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Abstract

Many algorithms exist for computing the 3D Voronoi
diagram, but in most cases they assume that the input
is in general position. Because of the many degenera-
cies that arise in 3D geometric computing, their im-
plementation is still problematic in practice. In this
paper, I describe a simple 3D Voronoi diagram (and
Delaunay tetrahedralization) algorithm, and I explain,
by giving as many details and insights as possible, how
to ensure that it outputs a correct structure, regardless
of the spatial distribution of the points in the input.

1. Introduction

Many computer scientists and mathematicians con-
sider the Voronoi diagram (VD) as being the most fun-
damental spatial structure because it is very simple,
and yet is so powerful that it helps in solving many
theoretical problems, and is also useful in a great many
application domains [2, 32]. Algorithms that can com-
pute efficiently and robustly the structure are therefore
of the utmost importance. Several optimal algorithms
based on different paradigms, and also implementa-
tions of these algorithms, have been proposed over the
years. The majority of these algorithms do not com-
pute directly the VD, but a closely-related structure,
the Delaunay triangulation. As explained in Section 2,
the two structures are actually dual, which means that
the knowledge of one implies the knowledge of the other
one (i.e. if one has only one structure, he can always ex-
tract the other one). As first pointed out by Boots [5],
it is easier, from an algorithmic and data structure
point of view, to manage triangles over arbitrary poly-
gons (they have a constant number of vertices and ad-
jacent cells). When the VD is needed, it can simply be
extracted from its dual. This has the additional advan-
tage of speeding up algorithms because when the VD is
used directly intermediate Voronoi vertices—that will

not necessarily exist in the final diagram—need to be
computed and stored.

The authors of most papers in the computational
geometry literature assume that they are working in
a ‘perfect world’, i.e. they state that their algorithms
are valid if and only if the input is in general position
(which can have different meanings depending on the
geometric problem at hand). When developing an al-
gorithm and analysing its complexity, this assumption
usually makes sense because one wants to avoid be-
ing overwhelmed with technical details (that are usu-
ally seen as implementation details), and also wants to
simplify the complexity analysis (to be able to com-
pare with other algorithms). Moreover, as stated in
[8, page 9], “degenerate cases can almost always be
handled without increasing the asymptotic complex-
ity of the algorithm”. The result is that the handling
of degenerate cases is usually left to the programmer.
However, modifying an algorithm to make it robust
for any inputs can be in some cases an intricate, time-
consuming and error-prone task because degeneracies
have the effect of increasing considerably the number of
special cases that must be handled. For non-geometric
algorithms such as a sorting algorithm, it can be easy
since only the case of two keys being equal must be
handled, but geometric algorithms can have dozens, or
even hundreds of special cases [18].

In some cases, modifying the original algorithm so
that it is robust against all input can be even more
time-consuming and tedious than the design of the
original solution in general position. A simple GIS-
related example is that of Douglas [12] who describes
his early attempts to implement a routine to determine
where two line segments in a plane intersect. What
seemed like a simple problem at first, turned out to be
an implementation nightmare because of the problems
caused by vertical lines, tolerance, segments that are
close to parallel, etc. (his routine finally had 36 dif-
ferent cases). He states: “All of these inconsistencies
eventually drag the programmer down from his high



level math (i.e. algebra), through computer language
(i.e. FORTRAN), into the realm of the machine meth-
ods actually used to perform arithmetic operations and
their restrictions”. Admittedly, this problem can now
be solved rather easily if vector representations are used
instead of mathematical equations [33], but I believe it
gives a good example of the difficulties of dealing with
special cases.

This paper is concerned with the implementation of
an algorithm to construct the 3D Delaunay tetrahedral-
ization (DT), and thus the 3D Voronoi diagram. Geo-
metric computing in 3D space is known to be plagued
with special cases, and the robust implementation of
the 3D DT is a difficult problem in practice [14, 38].
In the following, I describe, by giving as many details
and insights as possible, a 3D DT algorithm and I ex-
plain how to ensure that it outputs a correct solution,
regardless of the spatial distribution of the points in
the input. Note that a certain number of implemen-
tations are known (it is for instance implemented in
CGAL1), so that what is presented in this paper is not
entirely new. However, there is to my knowledge no
comprehensive description that takes into account all
the possible degeneracies, and explains how to handle
them. The details and insights given in the following
are based on my own experience while implementing
such an algorithm, and also on the few details that
are available in scientific papers and books. It is my
hope that this paper will help others implement the 3D
VD/DT, and that they will not spend countless hours
fixing their code to make it robust.

The algorithm, which is described in Sections 4 and
5, is a flip-based incremental algorithm, as first pro-
posed by Joe [21]. Notice that it is not the fastest
solution in practice, but conceptual simplicity and ro-
bustness were favoured over theoretical results and so-
lutions that would be intricate to implement. Still, as
demonstrated in Section 7, it takes in practice a rea-
sonable time for the problem that needs to be solved,
and it is also relatively easy to implement. The impor-
tant problem of the robustness of the arithmetic used
by computer is also discussed in Section 6.

2. Duality Between the VD and the DT

Let S be a set of n points in a 3-dimensional Eu-
clidean space R3. The Voronoi cell of a point p ∈ S,
defined Vp, is the set of points x ∈ R3 that are closer
to p than to any other point in S. The union of the
Voronoi cells of all generating points p ∈ S form the
Voronoi diagram of S, defined VD(S). In three dimen-
sions, Vp is a convex polyhedron.

1The Computational Geometry Algorithm Library.
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Figure 1. Duality in 3D between the elements
of the VD and the DT.

The Delaunay tetrahedralization is dual to the VD,
and is defined by the partitioning of the space into
tetrahedra—where the vertices of the triangles are the
points in S (generating each Voronoi cell)—that satisfy
the empty circumsphere test (a sphere is empty is no
points are in its interior, but points can lie directly on
the sphere).

