First implementation results and open issues on the Poincaré-TEN data structure

Friso Penninga & Peter van Oosterom *F.Penninga@tudelft.nl, oosterom@tudelft.nl*

Delft University of Technology, OTB section GIS Technology

Presentation outline

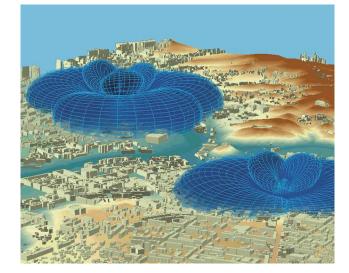
- Introduction
- Previous research
 - Characteristics Poincaré-TEN approach
 - Poincaré-TEN applied to 3D Topography
 - Implementation details
- Results Rotterdam data set
- Discussion of open issues
- Conclusions

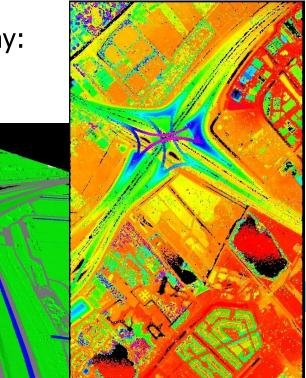
Introduction

Poincaré-TEN structure:

- DBMS data structure
- Supports query, analysis and validation

Developed within research project 3D Topography: focus on 3D acquisition as well as 3D modelling





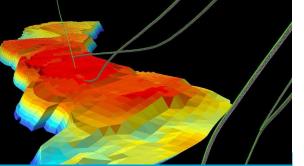
Previous research (1/3) Poincaré-TEN characteristics

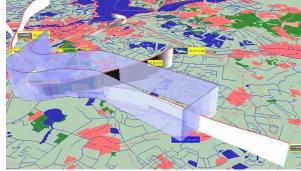
Characteristic 1: Full decomposition of space

Two fundamental observations (Cosit'05 paper):

- ISO19101: a feature is an 'abstraction of real world phenomena'. These real world phenomena have by definition a volume
- Real world can be considered to be a volume partition (analogous to a planar partition: a set of non-overlapping volumes that form a closed modelled space)

Result: explicit inclusion of earth and air





Previous research (2/3) Poincaré-TEN characteristics

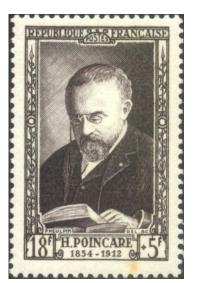
Characteristic 2: constrained TEN

Advantages of TEN:

- Well defined: a n-simplex is bounded by n + 1 (n - 1)-simplexes.
- Flatness of faces: every face can be described by three points
- A n-simplex is convex (which simplifies amongst others point-in-polygon tests)

Previous research (3/3) Poincaré-TEN characteristics

Characteristic 3: based on Poincaré simplicial homology solid mathematical foundation (SDH'06 paper):



Simplex S_n defined by (n+1) vertices: $S_n = \langle v_0, ..., v_n \rangle$

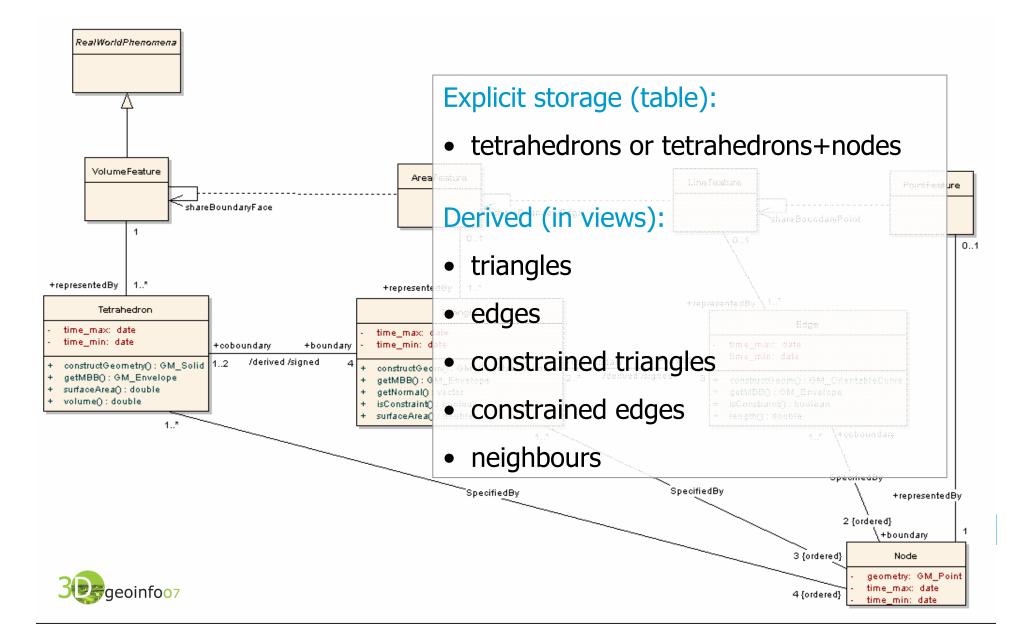
The boundary ∂ of simplex S_n is defined as sum of (n-1) dimensional simplexes (note that 'hat' means skip the node):

