Lunchmeeting GIS Technology

Friday September $\mathbf{1 s t}^{\text {st }} \mathbf{1 2 . 0 0 - 1 4 . 0 0 h}$

RGI project 3D Topography

2 PhD's, 2 presentations:

- Friso Penninga (focus: data structure)
- Sander Oude Elberink (focus: data collection)

Check www.gdmc.nl/3dtopo !

= 3D GIS?

TUDelft

Poincaré simplicial homology for 3D volume modeling

000000000008000600100000
000008000311000608100608
000008000311100008100608
000600000008000608100608
000008000600100000100608
000008100000100008100608
000311100008100311100608
100000000600100600100608

Friso Penninga

Delft University of Technology, section GI S Technology

Outline

- Introduction
- PhD project history in a nutshell
- Basics of modelling approach
- Poincaré's formalism of simplicial homology
- Concept of Poincaré-based TEN structure
- I mplementation \longrightarrow illustration of concept
- Conclusions \& future research
- Discussion

I ntroduction: Need for 3D Topography

- Real world consists of 3D objects
- Objects + object representations get more complex due to multiple land use

Applications in:

- Sustainable development (planning, analysis)
- Support disaster management

3D Topography: more than visualization!

I ntroduction: Research Goal

Develop a new topographic model to be realized within a robust data structure and filled with existing 2D, 2.5D and 3D data

Data structure:

design / develop / implement a data structure that supports 3D analyses and maintains data-integrity

Outline

- Introduction
- PhD project history in a nutshell
- Basics of modelling approach
- Poincaré's formalism of simplicial homology
- Concept of Poincaré-based TEN structure
- I mplementation \longrightarrow illustration of concept
- Conclusions \& future research
- Discussion

TUDelft

History in a nutshell: First ideas

- July 2004: "Realization of a three dimensional topographic terrain representation in an integrated TIN/TEN model" (Agile 2005)

Proposed data model: 2.5D TIN + 3D TEN

Model terrain in 2.5D, ‘glue’ 3D models on top or below 2.5D terrain

TIN: Triangulated I rregular Network
TEN: Tetrahedronized I rregular Network

Basic principles (3/3)

User works with features Internal representation

Feature-based I ntegrated TI N/ TEN model in UML

History in a nutshell: Continuation on hybrid approach

- J uly 2004: "Realization of a three dimensional topographic terrain representation in an integrated TIN/TEN model" (Agile 2005)
- September 2004: Linking TIN and TEN model (glue, stitch \& nail)

Connecting TI N+TENs

 Problems

How to ensure identical faces or edges in TIN surface and TEN bottom?
Might be problematic due to addition of Steiner points in triangulation / tetrahedronization (iterating process?)

Linking edges: "stitching"
TEN

TiN^{-}

Linking nodes: ‘nailing’

I mplementation: Conceptual model

History in a nutshell: Switch to full 3D approach

- J uly 2004: "Realization of a three dimensional topographic terrain representation in an integrated TIN/TEN model" (Agile 2005)
- September 2004: Linking TIN and TEN model (glue, stitch \& nail)
- Spring 2005: "3D Topographic data modelling: why rigidity is preferable to pragmatism" (Cosit '05)

Proposed new approach Full 3D TEN model

Two fundamental observations:

- ISO19101: a feature is an 'abstraction of real world phenomena'. These real world phenomena have by definition a volume
- Real world can be considered to be a volume partition (analogous to a planar partition: a set of non-overlapping volumes that form a closed modelled space)

Proposed new approach Why a full 3D approach?

‘Abstraction of real world phenomena' (ISO19101):

- until now:
abstraction (simplification) \longrightarrow less dimensional representation
- when using meshes:
simplification is in subdivision into easy-to-handle parts (analogously to Finite Element Method for solving Partial Differential Equations)

As a result: model only volume features in a volume partition (but handle polygon features as association class, derived from volume features, as faces mark transition between two volumes: for instance wall, earth surface)

Further research UML model

History in a nutshell: I ntroduced to Poincaré

- J uly 2004: "Realization of a three dimensional topographic terrain representation in an integrated TIN/TEN model" (Agile 2005)
- September 2004: Linking TIN and TEN model (glue, stitch \& nail)
- September 2005: "3D Topographic data modelling: why rigidity is preferable to pragmatism" (Cosit '05)
- November 2005: one week visit to Oracle Spatial Development Centre

Oracle visit

Oracle visit

- Discussions on 3D
- First experiences 'toy' dataset: 56 tetrahedrons, 120 triangles,
 83 edges, 20 nodes
- John Herring suggests Poincaré
- ‘Hands-on’ session
- Visualisation: Oracle MapViewer + function rotateGeom

