

Weierstraß-Institut für Angewandte Analysis und Stochastik

TetGen for TEN Computations

Hang Si

Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany

3D Topo International Top-Up Day

Constrained Delaunay Tetrahedralizations Algorithms Examples

2 Constrained Delaunay Tetrahedralizations Algorithms Examples

Definition. A piecewise linear complex (PLC) is a collection *X* of polytopes (possibly non-convex) with the following properties:

- 1. The set X is closed under taking boundaries, i.e., for each $P \in X$ the boundary of P is a union of polytopes in X.
- **2.** *X* is closed under intersection, i.e., for each $P, Q \in X$ the intersection $P \cap Q$ is a polytope in *X*.
- **3.** If dim $(P \cap Q) = \dim(Q)$ then $P \subseteq Q$, and dim $(P) < \dim(Q)$.

How to Describe PLCs?

- ▷ A PLC is described by a list of vertices and a list of facets.
 - ▷ Each "vertex" contains index, coordinates, attributes, ...
 - Each "facet" is a list of polygons and holes.

Representation

The Facet Description

The facet (shown in pink) consists of four polygons and one hole. The polygons are: (1, 2, 3, 4), (9, 10, 11, 12), (11, 3), and (17). The last two polygons are degenerate. The polygon (9, 10, 11, 12) is a hole.

Representation

Data File Description (.poly format)

```
# The list of vertices
16300
1 0.0 0.0 0.6 # index, x, y, z
2 1.0 0.0 0.6
3 1.0 1.0 0.6
4 0.0 1.0 0.6
# The list of facets
10.0
# The top facet
2 1 0 # 2 polygons, 1 hole, no boundary marker
4 1 2 3 4 # A polygon.
49101112
1 0.5 0.5 0.6 # A hole point
# Other facets
100
41265
# The list of volume holes
0
```


- \triangleright The boundary of a PLC is stored as a 2D simplicial complex \mathcal{F} .
 - Triangulates each facet separately.
 - Connects facets through their common boundaries.
- \triangleright The triangle-edge data structure [Mücke'93] is adapted to represent \mathcal{F} .

alidation Boundary Self-Intersection Detect

- The primitive operation is the triangle-triangle test. Fast algorithms are known, see [Möller'97], [Guigue'03], etc. However, the implementations are found less robust. Moreover, they generally do not distinguish the type of intersection.
- TetGen has its own triangle-triangle test (the same idea as [Guigue'03]) which reports all types of intersections. The robustness is achieved by using exact floating-point arithmetic.

Dec. 11, 2007 TU Delft

alidation Self-Intersection Detect Algorithms

- \triangleright Goal: given a set of m triangles in 3D, find all pairwise intersected triangles.
- ▷ A trivial approach: test the intersection of triangles by pairs, needs $O(m^2)$ tests.
- TetGen implemented a hybrid algorithm: initially takes a divide-and-conquer approach and switches to the trivial approach for low number of triangles.
- ▷ This algorithm runs in time $O(m \log m + I^2)$, where I is the largest number of undividable triangles.

Validation Self-intersections in the Campus Model

- ▷ Repair self-intersections (one of the goals of the project).
- ▷ Validate the closeness of the PLC boundary.

2 Constrained Delaunay Tetrahedralizations Algorithms Examples

Delaunay Triangulations

Let *S* be a set of finite points in \mathbb{R}^d . Any simplex in *S* is Delaunay if it has a circumscribed ball *B*, such that $int(B) \cap S = \emptyset$. The Delaunay triangulation of *S*, $\mathcal{D}(S)$, is formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., *Sur la sphère vide*. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk. (1934) **7**:793–800.

Delaunay Triangulations

Let *S* be a set of finite points in \mathbb{R}^d . Any simplex in *S* is Delaunay if it has a circumscribed ball *B*, such that $int(B) \cap S = \emptyset$. The Delaunay triangulation of *S*, $\mathcal{D}(S)$, is formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)

Delaunay B.N., *Sur la sphère vide*. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk. (1934) **7**:793–800.

Constrained Delaunay Triangulations

- ▷ The Delaunay triangulations (DTs) do not respect the boundaries.
- Constrained Delaunay triangulations (CDTs) well-solved the problem in 2D. ([Lee & Lin'86] and [Chew'89])
- Work in progress in 3D, [Shewchuk'00, 02, 03], [Si & Gärtner'04, 05], ...

