) =def  Ca(O1, O2) ∧ ¬OV(O1, O2)  (def5.4) 
TPPa(O1, O2) =def  PP(O1, O2) ∧ Ca(O1, 2O ) (def5.5) 

NTPPa(O1, O2) =def  PP(O1, O2) ∧ ¬Ca(O1, 2O ) (def5.6) 
DCb(O1, O2) =def  ¬Cb(O1, O2)  (def5.7) 
ECb(O1, O2) =def  Cb(O1, O2) ∧ ¬OV(O1, O2)  (def5.8) 
TPPb(O1, O2) =def  PP(O1, O2) ∧ Cb(O1, 2O ) (def5.9) 

NTPPb(O1, O2) =def  PP(O1, O2) ∧ ¬Cb(O1, 2O ) (def5.10) 
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I.15. The Axioms for a Proximity Space 

The axioms given for a proximity space X with the proximity relation δ, regions A, B, C, E 
and empty region ∅ are (Naimpally and Warrack 1970) (See Section 3.2.6): 

(PS1) A δ B ⇒ B δ A 
(PS2) (A ∪ B) δ C ⇔ A δ C ∨ B δ C 
(PS3) A δ B ⇒ A ≠ ∅ ∧ B ≠ ∅ 
(PS4) A δ B ⇒ ∃ E: A δ E ∧ (X-E)  δ B 3 
(PS5) A ∩ B ≠ ∅ ⇒ A δ B. 

I.16. The Axioms for a Boolean Connection Algebra 

(See Section 3.2.4). In addition to the axioms for a Boolean algebra above (Appendix I.7),  
the following define connectivity C, thus creating a Boolean connection algebra (Roy and 
Stell 2002): 

(B1) C(A, B) ⇒ C(B, A) 
(B2) C(A, A) for A ≠ 0 
(B3) ∀ ),(:)1,0( AACAAA ≠≠  
(B4) ∀ A ≠ 0, B ≠ 0, D ≠ 0: C(A, B∪D) ⇔ [C(A,B) ∨ C(A,D)] 
(B5) ∀ A ≠ 1 , ∃ B ≠ 0 : ¬C(A,B). 

 

                                                           
3 A δ B signifies “not (A δ B)”. 



 

  

Appendix II Proof  of  Assertions on Half  
Space Operations 

In order to be as general as possible, the following proofs are based on the weakest set of 
assumptions as to the number representation that is possible for that proof. The set of 
assumptions given in Appendix I.2 will be used for preference, as they can be satisfied by 
integers, dr-rational numbers, rational numbers and floating point numbers. The terms 
general number and general point will be used as shorthand terms for numbers and points 
that are based on this minimal set of assumptions. 

Where more restrictive axioms are required for the proof – for example that the arithmetic 
is exact, the assumption of number representation is made explicit (e.g. Appendix II.12, 
which is not applicable to floating point representations). 

II.1. A half space can be generated whose surface is guaranteed to 
pass within one unit of resolution of three given points. (Section 
4.1.2).  

If the three points are collinear, many such half spaces can be generated, so that the 
assumption here is made that the points are not collinear. 

It is well known in Euclidean space RR3 , that an equation of the form ax + by + cz + d = 0 
can be generated to define a plane which passes through any three non-collinear points 
(xi,yi,zi) i=1..3 (Weisstein 2002a). Here a, b, c and d are real numbers. It is required to be 
proved that integers A, B, C and D can be found to provide a reasonable approximation. 

Without loss of generality assume |a| ≥ |b| and |a| ≥ |c|. If this is not the case, the following 
argument can be applied using b or c whichever has the largest absolute value.  

On this assumption, |a| > 0. Replace a, b, c and d with a’, b’, c’, d’ where: 

a’ = M 
b’ = Mb/a 
c’ = Mc/a 
d’ = Md/a 

Clearly for the original three points a’xi + b’yi + c’zi +d’ = 0, so that this is also a plane 
which passes through the points. By the assumption, -M ≤ b’,c’ ≤ M. Since for any of the 
three original points  

a’xi + b’yi + c’zi +d’ = 0 ⇒ d’ = -a’xi – b’yi – c’zi 
 ⇒ |d’| ≤ |a’||xi| + |b’||yi| + |c’||zi| 
 ⇒ |d’| ≤ |M||xi| + |M||yi| + |M||zi| 
 ⇒ |d’| ≤ 3M2
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Define the integers A = NINT(a’), B = NINT(b’), C = NINT(c’), D = NINT(d’), where for 
real number r, R = NINT(r) is defined as the nearest integer R to r such that r-0.5 ≤ R < 
r+0.5.  

Consider the plane defined by Ax + By + Cz +D = 0. 
It can still be asserted that |A| ≥ |B| and |A| ≥ |C| following the assumption, and A = M.   
Therefore for any original point (xi,yi,zi): -M+1 ≤ yi, zi ≤ M-1,  

let x = )(1 DCzByM ii ++− . 

Clearly Ax + Byi + Czi + D = 0 so that point (x,yi,zi) is on the plane exactly. 

But xi = )'''(1 dzcybM ii ++−  since (x,yi,zi) is an original point. 

So: x-xi =  )'''(1 dzcybDCzByM iiii −−−++−  

= )]')'()'[(1 dDzcCybBM ii −+−+−− . 

Consider )]')'()'[( dDzcCybB ii −+−+− : 

For -M+1 ≤ yi, zi ≤ M-1, 

|)')'()'(| dDzcCybB ii −+−+−  < 0.5(M-1)+0.5(M-1)+0.5 
or |)')'()'(| dDzcCybB ii −+−+−  < M - 0.5. (II.1) 

Therefore | x-xi | ≤ (1 - M2
1 ) < 1. 

Note that this proves that such a plane exists, but does not provide a recipe for producing 
such a plane, since real number arithmetic has been assumed in the proof. 

II.2. A=A’, B=B’, C=C’, D=D’ ⇒ H(A,B,C,D) = H(A’,B’,C’,D’)  
(Section 4.1.2 - f4.1) 

In this proof (and all following proofs up to and including II.11), p is assumed to be a 
generic point as defined above. The arithmetic axioms can be found in Appendix I.2. 

Axioms a4.3 and a4.4 allow the definition of a half space to be restated as: 

H(A, B, C, D) is the set of points p = (x,y,z), -M ≤ x,y,z < M, such that: 
 (((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D) > 0 or 
[(((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D) = 0 and A > 0] or  
[((B⊗y ⊕ C⊗z) ⊕ D) = 0 and A = 0 and B > 0] or  

[(C⊗z ⊕ D) = 0 and A = 0, B = 0 and C > 0] 

This proof follows from the axioms a4.1 to a4.4, which ensure that the same sequence of 
operations on equal operands produce the same results. 
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Note that assertion f4.21 cannot be shown to follow from this set of axioms. Thus f4.2 
cannot be assumed to apply to floating point representations 

II.3. Proof that HpHp ∉⇔∈  (Section 4.1.2 - f4.5) 

Assuming p∈H,  

If (((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D) > 0  

⇒ (((-A⊗x ⊕ -B⊗y) ⊕ -C⊗z) ⊕ -D) < 0 by a4.6, a4.7 
Thus p fails the first line of the definition of H and therefore Hp∉ . 

If (((A⊗x ⊕ B⊗y) ⊕ C⊗z) ⊕ D) = 0, then: 

A > 0 or 
A = 0, B > 0 or 
A = B = 0, C > 0 or 
A = B = C = 0, D > 0. 

Considering the first line: 

A > 0 ⇒ -A < 0 by a4.4, a4.5 
Thus p fails the definition of H . 

Continuing in this way shows that for all p∈H, Hp∉ . 

Applying the same logic in reverse shows that HpHp ∉⇒∈ .  

Therefore HpHp ∉⇔∈ . 

II.4. Proof that HH =  (Section 4.1.2 - f4.6) 

If H = H(A, B, C, D), by defintion ),,,( DCBAHH −−−−= and therefore: 

 HDCBAHH == ),,,( . by a4.5 

II.5. ∀p, p ∉ HΦ (Section 4.1.2 - f4.3) 

Referring to the definition of HΦ: 

HΦ =def H(0,0,0,-1) (def4.5) 

 

 

                                                           
1 A=rA’, B=rB’, C=rC’, D=rD’, r > 0  ⇒ p∈H ⇔ p∈ H’ 
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For any p(x, y, z), 

0⊗x ⊕ 0⊗y) ⊕ 0⊗z) ⊕ -1 = -1 < 0 by a4.8, a4.9 
 ⇒ p ∉ HΦ.  

II.6. ∀p, p ∈ H∞ (Section 4.1.2 - f4.4)  

Referring to the definition of HΦ: 

H∞ =def H(0,0,0,1) (def4.6) 

For any p(x, y, z), 

0⊗x ⊕ 0⊗y) ⊕ 0⊗z) ⊕ 1 = 1 < 0 by a4.8, a4.9 
 ⇒ p ∈ H∞.  

II.7. Proof that ∞=∪ HHH  (Section 4.1.2 - f4.7) and 

Φ=∩ HHH (f4.8) 

HHpHp ∪∈⇒∈  by def4.7 

HHpHpHp ∪∈⇒∈⇒∉  by f4.5, def4.7 

therefore HHpp ∪∈∀ :  

and ∞=∪ HHH  by f4.4. 

Similar reasoning shows that Φ=∩ HHH .  

II.8. The Space of Regular Polytopes is a Topological Space (Section 
4.1.4).  

(O.1) OΦ ∈ O and O∞ ∈ O 

These follow immediately from the definition of OΦ and O∞. 

(O.2) if O1∈ O and O2∈ O then ∈21 OO I O 

This follows from the definition of intersection of regular polytopes. 

(O.3) if Oi ∈ O for all i∈I then ∈
∈

i
Ii
OU O 

This follows from the definition of the union of convex polytopes, but note, that the axiom 
requires closure under the union of any set (not necessarily finite) of convex polytopes. 
Since there is only a finite number of regular polytopes that can possibly be defined (albeit 
a very large number), this is not an issue. 
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II.9. Proof that p∈C ∧ p∈C’ ⇔ p∈ I
p

CC '  (Section 4.1.3 - f4.9) 

'CC
P
I  =def 'CC

S
U  (def4.14) 

p∈C ⇒ ∀ Hj ∈ C: p∈Hj 
p∈C’ ⇒ ∀ Hi’ ∈ C’: p∈Hi’ 

Therefore   p∈C ∧ p∈C’ ⇒ p∈ 'CC
S
U  

Therefore   p∈C ∧ p∈C’ ⇒ p∈ 'CC
P
I .

 
Conversely: p∈ 'CC

P
I  ⇒ p∈ 'CC

S
U  

Therefore ∀ Hi ∈ C ∪ C’: p∈Hi 
So that p∈C and p∈C’. 

This also shows that CCC
P

⊆'I , since p∈ 'CC
P
I  ⇒ p∈C. (f4.10) 

Note that proposition f4.11 is proved in Chapter 4: 
∀C, CΦ ⊆ C ⊆ C∞. (f4.11) 

II.10. Miscellaneous Proofs on Regular and Convex Polytopes (Section 
4.1.4) 

Proof that CpCp ∉⇔∈  (f4.16)  

p ∈ C ⇒ ∀ Hi ∈ C: p∈Hi 
Therefore ∀ H ∈ C, p ∉ H  - see Appendix II.2 
Therefore p ∉ { H }  
Therefore Cp∉ . (def4.31) 

Cp∉ ⇒ ∀ jH  ∈ C : p∉ jH  

Therefore ∀ jH  ∈ C , p ∈ Hj  - see Appendix II.2 
Therefore p∈Hj,  ∀ Hj ∈ C 
Therefore p ∈ C. 

Similar reasoning shows that: 

CpCp ∈⇔∉ . (f4.17) 

Proof that OpOp ∉⇔∈  (f4.18) 

p ∈ O ⇒ ∃ C ∈ O: p ∈ C 
Therefore for this C, Cp∉   

But O =def i
ni
C

..1=
I   (def4.32) 

Therefore Op∉ . 
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Similar reasoning shows that OpOp ∉⇒∈  and that: 

OpOp ∈⇔∉ . (f4.19) 

It follows from the definition of union that: 

 p ∈ O ∨ p ∈ O’ ⇔ p ∈ O ∪ O’ (f4.20) 
O ⊆ (O ∪ O’) ∀ O’. (f4.21) 

Proof that p ∈ O ∧ p ∈ O’ ⇔ p ∈ O ∩ O’ (f4.22) 

p ∈ O ⇒ ∃ Ci ∈ O: p ∈ Ci 
p ∈ O’ ⇒ ∃ Cj ∈ O: p ∈ Cj 
p ∈ O ∧ p ∈ O’ ⇒ p ∈ Ci ∩ Cj   
Therefore p ∈ O ∩ O’ 

p ∈ O ∩ O’ 
⇒ ∃ Ci ∈ O, Cj ∈ O’: p ∈ Ci ∩ Cj’ 
⇒ p ∈ Ci ∧ p ∈ Cj’ 
⇒ p ∈ O ∧ p ∈ O’. 

Proof that (O ∩ O’) ⊆ O ∀ O’. (f4.23) 

p ∈ O ∩ O’ 
⇒ ∃ Ci ∈ O, Cj ∈ O’: p ∈ Ci ∩ Cj’ 
⇒ p ∈ Ci  

⇒ p ∈ O.  

It follows directly from f4.17 above that: 

∞=∪ OCC  (f4.24) 

φOCC =∩ . (f4.25) 
It follows directly from f4.19 above that: 

OO =  (f4.26) 

∞=∪ OOO  (f4.27) 

φOOO =∩ . (f4.28) 

II.11. Proof that the Set of Regular Polytopes forms a Boolean algebra 
(Section 4.2.4) 

Axioms BI1, BC1, BC2, BB1, BB2, BB3, and BB4 (See Appendix I.8) follow from the 
definition of union, intersection and the empty and universal regular polytope respectively. 
For regular polytopes A, B, C:  
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II.11.1. Proof that A∩(B∩C) = (A∩B)∩C  (BA1) 
p ∈ A∩(B∩C) ⇒ p ∈ A ∧ p ∈ (B∩C)    
⇒ p ∈ A ∧ (p ∈ B ∧ p ∈ C)    
⇒ (p ∈ A ∧ p ∈ B) ∧ p ∈ C   
⇒ (p ∈ A ∩ B) ∧ p ∈ C   
⇒ p ∈ (A ∩ B) ∩ C    

Similarly the converse. 

II.11.2. Similar Proofs 

Similar reasoning can be used to show:. 

A∪(B∪C) = (A∪B) ∪C  (BA2) 
A∩(A∪B) = A∪(A∩B) = A (BAb1)  
A∩(B∪C) = (A∩B) ∪ (A∩C) (BD1)  
A∪(B∩C) = (A∪B) ∩ (A∪C) (BD2) 

II.11.3. Proof that A∩Ā = 0 (BInv1) 

∀ p ∈ A ⇒ p ∉ Ā by f4.19 
⇒ p ∉ A∩Ā  by f4.22 

∀ p ∈ Ā  ⇒ p ∉ A  by f4.19 
⇒ p ∉ A∩Ā  by f4.22 
Therefore ∀ p: p ∉ A∩Ā 

Similar reasoning shows that A∪Ā = 1 (BInv2) 

II.12. The Space of Regular Polytopes is a Metric Space (Section 4.2.2) 

The axioms for a metric space (from Chapter 3) (with a slight change of nomenclature) are: 

(a4.13) dist(p1, p2) ≥ 0      (non-negativity)  
(a4.14) dist (p1, p2) = 0 if and only if p1 = p2      (identity of indiscernibles)  
(a4.15) dist (p1, p2) = dist (p2, p1)     (symmetry)  
(a4.16) dist (p1, p3) ≤ dist (p1, p2) + dist (p2, p3)      (triangle inequality).  