The duality between the VD and the DT in R3 is
simple, each element of a structure corresponds to one
and only one element in the dual: each polyhedron be-
comes a point and each line becomes a face, and vice-
versa. For example, as shown in Figure 1: a Delaunay
vertex p becomes a Voronoi cell (Figure 1(a)), a De-
launay edge α becomes a Voronoi face (Figure 1(b)),
a Delaunay triangular face κ becomes a Voronoi edge
(Figure 1(c)), and a Delaunay tetrahedron τ becomes
a Voronoi vertex (Figure 1(d)). A Voronoi vertex is
located at the centre of the sphere circumscribed to
its dual tetrahedron, and two vertices in S have a De-
launay edge connecting them if and only if their two
respective dual Voronoi cells are adjacent.

2.1. Degeneracies

For the VD and the DT, a set S of points is in general
position when the distribution of points does not cre-
ate any ambiguity in the structures. For the VD/DT
in Rd, the degeneracies, or special cases, occur when
d + 1 points lie on the same hyperplane and/or when
d + 2 points lie on the same ball. For example, in two
dimensions, when four or more points in S are cocir-
cular there is an ambiguity in the definition of DT(S).
As shown in Figure 2, the quadrilateral can be trian-
gulated with two different diagonals, and an arbitrary
choice must be made since both respect the Delaunay
criterion (points should not be on the interior of a cir-
cumcircle, but more than three can lie directly on the
circumcircle).

This implies that in the presence of four or more
cocircular points, DT(S) is not unique. Notice that
even in the presence of cocircular points, VD(S) is still
unique, but it has different properties. For example, in
Figure 2, the Voronoi vertex in the middle has degree 4



Figure 2. The DT (black lines) for four cocir-
cular points in two dimensions is not unique,
but the VD (dashed lines) is.

(when S is in general position, every vertex in VD(S)
has degree 3). When three or more points are collinear,
DT(S) and VD(S) are unique, but problems with the
computation of the structures can arise, as explained
in Section 5. All the previous observations generalise
straightforwardly to three and higher dimensions.

3. Constructing a DT

Mainly three paradigms of computational geome-
try can be used for computing a Delaunay triangula-
tion in two and three dimensions: divide-and-conquer,
sweep plane, and incremental insertion. Each one of
these paradigms yields an optimal algorithm in two
dimensions, i.e. a DT of n points is computed in
O(n log n). Examples of these are the divide-and-
conquer and the incremental insertion algorithms of
Guibas and Stolfi[17], and the sweep line algorithm
that constructs directly the VD [15] .

In three dimensions, things are a bit more compli-
cated. An algorithm, called DeWall and based on the
divide-and-conquer paradigm, has been developed for
constructing the DT in any dimensions [7]. Although
the worst-time complexity of this algorithm is O(n3) in
three dimensions, the authors affirm that the speed of
their implementation is comparable to the implemen-
tation of known incremental algorithms, and is sub-
quadratic. Shewchuk [36] proposes sweep algorithms
for the construction of the constrained Delaunay trian-
gulation in Rd, and these can be used for the normal
DT. As is the case with DeWall, his algorithm is sub-
optimal for the three-dimensional case.

In R3, only incremental insertion algorithms have a
complexity that is worst-case optimal, i.e. O(n2) since
the complexity of the DT in R3 is quadratic. With
these algorithms, each point is inserted one at a time
in a valid DT and the tetrahedralization is ‘updated’,
with respect to the Delaunay criterion, between each
insertion. Observe that the insertion of a single point
p in a DT only modifies locally the DT, i.e. only the

o1

o2
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DT(S)

Figure 3. The set S of points is contained by
a big triangle formed by the vertices o1, o2 and
o3.

tetrahedra whose circumsphere contains p need to be
deleted and replaced by new one respecting the Delau-
nay criterion (see Figure 8 for a two-dimensional ex-
ample). In sharp contrast to this, divide-and-conquer
and plane sweep algorithms build a DT in one oper-
ation (this is a batch operation), and if another point
needs to be inserted after this, the whole construction
operation must be done again from scratch.

Incremental insertion algorithms are therefore
mandatory for building a dynamic spatial model, which
is useful in many applications. Consider T , the DT(S)
of a set S of n points in R3. The insertion of a
single point p, thus getting T p = T ∪ {p}, can be
done with two incremental insertion algorithms: the
Bowyer-Watson algorithm [6, 39], or one based on flip-
ping in a triangulation.

The idea behind the former algorithm is relatively
simple: all the tetrahedra conflicting with p, i.e. whose
circumsphere contains p, are deleted from T , and the
‘hole’ thus created is filled by creating edges joining
p to each vertex of the hole. It can be argued that
this algorithm is more error-prone because a hole in
the tetrahedralization is created. It is also intricate
from an algorithmic and data structure point of view
as the geometric and topological relationships of the
tetrahedralization are temporarily destroyed. The rest
of the paper focuses on the alternative method: a flip-
based algorithm.

4. Basic DT Operations

4.1. Initialisation: Big Tetrahedron

The algorithm in Section 5 assumes that the set S of
points is entirely contained in a big tetrahedron (τbig)
several times larger than the range of S; the convex hull
of S, denoted conv(S), therefore becomes τbig. Figure 3
illustrates a two-dimensional example. The construc-



Orient(a, b, c, p) =

∣∣∣∣∣∣∣∣
ax ay az 1
bx by bz 1
cx cy cz 1
px py pz 1

∣∣∣∣∣∣∣∣

InSphere(a, b, c, d, p) =

∣∣∣∣∣∣∣∣∣∣
ax ay az a2

x + a2
y + a2

z 1
bx by bz b2

x + b2
y + b2

z 1
cx cy cz c2

x + c2
y + c2

z 1
dx dy dz d2

x + d2
y + d2

z 1
px py pz p2

x + p2
y + p2

z 1

∣∣∣∣∣∣∣∣∣∣
Figure 4. The two predicates needed.

tion of DT(S) is for example always initialised by first
constructing τbig, and then the points in S are inserted.