$$\partial S_n = \sum_{i=0}^n (-1)^i < v_0, ..., \hat{v}_i, ..., v_n >$$

remark: sum has n+1 terms

$$S_{1} = \langle v_{0}, v_{1} \rangle \qquad \partial S_{1} = \langle v_{1} \rangle - \langle v_{0} \rangle \\S_{2} = \langle v_{0}, v_{1}, v_{2} \rangle \qquad \partial S_{2} = \langle v_{1}, v_{2} \rangle - \langle v_{0}, v_{2} \rangle + \langle v_{0}, v_{1} \rangle \\S_{3} = \langle v_{0}, v_{1}, v_{2}, v_{3} \rangle \qquad \partial S_{3} = \langle v_{1}, v_{2}, v_{3} \rangle - \langle v_{0}, v_{2}, v_{3} \rangle + \\\langle v_{0}, v_{1}, v_{3} \rangle - \langle v_{0}, v_{1}, v_{2} \rangle$$

Poincaré-TEN applied to 3D topography



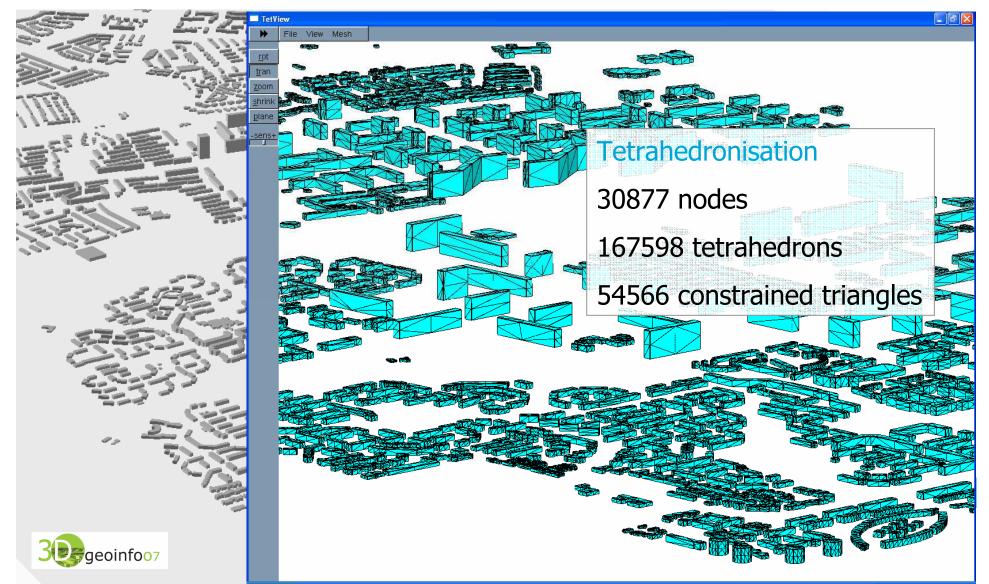
Implementation details DBMS

$$\partial S_{n} = \sum_{i=0}^{n} (-1)^{i} < v_{0}, ..., \hat{v}_{i}, ..., v_{n} >$$

