Towards a Rigorous Logic for Spatial Data Representation

Rod Thompson Delft University of Technology

Overview

- The problem
- The regular polytope approach
- Implementation issues
- Conclusion

Reasoning from Data

• Is it possible to determine the correctness of propositions from data stored in a computer?

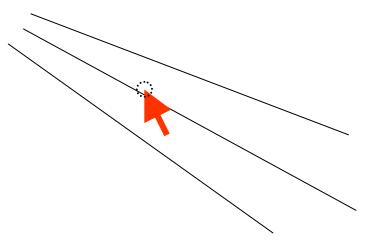
E.g. accounts with balance ≥ 0 are solvent. This account has a balance of 5 Euros – is this account solvent?

• Is this possible for spatial data?

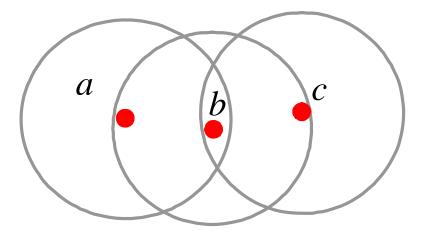
E.g. Land within 5km of the city centre is classed "urban". This parcel of land is 2km from the city centre – is it "urban"?

Design by Contract

 Is computer software prepared to "trust" other software?

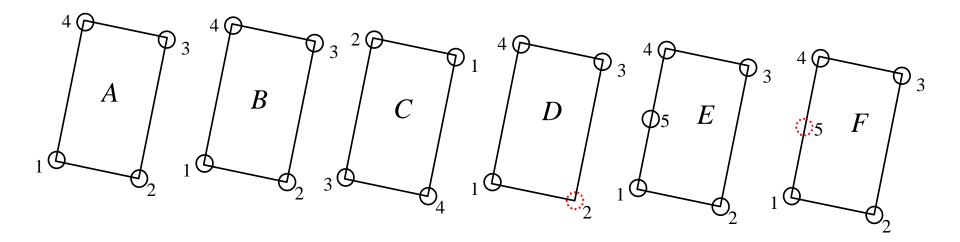

(The alternative is "defensive programming" – for example, before using a polygon, it must be validated).

 Defensive programming is very expensive – especially for spatial data.


(A particular example is spatial data interchange – is it necessary to re-validate data on receipt?)

Imprecision in Calculations

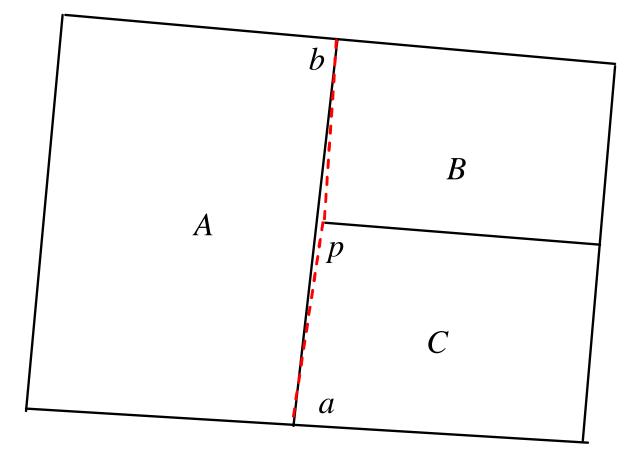
- Computer calculations do not use real numbers.
- Precision is finite. Rounding happens.
- It is common to use "tolerance" in calculations to provide reasonable answers.



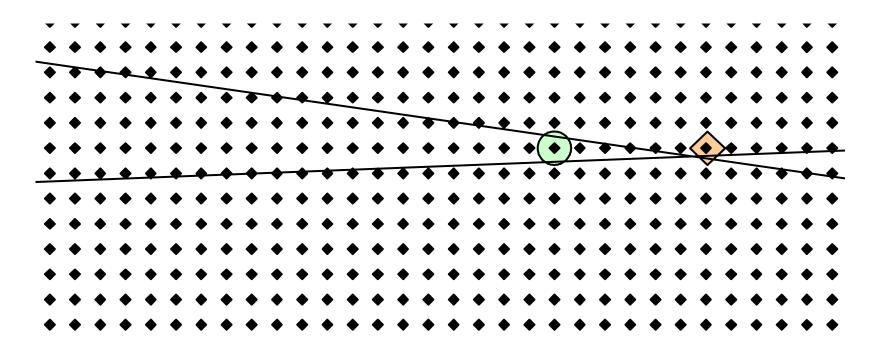
Test for Equality

Equality

Points marked with a complete circle are exactly correct.

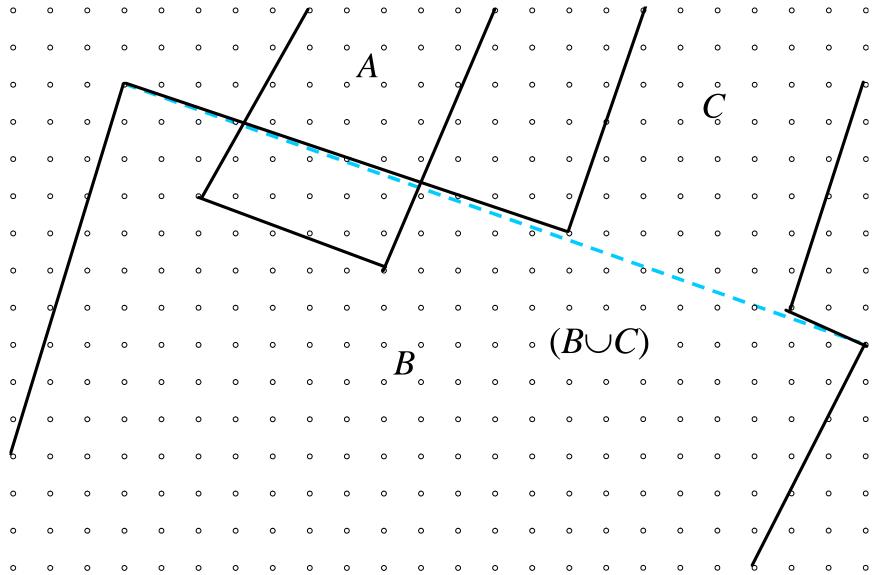

Points marked with a dashed circle are correct to within tolerance.