Doing this has many advantages, and is being used
by several implementations [30, 4, 29]. First, when a
single point p needs to be inserted in DT(S), this guar-
antees that p is always inside an existing tetrahedron.
We do not have to deal explicitly with vertices added
outside the convex hull, as in [21]. Second, we do not
have to deal with the (nasty) case of deleting a vertex
that bounds conv(S), if such an operation is needed.
Third, since a triangular face is always guaranteed to
be shared by two tetrahedra, point location algorithms
never ‘fall off’ the convex hull.

The main disadvantage is that more tetrahedra than
needed are constructed. For example in Figure 3 only
the shaded triangles would be part of DT(S). The
extra tetrahedra can nevertheless be easily marked as
they are the only ones containing at least one of the
four points forming τbig.

4.2. Predicates

Constructing a DT and manipulating it essentially
require two basic geometric tests (called predicates):
Orient determines if a point p is over, under or lies
on a plane defined by three points a, b and c; and
InSphere determines if a point p is inside, outside or
lies on a sphere defined by four points a, b, c and d.
As shown in Figure 4, both tests can be reduced to the
computation of the determinant of a matrix [17]. We
can state that applying an identical translation to ev-
ery point will not change the result of the determinant,
and, for this reason, after translating all the points by
−p the two predicates are respectively implemented as
the determinants of 3x3 and 4x4 matrices. I will not
prove here the correctness of those predicates (see [17]
for the two-dimensional case) but simply state that
Orient returns a positive value when the point p is
above the plane defined by a, b and c; a negative value
if p is under the plane; and exactly 0 if p is directly on
the plane. Orient is consistent with the left-hand rule:
when the ordering of a, b and c follows the direction of
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Figure 5. The 3D bistellar flips.

rotation of the curled fingers of the left hand, then the
thumb points towards the positive side (the above side
of the plane). In other words, if the three points defin-
ing a plane are viewed clockwise from a viewpoint, then
this viewpoint defines the positive side the plane. The
predicate InSphere follows the same idea: a positive
value is returned if p is inside the sphere; a negative if
p is outside; and exactly 0 if p is directly on the sphere.
Observe that to obtain these results, the points a, b, c
and d in InSphere must be ordered such that Orient
(a, b, c, d) returns a positive value.

4.3. Three-dimensional Bistellar Flips

A bistellar flip is a local (topological) operation that
modifies the configuration of some adjacent tetrahe-
dra [25, 13]. Consider the set S = {a, b, c, d, e} of points
in general position in R3 and its convex hull conv(S).
There exist two possible configurations, as shown in
Figure 5:

1. the five points of S lie on the boundary of conv(S);
see Figure 5(a). According to Lawson [25], there
are exactly two ways to tetrahedralize such a poly-
hedron: either with two or three tetrahedra. In
the first case, the two tetrahedra share a trian-
gular face bcd, and in the latter case the three
tetrahedra all have a common edge ae.

2. one point e of S does not lie on the boundary of
conv(S), thus conv(S) forms a tetrahedron; see
Figure 5(b). The only way to tetrahedralize S is
with four tetrahedra all incident to e.

Based on these two configurations, four types of flips
in R3 can be described: flip23, flip32, flip14 and flip41
(the numbers refer to the number of tetrahedra before
and after the flip). When S is in the first configu-
ration, two types of flips are possible: a flip23 is the
operation that transforms one tetrahedralization of two
tetrahedra into another one with three tetrahedra; and
a flip32 is the inverse operation. If S is tetrahedralized
with two tetrahedra and the triangular face bcd is not
locally Delaunay, then a flip23 will create three tetra-
hedra whose faces are locally Delaunay. A flip14 refers
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Figure 6. The degenerate flips (a) flip12 and
flip13, and (b) flip44.

to the operation of inserting a vertex inside a tetrahe-
dron, and splitting it into four tetrahedra; and a flip41
is the inverse operation that deletes a vertex.

Bistellar flips do not always apply to adjacent tetra-
hedra [20]. For example, in Figure 5(a), a flip23 is
possible on the two adjacent tetrahedra abcd and bcde
if and only if the line ae passes through the triangular
face bcd (which also means that the union of abcd and
bcde is a convex polyhedron). If not, then a flip32 is
possible if and only if there exists in the tetrahedral-
ization a third tetrahedron adjacent to both abcd and
bcde.

4.4. Degenerate cases

To deal with degenerate cases, other flips need to be
defined. Shewchuk defines and uses degenerate flips for
the construction and the manipulation of constrained
Delaunay triangulations in Rd [37]. A flip is said to
be degenerate if it is a non-degenerate flip in a lower
dimension. It is needed for special cases such as when
a new point is inserted directly onto a simplex. For
instance, Figure 6a shows the flip12 that splits a tetra-
hedron abcd into two tetrahedra when a new point is
inserted directly onto the edge ac, and the flip13 that
splits abcd into three tetrahedra when a new point is
inserted directly onto the face abc. The flip12 is equiv-
alent to a flip in one dimension, and the flip13 to the
one needed to insert a new point in a triangle in two
dimensions.