The definition of the chosen metric is: 
12121221 ),( zzyyxxppdist −+−+−=  for p1 = (x1,y1,z1), p2 = (x2,y2,z2). 

If the number system in use is rational, dr-rational or integer, the assumption can be made 
that all arithmetic is exact within its domain of definition, so that if the further assumption 
is made that the domain of the numbers can be extended to ensure that no overflow can 
occur, the axioms follow from the usual real number based arguments.  

In the case of unrestricted rational numbers, this is clearly the case. In the case of integers, 
if the coordinates are restricted to -M ≤ x1, x2, y1, y2, z1, z2 < M, an extended domain of  -6M 

≤ dist < 6M will be needed. Similarly, for grid2 points, the domain needs to be extended to  
-6M ≤ dist < 6M, but with the numerator and denominator (dist = I/J) extended to |I| < 
6M(N”)2, and 0<J<(N”)2.  
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As noted in Section 4.2.2, this cannot be used as a metric for floating point x, y, z values, 
since it fails the triangle inequality (even in 1D space). For random floating point numbers, 
the assertion that |x1-x2|+|x2-x3| ≥ |x1-x3| failed in Java on a pentium computer in about 1.8% 
of tests. The normal Euclidean distance function:  dist(p1, p2) = 

( ) ( ) ( )221
2

21
2

21 zzyyxx −+−+− also failed in 1D with approximately the same 
frequency. 

 



 

  

Appendix III Proof  of  Assertions for the 
Integer Interpretation 

The proofs in this appendix are restricted to the integer interpretation of the regular 
polytope – where all points are represented as a triple of integer values p = (X,Y,Z) with 
X,Y,Z integers -M ≤ X,Y,Z < M. Note that only weak connectivity is addressed, and that the 
equivalent assertions for the strong (Cb) form of connectivity are not necessarily true in all 
cases.  

III.1. For O≠OΦ, O≠O∞, Ca ),( OO (Sections 5.2.1 and 5.4) 

This proof is based on the assumption that ε > 1, so that any two adjacent points are 
considered contiguous. Any smaller value of ε does not permit any contiguity of non-
overlapping sets. 

Let p = (X,Y,Z) be any point in O, X,Y,Z integers -M ≤ X,Y,Z < M. Either (X+1, Y, Z) ∈ O or 
∈ O . If it is within O, try X+2 etc. 

Let I” be max I>0, X+I < M: {(X,Y,Z) … (X+I,Y,Z)} ⊆ O.  
If X+I” < M-1, then point (X+I”,Y,Z) ∈ O and (X+I”+1,Y,Z) ∈ O , therefore Ca ),( OO . 
If X+I” = M-1, then try X-1, X-2 etc.  
Let I’ be max I>0, X-I ≥ -M: {(X-I,Y,Z) … (X,Y,Z)} ∈ O.  
If X-I” > -M, then point (X-I”,Y,Z) ∈ O and (X-I”-1,Y,Z) ∈ O , therefore Ca ),( OO . 

Therefore Ca ),( OO  unless p = (X,Y,Z) ∈ O ⇒ p’ = (X’,Y,Z) ∀ X’, -M ≤ X’ < M 

The same reasoning can be applied to Y, showing that unless Ca ),( OO : 

p = (X,Y,Z) ∈ O ⇒ p’ = (X’,Y’,Z) ∈ O, ∀ X’, Y’: -M ≤ X’, Y’ < M, and that 
p = (X,Y,Z) ∈ O ⇒ p’ = (X’,Y’,Z’) ∈ O, ∀ X’, Y’, Z’: -M ≤ X’, Y’, Z’ < M. 

That is; Ca ),( OO  or O = OΦ or O = O∞. 

III.2. ∀ X,Y,Z∈O: Ca(X,Y∪Z) ⇔ [Ca(X,Y) ∨ Ca(X,Z)] (Section 5.2.1) 

Ca(X,Y∪Z) means ∃ p ∈ Y∪Z and ∃ p’ ∈ X: dist(p, p’) < ε. 

p ∈ Y∪Z  ⇒ p ∈ Y or p ∈ Z 
Therefore Ca(X,Y) or Ca(X,Z) 

Assuming Ca(X,Y) then ∃ p ∈ Y and ∃ p’ ∈ X: dist(p, p’) < ε. 

p ∈ Y  ⇒  p ∈ Y ∪ Z ⇒  Ca(X, Y∪Z).  
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Similarly Ca(X,Z) ⇒  Ca(X, Y∪Z). 

Therefore [Ca(X,Y) ∨ Ca(X,Z)] ⇒  Ca(X, Y∪Z). 

III.3. The Space of Regular Polytopes is a Discrete Boolean 
Connection Algebra under Ca (Section 6.4) 

It has been shown in Appendix II that the set of regular polytopes forms a Boolean algebra. 
It is only necessary to show that it also satisfies the additional axioms for regular polytopes 
X, Y, Z: 

(B1) C(X, Y) ⇒ C(Y, X) 
(B2) C(X, X) for X ≠ OΦ 
(B3) ∀ ),(:),( XXCOOXX ∞Φ≠  
(B4) ∀ X ≠ OΦ, Y ≠ OΦ, Z ≠ OΦ: C(X,Y∪Z) ⇔ [C(X,Y) or C(X,Z)]. 

The axiom (B5) - ∀ X ≠ O∞, ∃ Y ≠ OΦ: ¬C(X,Y) is only satisfied by continuous (infinite) 
spaces. 

B1: follows from the definition of Ca. 
B2 follows from the result that OV ⇒ Ca  - noting that for X ≠ OΦ, OV(X,X). 
B3 was proved above in Appendix III.1. 
B4 was proved above in Appendix III.2. 

III.4. The Space of Regular Polytopes is a Weak Proximity Space under 
Ca (Section 6.4.1) 

The axioms are: 

(PS1) A δ B ⇒ B δ A 
(PS2) (A ∪ B) δ C ⇔ A δ C ∨ B δ C 
(PS3) A δ B ⇒ A ≠ ∅ ∧ B ≠ ∅ 
(PS5) A ∩ B ≠ ∅ ⇒ A δ B. 

For a weak proximity space, axiom PS41 is not required. 

PS1: follows from the definition of Ca. 

PS2: is a re-statement of axiom B4 of the Boolean Connection Algebra, and was proved in 
Appendix III.2. 

PS3: follows from the definition of Ca, since ∀ O: ¬Ca(OΦ, O) and ¬Cb(OΦ, O). 

PS5: is a restatement of OV ⇒ Ca. 

                                                           
1Axiom PS4 states that: A δ B ⇒ ∃ E: A δ E  ∧ (X-E)  δ B 



 

  

Appendix IV Proofs of  Assertions for the 
Dr-Rational Interpretation 

The proofs in this appendix are restricted to the dr_rational representation. The terms grid2 
number and grid2 point will be used as shortened terms for the dr-rational numbers and 
points based on numbers r = I/J with 

–N'' ≤ I ≤ N'' 
0 < J ≤ N' 
For 3D applications N' = 6M3, N'' = 6M4.  (f4.30) 
For 2D applications N' = 2M2, N'' = 2M3.  (f4.31) 

The set of all grid2 points will be notated as G2, where p=(x, y, z) ∈ G2 if an only if x, y, z 
are grid2 numbers, and –M ≤ x, y, z < M. 

IV.1. The Vertex Test for Redundant Half Spaces (Section 4.4.3) 

This following test allows a considerable simplification in the algorithms that can be 
written to manipulate regular polytopes, by reducing the number of special cases that need 
to be accommodated. The following lemma shows that a simplified containment test can be 
applied, rather than that specified in the half-space definition. Put simply – the details of the 
relation operator can be ignored, and a simple test ≥ can be used. For example, in Figure 
IV-1, the half plane H is redundant to the definition of C, even though it passes through a 
vertex. 

 

C 

H 

 
Figure IV-1 Vertex test for redundancy. 

The importance of this lemma is that in the implementation of an algorithm to simplify the 
complex polygons, it is sufficient to test that all vertex points of a bounded convex polygon 
are within the pseudo-closure of a half plane to declare that half plane redundant. Various 



Appendix IV - Proofs of Assertions for the Dr-Rational Representation 

268 

algorithms (such as the conversion of a general polygon to a regular polytope) result in 
cases similar to Figure IV-1, which would otherwise require tedious special case testing. 

This result is very useful in implementing a database structure based on the regular 
polytope concept, since it allows the code which removes redundant half spaces or planes to 
be made much simpler. The testing of many special cases can be avoided. 

Proposition 1:  

If  H is a halver1 such that Cpc ⊆ Hpc, then C ⊆ H. That is to say that if every point in Cpc is 
also within Hpc, then every point in C must also be within H, (and therefore H is redundant 
to the definition of C). 

IV.1.1. Outline of proof that Cpc ⊆ Hpc  ⇒ C ⊆ H 

The first step is to show that the intersection of an n dimensional halver/convex polytope 
with a hyperplane is itself a valid n-1 dimensional halver/convex polytope, provided that 
the hyperplane is of the form xn = c where xn is the last2 coordinate. 

The remainder of the proof is by induction. Assuming the proposition is true for n-1 
dimensions, it is shown to hold for n dimensions. Finally, the proposition is shown to hold 
for 1 dimension. 

 

 

 
Figure IV-2 The n-1 dimensional object defined by the intersection of a convex 

polytope with a hyperplane xn=c, is itself a convex polytope containing every point. 
from the original polytope with xn=c. 

                                                           
1 In this proof, the term “halver” is used to mean half plane, half space etc, depending on the dimension. 
2 “Last” in this sense is the last coordinate to be mentioned in the definition of ρ at line (IV.1) (next page). 
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A changed notation is required for this proof to allow for variable dimensionality. The 
vector notation for points is used, e.g. x = (x1, x2 , .. xn), with vectors in bold.  

Let H(A1,A2  … An, B) be a halver in n dimensions defined as: 

x = (x1, x2 , .. xn) ∈ H(A1,A2  … An, B) if 
A1x1 + A2x2 +… + Anxn + B  ρ  0 – where  (IV.1) 

 ρ is ≥ if A1>0,  
 ρ is > if A1<0,  
 ρ is ≥ if A1=0, A2>0,  
 ρ is > if A1=0,A2<0,  
  etc. 
 ρ is ≥ if A1..An-1 = 0, An>0 
 ρ is > if A1..An-1 = 0, An≤0 

An n dimensional halver is valid if: 

A1 … An and B are integers, 
-M ≤ A1 … An ≤ M, (IV.2) 
-nM2 ≤ B ≤ nM2, (IV.3) 
and if A1 = A2 = … = An = 0, then B≠0. (IV.4) 

Hpc is defined as x ∈Hpc if 

A1x1 + A2x2 +… + Anxn + B ≥ 0   (IV.5) 

Let C = {H1…Hm} be a convex polytope defined by m halvers defined as follows: 

H1 = H(A11, A12, … A1n, B1) 
H2 = H(A21, A22, … A2n, B2) 
 …. 
Hm = H(Am1, Am2, … Amn, Bm) 

so that Hj is defined as 0ρ
1

jji
..ni

ji BxA +∑
=

 

C is defined as {x: x∈Hj, j=1..m}. 
Cpc is defined as {x: x∈Hj

pc, j=1..m}. 

IV.1.2. Lemma - induction on halvers 

The intersection of n-dimensional halver (n>1),  H(A1,A2  … An, B) with the hyperplane xn = 
x’n (where x’n is a constant –M ≤ x’n < M) is itself a n-1 dimensional halver H-. Further, any 
point x∈H- is an element of H, and any point x∈H with xn = x’n is an element of H-. 

Let B” = Anx’n + B, (IV.6) 

The halver H(A1, A2  … An-1, B”) would fulfill the requirements of a valid n-1 dimensional 
halver if : 

A1 … An-1 and B” are integers, 
-M ≤ A1 … An-1 ≤ M, 
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-(n-1)M2 ≤ B” ≤ (n-1)M2 and 
if A1 = A2 = … = An-1 = 0, then B”≠0. 

While the first two requirements are obviously satisfied, the latter two are not necessarily 
true, but with the following modifications, a valid halver can be assured. 

If B” < -(n-1)M2, then let B’ = -(n-1)M2. 3  (IV.7)  
If B” > (n-1)M2, then let B’ = (n-1)M2.  4 (IV.8) 
If A1 = A2 = … = An-1 = 0, and B”=0, then  

 let B’ = 1 if An >0,  
 let B’ = -1 if An ≤ 0. (IV.9) 

Otherwise, B’ = B”. 

It is clear that this is now a valid n-1 dimension halver. 

let x- = (x1, x2,  …xn-1) be a n-1 dimensional point x- ∈ H- 
and let x+ = (x1, x2,  …xn-1, x’n) be that point extended to n dimensions on the plane xn 
= x’n 

Case 1 A1..An-1 are not all zero, B’ = B”, 

x- ∈H-  ⇒ B'xA i
..ni

i +∑
−= 11

 ρ  0  (note – that ρ has the same definition as in the n 

dimensional halver based on A1 to An-1). 
 ⇒ Bx'AxA nni

..ni
i ++∑

−= 11
 ρ  0  (substituting IV.6) 

 ⇒ x+∈ H. 

Case 2 A1..An-1 are not all zero, B” < B’ 

B’ = -(n-1)M2  (by IV.7)  
and B” < -(n-1)M2. (IV.10) 
Since each Ai ≥ -M, and each –M ≤ xi < M,  
 2

11
1)M(nxA i

..ni
i −≤∑

−=

. 

Consider BxA i
..ni

i +∑
=1

 

 = BxAxA nni
..ni

i ++∑
−=

'
11

 

 ≤ (n-1)M2  + B”  (by IV.6) 
 < 0  (by IV.10) 
Thus, there is no point x- in H-. 

                                                           
3 In fact, this is equal to the universal halver, since the sum of the Aixi terms can never be < -(n-1)M2, and to reach 
this requires a point p = (x1, x2 .. xn-1) (–M ≤ xi < M), this requires all xi = -M and all Ai = M. Point p is such that 
A1x1+ A2X2 + …An-1-Xn-1 +B’ = 0 and since A1 is positive, x ∈ H. For all other x and for all other Ai, , A1x1+ A2X2 + 
…An-1-Xn-1 +B’ > 0, so all points are within H.  
4 Similarly, this is equal to the empty halver. 



Appendix IV - Proofs of Assertions for the Dr-Rational Representation 

271 

Case 3 A1..An-1 are not all zero, B” > B’  

B’ = (n-1)M2 , and (by IV.8) 
B” > (n-1)M2. (IV.11) 
Consider x+ as defined above (such that x- ∈H-). 
 x- ∈ H- ⇒ 0ρ

11
B'xA i

..ni
i +∑

−=

 ⇒ 0
11

≥+∑
−=

B'xA i
..ni

i  (IV.12) 

Consider BxA i
..ni

i +∑
=1

 

 = BxAxA nni
..ni

i ++∑
−=

'
11

 

 = "
11

BxA i
..ni

i +∑
−=

 (by IV.6) 

 > B'xA i
..ni

i +∑
−= 11

 (by IV.8) 

 > 0. (by IV.12) 
Therefore x+ ∈H. 