History in a nutshell: Poincaré-based approach

- J uly 2004: "Realization of a three dimensional topographic terrain representation in an integrated TIN/TEN model" (Agile 2005)
- September 2004: Linking TIN and TEN model (glue, stitch \& nail)
- September 2005: "3D Topographic data modelling: why rigidity is preferable to pragmatism" (Cosit '05)
- November 2005: one week visit to Oracle Spatial Development Centre
- J uly 2006: "A Tetrahedronized Irregular Network Based DBMS approach for 3D Topographic Data Modelling" (SDH'06)
- September 2006: "Updating Features in a TEN-based DBMS approach for 3D Topographic Data Modelling" (Gl Science'06)

Outline

- Introduction
- PhD project history in a nutshell
- Basics of modelling approach
- Poincaré's formalism of simplicial homology
- Concept of Poincaré-based TEN structure
- I mplementation \longrightarrow illustration of concept
- Conclusions \& future research
- Discussion

TUDelft

Basics of modelling approach: Fundamental concept (1/2)

- Physical world objects have by definition a volumetric shape: there are no such things as point, line or area features! (only point, line and area representations at a certain level of generalization)
- The real world can be considered as a volume partition: a set of non-overlapping volumes that form a closed modeled space. As a consequence, objects like 'earth' or 'air' are explicitly part of the real world and thus have to be modeled.

Basics of modelling approach Fundamental concept (2/2)

No area features at all?
\rightarrow yes, but as derived features: area features (e.g. 'wall','roof’) mark transition between volume features

For instance:

- 'Earth surface' is transition between ‘earth' and 'air'
- 'Wall/roof' is transition between 'house' and 'air'

But how to model for instance a road?

- Road is a volume (in which cars can drive without hitting something: 'tunnel in the sky'). Transition between 'earth' and 'road' can be drawn with 'road' colors

Basics of modelling approach TEN approach (1/2)

Important: data consistency and data analysis
\longrightarrow TEN structure well-suited:
well-defined, only convex volumes, flat faces

In 3D (complex) shapes \longrightarrow subdivide in (many) tetrahedrons:

TEN is based on points, line segments, triangles and tetrahedrons: simplexes ('simplest shape in a given dimension')

Basics of modelling approach TEN approach (2/ 2)

Drawbacks:

- Complexity (but hide it from user...)
- Storage requirements:

Building as polyhedron	Building as TEN
(1 volume)	8 tetrahedrons
7 polygons	24 triangles
(15 edges)	25 edges
(10 points)	10 nodes

Outline

- Introduction
- PhD project history in a nutshell
- Basics of modelling approach
- Poincaré's formalism of simplicial homology
- Concept of Poincaré-based TEN structure
- I mplementation \longrightarrow illustration of concept
- Conclusions \& future research
- Discussion

Poincaré simplicial homology (1/5) Definition simplex

Solid mathematical foundation:

A n-simplex S_{n} is defined as smallest convex set in Euclidian space R^{m} of $n+1$ points v_{o}, \ldots, v_{n}

Jules Henri Poincaré (1854-1912) (which do not lie in a hyper plane of dimension less than n)

Poincaré simplicial homology (2/5) Boundary operator

The boundary ∂ of simplex S_{n} is defined as sum of ($n-1$) dimensional simplexes (note that 'hat' means skip the node):

$$
\left.\partial S_{n}=\sum_{i=0}^{n}(-1)^{i}<v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right\rangle
$$

remark: sum has $\mathrm{n}+1$ terms

$$
\begin{array}{ll}
S_{1}=<\boldsymbol{v}_{0}, \boldsymbol{v}_{l}> & \partial S_{1}=<\boldsymbol{v}_{l}>-<\boldsymbol{v}_{0}> \\
S_{2}=<\boldsymbol{v}_{0}, \boldsymbol{v}_{l}, \boldsymbol{v}_{2}> & \partial S_{2}=<\boldsymbol{v}_{1}, \boldsymbol{v}_{2}>-<\boldsymbol{v}_{0}, \boldsymbol{v}_{2}>+<\boldsymbol{v}_{0,}, \boldsymbol{v}_{l}> \\
S_{3}=<\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}> & \partial S_{3}=<\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}>-<\boldsymbol{v}_{0}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}>+ \\
& <\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \boldsymbol{v}_{3}>-<\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}>
\end{array}
$$

TUDelft

Poincaré simplicial homology (3/5) Simplex construction

S_{n} has $\binom{n+1}{p+1}$ faces of dimension p with $(0 \leq p<n)$

- 2D: this means that triangle $\left(\mathrm{S}_{2}\right)$ has

3 edges $\left(S_{1}\right)$ and 3 nodes $\left(S_{0}\right)$

- 3D: this means that tetrahedron $\left(\mathrm{S}_{3}\right)$ has 4 triangles $\left(S_{2}\right), 6$ edges $\left(S_{1}\right)$ and 4 nodes $\left(S_{0}\right)$

Poincaré simplicial homology (4/ 5)