These flips are needed when dealing with con-
strained DT, but in our case they are not explicitly
needed, as the operation they perform can be simu-
lated, as shown in the next sections, with the flip23
and the flip32. The only degenerate flip needed for
constructing a DT is the following. Consider the set
S = {a, b, c, d, e, f} of points configured as shown in
Figure 6b, with points b, c, d and e forming a plane.
If S is tetrahedralized with four tetrahedra all inci-

dent to one edge—this configuration is called the con-
fig44—then a flip44 transforms one tetrahedralization
into another one also having four tetrahedra. Note that
the four tetrahedra are in config44 before and after the
flip44. A flip44 is actually a combination in one step of
a flip23 (that creates a flat tetrahedron bcde) followed
immediately by a flip32 that deletes the flat tetrahe-
dron; a flat tetrahedron is a tetrahedron spanned by
four coplanar vertices (its volume is zero). The flip44
is conceptually equivalent to the well-known flip22 in
two dimensions.

4.5. Point Location

Given the DT T of a set S of n points and a query
point p, the point location problem consists of deter-
mining inside which tetrahedron of T lies p. This is
a necessary operation for constructing incrementally a
DT, and the algorithm described in Section 5 uses it.

Many point location algorithms for the DT are op-
timal [13, 9], but they use additional storage, they
require preprocessing for creating the additional data
structure, and they are also often very complicated to
implement. As Mücke et al. [31] note, optimal algo-
rithms do not necessarily mean better results in prac-
tice because of the amount of preprocessing involved,
the extra storage needed, and also because the optimal
algorithms do not always consider the dynamic case,
where points in the DT could be deleted. For many
problems like this one, practitioners have been known
to favour sub-optimal algorithms that are easier to im-
plement.

Mücke et al. [31] and Devillers et al. [10] anal-
yse theoretically sub-optimal algorithms, for the DT
in three dimensions, that yield fast practical perfor-
mances. These algorithms are desirable in the case
of a dynamic structure because they do not use any
additional storage or preprocessing. The adjacency re-
lationships between the simplices in a DT are used to
perform the point location.

Based on experimental results, both conclude that
the walking (refer to as Walk in the following) strat-
egy is the fastest solution. It was described in the ear-
liest papers about the construction of the DT in two
dimensions [16]: in a DT in Rd, starting from a d-
simplex σ, we move to one of the neighbours of σ (σ
has (d + 1)-neighbours; we choose one neighbour such
that the query point p and σ are on each side of the
(d − 1)-simplex shared by σ and its neighbour) until
there is no such neighbour, then the simplex contain-
ing p is σ. The algorithm, illustrated in Figure 7, is not
detailed here because of space constraints, but can be
easily implemented after reading [31] and [10]. Also,
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Figure 7. The Walk algorithm for a DT in two
dimensions. The query point is p.

making Walk robust is trivial, as it is not affected by
degenerate cases.

5. An Incremental Flip-based Algorithm

The alternative to creating a hole is to use bistel-
lar flips to modify the configuration of tetrahedra in
the vicinity of p. It should first be noticed that flips
are operations valid in any dimensions, and not only
in three dimensions [25]. They permit us to keep a
complete tetrahedralization during the insertion pro-
cess, and hence algorithms are relatively simple to im-
plement and also numerically more robust. Although
a flip-based algorithm requires somewhat more work
than an algorithm where a hole is created—Liu and
Snoeying [29] state that on average 1.5–2 times more
tetrahedra are created and that flippability tests also
slow down the whole process—its implementation is
simplified and less error-prone since the maintenance
of adjacency relationships in a DT is encapsulated in
the flip operations.

5.1. Two Dimensions

The first flip-based algorithm was designed to con-
struct the DT in two dimensions. It was developed by
Lawson [24] who proved that, starting from an arbi-
trary triangulation of a set S of points in the plane,
flipping edges (i.e. replacing the diagonal of a quadri-
lateral as in Figure 2) can transform this triangulation
into any other triangulation of S, including the De-
launay triangulation. The total running time of this
algorithm is O(n2), since there is O(n) triangles that
must be tested against each other.

An incremental insertion algorithm based on edge
flipping can improve this to O(n log n) [17]. What fol-
lows are the main steps for the insertion of a single
point p in a DT, and the process is shown in Fig-
ure 8. First, the triangle τ containing p is identified
and then split into three new triangles by joining p to

Figure 8. Step-by-step insertion, with flips, of
a single point in a DT in two dimensions.

every vertex of τ . Second, each new triangle is tested—
according to the Delaunay criterion—against its oppo-
site neighbour (with respect to p); if it is not a Delau-
nay triangle then the edge shared by the two triangles
is flipped and the two new triangles will also have to
be tested later. This process stops when every triangle
having p as one of its vertices respects the Delaunay
criterion.

5.2. Three Dimensions

While the concept of flipping generalises to three di-
mensions, Lawson’s algorithm [24] does not, as Joe [20]
proves. Indeed, starting from an arbitrary tetrahedral-
ization, it is possible that during the process of flip-
ping, a non-locally Delaunay facet be impossible to flip
(this case happens when the union of two tetrahedra is
concave). Joe [21] nevertheless later circumvented this
problem by proving that, given a DT(S) and a point
p in R3, there always exists at least one sequence of
bistellar flips to construct DT(S ∪ {p}). In this case,
there will be non-Delaunay facets impossible to flip,
but he proved that there will always be a flip possi-
ble somewhere else such that the algorithm progresses.
This can form the basis of an incremental insertion
algorithm for the construction of the Delaunay tetra-
hedralization, that is a straightforward generalisation
of the two-dimensional case. Let S be a set of points in
R3 and let T be DT(S), Figure 9 shows the algorithm,
called InsertOnePoint, needed to restore the ‘Delau-
nayness’ in T when a single point p is inserted. The
algorithm is adapted from [21], and is conceptually the
same as [13]. As is the case with the two-dimensional
algorithm, the point p is first inserted in T with a flip
(flip14 in the case here), and the new tetrahedra cre-
ated must be tested to make sure they are Delaunay.
The sequence of flips needed is controlled by a stack
containing all the tetrahedra that have not been tested



Input: A DT(S) T in R3, and a new point p to insert
Output: T p = T ∪ {p}
1: τ ← Walk {to obtain tetra containing p}
2: insert p in τ with a flip14
3: push 4 new tetrahedra on stack
4: while stack is non-empty do
5: τ = {p, a, b, c} ← pop from stack
6: τa = {a, b, c, d} ← get adjacent tetrahedron of τ

having abc as a facet
7: if d is inside circumsphere of τ then
8: Flip(τ , τa)
9: end if

10: end while

Figure 9. Algorithm InsertOnePoint(T , p).

yet. The stack starts with the four resulting tetrahedra
of the flip14, and each time a flip is performed, the new
tetrahedra created are added to the stack. The algo-
rithms stops when all the tetrahedra incident to p are
Delaunay, which also means that the stack is empty.

