TetGen for TEN Computations

Hang Si

Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany

3D Topo International Top-Up Day
(1) Piecewise Linear Complexes

Representation
Validation
(2) Constrained Delaunay Tetrahedralizations

Algorithms

Examples

(1) Piecewise Linear Complexes

Representation
Validation
(2) Constrained Delaunay Tetrahedralizations

Algorithms
Examples

Piecewise Linear Complexes

Definition. A piecewise linear complex (PLC) is a collection X of polytopes (possibly non-convex) with the following properties:

1. The set X is closed under taking boundaries, i.e., for each $P \in X$ the boundary of P is a union of polytopes in X.
2. X is closed under intersection, i.e., for each $P, Q \in X$ the intersection $P \cap Q$ is a polytope in X.
3. If $\operatorname{dim}(P \cap Q)=\operatorname{dim}(Q)$ then $P \subseteq Q$, and $\operatorname{dim}(P)<\operatorname{dim}(Q)$.

non-PLCs

How to Describe PLCs?

A Simplified B-Rep Description

\triangleright A PLC is described by a list of vertices and a list of facets.
\triangleright Each "vertex" contains index, coordinates, attributes, ...
\triangleright Each "facet" is a list of polygons and holes.

The Facet Description

The facet (shown in pink) consists of four polygons and one hole. The polygons are: $(1,2,3,4),(9,10,11,12),(11,3)$, and (17). The last two polygons are degenerate. The polygon $(9,10,11,12)$ is a hole.

Data File Description (.poly format)

```
# The list of vertices
16300
10.0 0.0 0.6 # index, x, y, z
21.00.00.6
31.01.00.6
4.01.00.6
# The list of facets
100
# The top facet
2 10 # 2 polygons, 1 hole, no boundary marker
41234 # A polygon.
49101112
10.5 0.5 0.6 # A hole point
# Other facets
10
41265
# The list of volume holes
0
```


Representation

TetGen Internal Representation

\triangleright The boundary of a PLC is stored as a 2D simplicial complex \mathcal{F}.
\triangleright Triangulates each facet separately.

- Connects facets through their common boundaries.
\triangleright The triangle-edge data structure [Mücke'93] is adapted to represent \mathcal{F}.

Boundary Self-Intersection Detect

\triangleright The primitive operation is the triangle-triangle test. Fast algorithms are known, see [Möller'97], [Guigue'03], etc. However, the implementations are found less robust. Moreover, they generally do not distinguish the type of intersection.
\triangleright TetGen has its own triangle-triangle test (the same idea as [Guigue'03]) which reports all types of intersections. The robustness is achieved by using exact floating-point arithmetic.

Invalid PLC

Types of intersection

Self-Intersection Detect Algorithms

\triangleright Goal: given a set of m triangles in 3D, find all pairwise intersected triangles.
\triangleright A trivial approach: test the intersection of triangles by pairs, needs $O\left(m^{2}\right)$ tests.
\triangleright TetGen implemented a hybrid algorithm: initially takes a divide-and-conquer approach and switches to the trivial approach for low number of triangles.
\triangleright This algorithm runs in time $O\left(m \log m+I^{2}\right)$, where I is the largest number of undividable triangles.

Validation

Self-intersections in the Campus Model

/alidation

Open Issues
\triangleright Repair self-intersections (one of the goals of the project).
\triangleright Validate the closeness of the PLC boundary.

(1) Piecewise Linear Complexes
 Representation
 Validation

(2) Constrained Delaunay Tetrahedralizations
 Algorithms
 Examples

Delaunay Triangulations

Let S be a set of finite points in \mathbb{R}^{d}. Any simplex in S is Delaunay if it has a circumscribed ball B, such that $\operatorname{int}(B) \cap S=\emptyset$. The Delaunay triangulation of $S, \mathcal{D}(S)$, is formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)
Delaunay B.N., Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk. (1934) 7:793-800.

Delaunay Triangulations

Let S be a set of finite points in \mathbb{R}^{d}. Any simplex in S is Delaunay if it has a circumscribed ball B, such that $\operatorname{int}(B) \cap S=\emptyset$. The Delaunay triangulation of $S, \mathcal{D}(S)$, is formed by Delaunay simplices.

Boris N. Delaunay (1890-1980)
Delaunay B.N., Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk. (1934) 7:793-800.

Constrained Delaunay Triangulations

\triangleright The Delaunay triangulations (DTs) do not respect the boundaries.
\triangleright Constrained Delaunay triangulations (CDTs) well-solved the problem in 2D. ([Lee \& Lin'86] and [Chew'89])
\triangleright Work in progress in 3D, [Shewchuk'00, 02, 03], [Si \& Gärtner'04, 05], ...