Boundary operator implemented in PL/SQL procedure Procedure used to define views with triangles, edges, constrained triangles (object boundaries!), constrained edges, e.g.:

```
create or replace view triangle as
  select deriveboundarytriangle1(tetcode) tricode,
  tetcode fromtetcode from tetrahedron
  UNION ALL
  select deriveboundarytriangle2(tetcode) tricode,
  tetcode fromtetcode from tetrahedron
  UNION ALL
...
```


Results (1/2) Rotterdam data set



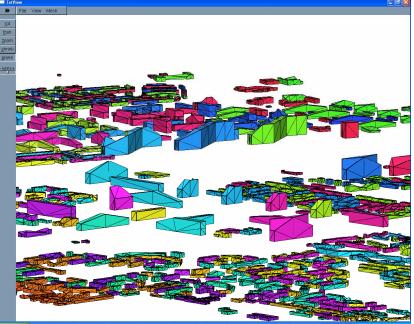
Results (2/2) Rotterdam data set

Data storage requirements

Poincaré-TEN

Polyhedron 4.39 MB

21.09 MB (node 1.44 MB) (tetrahedron 19.65 MB)



PT-approach costs about 4.8 times more storage...

(but over 77.7% of tetrahedrons represent either air or earth, so buildings require about 5.76 MB. So factor 4.8 1.3)

Open issues 0. Spatial clustering and indexing

Basic idea:

Why add a meaningless unique id to a node, when its geometry is already unique?

0.1 Bitwise interleaving coordinates \longrightarrow Morton-like code \longrightarrow sorting these codes \longrightarrow spatial clustering

0.2 Use as spatial index \rightarrow no additional indexes (R-tree/quad tree)

Objective: reducing storage requirements

Open issues 1. Minimizing storage requirements: tetrahedron only vs. tetrahedron-node

Tetrahedron only: describe tetrahedrons by node geometries: $x_1y_1z_1x_2y_2z_2x_3y_3z_3x_4y_4z_4$

Tetrahedron-node: describe tetrahedrons by node id's: id_id_id_id_id_4 with id_i:x_1y_1z_1, id_2:x_2y_2z_2, etc.

A node is part of multiple tetrahedrons (Rotterdam data set: av.20), so either repeating geometries or repeating identifiers in tetrahedron table.

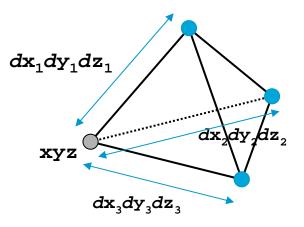
Tetrahedron-node will require less storage space (as long as id takes less storage than coordinate triplet)

Open issues 2. Coordinates vs. coord. differences

Four nodes of a tetrahedron will be relatively close: only small differences in coordinates

Alternative tetrahedron description: xyzdx₁dy₁dz₁dx₂dy₂dz₂dx₃dy₃dz₃

Description is based on geometry (so still unique) but smaller



Open issues 3. Feasibility assesment

Delicate balance between storage and performance

Open issues 4. Object snapping

Focus on snapping to earth surface: buildings, roads, etc.

Ensuring correctness of the model

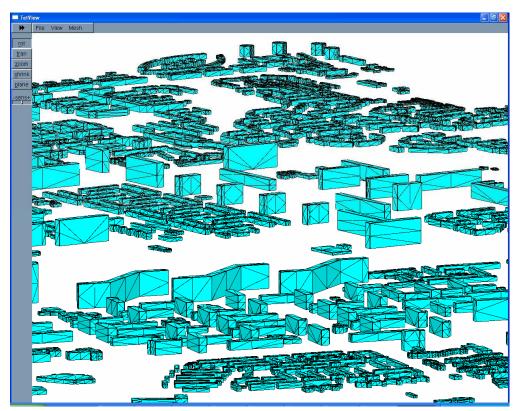
Open issues 5. Incremental updates

Topography changes continuously

Need for incremental updates

act as locally as possible \longleftrightarrow ensuring tetrahedronisation quality

Discussion



Friso Penninga & Peter van Oosterom F.Penninga@tudelft.nl, oosterom@tudelft.nl