The Flip method in InsertOnePoint needs to be
refined because, unlike in two dimensions, different ge-
ometric cases yield different flips. Assume that p was
inserted in T , and that a certain number of flips have
been performed but that T p = T ∪ {p} is not Delau-
nay yet. All the tetrahedra incident to p, which form
the star2 of p, must be tested to ensure that they are
Delaunay, and notice that the ones that have not been
tested yet are in the stack. Let τ = {p, a, b, c} be the
next tetrahedron popped from the stack. To ensure τ
is Delaunay, we need only to test it with the tetrahe-
dron τa = {a, b, c, d} outside star(p) and incident to
the facet abc; we are actually testing if abc is locally
Delaunay. If the circumsphere of τ contains d, differ-
ent options for the flip required are possible, according
to the geometry of τ and τa. Observe that if we look
from p, we can see one, two or even three facets of τa

(depicted in Figure 10). When S is in general position,
two cases are possible (both cases refer to Figure 11):

Case #1: only one face of τa is visible, and therefore
the union of τ and τa is a convex polyhedron. In
this case, a flip23 is performed.

Case #2: two faces of τa are visible, and therefore
the union of τ and τa is non-convex. If there ex-
ists a tetrahedron τb = abpd in T p such that the
edge ab is shared by τ , τa and τb, then a flip32 can
be performed. If there exists no such tetrahedron,

2The star of a vertex v in a d-dimensional triangulation, de-
noted star(v), consists of all the simplices that contain v; it forms
a star-shaped polytope.

1 facet 2 facets 3 facets

Figure 10. In 3D, three types of tetrahedra are
possible, when viewed from a fixed viewpoint
(the reader in this case).
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Figure 11. Four cases are possible for the
Flip algorithm. For case #3, vertices p, a, b
and d are coplanar. For case #4, the tetrahe-
dron abcp is flat.

then no flip is performed. The non-locally De-
launay facet abc will be ‘rectified’ by another flip
performed on adjacent tetrahedra, as [21] proves.

When three faces of τa are visible, no action is taken
and the next tetrahedron in the stack is processed.

The implementation of the test that determines
which flip should be applied for τ and τa does not test if
their union is convex or concave. What is used instead
is a test that determines if the edge joining the two
apexes of τ and τa crosses the interior of their common
facet. If the edge does, it means the union is convex,
and if it does not the union is concave.

5.3. Time Complexity

When an incremental insertion algorithm based on
InsertOnePoint is used to compute DT(S) of a set
S of n points in R3, the algorithm takes O(n2), which
is worst-case optimal [13]. However, in practice, the
algorithm will most likely be faster. It was proved
that if the n points are uniformly distributed in a unit
cube, then the expected running time goes down to
O(n log n), provided that the history of the flips is used
for point location [13].

Furthermore, the work needed to insert a single
point p in T is proportional to s, the number of tetra-
hedra conflicting with p [13]. Indeed, notice that every
flip in InsertOnePoint is actually deleting one and



Input: Two adjacent tetrahedra τ and τa

Output: A flip is performed, or not
1: if case #1 then
2: flip23(τ , τa)
3: push tetrahedra pabd, pbcd and pacd on stack
4: else if case #2 AND T p has tetrahedron pdab

then
5: flip32(τ , τa, pdab)
6: push pacd and pbcd on stack
7: else if case #3 AND τ and τa are in config44 with

τb and τc then
8: flip44(τ , τa, τb, τc)
9: push on stack the 4 tetrahedra created

10: else if case #4 then
11: flip23(τ , τa)
12: push tetrahedra pabd, pbcd and pacd on stack
13: end if

Figure 12. Algorithm Flip(τ , τa). Note that the
4 cases refer to Figure 11.

only one non-Delaunay tetrahedron, and replacing it
with some new ones incident to p. The first flip14 re-
moves only one tetrahedron and replaces it by four new
ones; a flip23 deletes a conflicting tetrahedron τa and
replaces τ (the tetrahedron incident to p in star(p)) and
τa by three tetrahedra all incident to p; and a flip32
also removes one conflicting tetrahedron (the one out-
side star(p)) and creates two new tetrahedra incident
to p. Also, once a tetrahedra is deleted after a flip, it is
never re-introduced in T p. Therefore, if s tetrahedra in
T are conflicting with p, then exactly s flips are needed
to obtain T p.

5.4. Degenerate Cases

Joe [21] not only proved that a flip-based incremen-
tal insertion works in three dimensions, he proved it
even when S has degeneracies. He detailed the different
configurations possible when a flip is to be performed.
I present in the following the many degeneracies that
can arise and I describe how to solve them. These so-
lutions are mainly taken from [21, 35, 37].

When S contains degenerate cases, the intersection
tests between the two apexes of τ and τa can return
other results (both cases refer to Figure 11):

Case #3: the line segment pd intersects directly one
edge of abc (assume it is ab here). Thus, vertices p,
d, a and b are coplanar. Observe that a flip23, that
would create a flat tetrahedron abdp, is possible if
and only if τ and τa are in config44 (see Figure 6b)

with two other tetrahedra τb and τc, such that the
edge ab is incident to τ , τa τb and τc. Since the
four tetrahedra are in config44, a flip44 can be
performed. If not, no flip is performed.

