

Experiences with Delft Campus data

Jonathan Raper and Aidan Slingsby City University London

Something completely different

- Our objective: to develop a 2.5D model of buildings and the surrounding terrain that is sufficient to support building safety, access and management (BSAM), dealing with:
 - Entities like near-building furniture, paths, ramps, steps
 - Functions like emergency exit routing, disabled access, complex deliveries
- This is a pragmatic challenge between solid modelling and 2D GIS, and generates new data demands
 - Doors, exits, infrastructure connectivity
 - High resolution surfaces
 - Large scale maps and imagery
- Challenge is to model real building geometry and topology
 - Find balance between expressiveness with interactivity and sparse modelling with generality

Two parts

- Part 1: Our model
 - description of approach and model
 - experiences of importing Delft campus data
 - examples
- Part 2: The terrain
 - microscale detail
 - relationship to buildings

Part 1: Our model

Model Overview

- Developed as part of Aidan's PhD
- Concentrates on the topology of space, particularly in terms of pedestrian navigation
 - integrates exterior and interior spaces
 - allows pedestrian access information to be embedded
- Uses a 2.5D layered approach
 - Topologically structured layers
 - Connected to form a multi-layered surface
- Parts of surfaces (and implicit space above) can be grouped into 'features'

Model Structure: Layers

Model Structure: Layers

Model structure: Geometry

Model structure: Geometry

Model Structure: Features

Model Structure: Access

• Pedestrian access is embedded within relevant features

Model Structure: 'Bounded Space'

- Represents a space (explicit 2D; implicit 3D)
- The union of all the connected spaces with a certain amount of *accessibility*

Implementation

• Java application

Database for storage (Ozone)

- geometry objects
- feature objects

- Data are prepared in ArcGIS

- imported/drawn
- edited
- prepared for input
- Data are imported into Java Application
- Data can be queried and exported
 - Will dynamically build the 3D geometry as required
 - Will resolve accessible spaces
- 3D output can be viewed in ArcScene
 - Output as a 3D shapefile

Example of 3D output

Delft Campus Dataset

- Had to get the data in a form that it could be imported
 - Wrote a converter (in Java) which output shapefiles from KML sourcefiles
 - Wrote scripts (in VBA) to define features (walls and 'external' space)
 - walls, spaces, bounded spaces
 - Added some initial terrain heights
- Imported it
- Exported all the features as 3D Shapefiles
- Processed the LIDAR terrain

LIDAR raw data

艂 demo.sxd - ArcScene - ArcView	_ 8 ×
Ele Edit View Selection Iools Window Help	
□ ☞ 🖬 🚳 ¾ ங 🖻 ☓ 🔸 📓 🎕 🎝 🕸 🗖 🐶 👰 💠 🍕 🚭 🤤 🤤 💥 🔅 🏵 🖓 🎯 🖗 📐 🛛 👭	
3D Analyst - Layer: [tcrtyrd_63_floor] 20 20 20	
🥂 Start 🛛 🥥 🗂 💿 » 🔂 delft_data 🖉 Untitled - ArcMap - ArcView 🔊 ArcCatalog - ArcView - M 👔 demo.sxd - ArcScene	« 00:26

Google Earth

LIDAR processing

- Original LIDAR pointset very large
 - TIN had degeneracies (along-line vs across line resolution)
- Remove duplicate scan lines for a tile (a courtyard)
 - Data reduction step (interactively)
- Build a ArcInfo lattice at 1m resolution
- Use VIP algorithm to reduce from 100K to 9K points
- Remove trees and respect buildings
 - Selected points from base to (interactively defined) bare earth surface
 - Shift the LIDAR to fit with projected building KML
- Create TIN from remaining lattice points

LIDAR bare terrain

👔 demo.sxd - ArcScene - ArcView	_ - ×
Eile Edit View Selection Iools Window Help	
□ ☞ 🖬 🖶 🐇 ங 🗟 × 🔸 📓 🍓 & 🕲 № 🚺 №? 🛛 🤄 💠 😋 💠 🚭 😋 😋 💥 ೫ 🥙 🌰 № ト 🛛 🗛	
3D Analyst ▼ Layer: tcrtyrd_63_floor	
<pre> th dup parts dut {</pre>	
🥐 Start 🛛 🥑 " 🔯 delft_data 🖉 🖓 Untitled - ArcMap - ArcView 🔬 ArcCatalog - ArcView - M 🙀 demo.sxd - ArcScene	« 00:28

LIDAR bare terrain

🚯 demo.sxd - ArcScene - ArcYiew	<u>_ 8 ×</u>
Eile Edit View Selection Iools Window Help	
□ ☞ 🖬 🖶 ٪ 🤚 🖻 × 🔸 菌 🍓 🍭 😂 🗖 🐶 🏺 ~ ④ 수 선 쇼 ④ Q 💥 ೫ ♡ 🌒 🖗 🕨 🛯	
3D Analyst → Layer: tcrtyrd_63_floor ⑦ ⑦ ◇	
🐠 start 🛛 🕲 👘 🔟 🔤 🧰 🛄 🛄 dent_data 🔤 🔛 Untitled - ArcMap - ArcClatalog - ArcView - M 🛛 🍓 demo.sxd - ArcScene	« 00:28

Terrain/ building integration

- Define terrain constraints
 - Break of slope
 - Offset
- Run integration routine
- Can implement algorithms that move from terrain into building e.g. routing

CITY

Reflections on experience

- Data could be imported into this model design
- ...but model is intended to describe richer dataset
- Model strengths
 - Semantically rich
 - important aspect of modelling currently neglected
- Model weaknesses (many)
 - Implementation is interactive
 - Does not support much analysis (yet)
 - Does not store complex 3D geometry

	Poly	TIN
High semantic	TEN	2.5D with embedded objects
Low semantic	Polytopes	TIN/ Voronoi