Case 4 If A1 = A2 = … = An-1 = 0, and B’>0 

By definition of B’, either A1 = A2 = … = An-1 = 0, and B”>0 
 i.e. B” = Anx’n + B > 0 (by IV.6) 
 i.e. BxA i

..ni
i +∑

=1
 > 0 

or A1 = A2 = … = An-1 = 0, and B”=0 
 i.e. Anx’n + B  = 0 and An > 0. (by IV.9) 
 i.e. BxA i

..ni
i +∑

=1
 = 0, and A1 = A2 = … = An-1 = 0, An > 0 

In either case, x+ ∈ H. 

Case 5 If A1 = A2 = … = An-1 = 0, and B’<0 

H- is empty. 

So in all cases,  x- ∈ H- ⇒ x+ ∈ H.  

Conversely  

Let x- = (x1, x2,  …xn-1) be a n-1 dimensional point x- ∉ H- 

Again let x+ = (x1, x2, … xn-1, x’n) be that point extended to n dimensions. 

Case 1 A1..An-1 are not all zero, B’ = Anx’n + B, 

x- ∉ H- 

 ⇒ 0ρ
_

11
B'xA i

..ni
i +∑

−=

   (where 
_
ρ is the inverse of ρ) 

 ⇒ 0ρ
_

11
Bx'AxA nni

..ni
i ++∑

−=

 (by IV.6) 

 ⇒ x+ ∉ H. 
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Case 2 A1..An-1 are not all zero, B” < B’ 

B’ = -(n-1)M2, and (by IV.7) 
B” < -(n-1)M2. 
Consider x+ as defined above (such that x- ∉ H-). 
As above, 2

11
1)M(nxA i

..ni
i −<∑

−=

, 

 therefore 0
11

 B"xA i
..ni

i <+∑
−=

, 

 therefore x+ ∉ H. 

Case 3 A1..An-1 are not all zero, B” > B’  

B’ = (n-1)M2 and (by IV.8) 
B” > (n-1)M2. 
As above, 2

i
1..1

i 1)M(nxA −−>∑
−= ni

, 

 therefore 0
11

>+∑
−=

B"xA i
..ni

i . 

Thus every point x- must be in H-. 

Case 4 If A1 = A2 = … = An-1 = 0, and B’>0 

No point x- can exist such that x- ∉ H-. 

Case 5 If A1 = A2 = … = An-1 = 0, and B’<0 

By definition of B’,  Anx’n + B < 0 or Anx’n + B  = 0 and An ≤ 0. 
In either case, x+ ∉ H. 

So in all cases,  x- ∉ H- ⇒ x+ ∉ H.  

Alternatively, any point x ∈ H with xn = x’n is an element of H-. 

Corollary – induction on convex polytopes  

If C is a convex polytope C = {H1…Hm}, and the intersection Hj
- of each Hj (j=1..m) with 

the plane xn = x’n is formed as above, the set C- = {H1
-…Hm

-} is a n-1 dimensional convex 
polytope. Further, for any point x ∈ C- ⇒ x ∈ C, and for any point with xn = x’n,  x ∈ C  ⇒ 
x ∈ C-.   

This follows from the definitions. 

Corollary – induction on halver pseudo-closure 

The intersection of the pseudo-closure of a n-dimensional halver (n>1),  Hpc with the 
hyperplane xn = x’n (where x’n is a constant –M ≤ x’n < M) is itself a n-1 dimensional halver 
pseudo-closure  H-pc. Further, any point x- ∈ H-pc ⇒ x+ ∈ Hpc, and for any point with xn = 
x’n, x ∈ Hpc ⇒ x-∈ H-pc. 

This follows using the logic of the above lemma. 
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Corollary– induction on convex polytope pseudo-closure 

If Cpc is a the pseudo-closure of a convex polytope Cpc = {H1
pc…Hm

pc}, and the intersection 
Hj

-pc of each Hjpc (j=1..m) with the plane xn = x’n is formed as above, the set C-pc = {H1
-

pc…Hm
-pc} is the pseudo-closure of an n-1 dimensional convex polytope. Further, any point 

x-∈C-pc ⇒ x+∈Cpc, and for any point x with xn = x’n, x∈Cpc ⇒ x-∈ C-pc. 

This follows from the definitions. 

IV.1.3. Proof of Vertex Test for Redundant Half Spaces 

In n dimensions, let H be a halver such that every point in Cpc is within Hpc. 

Assume that the proposition is true for dimension n-1. (The iterative assumption) 

Let x’ = (x’1, x’2, .. x’n) be any point which is within C. 

x’ ∈ C ⇒ x’ ∈ Cpc ⇒ x’ ∈ Hpc. (IV.13) 

Consider the hyperplane defined by x’n (all points with xn = x’n), and the intersection of C 
and H with this hyperplane (named C- and H- respectively): 

Let x- = (x-
1, x-

2 , .. x-
n-1) be any point in C-pc, then it follows that  

x+ = (x-
1, x-

2 , .. x-
n-1, x’n) ∈Cpc

,  

x+ ∈ Cpc  ⇒ x+ ∈ Hpc  

x+ ∈ Hpc, ⇒ x- ∈ H-pc  

Thus any point in C-pc
 is also in H-pc. Therefore, by the iterative assumption, H- is redundant 

to the definition of C-, i.e. x-∈C- ⇒ x-∈ H-.  

But x’ ∈ C  ⇒ (x’1, x’2, .. x’n-1) ∈ C- ⇒ (x’1, x’2, .. x’n-1) ∈ H-.  

(x’1, x’2, .. x’n-1) ∈ H- ⇒ x’ ∈ H.  

Thus x’ ∈ C ⇒ x’ ∈ H. 

That is, if the proposition is true in n-1 dimensions, then it is true in n dimensions. 

Consider the 1D case: 

Let H(A, B) be a halver defined as: 

x = (x) ∈ H(A, B) if 
Ax + B ρ 0 – where  
 ρ is ≥ if A > 0,  
 ρ is > if A ≤ 0.  

Let C = {H1…Hm} be a convex polytope defined by m halvers defined as follows: 

H1 = H(A1, B1) 
H2 = H(A2, B2) 
 … 
Hm = H(Am, Bm) 
so that Hj is defined as Ajx+Bj  ρj  0. 
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Let H- be the set {Hi: Ai > 0}, and H+ be the set {Hj: Aj ≤ 0}. 

If H- is non empty: 

Let x- be the largest value of -Bi/Ai for any halver in H-. 
Consider Hi ∈ H- such that x- = -Bi/Ai. 
If (x < x-), then Aix + Bi < Aix- + Bi  =  Ai(-Bi/Ai) + Bi = 0, 
 i.e. x ∉ C for x < x-. 

If H- is empty: 

Let x- = -M. 
For all points x, x ≥ -M. 

If H+ is non empty: 

Let x+ be the smallest value of –Bj/Aj for any halver in H+. 
Consider Hj ∈ H+ such that x+ = -Bj/Aj. 
If (x ≥ x+), then Ajx +Bj ≤ Ajx+ + Bj  =  Aj(-Bj/Aj)+Bj = 0, 
 i.e. x ∉ C for x ≥ x+. 

If H+ is empty: 

Let x+ = M. 
For all points x, x < M. 

See Figure IV-3 for illustration of H- and H- in relation to the definition of the points which 
fall within C. 

 
 

x - x +  

H  (A > 0 ) 

H  (A < 0 ) 

H + H - 

C  

x ’ 

x ’ 

 
Figure IV-3 Convex polytope in 1D. 

Therefore the convex C consists of those points which satisfy 

x- ≤ x < x+. (14) 

Similarly Cpc consists of those points which satisfy 

x- ≤ x ≤ x+. (15) 

It is assumed that x ∈Cpc ⇒ x ∈Hpc 

If A > 0: 
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Let x’ = -B/A. 
H is defined as points x = (x) for which x ≥ x’, and H = Hpc. 
x ∈ C ⇒ x ∈ Cpc ⇒ x ∈ Hpc ⇒ x ≥ x’ ⇒ x ∈H, as required. 

If A < 0  

Let x’ = -B/A. 
H is defined as all points x = (x) for which x < x’, ': xxxH ≥= . 
But x’∈ Hpc .   
If  x’ < x+, (x+) ∈ Cpc  (by IV.15) 
 (x+) ∈ Hpc ⇒ x+ ≤ x’ – contradiction – therefore x’ ≥ x+. 
x ∈ C ⇒ x < x+  (by IV.14) 
 ⇒ x < x’ ⇒  x ∈ H. – as required. 

If A = 0 

If B < 0, then H is the empty halver, and there are no points in Hpc.  
 Thus Cpc is also empty.  
Alternatively if B > 0, then this is the universal halver, and all points in C must be in 
H. 

Thus the proposition is proved in 1 dimension. 

Therefore it follows for all dimensions ≥ 1. 

IV.2. Vertex Test for Incompatible Half Spaces (Section 4.4.3) 

Taken in conjunction with proposition 1, this, in effect states that the complexity of the 
definition (in terms of the use of the ≥ or > relational tests) can be safely ignored while 
programming the simplification algorithms. The complexity of these two proofs is more 
than justified by the reduction in complexity they allow in the software. 

Proposition 2 

Hpx (the pseudo-exterior of H) is defined as: 

x ∈Hpx  if A1x1 + A2x2 +… + AnXn + B ≤ 0.  (IV.16) 
 Note that any point on the hyperplane of H is an element of Hpx and of Hpc. 

If  H is a halver5 such that Cpc ⊆ Hpx, then H is incompatible with C. That is to say that if 
every point in Cpc is also within Hpx, then every point in C is not within H. 

IV.2.1. Outline of proof of proof that Cpc ⊆ Hpx  ⇒ C ∩ H = CΦ 

The proof, like that of IV.1, is by induction. Assuming the proposition is true for n-1 
dimensions, it is shown to hold for n dimensions. Finally, the proposition is shown to hold 
for 1 dimension. 

                                                           
5 The term “halver” is used to mean half plane, half space etc, depending on the dimension. 
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As before, let C = {H1…Hm} be a convex polytope defined by m halvers defined as follows: 

H1 = H(A11, A12, … A1n, B1) 
H2 = H(A21, A22, … A2n, B2) 
 …. 
Hm = H(Am1, Am2, … Amn, Bm). 
so that Hj is defined as ji

..ni
ji BxA +∑

=1
 ρj  0. 

C is defined as {x: x∈Hj, j=1..m}. 
Cpc is defined as {x: x∈Hj

pc, j=1..m}. 

IV.2.2. Corollary – induction on convex polytope pseudo-exterior 

The intersection of the pseudo-exterior Hpx of a n-dimensional halver (n>1), with the 
hyperplane xn = x’n (where x’n is a constant –M ≤ x’n < M) is itself the pseudo-exterior H-px 
of the n-1 dimensional halver H- (defined in Appendix IV.1.2). Further, any point x- ∈ H-px 
⇒ x- ∈ Hpx, and for any point with xn = x’n, x∈Hpx ⇒ x ∈ H-px. 

This follows from the lemma of proposition 1. 

IV.2.3. Proof of Vertex Test for Incompatible Half Spaces 

Let H be a halver such that every point in Cpc is within Hpx. 

Assume that the proposition is true for dimension n-1. (The iterative assumption) 

Let x’ = (x’1, x’2 , .. x’n) be any point such that x’ ∈ C 

x’ ∈ C ⇒ x’ ∈ Cpc ⇒ x’ ∈ Hpx. 

Consider the hyperplane defined by x’n (all points with xn = x’n), and the intersection of C 
and H with this hyperplane (named C- and H- respectively). 

Let x- = (x-
1,x-

2 , .. x-
n-1) be any point in C-pc, then it follows that  

x+= (x-
1, x-

2, .. x-
n-1, xn) ∈Cpc

,  

x+∈Cpc ⇒ x+∈Hpx  

x+∈Hpx ⇒ x-∈H-px  

Thus any point in C-pc
 is also in H-px. Therefore, by the iterative assumption, H- is 

incompatible with C-. Therefore there can be no point in C- which is in H-. 

But x’ ∈C ⇒ (x’1, x’2 , .. x’n-1) ∈C- ⇒ (x’1, x’2 , .. x’n-1) ∉H-.  

(x’1, x’2 , .. x’n-1) ∉H-  ⇒  x’ ∉ H.  

Thus  x’ ∈ C ⇒ x’ ∉ H.  

i.e. if the proposition is true in n-1 dimensions, then it is true in n dimensions. 

Consider the 1D case: 

Defining H = H(A, B), and C = {H1…Hm} as in proposition 1,  
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x - x+ 

H  (A>0) 

H  (A<0) 

C  

x’ 

x’ 

H px 

H px  
Figure IV-4 Relationship of x-, x+ and x’ to C and H. 

As before, we can determine x- and x+ such that C is defined as  

x = (x), such that x- ≤ x < x+. (IV.17) 

Similarly Cpc becomes 

x, such that x- <= x <= x+. (IV.18) 

It is assumed that x ∈Cpc ⇒ x ∈Hpx 

If A > 0: 

let x’ = -B/A. 
H is defined as all points for which x ≥ x’. 
Hpx is defined as all points for which x ≤ x’. (IV.19) 
x+ ∈ Cpc ⇒ x+ ∈ Hpx ⇒ x+ ≤ x’. (by IV.19) 

But x ∈ H ⇒ x ≥ x’ ⇒ x ≥ x+ ⇒ x ∉ C.     (by IV.17) 
i.e. all points in H are excluded from C. 

If A < 0  

let x’ = -B/A. 
H is defined as all points for which x < x’  
Hpx is defined as all points for which x ≥ x’. (IV.20) 
x- ∈ Cpc ⇒ x- ∈ Hpx ⇒ x- ≥ x’. (by IV.20) 

But x ∈ H ⇒ x < x’ ⇒ x < x- ⇒ x ∉C.     (by IV.17) 
i.e. all points in H are excluded from C. 

If A = 0 

If B < 0, then H is the empty halver, so no point in C may be in H. 
Alternatively if B > 0, then Hpx contains no points, so C must contain no points. 

Thus the proposition is proved in 1 dimension. 

Therefore it follows for all dimensions ≥ 1. 
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IV.3. Lemma: every non-degenerate convex polytope contains at least 
one point with rational coordinates - p ∈  QQ3. 

For this discussion, non-degenerate convex polytope is one which, after all redundant half 
spaces has been removed, consists of at least one half space, which is ≠ HΦ  and ≠ H∞.  

Let C be a non-degenerate convex polytope with no redundant half spaces. Let vk: k=1..m 
be the vertices of C. Since there is at least one non-redundant half space m > 0. 

Otherwise, for every vertex vi = (xi, yi, zi), if xi > -M, then point (-M, yi, zi) ∈ C. Thus the 
half space at infinity H1

∞ = (1, 0, 0, M) is not redundant. But H1
∞ has A > 0 - contradicton! 

Let p =  (x, y, z) = 1/m (v1+v2+… vm). (I.e. x = 1/m (x1 + x2 +… xm) etc.).  

Since the field of rational numbers is closed under addition and division, x is a rational 
number. 

The same applies to y and z, so that p ∈ QQ3.  

For any Hi  ∈ C: 

Hi(p) = Aix + Biy + Ciz + Di 
= 1/m [(Aix1 + Biy1+Ciz1+Di)  + (Aix2 + Biy2+Ciz2+Di)  + …  + (Aixm + Biym+Cizm+Di) 
= 1/m (Hi(v1) + Hi(v2) + … +   Hi(vm)) 

but Hi(vk) ≥ 0, k=1..m therefore Hi(v) = 0 requires Hi(vk) = 0, k=1..3, which in turn means 
that all vk lie on Hi. Since all vk lie on Hi, they must be coplanar.  Contradiction! 