All these polygons are equal to A by the ISO 19107 definition.


(Note – in all cases the sense is the same).

Adjoining Polygons

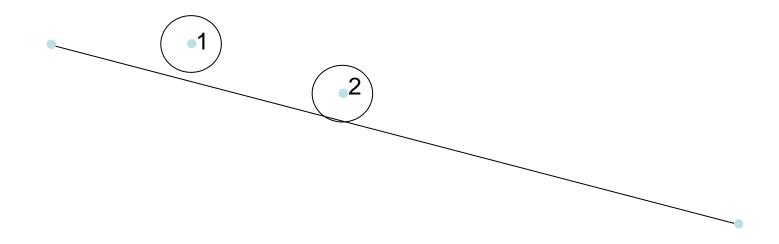
To allow for point *p* not being exactly on the line, the definition of *A* changes.



Tolerance in Calculation of Intersection

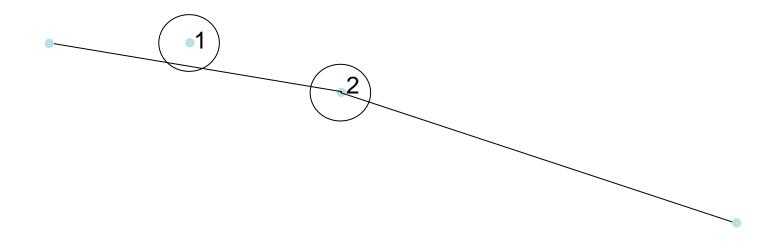
In almost all spatial data representations, the positions of points are represented rounded to the nearest grid point.

o	ο	o	o	o	o	o	ο	1	o	o	o	ο	ľ	o	o	o	ſ	ο	ο	ο	o	o	o
o	ο	0	o	ο	ο	0	°/		0		o	°/	。 。	o	o	0	^		0	0	0	0	o
o	ο	0		°	0	0	<i> </i> •	o	° T	4。	o	þ	o	o	o	•	0	0	$^{\circ}$	o	o	o	ſ
0	o	0	°	0	0	\checkmark	°	0	o	0	•/	0	o	o	o	ø		0	Ç			°	•
0	o	•	0	o	° /	。	0	0		°	/	0	o	o	•		o	ο	ο	ο	o	•	0
0	ο		0	ο	2	°	o	0	ο	/	0	~	°	0	1	0	0	0	0	0	o	°	o
0	ο	 °	0	0	o	0		°		 •	0	0	0	0	~	°	0		°	0	°	0	o
0	°	0	o	o	ο	0	o	0		0	o	0	o	o	o	0	0	<u> </u>	0	0	\neg	0	o
0	4	0	0	ο	o	0	ο	o	ο	0	0	o	0	o	ο	0	ο	0	0	0	°	0	0
0 0	°	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	°	°	0 0	0 0	0	° °	° 0	。 7						
	°			0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	° °	° B°		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0		° °	7.
o	/	0	o				o			° 2	° B°	o						0 0 0		0 0 0	0	° ∕ ° ∕	7
o	。 。	0	o				o			° °	° 8° °	o						0 0 0 0		0 0 0 0	0 0	°	7.
o	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0	。 。	8 °	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	o	0 0 0	°	7 °
0 0 0	0 0 0	0 0 0	0 0 0	• •	8 。 。	0 0 0	0 0	o	0 0 0	° °	7 °°												

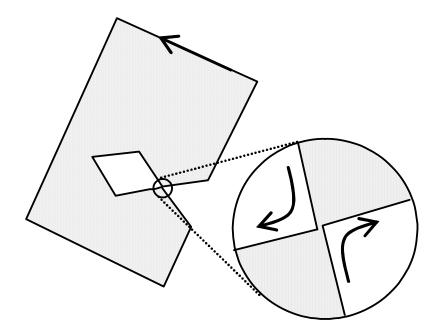

o	o	o	0	ο	ο	o	ο	ſ	0	ο	ο	ο	ſ	o	o	o	1	ο	o	ο	ο	ο	o
o	o	o	0	ο	o	o	•/	0	0	^ °	o	0	 •	0	o	0	 •	0	o	ο	0	0	o
0	o	ο		°	0	0	<i> </i> •	o	。 ^	Ч°	ο	•	0	o	o	•	0	0	°	0	ο	ο	P
0	0	0	 •	0	0		0	0	0	0	0	l	0	0	0	/	0	0	°	0	0	0	0
o	o	•	0	o	ο	o	o	o	o	0	° /	0	o	o	0	 •	o	o	ο	ο	0	•	ο
o	o	1	0	ο	ο	o	ο	o	ο	0	L	0	ο	ο	•	0	o	0	o	0	0	þ	ο
o	o	 •	0	o	0	o	0	o	0	0	0	ο	0	0	_	o	o	ο	o	o	0	。	o
o	°	。	0	0	0	o	0	o	0	0	0	0	o	0	o	0	o	o	o	o	•	0	o
o	4	ο	0	o	ο	o	o	o	o	ο	ο	0	o	o	o	o	o	o	o	ο		0	ο
0	ŀ	ο	0	o	ο	o	o	o	o	0	n°	0	ο	o	o	0	o	o	o	ο	ο	0	ア
0	。 	ο	0	o	ο	o	o	o	o	。	S°	0	o	0	o	0	o	o	o	0	ο	•	。 。
•	0	0	o	o	o	0	o	o	0	0	o	0	o	0	o	0	o	0	o	0	o		ο
b	o	0	0	o	o		Re	esu	lt	— /	10	B		C)	is	a		0	0	0	•	。	0
o	o	0	0	0	0	si	mp										1	o	o	ο	þ	0	ο
0	ο	ο	0	ο	ο	o	•	ο	0	ο	•	ο	0	0	°	0	ο	o	0	•	0	o	ο
o	o	o	0	o	o	o	o	o	o	0	0	o	o	o	o	o	o	o	o	l	o	o	o

