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ABSTRACT: This paper presents a new method for modelling and visualising fish aggregations
in a 3D space. The concepts related to the construction of the 3D model, particularly the Delaunay
triangulation generalised for a 3D space and the 3D clustering algorithm called a-shapes, are
discussed. Then, the proposed approach is applied to an acoustic fisheries dataset obtained from
split-beam echosounder to extract and visualise fish aggregations. Finally, some results are
presented, and the benefits and limitations of the proposed 3D model are discussed.
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INTRODUCTION

Many of the world’s fish stocks have declined during the past decades. For example,
Atlantic Cod stocks collapsed dramatically between 1960 and the early 1990s in the
Northwest Atlantic area off Newfoundland and Labrador, with no significant
reconstruction since then (Rose, 2004). Stock decline in this region can be mostly
explained by overfishing, but may also be related to other factors such as changes in the
oceans’ conditions and in the trophic chain. Researchers have been studying this problem
for many years, trying to develop new strategies to help stock recovery. An understanding
of the spatial and temporal dynamics of fish stocks is essential to achieve such a goal.

The dynamics of fish stocks include, among other features, aggregation and
disaggregation of fishes at different spatial and temporal scales. An aggregation can be
defined as a number of fish that have come together and form a group having a much
higher density than in other areas in a given region. The phenomenon of aggregation and
disaggregation for many species is a fundamental bioecological property typically related
to reproduction, feeding and predator defence. Changes in aggregation-disaggregation
properties may be informative about stock condition (see for instance Rose, 1993).



Currently, fish aggregations and disaggregations are not well understood. This problem is
partly due to the fact that although fish aggregations are three-dimensional (3D)
phenomena, they are traditionally represented and studied in 2D using Geographical
Infomation Systems (GIS) and other mapping tools which causes loss of valuable
information and precision. With recent technological advances, researchers are now able
to capture and observe fisheries data in three dimensions. Indeed, acoustic technologies
are becoming increasingly accurate in measuring fish aggregations in a water column
(Gerlotto et al., 1999) as well as tracking individual fishes in some cases. In order to
better represent, visualise, analyse and understand fish aggregations in 3D space, users
and decision makers need a spatial data model that can handle three-dimensional fisheries
data. There are currently some tools providing the capacity to visualise 3D fisheries data,
but such tools are often limited as they do not offer full 3D spatial analysis capabilities.
Hence, the development of an efficient representation, visualisation and spatial analysis
tool for fisheries data may assist users and decision makers to better estimate fish
distribution, density and abundance. Moreover, this tool may help marine biologists to
study the behaviour of individual fishes and their displacement within fish aggregations
over time, the internal structure of the fish aggregations and the factors that influence the
aggregation-disaggregation of fish schools over time.

This paper proposes a 3D data structure based on the 3D Delaunay triangulation for

modelling and visualising fish aggregations and their evolution in time. First, the existing

methods for the representation of fish aggregations, mostly in 2D, are revised and their

limitations are discussed. Then, a new method for the representation of fish aggregations

in 3D, based on the Delaunay triangulation and on 3D clustering method using o-shapes
algorithm, is proposed. Next, the important aspects of this data structure and the related

algorithms for its construction are described. Finally, an overview of the possible

applications of the proposed approach for fish aggregations modelling and analysis is

given and the limits of this approach are briefly discussed.