Therefore Hi(p) > 0 therefore p ∈ Hi for all Hi  ∈ C. 

Therefore p ∈ C. 

Note – although this proof shows only that a point of arbitrary rational precision can be 
found in any non-degenerate convex polytope, it is highly probable that this can be 
tightened to state that a dr-rational point can be found, possibly requiring more precision 
than a grid2 dr-rational point. 

IV.4. Uniqueness of Convex Polytopes (Section 4.4.5) 

Consider two convex polytope definitions, C = {Hi: i=1..n} and C’ = {Hj’: j=1..m} such 
that p ∈ C ⇔ p ∈ C’ for any  p ∈ QQ3. 

For Hi ∈ C, there cannot be any vertex v’ of C’ such that v’ ∉ Hi
pc. 

(Because if such a vertex existed, the three half spaces of C’ that define it and iH would 
together define a non-redundant convex polytope C”. Thus by IV.3, ∃ p” ∈ C”. This means 
p” ∈ C’ and p” ∉ H which contradicts the assumption.) 

Thus every vertex v’ of C’ is within Cpc. 

Likewise, every vertex v of C is within C’pc.   
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Thus we have two convex polyhedra, each of which contains all the vertices of the other. 
This is no longer a specific problem of regular polytope or dr-rational number arithmetic, 
but a conventional geometric problem. It is clear by the convex nature of C and C’ that the 
vertices of each must be identical (otherwise there will be points within one, but not within 
the other), and that the faces that define each are coplanar. 

Thus for every Hi ∈ C, there exists one H’j ∈ C’ such that Hi and H’j are coplanar, and vice 
versa. That is to say, there is a 1-1 correspondence between the half spaces that define C 
and C’, and for each pair Hi = (A, B, C, D) ∈ C and H’j = (A’, B’, C’, D’) ∈ C’, there exists 
a rational number r such that A = rA’, B = rB’, C = rC’, D = rD’. 

IV.5. For O≠OΦ, O≠O∞, Cb ),( OO (Section 5.4) 

First, given O = {Ci: i=1..n} where Ci = {Hij: j=1..m}, generate a convex coverage of the 
universal region, by dividing it by each Hij and its inverse. That is to say, start with the 
universal region, and split it into two between ijHO ∩∞  and ijHO ∩∞ . For each Hij 
added, the number of sub-regions will increase or remain the same (if this half space is 
coplanar with some other), but each sub-region will be convex. Let the universal region be 
divided into u subregions Sk: k=1..u, each being a convex polytope (see Figure IV-5). 

 

 
Figure IV-5 Coverage (right) generated from a regular polytope (left). 

The sub-regions will fall into two sets - }:{ OSS kk ⊆  and }:{ OSS ll ⊆ . Each sub-region 

must be entirely within O or O , because all half spaces that define the original regular 
polytope are present in the coverage definition. It is also clear that any half space Hij (or its 
inverse) cannot further subdivide any sub-region. We ensure that all sub-regions are 
normalised to remove any redundant half spaces. 

For any Sk = {Hki, i = 1..r} let C’ be the result of removing any Hkq from its definition (i.e. 
C’ = {Hki, i = 1..r: i ≠ q}. 
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Sk 
Sl 

Hkq 

 
Figure IV-6 Subregion with a half space removed from its definition. 

By the requirement that each sub-region has no redundant half spaces, there must be some p 
∈ C’: p ∉ Sk. Because the set of sub-regions is a complete coverage, there must be some 
other sub-region Sl such that p∈ Sl (see Figure IV-6). Since the sub-regions are minimal, 
then Sl must contain all points p∈ C’ ∧ p ∉ Sk., and there can be no point p’ ∈ Sl: p’ ∉ C’. 
That is to say,  C’ = Ck ∪ Cl. 

In summary, the result of removing any half space from the definition of any sub-region is 
to create a convex polytope which is the union of two sub-regions. 

Choose Ck and Hkq such that Sk ⊆ O and Sl ⊆ O . This must be possible unless O = OΦ or O 
= O∞. Thus we have  

C’ ⊆ O ∪ O  
C’ ∩ Sk  = Sk ≠ CΦ. 
C’ ∩ Sl  = Sl ≠ CΦ. 

Therefore Cb(O, O ). 

IV.6. For O≠OΦ, O≠O∞, Ca ),( OO (Section 5.4) 

This follows immediately from IV.3, since Cb ⇒ Ca. 

IV.7. ∀ X,Y,Z∈O: Cb(X,Y∪Z) ⇔ [Cb(X,Y) or Cb(X,Z)] (Section 5.4) 

This proof addresses a somewhat stronger statement of the proposition - that: 

∀ X,Y,Z∈O: W = Y∪Z  ∧ Cb(X,W) ⇔ [Cb(X,Y) or Cb(X,Z)], 

W = Y∪Z  ∧ Cb(X,W) makes the meaning explicit that set W which is pointwise equal to 
Y∪Z, but may have a different internal definition to Y and Z is connected to X. 
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IV.7.1. Lemma ∀ X,Y,Z∈O: Cb(X,Y) ∧ Y=Z ⇒ Cb(X,Z) 

That is to say if X is connected to Y and Y = Z then X is connected to Z. 
If OV(X,Y) the result is trivial, so the remainder of the proof assumes Cb(X,Y) ∧¬ OV(X,Y). 

 
Cb(X, Y) ⇒ ∃ Cx ∈ X, Cy ∈ Y: Cb(Cx, Cy) - by definition of Cb 
¬ OV(X,Y) ⇒ ¬ OV(Cx,Cy) 
Cb(Cx, Cy) ∧¬ OV(X,Y) ⇒ ∃Hx ∈ Cx, Hy ∈ Cy: yx HH ≅  by f5.1 
Let C’x = {Hi: Hi∈Cx, Hi ≠ Hx} 
Let C’y = {Hj: Hj∈Cy, Hj ≠ Hy}. 

That is to say, C’x is Cx with Hx omitted from its definition: Cx ⊂ C’x, and C’y is equivalent. 

Let C = C’x  ∩ C’y. 

C is now a convex polytope which is contained within Cx ∪ Cy and has a non-empty 
intersection with both as illustrated in Figure IV-7 (see also Section 5.2). 

 

Y 

Cy 

X 
Cx 

Hx Hy 

 
Figure IV-7 X and Y with overlapping convex polytope C shaded. 

Let W = Z ∪ C. Convert W to maximal form, as described in Appendix IV.5. This divides 
the universal region into u subregions Sk: k=1..u, each being a convex polytope. 

The sub-regions will fall into two sets: }:{' WSSW kk ⊆=  and }:{' WSSW ll ⊆= . 
The set }:{ WSS kk ⊆  can be further divided into }:{' ZSSZ kk ⊆=  and 

}',':{' ZSWSSX kkk ∉∈= . 
That is to say, W’ is the set of subregions within W, Z’ is the set of subregions within Z 
and X’ is the set of subregions within C ∩ X. 
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Z 

C 
Sx Sz 

 
Figure IV-8 W =  Z ∪ C in maximal form with C shaded, and Sx and Sz shown. 

Let Sx ∈ X’ such that Hx ∈ Sx. There must be at least one because C ∩ X is non-empty and 
is separated from Z by Hx (see Figure IV-8). 

Let S = {H: H∈Sx, H≠Hx} i.e. S is Sx with Hx omitted from its definition. 
Let Sz = S – Sx i.e. Sz is the region of S not within Sx. 
Let pz be a point: pz ∈ Sz. 
Assume pz ∉ C. 

⇒ ∃ H ∈ C’x or H ∈ C’x such that pz ∉ H. 
But, by the maximal nature of the decomposition, Sz ⊆ H or Sz ⊆ H , 
Therefore pz ∉ H ⇒ Sz ⊆ H . 

Let px ∈ Sx.   
Sx ∈ X’ ⇒ Sx ⊆ C ⇒ px  ⊆ C⇒ px  ⊆ C’x  ∩ C’y 

⇒ px  ⊆ H ⇒ Sx ⊆ H. 
Thus H separates Sx and Sz, and therefore H = Hx (by def of Sz). Contradiction! 
Therefore pz ∈ C, and so Sz⊆ C. 

Therefore S = Sx ∪ Sz is a convex polytope, its intersection with Cx is Sx ≠ CΦ, and its 
intersection with some Cz ∈ Z is Sz.  

Thus, by definition Cb(Cx, Cz), and so Cb(X, Z). 

IV.7.2. Proof that ∀ X,Y,Z∈O: Cb(X,Y∪Z) ⇔ [Cb(X,Y) or Cb(X,Z)] 

Let X = {Ci, i=1..n}, Y = {Cj, j=1..o}, Z = {Ck, k=1..q},  

let W’ =  Y∪Z = {Cj, j=1..o, Ck, k=1..q}. 

If Cb(X,W’), by definition: ∃ Ci ∈ X,  Cl ∈ W’, Cb(Ci, Cl). 

But by definition, Cl ∈ Y or Cl ∈ Z. 
Therefore, Cb(X,Y) or Cb(X, Z). 

If Cb(X, Y) by definition, ∃ Ci ∈ X,  Cj ∈ Y, Cb(Ci, Cj). 

But Cj ∈ Y  ⇒ Cj ∈ W’. 
Therefore, Cb(X, W’). 
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Similarly, Cb(X, Y) ⇒ Cb(X, W’). 

Since W = W’, applying the lemma, 

∀ X,Y,Z∈O: W = Y∪Z  ∧ Cb(X,W) ⇔ [Cb(X,Y) or Cb(X,Z)]. 

IV.8. ∀ X,Y,Z∈O: Ca(X,Y∪Z) ⇔ [Ca(X,Y) or Ca(X,Z)] (Section 5.4) 

Let X = {Ci, i=1..n}, Y = {Cj, j=1..o}, Z = {Ck, k=1..q}. 

Let W =  Y∪Z. 

If Ca(X,W), by definition: ∃ Ci ∈ X,  Cl ∈ W, Ca(Ci, Cl). 

Therefore ∃ p ∈ Ci
pc, p ∈ Cl

pc. 
p ∈ Cl

pc ⇒ p ∈ Wpc ⇒ p ∈ Ypc  or p ∈ Xpc   

p ∈ Ypc ⇒ p ∈  Cj
pc for some Cj ∈ Y ⇒ Ca(Ci, Cj) ⇒ Ca(X, Y)  

p ∈ Zpc ⇒ p ∈  Ck
pc for some Ck ∈ Z ⇒ Ca(Ci, Ck) ⇒ Ca(X, Z)  

Therefore, Ca(X,Y) or Ca(X, Z). 

The converse is proved using the same logic. 

IV.9. The Space of Regular Polytopes is a Discrete Boolean 
Connection Algebra under Ca or Cb (Section 6.5) 

It has been shown in Appendix II that the set of regular polytopes forms a Boolean algebra. 
It is only necessary to show that it also satisfies the additional axioms: 

(B1) C(X, Y) ⇒ C(Y, X) 
(B2) C(X, X) for X ≠ OΦ 
(B3) ∀ ),(:),( XXCOOXX ∞Φ≠  
(B4) ∀ X ≠ OΦ, Y ≠ OΦ, Z ≠ OΦ: C(X,Y∪Z) ⇔ [C(X,Y) or C(X,Z)]. 

The axiom (B5) - ∀ X ≠ O∞ , ∃ Y ≠ OΦ : ¬C(X,Y) is only satisfied by continuous (infinite) 
spaces. 

B1: follows from the definition of Ca and Cb. 

B2 follows from the result that OV ⇒ Cb ⇒ Ca. 

B3 was proved above in Appendices IV.3 and IV.6 . 

B4 was proved above in Appendices IV.7 and IV.8. 

IV.10. The Space of Regular Polytopes is a Weak Proximity Space under 
Ca or Cb (Section 6.4) 

The axioms are: 

(PS1) A δ B implies B δ A 
(PS2) (A ∪ B) δ C iff A δ C or B δ C 
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(PS3) A δ B implies A ≠ ∅ and B ≠ ∅ 
(PS5) A ∩ B ≠ ∅ implies A δ B. 

For a weak proximity space, axiom PS4 6 is not required. 

PS1: follows from the definition of Ca and Cb. 

PS2: is a re-statement of axiom B4 of the Boolean Connection Algebra, and was proved in 
Appendices IV.7 and IV.8. 

PS3: follows from the definition of Ca and Cb, since ∀ O: ¬Ca(OΦ, O), ¬Cb(OΦ, O).  

PS5: is a restatement of OV ⇒ Cb ⇒ Ca. 

IV.11. Storage Required for Rational Number Computations (Section 
3.4.6) 

For the purposes of discussion, assume that a plane is to be specified in the form 
Ax+By+Cz+D=0 to pass through three points with integer coefficients, each requiring 32 
bits to represent them. As described in Section 3.4.6, the formula for the parameters are: 

A =  y1z2 - y1z3 + y2z3 – y2z1 + y3z1 – y3z2. (f3.4)  
D = x1(y2z3 - y3z2) + x2(y3z1 – y1z3) + x3(y1z2 – y2z1). (f3.5)  

With B, and C similar to A. 

Thus A, B and C will require more than 64 bits, and D requires more than 96 bits. 

If we then take three of these planes, defined by A1x+B1y+C1z+D1=0, A2x+B2y+C2z+D2=0, 
A3x+B3y+C3z+D3=0, and form their point of intersection in homogeneous coordinates 
p=(Px,Py,Pz,Q), where:  

321
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321

CCC
BBB
AAA

Q = ,   (f3.6) 
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D
B
A

D
B
A

Pz

−−−
= .  (f3.7) 

Thus Px, Py and Pz  require more than 224 bits (32×7) and Q requires more than 192 bits 
(32×6).  

In attempting to take the next step, the plane through points (Px1,Py1,Pz1,Q1), (Px2,Py2,Pz2,Q2) 
and (Px3, Py3, Pz3, Q3), we replace the formulae f3.4 and f3.5 with their homogeneous 
coordinate equivalent to give: 

                                                           
6Axiom PS4 states that: A δ B implies ∃ E such that A δ E  and (X-E)  δ B 



Appendix IV - Proofs of Assertions for the Dr-Rational Representation 

285 

0

3333

2222

1111 =

QPPP
QPPP
QPPP
QZYX

zyx

zyx

zyx  (f3.8) 

or: 

A =  (Py1Pz2Q3 - Py1Pz3Q2 + Py2Pz3Q1 – Py2Pz1Q3 + Py3Pz1Q2 – Py3Pz2Q1) etc. 
D = Px1(Py2Pz3 - Py3Pz2) + Px2(Py3Pz1 – Py1Pz3) + Px3(Py1Pz2 – Py2Pz1)   

This means that now A, B, C require more than 640 bits (32×20), and D requires more than 
672 bits (32×21). 

Thus the cycle of forming planes through points, and intersecting these planes causes a 
tenfold increase in the storage requirements of the coefficients (from 64 to 640 bits, 96 to 
672 bits). 

 

 





 

  

Appendix V Selected Java 
Documentation 

This appendix contains an edited selection of JavaDoc for the three main classes of the 
demonstration software. Note that none of the classes documented here are directly 
instantiated, and therefore do not have public constructors. These classes are all parents of 
2D and 3D subclasses, and it is these subclasses that are instantiated, with constructors 
defined. 