o	ο	ο	o	o	o	o	ο	1	o	ο	o	o	ľ	o	o	o	ſ	ο	ο	ο	o	o	o
o	ο	0	o	ο	ο	0	°/		0		o	°/	。 。	o	o	0	^		0	0	0	0	o
o	ο	0		°	0	0	<i> </i> •	o	° T	4。	o	þ	o	o	o	•	0	0	$^{\circ}$	o	0	o	ſ
0	o	0	°	0	0	\checkmark	°	0	o	0	•/	0	o	o	o	ø		0	Ç			°	•
0	o	•	0	o	°/	。	0	0		°	/	0	o	o	•		o	ο	ο	ο	o	•	0
0	ο		0	ο	2	°	o	0	ο	/	0	~	°	o	1	0	0	0	0	0	o	°	o
0	ο	 °	0	0	o	0		°		 •	0	0	0	0	~	°	0		°	0	°	0	o
0	°	0	o	o	ο	0	o	0		0	o	0	o	o	o	0	0	<u> </u>	0	0	\neg	0	o
0	4	0	0	o	o	0	ο	ο	ο	0	0	o	0	o	0	0	ο	0	0	0	°	0	0
0 0	°	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	°	°	0 0	0 0	0	° °	° 0	。 7						
	°			0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	° °	° B°		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0		° °	7.
o	/	0	o				o			° 2	° B°	o						0 0 0		0 0 0	0	° ∕ ° ∕	7
o	。 。	0	o				o			° °	° 8° °	o						0 0 0 0		0 0 0 0	0 0	°	7.
o	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0 0	0 0	0 0	。 。	8 °	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	o	0 0 0	°	7 °
0 0 0	0 0 0	0 0 0	0 0 0	• •	8 。 。	0 0 0	0 0	o	0 0 0	° °	7 °°												

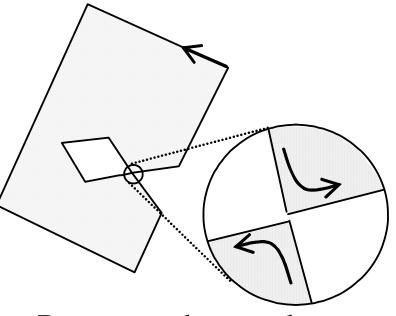
o	o	0	0	ο	ο	ο	o	ſ	0	0	o	o	ſ	ο	ο	ο	1	o	ο	ο	0	0	o
o	o	0	0	o	ο	o	•/	0	0	°	o	°	。	0	o	0	o	0	ο	0	0	0	0
o	o	0	r	0	0	0	<i> </i> 。	o	°	• F	o	<i> </i> •	o	0	0	•	o	o	°	o	o	o	P
o	o	ο	 •	0	0		0	o	o	0	•/	0	o	ο	ο	0	o	o	Ç	ο	o	0	。
o	ο	•	0	o	o	o	0	0	-0	0	<i> </i> 。	o	0	o	•	。	o	o	o	ο	0	•	0
o	o	4	0	o	o	o	o	o	o	Z	0	- a	0	o	L	0	o	o	o	o	o	<i> </i> •	o
o	o	 •	ο	o	o	o	o	o	0	p_{\circ}	0	0	-	0	- 0	0	0		0	o	•	。	o
o	0	•	ο	o	o	ο	o	o	o	0	o	o	o	0	0	0	°	0	0	0		o	o
o	。	o	o	o	o	o	o	o	o	0	o	o	o	o	o	o	o	0	0		0	0	ο
o	<i>•</i>	o	o	o	o	o	o	o	o	0	°	o	o	0	o	o	o	0	o	0	0	0	7
0	。 。	o	0	o	o	o	o	o	o	0	B°	o	o	0	o	o	o	0	o	o	o	°	/。
。	0	o	0	Re	esu	ilt	- ($A \cup$	J₿)(\mathcal{C}	is	a r	nu	lti-	- D O	lv	20 2	n	ο	ο		o
l	o	o	o	0	0	0	•	o	o	•	0	0	o	0	0	• T	• •	°	o	o	•	, •	o
o	o	o	o	o	o	o	o	o	o	0	o	o	o	o	o	o	o	o	o	o		0	o
o	o	o	0	o	0	o	o	o	o	o	o	o	o	0	0	o	o	0	o	0	, •	o	o
0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	o	0	0	ſ	ο	0	ο


It is common for the result of an operation to invalidate the result of earlier operations.

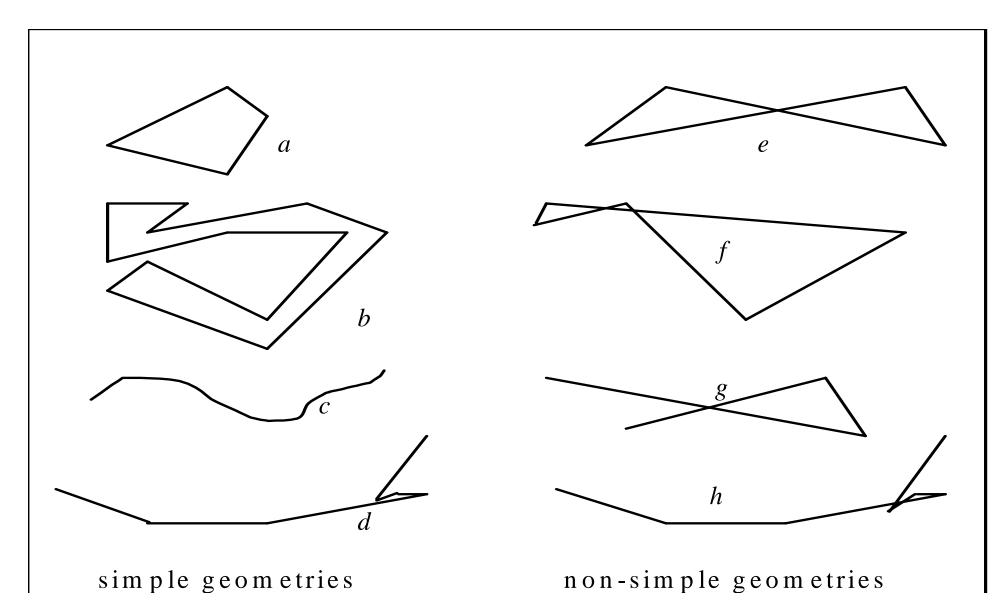
e.g. checking that no points are within a minimum distance of any line.



It is common for the result of an operation to invalidate the result of earlier operations.


e.g. checking that no points are within a minimum distance of any line.