Tetrahedralizing Polyhedra

- A simple polyhedron P may not have a tetrahedralization without using additional points (so-called Steiner points). [Schönhardt'28]
- The problem of deciding whether P can be tetrahedralized is NP-complete. [Rupper and Seidel'92]
- A simple polyhedron with *n* vertices may require $\Omega(n^2)$ Steiner points. [Chazelle'84]

- Convex decomposition: [Chazelle and Palios'90], [Bajaj and Dey'92], etc.
 - ▷ Have theoretical guarantees on the complexities $O(n^2)$.
 - Very complicated, require large number of Steiner points.
- Constrained Boundary Recovery: [George, Hecht, and Saltel'91], [Weatherill and Hassan'94], [George, Borouchaki, and Saltel'03], etc.
 - Restriction: no Steiner points are on boundary.
 - complicated, complexities are ad hoc.
- Conforming Delaunay Methods: [Murphy, Mount, and Gable'00], [Cohen-Steiner, de Verdière, and Yvinec'02], [Cheng and Poon'03], etc.
 - May need too many Steiner points.
- Constrained Delaunay Methods: [Shewchuk'00,02,03], [Si and Gärtner'04,05], etc.
 - ▷ Use less Steiner points than conforming Delaunay methods.
 - Have complexity guarantees.

Algorithms

A Comparison of Various Approaches

Conforming Delaunay method 51 vertices, 103 tetrahedra

Convex decomposition 138 nodes, 280 tetrahedra

Constrained Delaunay method 20 vertices, 29 tetrahedra.

Algorithms CDTs with no Steiner point

Let X be a 3D PLC. A simplex t is strongly Delaunay if there exists a circumscribed sphere Σ of t, such that no vertex of X lies inside and on Σ .

Theorem ([Shewchuk'98]). If all segment of X are strongly Delaunay, then X has a CDT with no Steiner point.

Corollary. If no 5 vertices of X share a common sphere, and all segment of X are Delaunay, then X has a CDT with no Steiner point, and it is unique.

Algorithms

Constructing the CDT of a PLC

Given a 3D PLC X, a CDT is constructed in the following subsequent phases:

- (1) Form the Delaunay tetrahedralization T of the vertices of X.
- (2)* Form the surface triangulation \mathcal{F} from the facets of X.
- (3)* Perturb the vertices in \mathcal{F} and \mathcal{T} (add Steiner points).
- (4) Recover the segments of \mathcal{F} in \mathcal{T} (add Steiner points).
- (5) Recover the facets of \mathcal{F} in \mathcal{T} .
- (6) Remove tetrahedra outside |X| from \mathcal{T} .
- (7)* Remove Steiner points from ∂X (for constrained boundary recovery).

Algorithms Segment Recovery – Protecting Sharp Corners

Corner lopping [Ruppert'95, Shewchuk'02, Pav and Walkington'05].

Algorithms Segment Recovery – Protecting Sharp Corners

Corner lopping [Ruppert'95, Shewchuk'02, Pav and Walkington'05].

Algorithms Segment Recovery – Protecting Sharp Corners

Corner lopping [Ruppert'95, Shewchuk'02, Pav and Walkington'05].

Some subfaces of a facet are missing - they must be non-Delaunay and crossed by Delaunay edges.

A missing region Ω is formed by a set of missing subfaces which are connected to each other.

From each Ω one can form two cavities in a DT, one at each side of Ω . Each cavity *C* is a polyhedron bounded by triangular faces.

A cavity *C* is tetrahedralized by the following procedure.

1. Verify C. Enlarge C until all faces of C are Delaunay.

2. Tetrahedralize C.

- n- the number of input points,
- s the number of Steiner points,

m – the number of output points (i.e., m = n + s).

Steps	Algorithms	Worst case	General case
(1)	Delaunay tetrahedralization	$O(n^2)$	$O(n\log n)$
(2)	Surface triangulation	$O(n \log n)$	
(3)	Vertex perturbation [Si et al'05]	$O(n \log n)$	
(4)	Segment recovery [Si et al 05]	$O(sn^2\log n)$	$O(s \log n)$
(5)	Facet recovery [Shewchuk'03]	$O(m^2 \log m)$	

Examples

Example 1 – Cami1a

A 3D PLC 460 vertices, 328 facets

The DT 2637 tetrahedra

A CDT with 505 Steiner points

Facet recovery 22 missing subfaces

The surface mesh 954 subfaces, 706 segments

Segment recovery 213 + 292 Steiner points

TetGen for TEN Computations

Dec. 11, 2007 TU Delft

Examples Example 2 – Campus TU Delft

Input PLC 5184 vertices 3229 facets The CDT 9921 vertices 54338 tetrahedra

Dec. 11, 2007 TU Delft

27 (27) W I A S