V.1. Class Polytope 

* 

Polytope 

nrUnitsA: int; 
unitNrA[*]: int; 
nrUnitsB: int; 
unitNrB[*]: int; 
MBR: box; 

ConvexPoly 

static newPolytope(String) 
newPolytope(int) 
clone(int) 
addConvexPoly(ConvexPoly) 
isConnectedA() 
isConnectedB() 
size() 
getConvexPoly(int) 
draw(GWin) 
union(Polytope) 
unionWith(Polytope) 
intersection() 
print() 
toString() 
inverse() 
universe() 
isWithin(Polytope) 
equals(Polytope) 
connectsToA(Polytope) 
connectsToB(Polytope) 
properPartOf(Polytope) 
isNull() 
intersects(Polytope) 
properOverlap(Polytope) 
tangentialProperPartOfA(Polytope) 
tangentialProperPartOfB(Polytope) 
nonTangentialProperPartOfA(Polytope) 
nonTangentialProperPartOfB(Polytope) 
externallyConnectedToA(Polytope) 
externallyConnectedToB(Polytope) 
extend() 
flatten() 
getMBR() 
asPolygon() 
dimension() 

Polytope2 

 

Polytope3 

 

* Halver 

 

Figure V-1 Polytope class and subclasses 
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Direct Known Subclasses:  

Polytope2, Polytope3 

 
public class Polytope 

extends java.lang.Object 

Title: Regular Polytope. 

Description: A region defined as the union of a number of convex polytopes (see Figure 
V-1 and Section 8.2).  

Method Detail 

V.1.1. newPolytope 

public static Polytope newPolytope(java.lang.String inp) 

Decode the database form of the regular polytope.  
Parameters: 
inp - String form of the regular polytope as read from the database.  
Returns: 
The internal regular polytope decoded from the database form. 

 

V.1.2. clone 

public Polytope clone(int convexPolyCount) 

Create a new regular polytope with extra capacity as specified.  
Parameters: 
convexPolyCount - the number of extra convex polytopes that are to be 

accommodated. 

 

V.1.3. newPolytope 

public Polytope newPolytope(int convexPolyCount) 

Create a new empty regular polytope with capacity as specified, of the same 
dimensionality as this polytope. 

Parameters: 
convexPolyCount - the number of extra convex polytopes that are to be 

accommodated. 
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V.1.4. addConvexPoly 

public void addConvexPoly(ConvexPoly poly) 

Add the convex polytope to this regular polytope. (This is equivalent to this = 
this.union(poly)).  

Parameters: 
poly - A convex polytope. 

 

V.1.5. isConnectedA  

public boolean isConnectedA() 

Determine if the regular polytope is internally contiguous using Ca connectivity.  
Returns: 
True if the regular polytope is internally contiguous using the weak connectivity 

criterion. 

 

V.1.6. isConnectedB     

public boolean isConnectedB() 

Determine if the regular polytope is internally contiguous using Cb connectivity.  
Returns: 
True if the regular polytope is internally contiguous using the strong connectivity 

criterion. 

 

V.1.7. size 

public int size() 

Returns: 
The count of the number of convex polytopes defining this regular polytope. 

 

V.1.8. getConvexPoly 

public ConvexPoly getConvexPoly(int index) 

Parameters: 
index - Valid values 0..this.size()-1.  
Returns: 
The convex polytope at position index. 
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V.1.9. draw 

public void draw(GWin gWin) 

For debug only.  
Parameters: 
gWin - a graphics window. 

 

V.1.10. union 

public Polytope union(Polytope other) 

Form the union of this regular polytope with the other.  
Parameters: 
other - The other regular polytope.  
Returns: 
The union of this regular polytope with the other. 

 

V.1.11. unionWith 

public void unionWith(Polytope other) 

Set this regular polytope to the union of itself with the other.  
Parameters: 
other - The other regular polytope. 

 

V.1.12. intersection 

public Polytope intersection(Polytope other) 

Form the intersection of this regular polytope with the other.  
Parameters: 
other - The other regular polytope.  
Returns: 
The intersection of this regular polytope with the other. 

 

V.1.13. print 

public void print() 

Print the regular polytope definition for debug purposes. 

 



Appendix V Selected Java Documentation 

291 

V.1.14. toString 

public java.lang.String toString() 

Overrides: 
toString in class java.lang.Object. 
Returns: 
The regular polytope definition as a string in db format. 

 

V.1.15. inverse 

public Polytope inverse() 

Calculate a Regular Polytope which is the inverse of this one.  
Returns: 
a Regular Polytope which is the inverse of this one. 

 

V.1.16. universe 

public Polytope universe() 

Generate a regular polytope which covers the universal region of the dimension of 
this regular polytope.  

Returns: 
A universal regular polytope. 

 

V.1.17. isWithin 

public boolean isWithin(Polytope other) 

Determines if this regular polytope is within the other. 
Parameters: 
other - The other regular polytope. 
Returns: 
True if every point in this regular polytope is within the other regular polytope. 

 

V.1.18. equals 

public boolean equals(Polytope other) 

Determines if this regular polytope is equal to the other (Point set equality). 
Parameters: 
other - The other Regular Polytope. 
Returns: 
True if every point in this regular polytope is within the other and vice versa. 
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V.1.19. connectsToA 

public boolean connectsToA(Polytope other) 

This is the basic Ca continuity test between this and another regular polytope. Note 
that this differs from "intersects" which requires a point in common between the 
regions. Continuity requires only contact between the regular polytopes.  

Parameters: 
other - the other Polytope. 
Returns: 
True if there is any point of contact between the two polytopes. Note that the regular 

polytopes do not themselves have to be contiguous. 

 

V.1.20. connectsToB 

public boolean connectsToB(Polytope other) 

This is the basic Cb continuity test between this and another regular polytope. Note 
that this differs from "intersects" which requires a point in common between the 
regions. Continuity requires only contact between the regular polytopes. To 
qualify as Cb, there must be at lease a plane of contact in 3D, or a line in 2D.  

Parameters: 
other - the other Polytope. 
Returns: 
True if there is strong contact between the two polytopes. Note that the regular 

polytopes do not themselves have to be contiguous. 

V.1.21. properPartOf 

public boolean properPartOf(Polytope other) 

Test for proper containment of this by another regular polytope. 
Parameters: 
other - the other Polytope. 
Returns: 
True if this polytope is within the other but not vice versa. 

 

V.1.22. isNull 

public boolean isNull() 

Test for empty polytope. 
Returns: 
True if this polytope is null - i.e does not contain any points. 
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V.1.23. intersects 

public boolean intersects(Polytope other) 

Test for intersection of this by another regular polytope (i.e. a non empty 
intersection).  

Parameters: 
other - the other Polytope. 
Returns: 
True if these polytopes have a non-empty intersection. 

 

V.1.24. properOverlap 

public boolean properOverlap(Polytope other) 

Test for proper overlap of this by another regular polytope (i.e. a non empty 
intersection, but neither polytope containing the other).  

Parameters: 
other - the other Polytope. 
Returns: 
True if these polytopes have a non-empty intersection, but both sets have points 

outside that intersection. 

 

V.1.25. tangentialProperPartOfA 

public boolean tangentialProperPartOfA(Polytope other) 

Test for proper containment of this by another regular polytope, but with at least one 
point of contact between this and the exterior of the other polytope.  

Parameters: 
other - the other polytope. 
Returns: 
True if this polytope is within the other but not vice versa, and there is at least one 

point of contact between this polytope and the exterior of the other. 

 

V.1.26. tangentialProperPartOfB 

public boolean tangentialProperPartOfB(Polytope other) 

Test for proper containment of this by another regular polytope, but with at least a 
plane of contact (in 3D, line of contact in 2D) between this and the exterior of 
the other polytope.  

Parameters: 
other - the other polytope. 
Returns: 
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True if this polytope is within the other but not vice versa, and there is strong 
contact between this polytope and the exterior of the other. 

 

V.1.27. nonTangentialProperPartOfA 

public boolean nonTangentialProperPartOfA(Polytope other) 

Test for proper containment of this by another regular polytope, with no point of 
contact between this and the exterior of the other polytope.  

Parameters: 
other - the other Polytope. 
Returns: 
True if this polytope is within the other but not vice versa, and there is no point of 

contact between this polytope and the exterior of the other. 

 

V.1.28. nonTangentialProperPartOfB 

public boolean nonTangentialProperPartOfB(Polytope other) 

Test for proper containment of this by another regular polytope, with no plane (or 
line in 2D) of contact between this and the exterior of the other polytope.  

Parameters: 
other - the other Polytope. 
Returns: 
True if this polytope is within the other but not vice versa, and there is no Cb contact 

between this polytope and the exterior of the other. 

 

V.1.29. externallyConnectedToA 

public boolean externallyConnectedToA(Polytope other) 

Test for external (weak or strong) connection (Ca) to this by another regular 
polytope  

Parameters: 
other - the other Polytope  
Returns: 
True if this polytope is at least Ca connected to the other, but does not overlap it. 

 

V.1.30. externallyConnectedToB 

public boolean externallyConnectedToB(Polytope other) 

Test for strong external connection to this by another regular polytope  
Parameters: 
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other - the other Polytope  
Returns: 
True if this polytope is strongly connected (Cb) to the other, but does not overlap it. 

 

V.1.31. extend 

public Polytope3 extend() 

Extend the 2D polytope into 3D by projecting into a prism in the z direction.  
Returns: 
A convex poly which is one dimension larger (add a z dimension to the x and y). 

 

V.1.32. flatten 

public Polytope2 flatten() 

Flatten the 3d polytope into 2D by intersecting with z=0. 
Returns: 
A convex poly which is one dimension smaller. 

 

V.1.33. getMBR 

public Box getMBR() 

Returns: 
A minimum bounding rectangle surrounding the regular polytope. 

 

V.1.34. asPolygon 

public MultiPolygon asPolygon() 

Returns: 
The regular polytope converted to conventional vertex representation. Note that if 

the polytope was 3D, it is flattened first. 

 

V.1.35. dimension 

public int dimension() 

Returns: 
The dimensionality of the polytope (2 or 3). 
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V.2. Class ConvexPoly 

* * 

Polytope ConvexPoly 

MBR: box 

ConvexPoly2 

 

ConvexPoly3 

 

 

Halver 

 
addHalver(Halver) 
size() 
vertexSize() 
getHalver(int) 
getVertex(int) 
inverse() 
intersect(ConvexPoly) 
toString() 
draw() 
empty() 
closureEmpty() 
connectionA() 
connectionB() 
print() 
extend(Box) 
compareWith() 
newPolytope(int) 
newConvexPoly(int) 
extend() 
flatten() 
clone() 
dimension() 
universe() 
universalPolytope() 

 

Figure V-2 ConvexPolytope class and subclasses 

Direct Known Subclasses:  

ConvexPoly2, ConvexPoly3 

 
public class ConvexPoly 

extends java.lang.Object 

Title: Convex Polytope. 

Description: A convex region defined as the intersection of a number of half planes in 2D, 
or half spaces in 3D (See Figure V-2 and Section 8.2). 
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Method Detail 

V.2.1. addHalver 

public void addHalver(Halver newHalver) 

Add a half plane or half space to this convex polytope definiton. The final result will 
be that part of this convex polytope which is also within the half plane/space. I.e. 
the intersection of the convex polytope and the half plane/space.  

Parameters: 
newHalver - the half plane/space to be included. 

 

V.2.2. size 

public int size() 

Returns: 
The count of the number of half planes/spaces defining this convex polytope. 

 

V.2.3. vertexSize 

public int vertexSize() 

Returns: 
The count of the number of vertices defining this convex polytope. 

 

V.2.4. getHalver 

public Halver getHalver(int index) 

Parameters: 
index - Valid values 0..this.size()-1.  
Returns: 
Halver half plane/space at position index.  

 

V.2.5. getVertex 

public PointR getVertex(int index) 

Parameters: 
index - Valid values 0..this.vertexSize()-1.  
Returns: 
The vertex at position index as a Point3R or a Point2R. 
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V.2.6. inverse 

public Polytope inverse() 

Calculate a regular polytope (not necessarily convex) which is the inverse of this 
convex polytope. 

Returns: 
a regular polytope which is the inverse of this convex polytope. 

 

V.2.7. intersect 

public ConvexPoly intersect(ConvexPoly that) 

Form the intersection of this convex polytope with another. 
Parameters: 
that - the other convex polytope. 
Returns: 
the intersection of this convex polytope with another. 

V.2.8. toString 

public java.lang.String toString() 

Overrides: 
toString in class java.lang.Object. 
Returns: 
the convex polytope definition as a string in db format. 

 

V.2.9. draw 

public void draw(GWin gWin) 

For debug only. 
Parameters: 
gWin - the drawing window. 

 

V.2.10. empty 

public boolean empty() 

Determine if this convex polytope has become empty. Empty means that there are 
no points inside the convex polytope. If the pseudo-closure has points during the 
determination of contact, an empty convex polytope may have faces and vertices.  

Returns: 
True if this convex polytope has become empty. 
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V.2.11. closureEmpty 

public boolean closureEmpty() 

Determine if the closure of this un-normalised convex polytope1 has become empty.  
Returns: 
True if this convex polytope has become empty. 

 

V.2.12. connectionB 

public boolean connectionB() 

Determine if this un-normalised convex polytope is a connection for strong 
connectivity test. I.e. does this consist of a pair of degenerate faces only?  

Returns: 
True if this convex polytope has become a degenerate connection for strong 

connectivity test. 

 

V.2.13. connectionA 

public boolean connectionA() 

Determine if this un-normalised convex polytope is a connecton for weak 
connectivity test. I.e. does the closure of this convex polytope contain at least 
one point. 

Returns: 
True if this convex polytope has become become degenerate for weak connectivity 

test. 

 

V.2.14. print 

public void print() 

Print the convex polytope parameters for debug purposes.  

 

V.2.15. extend 

public void extend(Box mbr) 

Extend the minimum bounding rectangle to include this convex polytope. 

                                                           
1 This and other methods are used in the compareWith method. In effect, the pair of convex polytopes are 
intersected with the result not being normalised. These three methods are then used to determine the overlap or 
degree of connectedness of the result. 
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V.2.16. compareWith 

public int compareWith(ConvexPoly that) 

Compare this convex polytope with another.  
Parameters: 
that - The other ConvexPoly  
Returns: 
DISJOINT if the polytopes do not connect.  
CONTACTSa if the polytopes meet at a single point.  
CONTACTSb if the polytopes meet at a face (or overlaps).  
CONTAINED if this polytope is completely contained by the other (including 

tangential containment). 
CONTAINS if this polytope completely contains the other (including tangential 

containment). 
EQUAL if this polytope completely contains the other and vice versa. 

 

V.2.17. newPolytope 

public Polytope newPolytope(int size) 

create a new empty regular polytope with capacity as specified, and the same 
dimensionality as this convex polytope. 

Parameters: 
size - the number of convex Polytopes that are to be accommodated. 

 

V.2.18. newConvexPoly 

public ConvexPoly newConvexPoly(int size) 

create a new convex polytope with capacity as specified, and the same 
dimensionality as this. Since it is created with no halvers, it is initially equal to 
the infinite convex polytope. 

Parameters: 
size - the number of halvers that are to be accommodated. 

 

V.2.19. extend 

public ConvexPoly3 extend() 

Extend the 2d convex poly into 3D by projecting into a prism.  
Returns: 
A convex poly which is one dimension larger (adding a z value to the x and y). 
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V.2.20. flatten 

public ConvexPoly2 flatten() 

Flatten the 3d polytope into 2D by intersecting with z=0.  
Returns: 
A convex poly which is one dimension smaller. 

 

V.2.21. clone 

public ConvexPoly clone(int halverCount) 

Parameters: 
halverCount - the number of extra capacity required. 
Returns: 
a new convex polytope equal to the old one, with extra capacity as required. 