Variation of Representation



Represented as a polygon with a hole

Represented as a polygon with a continuous (one piece) outer boundary

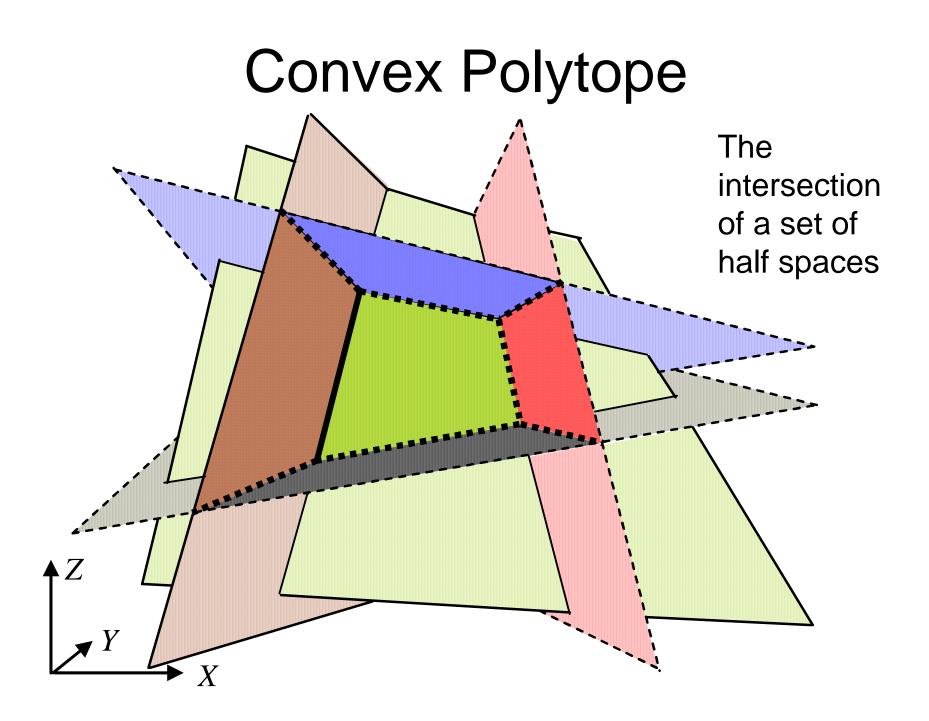
Validity

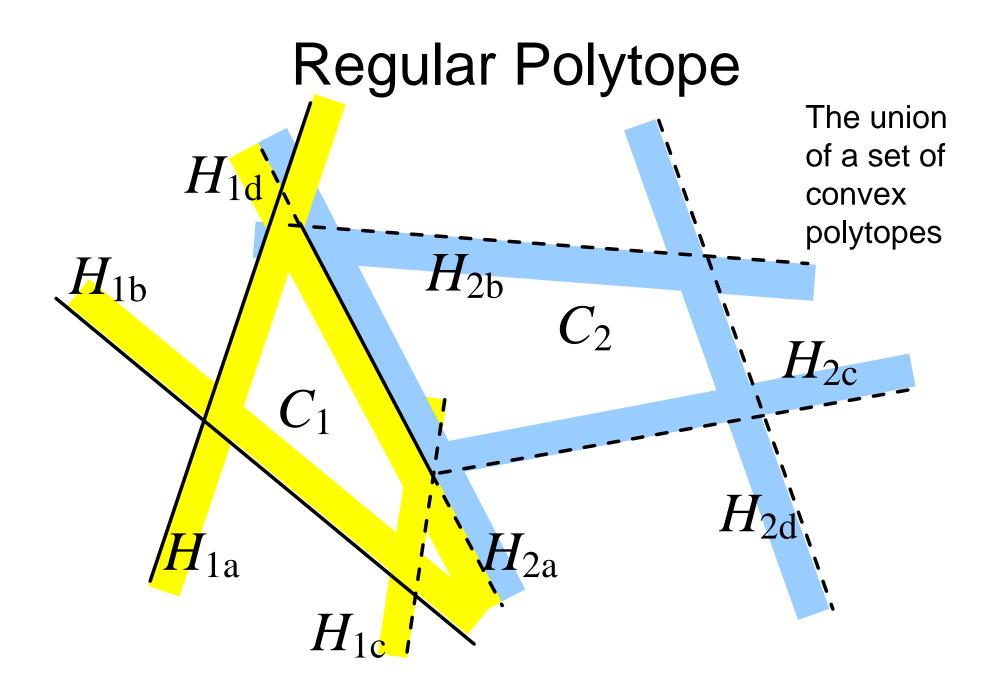
The Regular Polytope

- Definition
- Behaviour
- Connectivity
- Algebra

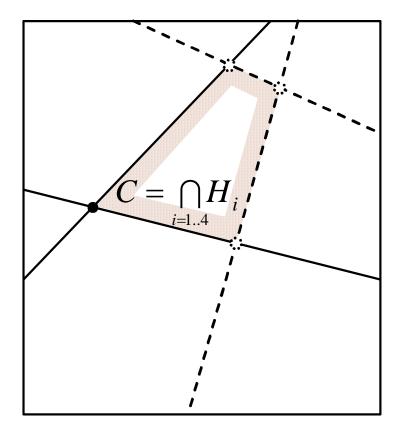
What Do We Want

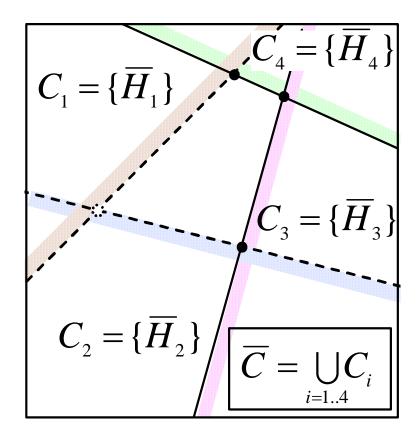
- Consistency of operations
- Reliable spatial data interchange
- Rigorous definitions of validity and equality
- Robustness of storage representation