Case #4: the vertex p is directly on one edge of the
face abc (assume it is ab here). Thus, p lies in the
same plane as abc, but also as abd. The tetrahe-
dron abcp is obviously flat. The only reason for
such a case is because p was inserted directly on
one edge of T in the first place (the edge ab), and
the first flip14 to split the tetrahedron contain-
ing p created two flat tetrahedra. Because p was
inserted on the edge ab, all the tetrahedra in T
incident to ab must be split into two tetrahedra.
This could be done with the degenerate flip12, but
it can also be done simply with a sequence of flip23
and flip32. When the case #4 happens, it suffices
to perform a flip23 on τ and τa. Obviously, an-
other flat tetrahedron abdp will be created, but
this one will deleted by another flip.

Observe that although flat tetrahedra are not allowed
in a DT (the circumsphere of a flat tetrahedron is un-
defined and contains all the points in a set), they are
allowed during the process of updating a tetrahedral-
ization, as long as the combinatorial structure stays
coherent.

The only degenerate cases remaining to handle are:
(1) there exists a vertex at the exact location where p
was supposed to be inserted; (2) p lies directly on the
circumsphere of a tetrahedron in T ; (3) p was inserted
directly on a face of a tetrahedron in T . The first case
can be handled trivially: simply test the distance from
p to each vertex of the tetrahedron returned by Walk
against a tolerance. If one distance is smaller than the
tolerance, do not insert p at all. The second case is
also easy to handle: do not perform a flip since this is
an unnecessary operation that will slow down the al-
gorithm. Since p is directly on the circumsphere and
not inside, no operation will still result in a correct
DT. The last case does not require any special treat-
ment: the flip14 that inserts p in a tetrahedron will
create one flat tetrahedron, and this tetrahedron will
be deleted when tested against the tetrahedron outside
star(p) sharing the same face.

5.5. Extracting the VD from the DT

Let T be the DT of a set S of points in R3. The
simplices of the dual D of T can be computed as follows
(all the examples refer to Figure 1:

Vertex: a single Voronoi vertex is easily extracted:it is



located at the centre of the sphere passing through
the four vertices of its dual tetrahedron τ .

Edge: a Voronoi edge, which is dual to a triangular
face κ, is formed by the two Voronoi vertices dual
to the two tetrahedra sharing κ.

Face: a Voronoi face, which is dual to a Delaunay edge
α, is formed by all the vertices that are dual to
the Delaunay tetrahedra incident to α. The idea
is simply to ‘turn’ around a Delaunay edge and
extract all the Voronoi vertices. These are guar-
anteed to be coplanar, and the face is guaranteed
to be convex.

Polyhedron: the construction of one Voronoi cell Vp

dual to a vertex p is similar: it is formed by all the
Voronoi vertices dual to the tetrahedra incident to
p. Since a Voronoi cell is convex by definition, it
is possible to collect all the Voronoi vertices and
then compute the convex hull (e.g. see [3] for an
algorithm); the retrieval of all the tetrahedra in-
cident to p can be done by performing a BFS-like
algorithm on the graph dual to the tetrahedra. A
simpler method consists of first identifying all the
edges incident to p, and then extracting the dual
face of each edge.

Given T , we must obviously visit all its 3-simplices to
be able to extract D. This means that computing D
from T has a complexity of Θ(n) when S contains n
points.

6. Robustness

Consider an admittedly simple algorithm that adds
the value 0.1 one hundred times, and then returns true
if the total is 10.0, and false otherwise. It should obvi-
ously always returns true, but if it is implemented on a
computer with floating-point arithmetic, the odds that
it will return true are rather low (if not nil). This is
because floating-point arithmetic offers only an approx-
imation to real numbers, which are always rounded to
the closest possible value in the computer. When one
chooses to implement an algorithm with floating-point
arithmetic, it is important he understands the conse-
quences of his choice. Floating-point arithmetic to rep-
resent real numbers is ubiquitous because it has many
advantages: it is available almost on every platform,
and, more importantly, it has been highly optimised so
that arithmetic operations are performed very fast.

I began implementing the algorithm described in
this paper under the näıve assumption that floating-
point arithmetic was ‘good enough’ and that I would

be able to understand the special cases, and fix them
by adding some more code. My method was the most
widely used to fix numerical non-robustness: the tol-
erance. In other words, if two values are very close to
each other, then they are equal. Tolerances can prob-
ably yield satisfactory results for simple problems (e.g.
the intersection of two line segments), but for more
complex ones like the construction of the DT, where the
combinatorial structure could be invalidated by small
movements of the vertices, it is risky. How should one
define the ‘optimal’ tolerance? I observed that tweak-
ing the tolerance to fix a given problem was usually
easy, the problem being that it was also creating an-
other problem somewhere else. Even with the tolerance
well-defined (or so I thought), during the development
of algorithms I became frustrated because my program
would sometimes crash, or even output something that
was not a valid tetrahedralization. “Was it the arith-
metic? My algorithm? Or a mistake I made while
coding it?” I wondered all the time. The develop-
ment of the algorithm was hindered by the fact that
the source of the problem was never known. The only
solution was to use exact arithmetic: my first question
was therefore answered—that left two unanswered but
that was better than nothing!

The major obstacle to using exact arithmetic is the
speed of computation: it is very slow [40]. Unlike
floating-point arithmetic, an arithmetic operation can
not be assumed to be performed in constant time. The
complexity of an operation depends on the numbers
n of bits used to store a number, and the multipli-
cation of two numbers can have for instance a com-
plexity of O(n2). Karasick et al. [23] reported that
the näıve implementation of a divide-and-conquer algo-
rithm to construct the two-dimensional DT was slowed
down dramatically by a factor of 10 000, although they
showed that by carefully selecting when to use exact
arithmetic, they could reduce the factor to around 5
for points uniformly distributed.