 

V.2.22. dimension 

public int dimension() 

Returns: 
the dimensionality of the polytope (2 or 3). 

 

V.2.23. universe 

public ConvexPoly universe(int size) 

Returns: 
A universal convex polytope, of the same dimensionality as this. 

 

V.2.24. universalPolytope 

public Polytope universalPolytope() 

Returns: 
A universal regular polytope, of the same dimensionality as this convex polytope. 
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V.3. Class Halver 

surroundedBy 

1 

A, B, D:  int; 
p1, p2:  Point2R 

HalfSpace 
3..* 

A, B, C, D: int; 
p: Point3R[3..*] 

HalfPlane 

toString() 
inverse() 
equals(Halver) 
compareWith(Halver) 
print() 
includes(PointR) 
extend() 
flatten() 
isUniverse() 
clone() 
truncate(Halver) 
isNull() 

Halver 

 

Figure V-3 Halver class and subclasses 

Direct Known Subclasses:  

HalfPlane, HalfSpace 

 
public class Halver 

extends java.lang.Object 

Description: A half plane or half space (depending on the dimension of the problem domain 
universe). (See Figure V-3 and Section 8.2). 

Method Detail 

V.3.1. toString 

public java.lang.String toString() 

Overrides: 
toString in class java.lang.Object. 
Returns: 
String the half plane or space parameters as a string in DB format. 
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V.3.2. inverse 

public Halver inverse() 

The set theoretical inverse of this half plane/space. i.e. the resultant half plane or 
space contains all points which are not in this plane or space.  

Returns: 
Halver a half space/plane defining all points not in this half space/plane. 

 

V.3.3. equals 

public boolean equals(Halver that) 

The set theoretical equality of this half plane/space compared to the other. i.e. the 
two planes/spaces define exactly the same set of points.  

Parameters: 
that - The other half plane/space. 
Returns: 
true if the two planes/spaces define exactly the same set of points. 

 

V.3.4. compareWith 

public int compareWith(Halver other) 

Compare two half spaces/planes, returning the relationship between them. 
Parameters: 
other - The other half plane/space. 
Returns: 
The relationship as defined below:  

EQUAL - if the half planes/spaces define the same set of points. 
CONTAINEDBY - if all points in this set are contained within the other set. 
CONTAINS - if this set contains all points in the other set. 
ANTIEQUAL - if there is no point in both sets, but every point is in one set or 

the other. That is to say, the boundaries coincide but in opposite directions. 
DISJOINT - if there is no point simultaneously in both sets, but the sets are not 

ANTIEQUAL. 
OVERLAP - if the two half planes/spaces overlap. This is overlap in the infinite 

line/plane sense, i.e. the half space/plane boundaries are not parallel. 

 

V.3.5. print 

public void print() 

Print the half space or plane parameters for debug purposes. 
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V.3.6. includes 

public int includes(PointR point) 

Test if dr-rational point p lies within or on the edge of the half space or plane. 
Parameters: 
point - the point. 
Returns: 
1 if the point is within, 0 if on the edge, -1 outside of the half space or half plane. 

 

V.3.7. extend 

public Halver extend() 

Extend the half plane into a half space. 
Returns: 
a halver which is one dimension larger (adding a z value to the x and y). 

 

V.3.8. flatten 

public Halver flatten() 

flatten the half space into a half plane.  
Returns: 
a halver which is one dimension smaller (setting the z value to zero). 

 

V.3.9. isUniverse 

public boolean isUniverse() 

Returns: 
true if this half space or plane is equal to the universal region 

 

V.3.10. clone 

public java.lang.Object clone() 

Overrides: 
clone in class java.lang.Object 
Returns: 
a copy of the halver. 
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V.3.11. truncate 

public void truncate(Halver thatH) 

Truncate the face defined by this halver by removing that part of it which is not 
within the other half plane or half space. Calculation of the points of intersection 
use halvers rather than vertices to avoid rounding errors or increasing precision 
requirements.  

Parameters: 
thatH - The halver to be used to truncate this face. 

 

V.3.12. isNull 

public boolean isNull() 

Determine if this edge line or plane is part of the boundary of the convex polytope 
which contains it.  

Returns: 
True if this face is null.  
False if this edge line or plane is part of the boundary of the convex polytope which 

contains it. (That is to say, it has not been truncated out of existence). 

 

 





 

  

Appendix VI Encoding of  the Regular 
Polytope 

In the Java coding that was developed as a proof of concept for the Regular Polytope 
approach (see Chapter 8), a simplified textural encoding was used for database storage. 
Simple text encoding was chosen for its ease of debugging and visibility of internal details. 
It would be expected that in a final implementation a binary encoding would be used, and 
perhaps additional objects would be stored (such as vertices) to provide faster processing. 
The following (Figure VI-1) is a diagram of the format used for encoding, Figure VI-2 is an 
example of the encoding of a 2D regular polytope and Figure VI-3 is an example of the 
encoding of a 3D regular polytope – the red parcel shown in Figure 8-7. This format (or an 
equivalent format expressed in XML) could potentially be used as a “well known text” 
format for the interchange of regular polytope data.  

 

Encoding   Meaning 
    
n   Dimensionality (2 or 3) 
{   Start of regular polytope 
ccc   Number of convex polytopes in this regular 

polytope 
 [   
 hhh  Number of halvers in this convex polytope 
  (A  
  aaa Value of A 
  B  
  bbb Value of B 
  C For 3D half spaces only 
  ccc Value of C, for 3D half spaces only 
  D  
  dddd Value of D 
  )  
 ]   
 uu  The unit number 
}   End of regular polytope 

Figure VI-1 Encoding of the regular polytope. 
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2{3[4(A1000000000B-123291173D-69575189961077544) 
(A-1000000000B-26136927D58393007284472408) 
(A1000000000B31431823D-57996749042819608) 
(A1000000000B34920016D-57735712615021376)] 
1[3(A1000000000B26175247D-58388182445082504) 
(A-1000000000B-41425581D57246948141295320) 
(A-1000000000B-19410078D58894463521045944)] 
1[4(A22044640B-1000000000D-76164657185192560) 
(A-1000000000B-34920016D57735712615021376) 
(A-20797546B1000000000D76091499563579888) 
(A1000000000B19410078D-58894463521045944)]1} 

Figure VI-2 Sample of a 2D regular polytope with 3 convex polytopes. 

3{4[5(A209106769B-1000000000C0D-87474526385019632) 
(A-1000000000B96742947C0D67619782016733008) 
(A154141516B1000000000C0D65542411417979120) 
(A0B0C1000000000D-1620000000000) 
(A0B0C-1000000000D3369000000000)] 
1[9(A1000000000B-96742947C0D-67619782016733008) 
(A124297655B-1000000000C0D-82353864426437184) 
(A42902139B-1000000000C0D-77439217084724288) 
(A-1000000000B-485290904C0D24057595685639176) 
(A154151941B1000000000C0D65541781852024560) 
(A0B0C-1000000000D3369000000000) 
(A321910248B312154508C1000000000D3926298596179034) 
(A167386483B162313705C1000000000D2041013821873728) 
(A55882393B-39480156C1000000000D-6330415395970066)] 
1[9(A1000000000B485290904C0D-24057595685639176) 
(A-39306006B-1000000000C0D-72475406303075040) 
(A-122497336B-1000000000C0D-67452131525276536) 
(A-203536187B-1000000000C0D-62558733116505200) 
(A-1000000000B305424379C0D83245526342290960) 
(A154151941B1000000000C0D65541781852024560) 
(A0B0C-1000000000D3369000000000) 
(A-9290258B-60270964C1000000000D-3951380303692924) 
(A-2668660B-67894450C1000000000D-4921817835264868)] 
1[6(A-1000000000B305424379C0D83245526342290960) 
(A154151941B1000000000C0D65541781852024560) 
(A0B0C-1000000000D1150000000000) 
(A-49838883B-1000000000C414957265D-71840804779952464) 
(A-111385607B-1000000000C414957265D-68124465446020072) 
(A-160311958B-1000000000C555632101D-65170280390171696)]1} 

Figure VI-3 Sample of a 3D regular polytope with 4 convex polytopes as pictured in 
Figure 8-7. 



 

  

Appendix VII Data Storage Requirement 
Estimates 

In order to compare the storage requirements of the regular polytope approach with 
conventional vertex-defined approaches, a number of theoretic cases have been estimated. 
In each of the following, the size quoted is for a single object (polygon, polyhedron or 
regular polytope). An attempt has been made to ensure that the relative complexity of the 
object is directly comparable in all cases, but this cannot always be guaranteed. For 
example, the storage requirements of the regular polytope have a dependence on the 
number of points of concavity in the object, which is highly variable and dependant on the 
application domain. These estimates should be treated as indicative only. They are used 
principally in Chapter 7 as part of the comparison of various suggested database schemata. 

VII.1. Summary of Schemas 

The estimates to be found on later pages of this appendix have been tabulated for 
convenience in Tables VII-1 and VII-2 below. The details of the cases, and the assumptions 
can be found later in the appendix. Since the requirements for the various 2D and 3D 
regular polytope forms do not differ by much, only the 3D forms have been estimated for 
the approximated polytope forms. 

Table VII-1 – Vertex Representations 

 2D 
Simple 

2D 
Moderate 

3D 
Large 

3D 
Simple 

3D 
Moderate 

3D 
Large 

No Topology 96 b 864 b 80 kb 404 b 5668 b 560 kb 
With 

Topology 
148 b 532 b 40 kb 230 b 1736 b 160 kb 

 

Table VII-2 – Regular Polytope Representations 

 2D 
Simple 

2D 
Moderate 

3D 
Large 

3D 
Simple 

3D 
Moderate 

3D 
Large 

No Topology 144 b 1860 b 165 kb 212 b 2344 b 207 kb 
Shared Halver Topology 147 b 1927 b 172 kb 196 b 2148 b 187 kb 
Approximated –        no 

Topology 
   620 b 9268 b 920 kb 

Approximated – with 
Shared Halver 

   626 b 9368 b 930 kb 

Approximated – with 
Shared Surfaces 

   532 b 3054 b 300 kb 
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VII.2. Assumptions  

To simplify the calculations, an object-oriented storage model is assumed, with each class 
on the database schema diagram being represented by a block of memory. No provision has 
been made for indexes or overheads required by the file handling system. In addition, the 
following assumptions have been made: 

• Each object carries 40 bytes of attributes. 
• All pointers are 4 bytes long. 
• All integers require 4 bytes except the D parameter of the half space, which requires 8 

bytes. 
• All coordinate values (x, y and z) are stored as 4 byte integers. 
• Each one-to-many relation requires a count of the number of member objects. 
• Where possible, member objects are physically placed within the owner object, and do 

not require pointers. 
• Each one-to-many link requires a pointer to each member object. 
• Each one-to-many link requires a pointer to the head from each member. 
• Each many-to-many relation has two counters, plus the necessary pointers to objects at 

each end of the relation. 

In all cases, three representative objects are compared: 

1. A very simple object – 4 sides in 2D,  6 faces in 3D. 

2. A moderately complex object – 100 faces or sides. In the regular polytope 
representations, 100 half spaces are used. 

3. A large object with 10000 sides, faces or half spaces.  

 

Simple 4 sided 
polygon in 2d with 
4 directly adjoining 

polygons. 

Simple 6 face 
polyhedron in 3D 

with 8 vertices and 6 
directly adjoining 

polyhedra 

Moderate 6 surface 
polyhedron in 3D 
with 100 vertices 

and 6 directly 
adjoining polyhedra 

Moderate 100 sided 
polygon in 2d with 
4 directly adjoining 

polygons. 

A B C 

d 

 
Figure VII-1 Simple and moderate objects 

Examples of the kind of objects are illustrated in Figure VII-1. In the case of data models 
that use topological encoding, it is assumed that a complete coverage of space is being 
stored, and no estimate is made for any “edge of the world” conditions (that is, each shared 
surface or linestring is assumed to have a region on both sides).  
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A further question in the 3D objects being modelled is the ratio between the number of 
surfaces patches and the number of vertices of a polyhedron. This number is constrained to 
a small range of values provided the vertices and edges are only used to define the shape of 
the surface (not, for example, being used to provide coloured patches or measurement 
points). As can be seen in Figure VII-2, the ratio of vertices to surface patches varies from 
1:2 in the case of a hexagonal decomposition to 2:1 in the case of a triangulated surface. 
For simplicity a ratio of 1:1 is chosen in this appendix (which is credible for the cadastral 
domain). 

 

Average 2 
corners per face 

Average one 
corner per face 

Average one corner 
per 2 faces

 
Figure VII-2 Ratio of corners to surface patches. 

In the data models in this chapter, a UML class diagram is used to describe the schema, but 
a simplified diagram is used for the storage estimates. In this form of diagram, as 
exemplified in Figure VII-3, the actual relations between object classes are omitted to avoid 
clutter. Instead, dashed lines indicate the relative cardinality of the sets of objects at each 
end of the line. Each object has its estimated size in the upper right corner.  
 

Region 76 bytes

attributes 40b 
LBR 16b 
lineString count 4b 
ptr to lineString 16 
direction 

2 

LineString 16/108/10008 b

ptrs to region 4b 
point count 4b 
ptr to points 8/100/10000b 

4 

On average, each region is 
associated with 4 
lineStrings. Each lineString 
is shared between two 
regions. Hence on average 
there will be two line 
strings for each region. 

Point 4 bytes 

x, y, z 4b 

1 
2 
25 
2500 

Where three numbers are 
shown, they refer to the 
simple, medium and large 
cases. 

 
Figure VII-3 Examples of storage estimate diagram format. 
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VII.3. Vertex Representations 

As a base line for comparisons, the following simplified vertex representations are 
presented. It must be borne in mind that the schemas used in this appendix are simplified 
for the purposes of discussion, and do not reflect any actual systems. 

VII.3.1. A Simple 2D Polygon with no Topological Encoding 

This is the simplest storage system, where a 2D polygon carries all of its corners within the 
record, and no attempt is made to share edges or corners with adjacent polygons. Note that 
the ring object is intended to allow for polygons with holes, or multi-polygons. The 
structure is as shown in Figure VII-4, and storage requirements are estimated in Figure 
VII-5. 
 

Polygon 

Ring * 
attributes 
LBR 

 
Corner * 

x, y: integer 

 
Figure VII-4 Simple 2D polygon, no topology. 

It is assumed that each polygon has the rings and corners stored within the polygon record, 
so that no pointers are needed. It is further assumed that in the vast majority of cases, each 
polygonal region can be described by a single ring. 
 

Polygon 60 bytes 

attributes 40b 
LBR 16b 
ring count 4b 

Corner 8 bytes
x 4b 
y 4b 

4 
100 

10000 

1 
Ring 4 bytes
corner count 4b 1 

1 

 small medium large 
 
Polygon 60b 60b 60b 
 
Ring 4b 4b 4b 
 
Corner 32b 800b 80kb
  
Total 96b 864b 80kb 

 
Figure VII-5 Storage requirements - simple 2D polygon. 

VII.3.2. A 2D Polygon with Topological Encoding 

In this highly simplified schema as depicted in Figure VII-6, with estimated requirements in  
Figure VII-7, it is assumed that each line string is shared with one neighbouring region, and 



Appendix VII Data Storage Requirement Estimates 

313 

that there are four nodes in the boundary of each region (thus 4 linestrings) (see Figure 
VII-1A and B). It is also assumed that each node is common to four regions on average. 
The average number of linestrings for a region is therefore 4 – each shared with a 
neighbour. The average number points per region is the number of sides less the number of 
nodes. 
 

direction 

Region 

Point 
* 

attributes 
LBR 

x, y: integer 

Line String * 

 Node 

* 

x, y: integer 

2 

2 

direction 

 
Figure VII-6 a 2D polygonal region with topological encoding. 