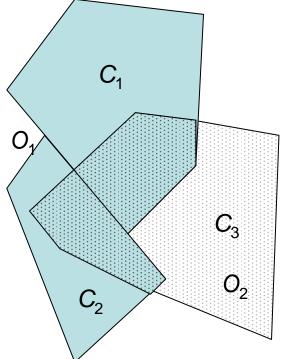

Half Space


(Ax + By + Cz + D) > 0 or [(Ax + By + Cz + D) = 0 and A > 0] or [(By + Cz + D) = 0 and A=0 and B>0] or [(Cz + D) = 0 and A=0, B=0 and C>0],

Convex Polytopes

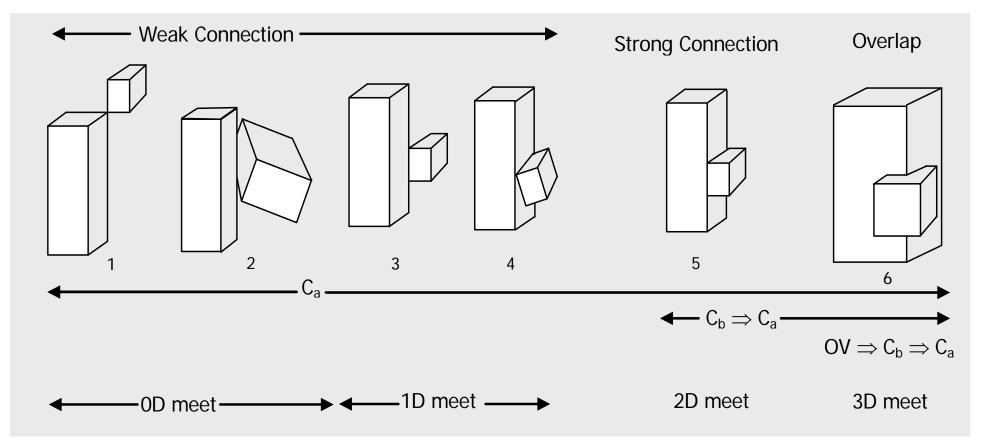



$$(A_i x + B_i y + C_i z + D_i) > 0$$
 or
 $[(A_i x + B_i y + C_i z + D_i) = 0$ and $A_i > 0]$ or
 $[(B_i y + C_i z + D_i) = 0$ and $A_i = 0$ and $B_i > 0]$ or
 $[(C_i z + D_i) = 0$ and $A_i = 0$, $B_i = 0$ and $C_i > 0]$,



Complement of a Convex Polytope

Union and Intersection of Regular Polytopes



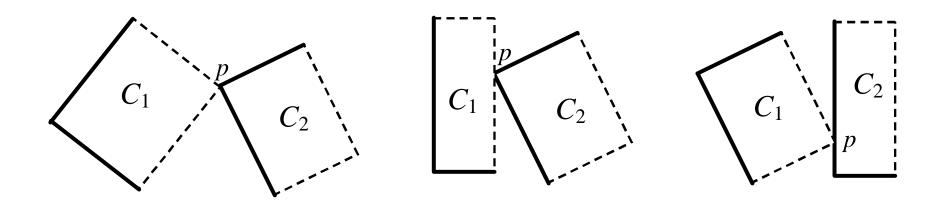
$$O_1 = \{C_1, C_2\}, O_2 = \{C_3\}$$

 $O_1 \cup O_2 = \{C_1, C_2, C_3\}$

$$O_1 \cap O_2 = \{C_1 \cap C_3, C_2 \cap C_3\}$$

Connectivity

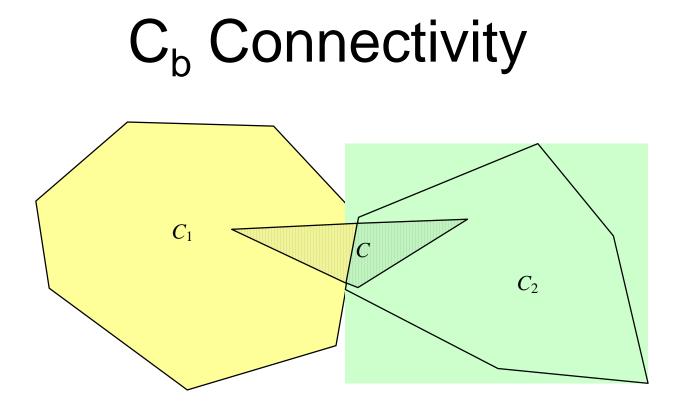
Interpretation of Regular Polytopes


Ax + By + Cz + D: 0

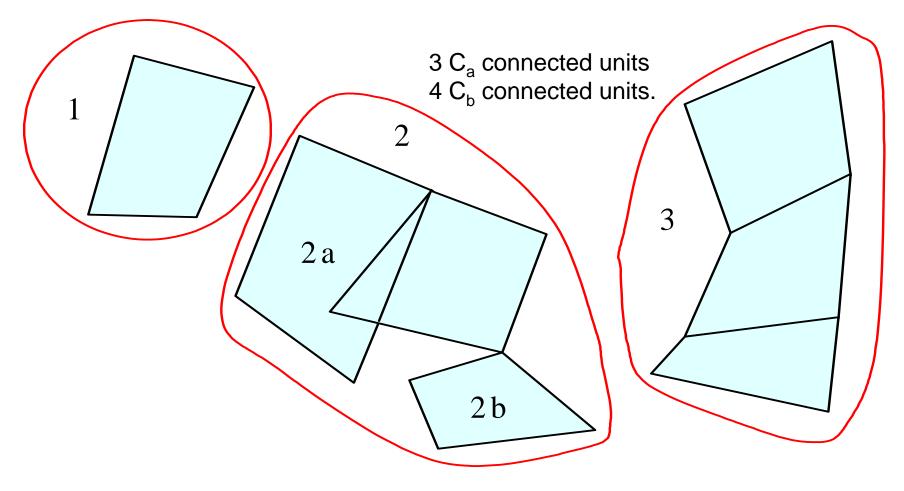
Interpretation	Topological	Metric	Ca	C _b
Of (<i>x</i> , <i>y</i> , <i>z</i>)	space	space		
Floating Point	У	n?	?	?
Integer	У	У	У	not satisfactory
Dr-Rational	У	У	У	У