STATE OF THE ART

Fish Aggregations Representation

Many approaches were proposed for the representation of fish aggregations, but despite
this fact, this phenomenon remains poorly documented, mainly at local scales. As
previously mentioned, this situation is partially related to the fact that although fish
aggregations are 3D phenomena, they are often modelled in 2D using GIS. Currently, the
most widespread method to represent fish aggregations at a regional scale consists in
mapping the abundance of fishes on thematic maps using proportional symbols, such as
in figure 1(a). Fish aggregations are also represented on maps where fish densities are
interpolated. Moreover, some other techniques such as spatial statistics or geostatistics,
frequently applied in GIS field, can be used to mathematically characterise fish
aggregations (see figure 1(b)). Valavanis (2002) observed that geostatistics are commonly
used in fisheries GIS applications to describe spatial relationships among sample data,
predict spatiotemporal phenomena, and interpolate values at unsampled locations.
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Figure 1. (a) Thematic map where the abundance of fishes is shown using proportional symbols,
(b) Representation of fish aggregations for the same region but for a different year using an ellipse
(Atkinson et al., 1997)

Although most researchers in fisheries management recognize that the use of commercial
2D GIS can bring important benefits to their fields, they agree that these tools are limited
for realistic representation of marine environment and its resources. Indeed, 2D
representations causes the loss of important information related to the 3™ dimension.
Thus, researchers generally admit that a tool with 3D dynamic capabilities would be
better adapted to their analyses since it would represent the real nature of their data. For
example, Wright & Bartlett (2000) pointed out that “much geography, particularly in the
coastal and marine realms, requires all three spatial dimensions to be considered equally,
whether simply for visualisation, or else for more demanding spatial analyses.”

3D Modelling

Space can be seen as a continuous field or entirely filled by discrete objects. The two
most popular methods for representing space are based on vector and raster methods.
Vector representation defines objects with a set of points, lines, polygons and polyhedra
with their topological relations, while raster representation describes objects by a set of
regularly distributed pixels or voxels. To represent 3D objects, we need an extension of
these representations to a 3D space. There are several techniques and data structures to
achieve this goal. Many of them only characterize the surface of the objects, while others
can be used for modelling their interior (Li, 2000).

For the representation of a continuous phenomenon, raster representation is the most
commonly used in GIS applications. In 3D, the raster data structure divides space into
regular regions such as voxels. The main advantage of this technique is its simplicity.
However, this structure can handle, but with great difficulties, data that are irregularly
distributed, especially if a fine resolution is used. Indeed, in this case, the size of the data
structure can become enormous. Another way to model 3D phenomena is to use
hierarchical tessellations such as octree data structures (Samet, 1984), where a tree is
created. One of the problems of this structure is that, when the data distribution is



irregular, the tree can be unbalanced (de Berg et al., 2000). Irregular tessellations as the
Delaunay triangulation can also be used to model a 3D phenomenon that is observed with
a set of irregularly distributed points. The main advantage of these tessellations is that
they usually follow the outline of the data points and that they can be adapted to the point
distribution. The partition of space made with irregular tessellations is potentially better
than that resulting from regular tessellations or octree techniques because there are no
constraints involved when subdividing the space (Ledoux & Gold, 2007).

Even if there are several techniques for the modelling of three-dimensional objects, 3D
tools are mostly used for graphic presentation of data and visualisation. Moreover, they
are often very limited for spatial analysis. Wright & Bartlett (2000) observed that “some
attempts have been made to extend capability into the third dimension, most notably with
Intergraph’s Voxel Analyst, but so far such developments, while welcome, are still limited
in the functions they provide.”

PROPOSED APPROACH FOR FISH AGGREGATIONS REPRESENTATION

The approach that we propose for the 3D modelling and representation of fish
aggregations is based on the 3D Delaunay triangulation coupled with 3D clustering
techniques. Delaunay triangulation has been frequently used for two-dimensional GIS-
related problems such as digital terrain modelling (Li er al., 2005) and for three-
dimensional applications in several domains such as in geology. The Delaunay
triangulation has been shown to have many advantages over raster and other spatial data
structures, particularly because it can deal with irregularly spaced data points.