 

Region 80 bytes 

attributes 40b 
LBR 16b 
lineString count 4b 
ptr to lineString 16b 
direction 4b 

2 

4 

LineString 20 bytes 
ptr to region 8b 
ptr to node 8b 
point count 4b 

4 

2 
Node 28 bytes
x 4b 
y 4b 
lineString count 4b 
ptr to lineString 16b 

Point 8 bytes
x 4b 
y 4b 

0 
96 

9994 

1 

1 

2 

 small medium large 
 
Region 80b 80b 80b 
 
LineString 40b 40b 40b 
 
Node 28b 28b 28b 
 
Point 0b 384b 40kb
  
Total 148b 532b 40kb 

 
Figure VII-7 Storage requirements - 2D region with topology. 

Note, in Figure VII-7, the 1-1 on the dotted line between Region and Node does not 
indicate a 1-1 link, but merely that on average the number of nodes in the database will be 
approximately the same as the number of regions. 

VII.3.3. A Simple 3D Polyhedron with no Topological Encoding 

This is the simplest possible storage system for a 3D polyhedron, where the faces are stored 
within the polyhedron, and the corners are stored within each face. Note that this allows for 
polyhedrons with holes, multi-polyhedrons and for faces with concavities. The structure is 
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as shown in Figure VII-8, with estimates in Figure VII-9. The simple polyhedron is a 
“brick” shape, with 6 faces and 8 corners, while in the complex cases the topology between 
regions is the same as in the simple case, but the surfaces of the regions are more detailed. 
(See Figure VII-1C and D).  

 

Polyhedron 

Ring * 

attributes 
LBR 

 
Corner * 

x, y, z: integer 

Face * 

 

 
Figure VII-8 Simple 3D polyhedron, no topology. 

 

Polyhedron 68 bytes 

attributes 40b 
LBR 24b 
face count 4b 

1 

6 
100 

10000 

Face 4 bytes
ring count 4b 

1 

1 

1 

4 

1 

 small medium large 
 
Polygon 68b 68b 68b 
 
Face 24b 400b 40kb 
 
Ring 24b 400b 40kb 
 
Corner 288b 4800b 480kb
   
Total 404b 5668b 560kb 

Corner 12 bytes
x 4b 
y 4b 
z 4b 

24 
400 

40000 

Ring 4 bytes
corner count 4b 

 
Figure VII-9 Storage requirements - simple 2D polygon. 

VII.3.4. A 3D Polyhedron with Topological Encoding 

Several different forms of topological encoding have been suggested in the literature (See 
Chapter 3). For comparison purposes, it is assumed that a simple structure is in use which 
shares the definition of surfaces between adjacent bodies. It is further assumed that there is 
very basic sharing of points within and between surfaces. It is assumed that each surface is 
shared with one neighbouring region, and that there are 6 surfaces in the boundary of each 
region. 
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direction 

2 

2 

* 

direction 

Region 

Node 

attributes 
LBR 

x, y, z: integer 

Edge 

 

2 

Surface * 

 

SurfacePatch * 

 

 
Figure VII-10 a 3D polygonal region with topological encoding. 

 

Region 98 bytes 

attributes 40b 
LBR 24b 
surface count 4b 
ptr to surface 24b 
direction 6b 

2 

6 

Node 12 bytes
x 4b 
y 4b 
z 4b 

2 
Surface 12 bytes 
ptrs to region 8b 
surfacePatch count  4b 

SurfacePatch 20 bytes
node count 4b 
ptr to node 16b 

6 
100 

10000 
1 

4 

6 
100 

10000 

2 

 small medium large 
 
Region 98b 98b 98b 
 
Surface 36b 36b 36b 
 
SurfacePatch 60b 1000b 100kb 
 
Node 36b 600b 60kb 
 
Total 230b 1734b 160kb 

 
Figure VII-11 Storage requirements - 3D region with topology. 

VII.4. Regular Polytope Storage Estimates 

It is not possible in general to estimate the number of convex polytopes per regular 
polytope for all application domains, and the numbers in practice are quite varied. For 
example, a regular polytope could consist of a single convex polytope defined by 20 half 
spaces. If the complement is taken of this, it will be a regular polytope of 20 convex 
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polytopes, each defined by one half space. It is felt that the proportions used in this 
appendix are reasonable, but the actual estimates are not particularly sensitive to this issue. 

VII.4.1. A 2D Regular Polytope in Discrete Form 

This is the basic form of storage of the regular polytope, as described in Section 7.2. Figure 
VII-12 shows the database objects only, omitting the face and vertex classes, which are 
only present during calculations. The storage estimates are as shown in Figure VII-13. 
 

RegularPolytope 

ConvexPolytope 
* 

* 
HalfSpace 

A, B, C, D: integer 

Regular Polytope Representation 

 
Figure VII-12 Regular polytope in simple form. 

 

RegularPolytope 60 bytes 

attributes 40b 
LBR 16b 
convexPoly count 4b 

HalfPlane 16 
A,B 8b 
D 8b 

4 
10 
40 

1 

ConvexPoly 20 bytes 
halfPlane count 4b 
LBR 16b 

1 
10 

250 
1 

 small medium large 
 
RegularPolytope 60b 60b 60b 
 
ConvexPoly 20b 200b 5kb 
 
HalfPlane 64b 1600b 160kb 
  
Total 144b 1860b 165kb 1 

4 
100 

10000 

 
Figure VII-13 Storage requirements - 2D regular polytope. 
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VII.4.2. A 3D Regular Polytope in Discrete Form 

This has the same schema diagram Figure VII-12, as the 2D equivalent. The 3D polytope 
storage requirements can be found in Figure VII-14. 
 

Regular Polytope 64 bytes 

attributes 40b 
LBR 24b 
convexPoly count 4b 

HalfSpace 20 
A,B,C 12b 
D 8b 

6 
10 
40 

1 

ConvexPoly 28 bytes 
halverSpace count 4b 
LBR 24b 

1 
10 

250 
1 

 small medium large 
 
RegularPolytope 64b 64b 64b 
 
ConvexPoly 28b 280b 7kb 
 
HalfSpace 120b 2000b 200kb 
  
Total 212b 2344b 207kb 

6 
100 

10000 

1 

 
Figure VII-14 Storage requirements - 3D regular polytope. 

VII.4.3. A 2D Regular Polytope with Shared Half Planes 

There is a further assumption required to estimate this structure’s requirements, and that is 
the degree to which halvers can be shared between convex polytopes. This depends on the 
application domain, and can be expected to be quite high for Cadastral data. The sharing 
rate could even be higher than the number of halvers per regular polytope (refer to Chapter 
7 Figure 8, where the road frontages are shared by all parcels along the road). For the 
purposes of this estimate, it is conservatively assumed that halvers are shared between three 
convex polytopes on average. The schema is depicted in Figure VII-15, with the storage 
estimates in Figure VII-16. 
 

A, B, C, D 
extents

* * 

complement: 
Boolean 

HalfSpace 

Orientation 
RegularPolytope 

ConvexPolytope 
0:* 

 
Figure VII-15 Shared half space topology. 
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Regular Polytope 68 bytes 

attributes 40b 
LBR 16b 
convexPoly count 4b 

HalfPlane 35 bytes
A, B 8b 
D 8b 
convexPoly count  4b 
ptr to convexPoly 12b 
orientation 3b 

4 
10 
40 

1 

ConvexPoly 40/70/220 bytes 
halfPlane count 4b 
ptr to halfPlane 16/40/160b 
orientation 4/10/40b 
LBR 16b 

1 
10 

250 

3 

 small medium large 
 
RegularPolytope 60b 60b 60b 
 
ConvexPoly 40b 700b 55kb 
 
HalfPlane 47b 1167b 17kb 
  
Total 147b 1927b 172kb 1 

1.3 
33.3 
3333 

 
Figure VII-16 Storage requirements, 2D shared half plane topology. 

 

VII.4.4. A 3D Regular Polytope with Shared Half Spaces 

Figure VII-17 shows the estimated requirements for the 3D equivalent – the regular 
polytope with shared half space topology. 
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Regular Polytope 68 bytes 

attributes 40b 
LBR 24b 
convexPoly count 4b 

HalfSpace 39 bytes
A, B, C 14b 
D 8b 
convexPoly count  4b 
ptr to convexPoly 12b 
orientation 3b 

6 
10 
40 

1 

ConvexPoly 50/78/228 bytes 
halfPlane count 4b 
ptr to halfPlane 16/40/160b 
orientation 6/10/40b 
LBR 24b 

1 
10 

250 

3 

 small medium large 
 
RegularPolytope 68b 68b 68b 
 
ConvexPoly 50b 780b 57kb 
 
HalfPlane 78b 1300b 130kb 
  
Total 196b 2148b 187kb 1 

2 
33.3 
3333 

 
Figure VII-17 Storage requirements - regular polytope in 3D with shared half spaces. 

VII.4.5. 3D Approximated Regular Polytope 
 

composed 
of 

Body 

 

Face 

A, B, C, D:   int 

4..* 

Boundary 

 

1..* 

Edge

3..*

Approximated Point

X, Y, Z:   int13..*

 bounded by 

 limited by  other face

 
Figure VII-18 Approximated regular polytope. 

This is the simplest form of the approximated polytope, and it is assumed that all faces, 
boundaries, edges and points are stored directly with the body. The other useful factors are 
that the “other face” relationship only needs to be navigated in the edge to face direction, 
and no back pointer is needed from approximated point to edge. Since the edges that define 
a boundary can be stored in order, only one approximated point per edge is needed. 
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Body 68 bytes 

attributes 40b 
LBR 24b 
face count 4b 

1 

6 
100 

1000
0 

Edge 4 bytes 
other face 4b 

1 

1 ApproxPoint 12 
x 4b 
y 4b 
z 4b 

Face 24 bytes 
boundary count  4b 
A, B, C 12b 
D 8b 

Boundary 4 bytes
edge count 4b  

1 

4 

1 

24 
400 

40000 

1 

1 

 small medium large 
 
Region 68b 68b 68b 
 
Face 144b 2400b 240kb 
 
Boundary 24b 400b 40kb 
 
Edge 96b 1600b 160kb 
 
ApproxPoint 288b 4800b 480kb 
 
Total 620b 9268b 920kb 

1 

 
Figure VII-19 Storage requirements - approximated regular polytope in 3D. 

 

VII.4.6. 3D Approximated Regular Polytope Sharing Half Spaces 

The sharing of half spaces, as shown in Figure VII-20 makes little difference to the storage 
requirements as calculated in Figure VII-21. 
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* 

1

complement: Boolean 

1

Body 

 

Facet 

4..* 

Boundary 

 

1..* 

Edge

3..*

1 

Approximated Point

X, Y, Z:   integer3..*

 bounded by 

 limited by 

composed 
of 

 other face

HalfSpace

A, B, C, D:   int
extents 

 
Figure VII-20 Approximated regular polytope with shared half spaces. 

 

Body 68 bytes 

attributes 40b 
LBR 24b 
facet count 4b 

1 

6 
100 

10000 

Edge 4 bytes 
other face 4b 

1 

1 ApproxPoint 12 
x 4b 
y 4b 
z 4b 

Facet 13 bytes 
boundary count  4b 
complement 1b 
halfSpace count 4b 
ptr to halfSpace 4b 

Boundary 4 bytes
edge count 4b  

1 

4 

1 

24 
400 

40000 

1 

1 

HalfSpace 36 bytes
A, B, C 12b 
D 8b 
facet count 4b 
ptr to facet 12b 3 

3 

6 
100 

10000 

 small medium large 
 
Region 68b 68b 68b 
 
Facet 78b 1300b 130kb 
 
HalfSpace 72b 1200b 120kb 
 
Boundary 24b 400b 40kb 
 
Edge 96b 1600b 160kb 
 
ApproxPoint 288b 4800b 480kb 
 
Total 626b 9368kb 930kb 

1 

 
Figure VII-21 3D Storage requirements approximated polytope with shared half 

spaces. 
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VII.4.7. 3D Approximated Regular Polytope with Shared Surface Topology 

This schema Figure VII-22 shares surfaces between adjoining bodies. There are savings 
over the earlier approximated polytope schemata, mainly in the sharing of points and edges, 
as can be seen in Figure VII-23. Note that for estimation purposes, the approximated edges 
are divided into two categories – those totally within one surface, and those that form the 
boundary between three or more surfaces – the “nodal edges”. This should provide a more 
accurate size estimate. 

 

Surface Body

1..21..* 

+ / -

Face 

A, B, C, D:   int 

1..* 

Boundary 

 

1..* 
Approximate Edge Approximated Point

X, Y, Z:   int2
2 *Left/R

ight 

 
Figure VII-22 Approximated regular polytope with shared surface topology. 
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Surface 12 bytes 

face count 4b 
ptrs to body 8b 

6 
100 
10000 

ApproxEdge 25 bytes
other face 4b
ptr to point 8b
boundary count 4b
ptr to boundary 8b
direction 1b

1 

2 ApproxPoint 12 
x 4b 
y 4b 
z 4b 

Face 24 bytes 
A, B, C 12b 
D 8b 
boundary count  4b 

Boundary 4 bytes
edge count 4b  

2 

1 

1 

Body 98 bytes
attributes 40b 
LBR 24b 
surface count 4b 
ptr to surface 24b 
+/- 6b 

6 

ApproxEdge 33 bytes 
other face 4b 
ptr to point 8 
boundary count 4b 
ptr to boundary 16b 
direction 1b 

2 

2 

12 

2 

1 

2 

0 
88 
9988 

2 

6 
100 
10000 

where a “nodal edge” 

 small medium large 
 
Body 98b 98b 98b 
 
Surface 36b 36b 36b 
 
Face 72b 1200b 120kb 
 
Boundary 12b 200b 20kb 
 
Approx NodalEdge 198b 198b 198b 
 
ApproxEdge 0b 1100b 125kb 
 
AppproxPoint 72b 600b 60kb 
 
Total 488b 3432b 325kb 

 
Figure VII-23 Storage requirements - approximated regular polytope with shared 
surfaces. 





 

 

Summary 

The storage and retrieval of spatial data in computer systems has matured greatly over 
recent years, from the earliest approaches (of simple digitised linework and text) to the 
representation of features and their attributes, with the semantics of their behaviour 
associated. This has led to massive cost savings where data, which might have been 
captured for a specific purpose, can be shared and reused for other purposes.  

In this first generation of Geographic Information Systems (GIS), the data is stored locally, 
with each vendor using different nomenclature and definitions of spatial objects and having 
very different rules for what is accepted as “valid”. As a result a scientist using a desktop 
GIS may need to expend a considerable portion of his/her research effort and funds in 
translating, cleaning and preparing pre-existing data to convert to the form required for the 
study. 

For some years now, there has been a trend towards spatial data being housed within a 
database management system, these being considered as a corporate resource, leading to the 
realisation that the geographic data itself is in fact an infrastructure, in the same way as is, 
for example, a telephone network. This moves the ownership of the data from the desktop, 
firstly to the corporation, and ultimately to being a shared resource between public and 
private organisations – a Geographic Information Infrastructure (GII).  

