Design of an integrated 3D information model

Suggestions for an information model for representation of 3D geographic features

UDMS07, Stuttgart

Ludvig Emgård & Sisi Zlatanova

January 8, 2008

1

Delft University of Technology

Ludvig Emgård

- M.Sc in Land surveying specialised in GIS technology, Lund, Sweden.
- Master Thesis about 3D GIS in 2003
- Currently 3D GIS consultant at SWECO in Scandinavia since 2003
- Joined Sisi Zlatanova and Delft GISt group in february 2007.

Research topics

- Harmonized information model for subsurface features
- 3D data integration of subsurface features in the CityGML information model

3

Data integration problems

• The integration of subsurface features, the digital terrain model and features on the terrain remains a problem to be solved (Kolbe & Gröger 2003)

Why a 3D information model?

- The existing formats and data models are often domain specific.
- The geometry representation is mostly two-dimensional
- Many models miss semantics

January 8, 2008

CityGML

- Application independent information model
- Well-described thematic semantic approach for 3D city modelling

Problems

- Misses subsurface features
- Sparse relations between
 geometries

Problem1: Model missing subsurface features

January 8, 2008

Problem2: Sparse relations between geometries

January 8, 2008

Earth Surface

• Transportation

• Terrain Intersection Surfaces

LandCover

Full partition No overlap No holes

Complex situation -> choose!

Terrain Intersection Point (TIP)

3DIM summary

- Divison of feature classes into above, below and on the surface
- Definition of general classes for the subsurface
- Full partition of the earth surface model
- Stronger integrity/relation between earth surface model and objects above and below: terrain intersection objects

3DIM future plans

- Further development concerning classifications of features and their properties
- More elaborated definition of semantic hierarchy of features based on semantic relations
- Definition of a rule based framework for the semanticgeometric relations

Questions?

January 8, 2008