A 2D PLC

The DT

The CDT

Tetrahedralizing Polyhedra

\triangleright A simple polyhedron P may not have a tetrahedralization without using additional points (so-called Steiner points). [Schönhardt'28]
\triangleright The problem of deciding whether P can be tetrahedralized is NP-complete. [Rupper and Seidel'92]
\triangleright A simple polyhedron with n vertices may require $\Omega\left(n^{2}\right)$ Steiner points. [Chazelle'84]

\triangleright Convex decomposition: [Chazelle and Palios'90], [Bajaj and Dey'92], etc.
\triangleright Have theoretical guarantees on the complexities $O\left(n^{2}\right)$.
\triangleright Very complicated, require large number of Steiner points.
\triangleright Constrained Boundary Recovery: [George, Hecht, and Saltel'91], [Weatherill and Hassan'94], [George, Borouchaki, and Saltel'03], etc.
\triangleright Restriction: no Steiner points are on boundary.
\triangleright complicated, complexities are ad hoc.

- Conforming Delaunay Methods: [Murphy, Mount, and Gable'00], [Cohen-Steiner, de Verdière, and Yvinec'02], [Cheng and Poon'03], etc.
\triangleright May need too many Steiner points.
\triangleright Constrained Delaunay Methods: [Shewchuk'00,02,03], [Si and Gärtner'04,05], etc.
\triangleright Use less Steiner points than conforming Delaunay methods.
\triangleright Have complexity guarantees.

A Comparison of Various Approaches

A simple ployhedron 20 vertices, 2 reflex edges

Conforming Delaunay method 51 vertices, 103 tetrahedra

Convex decomposition 138 nodes, 280 tetrahedra

Constrained Delaunay method 20 vertices, 29 tetrahedra.

Algorithms

CDTs with no Steiner point

Let X be a 3D PLC. A simplex t is strongly Delaunay if there exists a circumscribed sphere Σ of t, such that no vertex of X lies inside and on Σ.

Theorem ([Shewchuk'98]). If all segment of X are strongly Delaunay, then X has a CDT with no Steiner point.

Corollary. If no 5 vertices of X share a common sphere, and all segment of X are Delaunay, then X has a CDT with no Steiner point, and it is unique.

Constructing the CDT of a PLC

Given a 3D PLC X, a CDT is constructed in the following subsequent phases:
(1) Form the Delaunay tetrahedralization \mathcal{T} of the vertices of X.
(2)* Form the surface triangulation \mathcal{F} from the facets of X.
(3) ${ }^{*} \quad$ Perturb the vertices in \mathcal{F} and \mathcal{T} (add Steiner points).
(4) Recover the segments of \mathcal{F} in \mathcal{T} (add Steiner points).
(5) Recover the facets of \mathcal{F} in \mathcal{T}.
(6) Remove tetrahedra outside $|X|$ from \mathcal{T}.
(7)* Remove Steiner points from ∂X (for constrained boundary recovery).

Igorithms

Segment Recovery - Protecting Sharp Corners

Corner lopping [Ruppert'95, Shewchuk'02, Pav and Walkington'05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Corner lopping [Ruppert'95, Shewchuk'02, Pav and Walkington'05].

Algorithms

Segment Recovery - Protecting Sharp Corners

Corner lopping [Ruppert'95, Shewchuk'02, Pav and Walkington'05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner'05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner'05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].

Igorithms

Segment Recovery - Protecting Sharp Corners

Protect sharp corner adaptively [Si and Gärtner’05].

Some subfaces of a facet are missing - they must be non-Delaunay and crossed by Delaunay edges.

A missing region Ω is formed by a set of missing subfaces which are connected to each other.

From each Ω one can form two cavities in a DT, one at each side of Ω. Each cavity C is a polyhedron bounded by triangular faces.

A facet

A missing region (shaded area)

Algorithms

Cavity Tetrahedralization

A cavity C is tetrahedralized by the following procedure.

1. Verify C. Enlarge C until all faces of C are Delaunay.

2. Tetrahedralize C.

Complexity Issues

n - the number of input points,
s - the number of Steiner points,
m - the number of output points (i.e., $\mathrm{m}=\mathrm{n}+\mathrm{s}$).

Steps	Algorithms	Worst case	General case
(1)	Delaunay tetrahedralization	$O\left(n^{2}\right)$	$O(n \log n)$
(2)	Surface triangulation	$O(n \log n)$	
(3)	Vertex perturbation [Si et af05]	$O(n \log n)$	
(4)	Segment recovery [Si et af05]	$O\left(s n^{2} \log n\right)$	$O(s \log n)$
(5)	Facet recovery [Shewchuk'03]	$O\left(m^{2} \log m\right)$	

Examples

Example 1 - Cami1a

A 3D PLC
460 vertices, 328 facets

A CDT with 505 Steiner points

The DT 2637 tetrahedra

Facet recovery
22 missing subfaces

The surface mesh 954 subfaces, 706 segments

Segment recovery $213+292$ Steiner points

Examples

Example 2 - Campus TU Delft

Input PLC
5184 vertices
3229 facets

The CDT
9921 vertices
54338 tetrahedra