An inhibiting factor in these trends is the lack of standardisation alluded to above. Where 
every data sharing operation involves manual intervention, it is difficult, if not impossible 
to create a GII. Thus a strong and consistent set of standards is needed, with the most basic 
requirement being for consistency in the geometric concepts used. While progress is being 
made by groups such as the International Standards Organisation Technical Committee 211 
(ISO TC211) and the Open Geospatial Consortium (OGC), there is still much to be done. 

The success of these standardisation efforts has been compromised by the requirement to be 
vendor neutral – i.e. to avoid specifying an internal representation to be used for storage. 
For example, the standards will remain silent on whether coordinate values should be stored 
in floating point or integer format.  

As a result, definitions of spatial objects are expressed in mathematical terms assuming an 
infinite precision real number system, with the details of how this is to be translated into the 
computational representation being left to the implementer. Therefore there is no agreed 
normative meaning of the “equals” predicate when applied to geometric objects, and 
definitions of validity are in general left to the implementers. 

If the standardisation effort is to allow spatial data to be interchanged without expensive 
manual intervention, a well defined logic is needed to underpin the standards and support 
the definition of validity of that data. This would also ensure that inferences drawn from the 
digital model remain consistent and do not lead to logical fallacies.  
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The language of spatial databases is couched in the language of mathematics, with 
operations being given names such as “union” and “intersection” and using vector-like 
representations. This naturally leads to the impression that the representations form a 
topological and/or vector space. Unfortunately this is not the case. Generally speaking, the 
rigorous mathematics used in the definition of spatial objects ends outside the database 
representation, which is only an approximation of the theoretical formalism used to define 
it. 

This thesis documents a number of cases that illustrate the potential breakdown of logic to 
be found in current technology, for example, cases where the union or intersection 
operations lead to inconsistent results. Various alternative approaches that have been 
investigated in search of solutions are discussed, and their advantages and disadvantages 
indicated. 

This current research has been motivated by an attempt to apply the mathematical approach 
to the actual representation of spatial features within the computer system. In this rigorous 
approach, the assumptions (or “axioms”) are clearly identified, and used to develop a chain 
of argument, leading to a proof of the required proposition. The advantage of this approach 
in the field of spatial data representation is that, if the computer hardware can be verified to 
obey the axioms, then the correct results of the algorithms are assured. 

In order to facilitate such a chain of proof, a form of representation known as the regular 
polytope has been defined, based on a small set of axioms and definitions, and shown to 
possess a consistent and complete logic. That is to say, the computational representation 
itself expresses the algebraic formalism, rather than being an approximation to an idealised 
mathematical model. 

Thus this representation is capable of providing a potential storage structure for a useful 
class of features, but this should not be seen as the sole object of the research. Rather the 
regular polytope should be seen as an exemplar for any approach to spatial data 
representation and storage.  

The fact that this particular representation can be axiomatically defined and implemented 
demonstrates that such an approach is feasible, and opens the possibility that all 
computational representations can be similarly analysed. The regular polytope is a 
particularly tractable construct for this type of analysis, which is the reason for  choosing it. 
By contrast the kind of structure embedded in many current systems is far more complex. 
In particular, floating point numbers add a significant level of complexity, and only the 
most basic topological behaviour has been proved where floating point operations are 
assumed. 

Based on integer and domain restricted rational arithmetic, it is shown that the logic of 
topology, the Boolean connection algebra and the region connection calculus can be 
expressed directly by the database implementation. Thus a database built on this structure 
cannot suffer from the kinds of breakdown of logic discussed above. In addition, this raises 
the prospect of a definition of validity and robustness of representation that is not vendor 
specific. 

A regular polytope representation of spatial objects is defined as the union of a finite set of 
(possibly overlapping) "convex regular polytopes", which are in turn defined as the 
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intersection of a finite set of half spaces. These half spaces are defined by finite precision 
number representations. The term “Regular Polytope” here does not carry its conventional 
meaning as the generalisation of a regular polyhedron (one having equal sides, faces and 
angles etc.). In the form used here, it combines the topological term “regular” with the 
conventional geometric meaning of “polyhedron”. 

The actual definition is given in axiomatic form, structured so as to form a “boundary free” 
representation, valid in any number of dimensions. Although it is explored here principally 
in 3D, particular reference is made to the mixture of 2D and 3D found in many current 
application areas such as cadastral property boundaries. Particular attention is paid to the 
issue of connectivity, both within and between regular polytopes, and the resultant logic is 
developed in terms of well studied concepts such as the region connection calculus. 

The particular representation chosen for the half space is such that adjoining regular 
polytopes will have no points in common, and no points will exist between them. Thus it is 
possible to define a complete partition of space where every point that can be represented 
computationally is defined to exist in one and only one region. In the traditional 
representations of 2D polygons and 3D polyhedrons, points play a very important role of 
carrying the metric information. This is in contrast to regular polytopes where points do not 
play a role in the definition at all. Instead the metric is specified via the half planes using 3 
or 4 integers (in 2D and 3D respectively). 

This theoretic basis is then applied to actual database schema design, and several alternative 
models proposed and analysed. As a check on the practicality of the algorithms, “proof of 
concept” classes have been developed in the Java programming language, and tested on a 
significant set of cadastral parcels (2D and 3D) from the Queensland cadastre.  

Finally, further areas of research are identified, including extensions of the approach to 
wider problem domains.   





 

 

Nederlandse Samenvatting 

De opslag en bevraging van ruimtelijke gegevens in computersystemen heeft de laatste 
jaren flinke vooruitgang geboekt, vanaf het allereerste begin (digitaliseren van het 
lijnenwerk en de tekst) tot aan de huidige representatie van objecten en  attributen, 
aangevuld met de semantiek. Dit heeft geleid tot een enorme kostenbesparing daar waar 
gegevens, die voor een bepaald doel worden ingewonnen en bijgehouden, nu ook gedeeld 
en hergebruikt kunnen  worden voor andere toepassingen. 

In de eerste generatie GIS had elke leverancier zijn eigen begrippenkader met bijbehorende 
definities van ruimtelijke objecten waarbij zeer verschillende regels werden toegepast om te 
bepalen wanneer een ruimtelijk object als geldig werd gezien. Momenteel kan een 
wetenschapper die een GIS gebruikt gedwongen zijn een aanzienlijk gedeelte van zijn/haar 
onderzoeksinspanning en -fondsen te besteden aan het vertalen, opschonen en voorbereiden 
van reeds bestaande gegevens om deze in de vorm te krijgen die voor het onderzoek nodig 
is. 

Gedurende enige tijd is er een ontwikkeling richting het beheer van ruimtelijke gegevens in 
een database management systeem, dat als collectief bedrijfsmiddel wordt beschouwd. De 
volgende fase in deze ontwikkeling is het besef dat geografische gegevens zelf onderdeel 
van de infrastructuur zijn, vergelijkbaar met bijvoorbeeld een telefoonnetwerk. Hiermee 
verhuist het beheer van de gegevens van de lokale computer, via de bedrijfsorganisatie, 
uiteindelijk naar de infrastructuuromgeving als een gedeeld hulpmiddel tussen de openbare 
diensten en private organisaties – een Geografische Informatie Infrastructuur (GII). 

Een belemmerende factor in deze ontwikkelingen is het hierboven geïmpliceerde gebrek 
aan eenduidigheid (standaarden). Wanneer bij de dagelijkse gegevensuitwisseling steeds 
handwerk nodig is, zal het moeilijk – zo niet onmogelijk  – zijn om een GII te realiseren. 
Daarom is een degelijke en consistente verzameling standaarden nodig. De meest basale 
vereiste is standaardisatie van de gebruikte geometrische concepten. Hoewel er al de nodige 
vooruitgang is geboekt door groepen zoals Technisch Comité 211 van de Internationale 
Standaardisatie Organisatie (ISO TC211) en het Open Geospatial Consortium (OGC), moet 
er op dit gebied nog steeds veel gedaan worden. 

Het succes van de standaardisatieactiviteiten wordt beperkt door de eis van een zuivere 
leveranciersneutrale aanpak – zoals het voorkomen om betrokken te raken bij de kwestie 
hoe ruimtelijke gegevens worden omgezet naar een interne representatie geschikt voor 
opslag. Zo zwijgen bijvoorbeeld de standaarden of de coördinaatwaarden in drijvende-
komma- of gehele-getallenformaat zouden moeten worden opgeslagen. Dientengevolge 
worden de definities uitgedrukt in wiskundige termen, de oneindige nauwkeurigheid 
veronderstellend van reële getallen. De details ten aanzien van hoe dit dan in de drijvende-
komma- of gehele getallen van de computersystemen moet worden vertaald worden aan de 
uitvoeder/programmeur overgelaten. Zo is er geen gestandaardiseerde interpretatie van het 
predikaat “is gelijk” wanneer toegepast op geometrische objecten. Verder worden de 
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definities van valide objecten in het algemeen bepaald door de ontwikkelaars van 
implementaties. 

Als standaardisatieactiviteiten moeten leiden tot een situatie waarbij ruimtelijke gegevens 
zonder handmatig ingrijpen kunnen worden uitgewisseld, dan is er een strenge logica nodig 
om de standaarden te onderbouwen en om de definitie van valide objecten te specificeren. 
Dit zou verzekeren dat de gevolgtrekkingen die op basis van een digitale representatie 
worden getrokken consistent zijn en niet tot logische fouten leiden. 

De taal van de ruimtelijke databases is ingebed in de taal van de wiskunde met 
operatienamen zoals “vereniging” en “doorsnede’’ en het gebruik van vectorachtige 
representaties. Dit leidt natuurlijk tot de indruk dat de representaties een topologische 
ruimte vormen (en/of een vectorruimte). Wat helaas niet het geval is. Over het algemeen, is 
de streng-wiskundige definitie van ruimtelijke objecten niet geldig buiten de 
databaserepresentatie, omdat het slechts een benadering is van het theoretische formalisme 
dat gebruikt is bij de definitie. 

Dit proefschrift beschrijft een aantal gevallen van falende logica binnen de huidige 
technologie, zoals bijvoorbeeld situaties waarbij de operatoren “vereniging” en 
“doorsnede” tot inconsistente resultaten leiden.  Diverse alternatieve benaderingen die zijn 
onderzocht worden beschreven, waarbij van elk de voor- en nadelen worden aangeduid. 

Het huidige onderzoek wordt gekenmerkt door een poging om een wiskundige basis te 
kiezen voor de feitelijke representatie van ruimtelijke objecten in een computer. In deze 
rigide aanpak zijn de aannamen (axioma’s) duidelijk gedefinieerd en gebruikt om een keten 
van argumenten samen te stellen, die tot een bewijs leiden van de gewenste eigenschap van 
voorspelbaar en correct gedrag. Het voordeel van deze aanpak voor de representatie van 
ruimtelijke objecten is dat, indien de computerhardware aantoonbaar aan de axioma’s 
voldoet, de correcte werking van de algoritmen gegarandeerd kan worden. 

Om een dergelijke bewijsketen te faciliteren is een representatievorm, bekend onder de 
naam “regulier polytoop” gedefinieerd (op basis van een aantal axioma’s en definities) en 
onderzocht. Hierbij is aangetoond dat deze een consistente en compleet gedefinieerde 
logica bezit. Dat betekent dat de opslagstructuur in de computer zelf dit algebraïsche 
formalisme heeft, in plaats van een benadering te zijn van een geïdealiseerd wiskundig 
model. 

Het regulier polytoop is een representatie die als opslagstructuur voor ruimtelijke objecten 
kan dienen. Dit moet niet gezien worden als het enige onderzoeksobject, maar eerder als 
een exemplarisch voorbeeld voor rigide methoden om ruimtelijke gegevens te representeren 
en op te slaan. 

Dat deze specifieke representatie rigide gedefinieerd en geïmplementeerd kan worden 
demonstreert dat een dergelijke rigiditeit mogelijk is en opent de mogelijkheid dat andere 
computerrepresentaties soortgelijk geanalyseerd kunnen worden. Het regulier polytoop is 
een bijzonder handelbaar concept voor dit type van analyse, vandaar de keuze voor dit 
concept. Dit in tegenstelling tot de structuren in de hedendaagse systemen, die veel 
complexer zijn op dit vlak. In het bijzonder leiden drijvende-kommagetallen tot een 
aanzienlijk hoger niveau van complexiteit en alleen de meest basale topologische 
eigenschappen kunnen bewezen worden wanneer drijvende-kommaoperaties worden 
gebruikt. 
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Gebaseerd op gehele of domein-beperkte rationele-getallenrekenkunde wordt aangetoond 
dat de strenge logica van topologie, de “Boolean connection algebra” en de “region 
connection calculus” gerealiseerd kunnen worden in de database-implementatie zelf. Aldus 
lijdt een op deze structuur gebaseerde database niet aan de eerder besproken falende logica. 
Bovendien komt er hierbij zicht op een definitie van geldige (valide) objecten en robuuste 
representaties die niet leveranciersspecifiek zijn. 

Een regulier polytoop representatie van ruimtelijke objecten is gedefinieerd als de 
vereniging van een eindige verzameling van (mogelijk overlappende) convexe reguliere 
polytopen, welke op hun beurt weer gedefinieerd zijn als de doorsnede van een eindige 
verzameling van halfruimten. Deze halfruimten zijn gedefinieerd door getalrepresentaties 
met eindige nauwkeurigheid. De term regulier polytoop zoals hier gebruikt is een 
combinatie van het topologische begrip “regulier” (verzameling die gelijk is aan het 
binnenste van zijn afsluiting) met de gangbare geometrische betekenis van “polytoop” (de 
n-dimensionale veralgemenisering van een polyhedron). 

De feitelijke definitie is gegeven in axiomatische vorm, zodanig gestructureerd dat het een 
representatie zonder expliciete grenzen vormt, welke geldig is in elke dimensie. Hoewel het 
hier vooral in 3D gebruikt wordt, wordt er ook een specifieke vermelding gemaakt van het 
gecombineerde gebruik in 2D en 3D. Dit heeft dan vele toepassingsgebieden, zoals 
bijvoorbeeld kadastrale eigendomspercelen. Bijzondere aandacht is besteed aan het 
onderwerp “verbondenheid”, zowel binnen een regulier polytoop als tussen meerdere 
reguliere polytopen. De bijbehorende logica is ontwikkeld in termen van goede eerder 
bestudeerde concepten, zoals de “region connection calculus”. 

De specifiek gebruikte representatie van halfruimten is zodanig dat naburige reguliere 
polytopen geen enkel punt gemeenschappelijk hebben en dat er ook geen enkel punt tussen 
hen invalt. Het is dus mogelijk om een complete partitie (opdeling) van de ruimte te maken, 
zodanig dat elk computationeel representeerbaar punt precies in één gebied valt. Bijzonder 
is ook dat het regulier polytoop geen punten gebruikt om de metrische informatie te 
representeren zoals dit wel gebeurt in de meer traditionele weergaven van polygonen (in 
2D) en polyhedra (in 3D). Bij reguliere polytopen wordt deze metrische informatie 
gespecificeerd via de halfruimten door drie of vier (in respectievelijk 2D en 3D) gehele 
getallen. 

Deze theoretische basis wordt vervolgens toegepast op een daadwerkelijk database-
schemaontwerp, waarbij verschillende alternatieven onderzocht worden. Als controle voor 
de praktische haalbaarheid van het concept is een verzameling Java-klassen ontwikkeld en 
getest met een flink aantal kadastrale percelen (2D en 3D) van het kadaster van 
Queensland. 

Tot slot worden de verdere onderzoeksgebieden geïdentificeerd, met inbegrip van 
uitbreidingen van de gepresenteerde aanpak naar andere probleemdomeinen. 
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