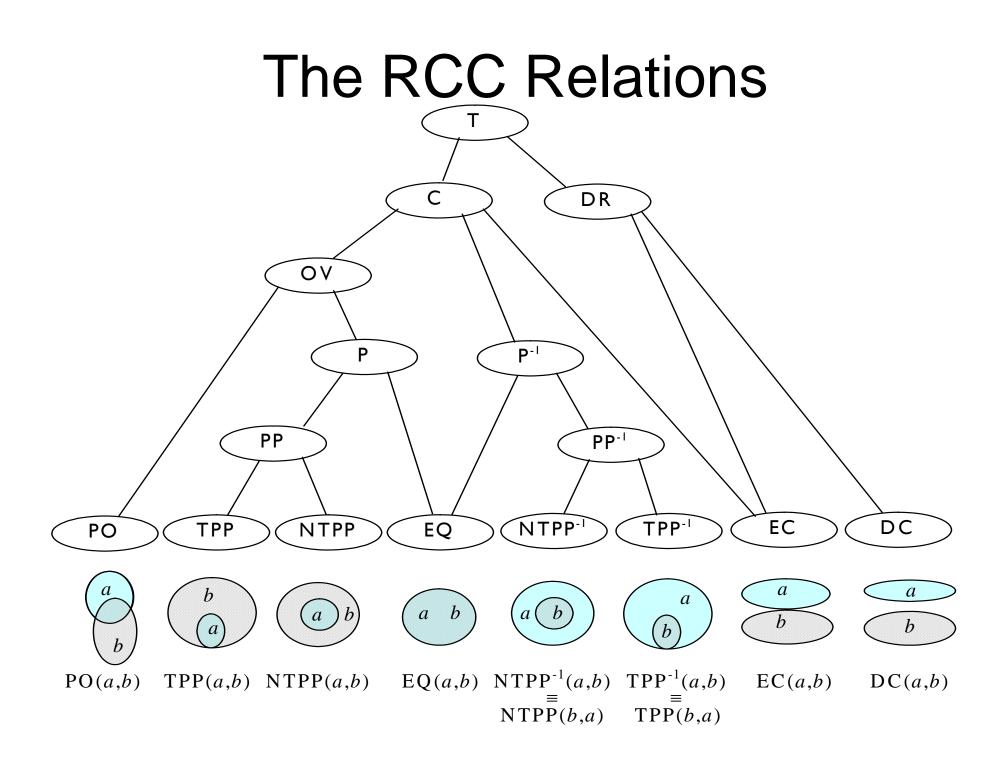
Domain-Restricted Rational Numbers

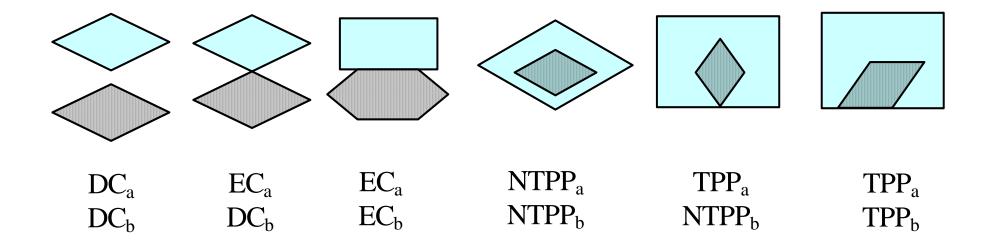
- A rational number r is defined as P/Q, where P,Q are integers.
- It is possible to avoid the problems caused by gridded representations by letting *P* and *Q* get arbitrarily large. (But they can get very large indeed).
- This dr-rational approach limits the size of *P* and *Q*, and thus is a gridded representation, but preserves the rigour.


C_a Connectivity

Requires the concept of "pseudo-closure".

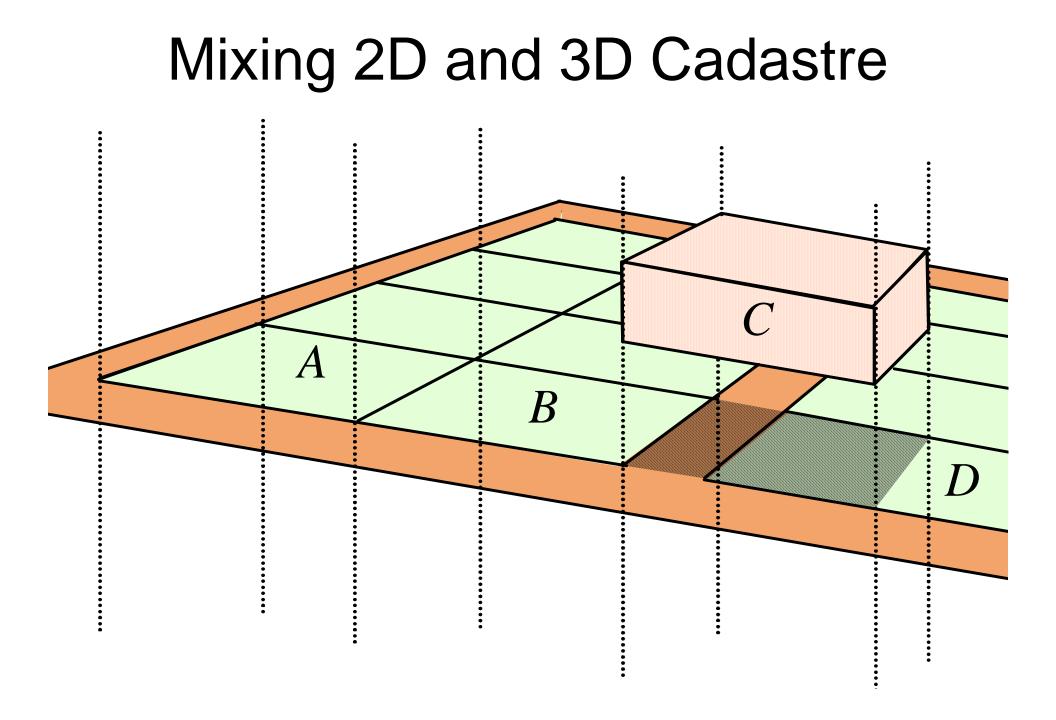

$$(Ax + By + Cz + D) \ge 0$$


Polytopes are C_a connected if their pseudo-closures overlap.