In order to carry out the spatial modelling of fish aggregations in a 3D space, two main

steps are performed. First, 3D data points representing fish observations are used for the

construction of the 3D Delaunay triangulation. For this purpose, the generalisation to 3D

of the concepts of the 2D Delaunay triangulation is employed. The 3D Delaunay

triangulation of the dataset is constructed using an incremental algorithm. Following the

creation of the 3D tetrahedral model, the 3D a-shapes algorithm (Edelsbrunner & Miicke,
1994), which is based on the 3D Delaunay triangulation, is applied to detect and extract

fish aggregations. This algorithm has initially been developed for shape reconstruction

from dense unorganized datasets, but for this research, it is implemented for the clustering

of fish aggregations in 3D. Using the 3D a-shapes algorithm, data points that belong to
the same “object”, a fish school for instance, are identified and the fish aggregations are

then reconstructed and visualised (Buelens et al., 2004). The data structure used in this

work also has the useful properties of being dynamic, and even kinetic. This means that

objects (i.e. points) can be added, deleted, and even moved, with efficient algorithms

(Mostafavi et al., 2003, Ledoux & Gold, 2006). Hence, the data structure could be locally

adapted to get an interactive model.

Step 1: 3D Delaunay Triangulation



As previously mentioned, the starting point of the approach is the construction of the 3D
Delaunay triangulation. For a set of points in 3D space, the Delaunay triangulation
divides the space into tetrahedra which have empty circumspheres, i.e. which do not
contain any other point of the triangulation. This property is known as Delaunay criterion
for 3D triangulation. Each vertex of the 3D Delaunay triangulation is a point of the data
set. Each tetrahedron of the 3D Delaunay triangulation has exactly four vertices and four
adjacent tetrahedra, except the points that are at the boundary of the triangulation.
Tetrahedra completely fill the space without overlapping.

To build the Delaunay triangulation in 3D, various methods such as the divide and
conquer method, or the incremental method, can be employed. However, they do not all
allow local modifications in the model. The incremental method, which is discussed in
detail in Ledoux & Gold (2006), is a dynamic method where local modifications such as
insertion, deletion or movement of points are possible. Thus, the development of the
model by the incremental method is done by incorporating the points one by one in the
model and by updating the triangulation after each insertion in order to make sure that
every tetrahedron respects the Delaunay criterion.

The construction of the 3D Delaunay triangulation includes several steps such as the
initialisation of the model, insertion of a new point into the model, search for a point in
the model and optimisation of the model for the criterion of 3D Delaunay tetrahedra. The
first step consists in initiating the model by creating a tetrahedron that contains all the
points in the studied area (universal tetrahedron). Then, each point in the dataset is
inserted in the triangulation one by one. For this purpose, a search operation is carried out
in order to locate the tetrahedron containing the new point. Then, the point is inserted in
the tetrahedron, which is subdivided into four new tetrahedra. All of the new tetrahedra
created must be tested in order to make sure that they respect the Delaunay criterion. If it
is not the case, the tetrahedra must be optimized by topological operations (flips)
(Edelsbrunner & Shah, 1996). The sequence of the flips is controlled by a stack structure
which contains all the tetrahedra which were not tested yet. The stack starts with the four
new tetrahedrons created by the insertion of the point and each time a flip is done, the
new tetrahedra are added to the stack. When the stack is empty, it means that all the
tetrahedra forming the triangulation are Delaunay. This procedure is repeated until all the
points in the dataset are inserted in the triangulation. At the end of the process, we get the
3D data structure that constitutes the basis for the 3D fish aggregations model.

Step 2: 3D Clustering with the Alpha Shapes Algorithm

After the construction of the Delaunay triangulation, the obtained 3D model must be
refined to get the fish aggregations. This step is performed using clustering algorithm to
classify objects into different groups sharing common characteristics. These groups are
called clusters. The clusters are often defined by measures of distance thus gathering the
data having proximity in space. Many techniques can be used to perform clustering from
a set of objects (Jain et al., 1999). The «-shapes algorithm, which is one of these
techniques (Buelens et al., 2004), is often used to identify shapes that are implied by a set



of points irregularly distributed in the space. The proximity between the points in space is
defined using the 3D Delaunay triangulation where the topological relations between
objects are explicitly stored and can be retrieved using the underlying data structure. In
order to model the fish aggregations, the -shapes algorithm can rely on 3D triangulation
of the fisheries data obtained from acoustic surveys to detect and represent fish
aggregations.