As mentioned in Section 4.2, the incremental in-
sertion algorithm makes its only important decisions
based on the result of two geometric predicates. For
this reason, if one wants to build a robust algorithm,
only these two predicates need to be implemented with
exact arithmetic. Observe that we are not interested in
the exact values returned by Orient and InSphere,
but rather by the sign of the result (although we must
be able to detect when the value of the determinant is
exactly 0). Floating-point arithmetic will most likely
compute correctly the sign of the determinant when
the points involved in a predicates are ‘clearly’ in gen-
eral position, but when four points are nearly copla-
nar, there is a chance that Orient returns that they



are coplanar. Similarly, five cospherical points can be
mistakenly considered not cospherical by InSphere be-
cause the result of the determinant is not exactly 0, but
perhaps something like 1, 555234×10−18. The problem
of robustness of an algorithm is therefore tightly linked
to the problems of degeneracies, as it is special cases
that will create problems when computing a predicate.

An easy solution for the robustness problem is due to
Shewchuk [34, 35]. He developed and implemented—
his code is publicly available on the Internet3—fast geo-
metric predicates that are ‘adaptive’, which means that
their speed is inversely proportional to the degree of
uncertainty of the result. His method works like a fil-
ter that will activate exact arithmetic only when it is
needed, but since the exact result of the predicate is
not sought, as soon as the sign of the determinant can
be correctly computed, the process stops. He shows
that using his adaptive predicates for building a DT in
two dimensions slows down by about 8% the total run-
ning time for 1 000 000 randomly generated points, and
by about 30% when those points form a tilted grid. In
three dimensions, his predicates slows down by about
35% the total running time for 10 000 randomly gen-
erated points, and by a factor of 11 when those are
generated on the surface of a sphere. As he states:
“these predicates cost little more than ordinary non-
robust predicates, but never sacrifice correctness for
speed’ [35].

7. Practical Performances

The algorithm InsertOnePoint, as described in
Section 5, was implemented with the Borland Delphi
environment, the object-oriented version of the lan-
guage Pascal. I report in this section experiments that
were made on a Pentium 4 (2.8 GHz), with 1 GB of
RAM and running the Windows XP Professional oper-
ating system. The practical performances of Insert-
OnePoint are analysed with different datasets, and
compared with what is arguably the de facto standard
in computational geometry implementations, CGAL [4].
The source code of CGAL was written in C++, and can
be compiled under different platforms, including Win-
dows. It should be noticed that CGAL is not the fastest
implementation for the computation of a DT in R3, as
there are reports of implementations that outperform
it, e.g. [1] and [28]. The aim of this section is not to
show that InsertOnePoint is the fastest—because it
is not—but to demonstrate that it is comparable to
other solutions available and can realistically be used
for real-world applications.

3www.cs.cmu.edu/∼quake/robust.html

For the experiments described in the following, the
running time shown is the time only for the operation
itself, i.e. the time to read the input file and output the
results are not taken into account. Unless explicitly
mentioned, the adaptive predicates of Shewchuk [34]
are used for both Orient and InSphere for all the
operations (which includes for instance Walk), but
standard floating-point arithmetic is used for all the
other operations. The CGAL code (release 3.1, Decem-
ber 2004) was compiled under Windows with MinGW
(a port to Windows for the gcc compiler), and was
made ‘comparable’ to my implementation. In other
words, the predicates Orient and InSphere also use
robust arithmetic but all other operations are made
with floating-point arithmetic4. Also, all the ‘checks’
in CGAL have been disabled; these are functions verify-
ing that the combinatorial structure of the DT stays
coherent after an operation (disabling them sped up
the insertion and the deletion by around 20%).

7.1. Datasets Used

InsertOnePoint was tested with four different
datasets, which represent a variety of spatial distribu-
tions that one is likely to find, and where degeneracies
are present:

50k: a set of 50 000 points randomly distributed in a
unit cube;

sphere: a set of 25 000 points randomly distributed
on the surface of a sphere;

cubes: a set of 15x15x15 points regularly distributed
in the x− y − z directions, forming a cube with 3
375 points;

ocean: a real oceanographic dataset of the Bering
Sea5. Figure 13 shows the dataset, where the
points are distributed along water columns. It con-
tains many of such water columns, and the points
are regularly distributed along each column (at
regular intervals of depth), although this is not
always the case as some data points were removed
because of instrument errors. Also, notice that the
water columns do not all go to the same depth.

Table 1 contains the details of the four datasets.
The number of tetrahedra is the total number including
the ones existing because of the big tetrahedron (see
Section 4.1), and k is the degree of a vertex in the

4The CGAL kernel Exact predicates inexact constructions-

kernel was used.
5Taken from the Oceanographic In-Situ Data Access: http:

//www.epic.noaa.gov/epic/ewb/



Figure 13. Perspective view of the ocean
dataset, formed by many water columns.

# pts # tet kmin kmax kavg

50k 50 000 335 731 5 37 15.4
sphere 25 000 126 392 4 81 11.1
cubes 3 375 18 946 4 14 12.9
ocean 14 550 86 338 6 123 13.8

Table 1. Details concerning the datasets used
for the experiments.

DT. Observe that in the case of the ocean dataset, the
anisotropic distribution means that one vertex has a
degree of 123, but that the number of tetrahedra is
still linear.

It should be noticed that the ocean and cubes
datasets have a strong spatial coherence: in the original
ocean file, the water columns are listed one after the
other, and in each water column the points are listed
from the surface to the bottom of the sea; and the
cube file was constructed using three imbricated loops
(so the dataset is constructed ‘line by line’). For this
reason, the order of the points in the two datasets were
randomly shuffled to obtain two new datasets: ocean–r
and cubes–r.