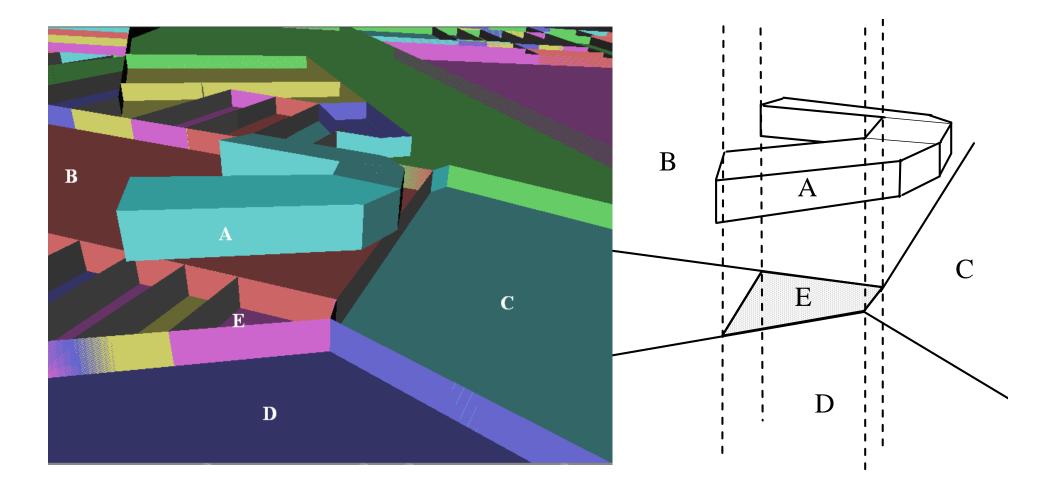

Two Convex Polytopes are Cb connected if it is possible to place a convex polytope entirely within their union, such that it intersects each convex polytope.