To figure out the concept of a-shapes of a distribution of points, Edelsbrunner & Miicke
(1994) suggest that one can think of a 3D space filled with Styrofoam containing the

points of a dataset made of more solid material. Using a spherical eraser with radius «Q,
we carve out all the Styrofoam we can reach without taking any point. The resulting

object will be bounded by arcs, caps and points and is not guaranteed to be connected.

Then, the o-shape of the point distribution is obtained when we substitute the arcs by
straight edges and the caps by flat triangles. In this manner, one can understand that if the

radius of the eraser gets smaller, more Styrofoam will be removed.

The a-shapescan also be defined as a generalisation of the convex hull of a set of points.
The o-shapes are the family of shapes derived from Delaunay triangulation parameterised
by a. The a-shape is neither necessarily convex, nor essentially connected. For a given
value of o, where 0 < & < o, the a-shape is composed by all the elements of the 3D
Delaunay triangulation with a circumsphere that do not contain any point of the dataset.
Notice on figure 2(a) that for & = oo, the a-shape is identical to the convex hull of the
distribution of points. However, as the a value decreases, the -shape shrinks and
gradually forms cavities, tunnels and even holes such as in figure 2(b). When a = 0, we
can observe on figure 2(c) that the corresponding o-shape is composed of the points of
the dataset.

(a) (b) ()
Figure 2. Intuitive 2D O(-shape

The computation of the o-shape of a set of points involves several steps and geometric
tests. In order to implement the a-shapes in our 3D model, we have used the 3D a-shapes
algorithm as described by Edelsbrunner & Miicke (1994). Based on 3D Delaunay
triangulation, the algorithm inspects each tetrahedron and lower-dimensional elements
(i.e. triangle, edge and point) and calculates the radius of its smallest circumsphere to find
the boundaries of its o-interval or «-thresholds. Indeed, for any element of the 3D
Delaunay triangulation, there is an interval such as the element become member of the -
shape if and only if the a value belongs to its interval. Two geometric tests must be



defined for the calculation of the intervals. First, the lower boundary of the interval for an
element of the 3D Delaunay triangulation corresponds to the radius of its smallest empty
circumsphere. Hence a test to check whether or not the circumsphere of an element is
empty is needed. Second, a test to verify if an element lies on the convex hull is required.
For this test, let’s assume that the 3D Delaunay triangulation algorithm returns, for every
element, whether or not it lies on the boundary of the convex hull. If the element is on the
convex hull, then the higher boundary of its interval is . On the other hand, if the
element is not on the convex hull, the higher boundary of its interval is calculated taking
in account all the tetrahedra containing the element. The higher boundary of the interval
then corresponds to the radius of the biggest circumsphere of the tetrahedra. Finally, when
the optimal o value is found, only the elements that belong to objects such as fish
aggregations or ocean bottom are drawn in the 3D model.

APPLICATION TO FISHERIES DATA

To apply the approach to fisheries data, we used an acoustic dataset from split-beam
echosounder describing the dynamics of aggregation-disaggregation of a group of coastal
Northwest Atlantic cod at high resolution. When these data are displayed in echograms
(see figure 3), the distribution pattern of fish aggregations can be detected visually. For
this work, only the spatial coordinates of the soundings are taken in account. The result is
a set of irregularly distributed points with three independent coordinates (latitude,
longitude and depth). The points are dense in areas where there are objects as fish
aggregations or ocean bottom and sparse everywhere else.