7.2. Results

To construct a DT, CGAL also uses an incremental in-
sertion algorithm, but instead of flipping, the Bowyer-
Watson algorithm is used. For the point location strat-
egy, CGAL implements the Delaunay hierarchy [9]: for
a set S of points, the first DT(S) is constructed, and
then other levels are created by sampling some points
in S and creating the other DTs. The tetrahedra shar-
ing the vertices between two levels are linked together.
The point location involves walking (with Walk) to

mine (robust) mine (float) CGAL
50k 10.6 7.6 9.6
sphere 20.6 — 49.5
cubes 6.6 1.1 37.9
cubes–r 1.7 0.4 23.3
ocean 16.9 — 58.1
ocean–r 5.4 — 55.8

Table 2. Running times (in seconds) for the
construction of the DT of the datasets.

the tetrahedron at the top level containing the target
point, and then going down one level and continuing
this way until the tetrahedron in DT(S) containing the
target point is found; this is theoretically faster than
the algorithm Walk described earlier.

The running times of my implementation versus
CGAL for the six datasets are reported in Table 2. The
results obtained are rather surprising as my implemen-
tation is faster for five of the datasets, and by a factor
of almost 14 for the cubes–r dataset; the only dataset
where my implementation is slower is for 50k, but only
by 10%. Notice also that shuffling the cubes and the
ocean datasets improved the construction of the DT of
my implementation by a factor of respectively 4 and 3;
while with CGAL the factors were respectively 1.6 and
almost no change.

The reasons of such important differences between
my implementation and CGAL are not totally clear to
me because in many reports CGAL performs rather well,
and can compare easily with the other implementations
available. For instance, Boissonnat et al. [4] report
constructing the DT of 100 000 points randomly dis-
tributed in a cube in 12.1s, on a computer relatively
slower than the one used for my experiments (a Pen-
tium 3, 500 MHz with 512 MB of RAM). By compar-
ison, for 100 000 points randomly distributed, CGAL
takes 19.7s on the computer I used. The major dif-
ferences were that they used CGAL under Linux, and
also used integers to store the coordinates of the 100
000 points. The use of integers can speed up an im-
plementation (computation with integers is faster), but
unfortunately can not be used in all situations. When
dealing with real-world data, the coordinates of the
points are usually converted to integers by multiply-
ing them by a constant; this can lead to problems in a
dynamic context if the next points to be added are un-
known, as there might be a big difference in the order
of magnitude of the precision of a point, which would
invalid the constant used. Integers are also limited to
4 bytes, which could be problematic for some datasets.

Two reasons could explain the somewhat poor re-



sults of CGAL I obtained during my experiments.
Firstly, because CGAL performs very poorly for datasets
containing degeneracies (even when they are shuffled),
the robust arithmetic used by CGAL is probably the
bottleneck. The arithmetic used in my implementa-
tion is adaptive, while CGAL uses a completely different
scheme [22], which might not be as fast, especially un-
der Windows. Secondly, it seems that the compiler
used, the compiler options, and the platform itself, can
have an influence on the speed of the code. Indeed, Liu
and Snoeyink [28] report having differences in CGAL’s
running time of a factor of as much as 2.5 when it was
compiled on Linux with different kernels, and that sim-
ilar differences were found between versions of CGAL.

The speed of my implementation, with robust and
with standard floating-point arithmetic, was also com-
pared to verify the claims made in Shewchuk [34]. The
running times for each dataset are given in Table 2 (a
dash ‘—’ means that the program crashed). As ex-
pected, the DT of the datasets containing many de-
generate cases could not be constructed, although, sur-
prisingly, the cubes and cubes–r datasets could be con-
structed (this by no means implies that all regularly
spaced datasets could have been constructed, since dur-
ing other experiments many regularly-spaced datasets
crashed). The construction of the DT for the 50k
dataset is around 40% slower when robust arithmetic is
used, and the cubes and cubes–r datasets are slower by
a magnitude of respectively 6 and 4.6. These numbers
corroborate the results in [34].

More details concerning these experiments can be
found in [26].

8. Discussion

Although many aspects of the computation of a 3D
VD/DT have been discussed, several others were left
out, mostly because of space constraints, but also be-
cause they are full research topics on their own.

One of them is the data structure that can be used
to store the DT (or the VD). A very simple one, the
tetrahedron-based data structure, was used to imple-
ment the algorithm and perform the experiments. It
considers the tetrahedron as being its atom and stores
each tetrahedron with four pointers to its vertices and
four pointers to its adjacent tetrahedra. Most im-
plementations use that structure, because it is space-
efficient and fast. CGAL notably uses it but has added
to each vertex a pointer to one of its incident tetrahe-
dra, to speed up the extraction of the Voronoi cells [4].
It is also possible to store the tetrahedra implicitly by
considering a data structure where the atom is a trian-
gular face having three pointers to its vertices and six

pointers to its adjacent faces [35]. Furthermore, it is
possible to store simultaneously, both the DT and the
VD [11, 27].

Another aspect is the construction of the DT for
very large datasets, and we are talking about many
millions of points here. The algorithm as described is
not optimised in any ways for datasets for which the
data structures do not fit in main memory. Several
solutions to this problem have been proposed in the last
few years. The most promising methods modify the
order of insertion of the points, so that the swapping
between the memory and the disk is minimised, see for
instance [1, 29, 19]. The good news is that the use of
these methods requires only slight modifications to the
algorithm described in this paper—no rewriting of a
new algorithm or data structure is necessary.

Finally, it should be said that if one does not want
to implement the 3D VD/DT algorithm himself, he can
always use one of the freely available implementations
or libraries, such as CGAL!
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