Connectivity Between Regular Polytopes and Within Regular Polytopes

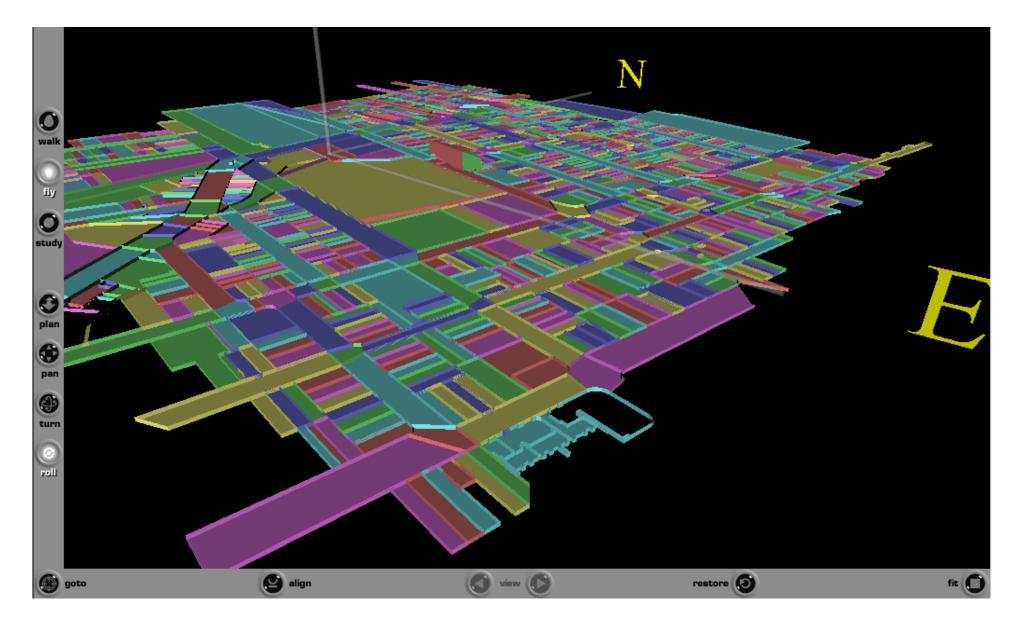
Weak and Strong Connectivity

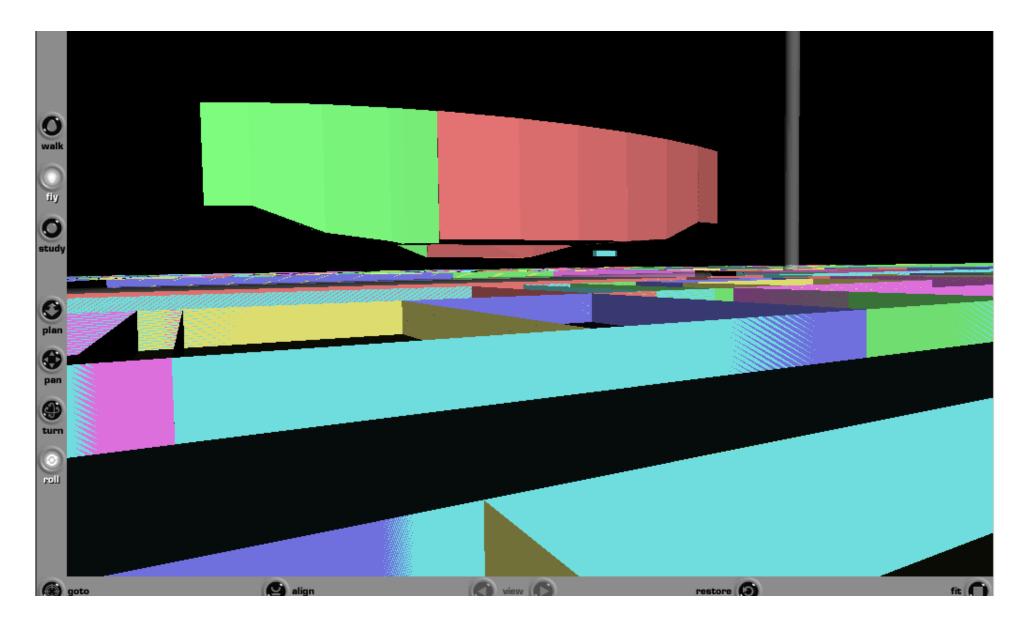


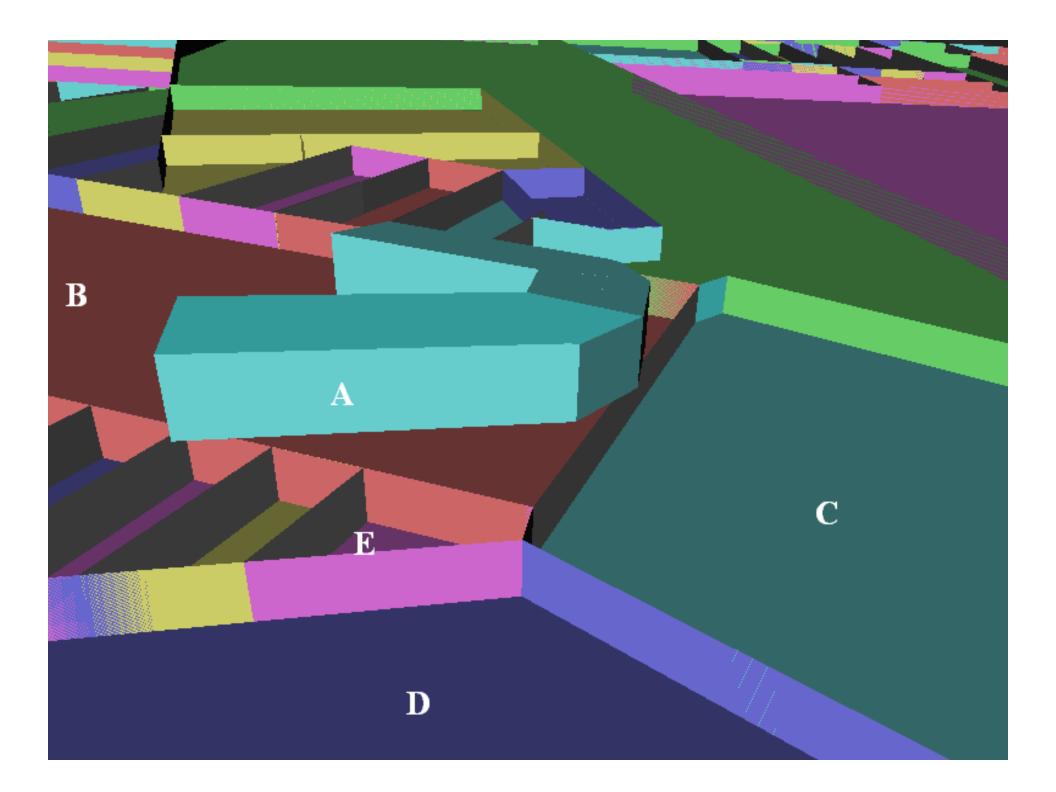
RCC Theory admits any definition of connectivity. Here we have implemented weak (C_a) and strong (C_b) forms.


Implementation Issues

- Data Models
- Topological Encoding
- Java Classes and Methods
- Results



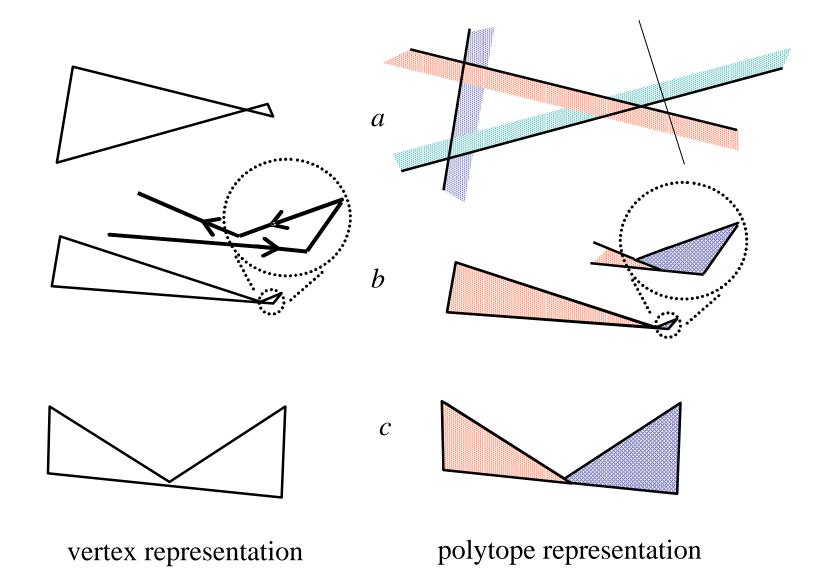

2D and 3D Example



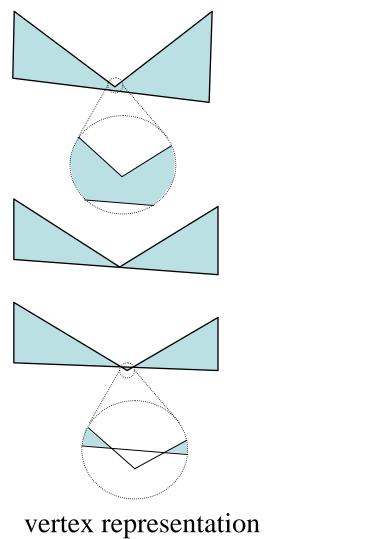
Data

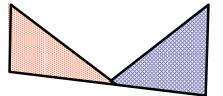
Data

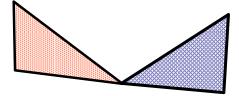
Caution

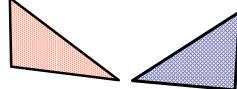

This does not say that the regular polytope representation is intrinsically more accurate than conventional representations

BUT


Once the features have been encoded, any operations between them are correct, and thus there can be no failures such as non-associativity.


Equality can be determined correctly.


Validity of Regular Polytopes



Validity of Regular Polytopes

polytope representation

Conclusions

- A rigorous implementation is feasible.
- The approach is applicable to Cadastral data.
- Some more effort is justified in optimisation of the algorithms.
- Although more storage is required than in conventional representations, this is not significant.

Future Research

- Applicability to Topography
- Lower dimension objects
- Optimisation
- Non-linear boundaries
- Spatial data interchange

Towards a Rigorous Logic for Spatial Data Representation

Rod Thompson Delft University of Technology