Figure 3. Echogram of acoustic data showing the ocean seabed at the bottom, individual and
aggregations of fishes (Atlantic cod) above the seabed, and the water column above it

Application of the proposed method for 3D fish aggregations modelling

Modelling of the fisheries data using 3D a-shapescan help detecting the presence of fish
aggregations in large acoustic data files where individual fishes’ positions are known at a
given time. It should be mentioned that, in order to find fish aggregations from acoustic
datasets using the 3D a-shapesalgorithm, the resolution of these acoustic data should be
very high. Figure 4 shows the results obtained from the application of the proposed
method for 3D modelling and visualisation of the fish aggregations.



(b)

Figure 4. (a) Test dataset containing two fish aggregations and the ocean bottom, (b) Result
obtained with 3D Delaunay triangulation, (c) Result obtained with 3D Q-shapesalgorithm

The 3D model obtained from the proposed approach offers new possibilities to display
and analyse acoustic data in 3D and to observe fish aggregations more effectively. For
instance, this kind of realistic visualisation could be an effective way to assist the fisheries
and marine environment managers to better understand and manage marine resources.
Furthermore, the 3D representations produced by the proposed approach can be
visualized to extract some other useful information. For example, the morphological
properties of fish aggregations such their position and spatial extension, their shape, their
volume or other measurements can easily be established using these models. In the field
of fisheries, the volume of fish aggregations is an important parameter for the calculation
of the biomass. However, at present, there exists few software, already available but
expensive, providing some of this kind of information with a high degree of accuracy.

In addition to the characterization of fish aggregations, the benefits of the resulting 3D
model are that it facilitates the analysis of the observed dynamics of fishes. Indeed, an
aggregation is a process in which fishes enter and leave constantly. Hence, the 3D model
allows describing fish aggregations spatial and temporal patterns by visualising the actual
structure of the fish aggregation and the location of individuals in it as it changes over
time. For example, the changes in the aggregation morphology are quantified on a
monthly scale and seasonal differences in distribution patterns are displayed and studied
using dynamic visualisation techniques. The changes in the fish aggregations are shown
by a series of snapshot where each snapshot is a representation of the fish aggregations
studied at a given time. Moreover, further developments could lead to understand how
those changes are related to the environmental changes in which the fish live by adding
information on the ocean’s parameters into the model. Another application of the 3D
model obtained is to better measure the 3D physical aspect or swimming position of
individual fishes that affects the quantitative acoustic measures of density and abundance.

Limits of the approach

Although the 3D modelling of the fisheries data using 3D «-shapesalgorithm has many
advantages, it also has some limitations as well. First, it can be difficult to determine the
optimal a parameter for the modelling of fish aggregations. Indeed, the & parameter must
be determined by trial-and-error because there is no explicit rule. But with the



visualisation interface, we can see how the a-shapechanges when we modify the
parameter. Moreover, as the -shapesalgorithm is based on distances between data points
to determine which ones are connected together, it could be difficult to find a satisfying
value if the concentrations of points which we identify as fish aggregations show very
different densities. Another problem of the suggested approach is that it does not take in
account, at present, the dynamic nature of the fisheries data. However, it could be done if
we recomputed after each move the intervals for every element involved in the move.
Finally, the uncertainty associated to the data is not shown in the model.

CONCLUSION

The main objective of this work was to develop an approach to create a 3D model of fish
aggregations suitable for analysis, since with classical 2D representations this cannot be
easily performed. We have studied the concepts related to 3D Delaunay triangulation and
3D a-shapesalgorithm and discussed some of their potential uses with acoustic fisheries
data. The approach suggested in this work combines these two algorithms and brings
some benefit for the representation of fish aggregations, particularly to observe dynamics
of fishes through time. However, few limitations, mostly due to the o-shapesalgorithm,
have been noted and should be addressed. Both algorithms have already been
implemented in Delphi language but some improvements are still possible. Further works
should study the evolution of the fish aggregations with respect to ocean’s physical
parameters such as temperature and salinity.
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