 Orientation of boundariesWith ($\mathrm{n}+1$) points, there are $(\mathrm{n}+1)$! permutations of these points. In 3D for the 4 simplexes this means 1, 2, 6 and 24 options (S_{0} obvious):

- For S_{1} the two permutations are $\left\langle v_{0}, v_{1}\right\rangle$ and $\left\langle v_{1}, v_{0}\right\rangle$ (one positive and one negative $\left\langle v_{0}, v_{1}\right\rangle=-\left\langle v_{1}, v_{0}\right\rangle$)
- For S_{2} there are 6: $\left\langle v_{0}, v_{1}, v_{2}\right\rangle,\left\langle v_{1}, v_{2}, v_{0}\right\rangle,\left\langle v_{2}, v_{0}, v_{1}\right\rangle,\left\langle v_{2}, v_{1}, v_{0}\right\rangle$, $\left\langle v_{0}, v_{2}, v_{1}\right\rangle$, and $\left\langle v_{1}, v_{0}, v_{2}\right\rangle$. First 3 opposite orientation from last 3, e.g. $\left\langle v_{0}, v_{1}, v_{2}\right\rangle=-\left\langle v_{2}, v_{1}, v_{0}\right\rangle$. counter clockwise (+) and the negative orientation is clockwise (-)
- For S_{3} there are 24 , of which 12 with all normal vectors outside $(+)$ and 12 others with all normal vectors inside (-)!

Poincaré simplicial homology (5/5) Simplicial complexes

$$
\begin{aligned}
S_{21} & =<v_{0}, v_{1}, v_{2}>\text { and } S_{22}=<v_{0}, v_{2}, v_{3}> \\
C_{2} & =<v_{1}, v_{2}>-<v_{0}, v_{2}>+<v_{0}, v_{1}> \\
+ & <v_{2}, v_{3}>-<v_{0}, v_{3}>+<v_{0}, v_{2}> \\
& \left.=<v_{1}, v_{2}>+<v_{0}, v_{1}>+<v_{2}, v_{3}\right\rangle+<v_{3}, v_{0}>
\end{aligned}
$$

$$
\begin{aligned}
S_{31} & =<v_{0}, v_{1}, v_{2}, v_{3}>\text { and } S_{32}=<v_{0}, v_{2}, v_{4}, v_{3}> \\
C_{3} & =<v_{1}, v_{2}, v_{3}>-<v_{0}, v_{2}, v_{3}>+\left\langle v_{0}, v_{1}, v_{3}\right\rangle \\
- & <v_{0}, v_{1}, v_{2}>+<v_{2}, v_{4}, v_{3}>-<v_{0}, v_{4}, v_{3}> \\
+ & <v_{0}, v_{2}, v_{3}>-<v_{0}, v_{2}, v_{4}> \\
& =<v_{1}, v_{2}, v_{3}>+<v_{0}, v_{1}, v_{3}>-<v_{0}, v_{1}, v_{2}> \\
+ & <v_{2}, v_{4}, v_{3}>-<v_{0}, v_{4}, v_{3}>-<v_{0}, v_{2}, v_{4}>
\end{aligned}
$$

Outline

- Introduction
- PhD project history in a nutshell
- Basics of modelling approach
- Poincaré's formalism of simplicial homology
- Concept of Poincaré-based TEN structure
- I mplementation \longrightarrow illustration of concept
- Conclusions \& future research
- Discussion

TEN approach using simplicial homology First ideas

- Describe all simplexes by their vertices
- Store tetrahedrons and vertices in table
- Derive triangles and edges (views) using the boundary operator
- Use signed and oriented simplexes

In UML this looks like...

TEN approach using simplicial homology Current ideas

- Encode vertex coordinates
- Describe all simplexes by their coded vertices
- Store tetrahedrons in table
- Derive triangles, edges and nodes (views) using the boundary operator
- Use signed and oriented simplexes

$$
\begin{aligned}
& (00,00,00)(00,00,08)(00,06,00)(10,00,00) \\
& (00,00,08)(00,03,11)(00,06,08)(10,06,08) \\
& (00,00,08)(00,03,11)(10,00,08)(10,06,08) \\
& (00,00,08)(00,06,00)(00,06,08)(10,06,08) \\
& (00,00,08)(00,06,00)(10,00,00)(10,06,08) \\
& (00,00,08)(10,00,00)(10,00,08)(10,06,08) \\
& (00,03,11)(10,00,08)(10,03,11)(10,06,08) \\
& (00,06,00)(10,00,00)(10,06,00)(10,06,08)
\end{aligned}
$$

$(10,0,0)$

Outline

- Introduction
- PhD project history in a nutshell
- Basics of modelling approach
- Poincaré's formalism of simplicial homology
- Concept of Poincaré-based TEN structure
- I mplementation \longrightarrow illustration of concept
- Conclusions \& future research
- Discussion

TUDelft

I mplementation Tetrahedronization

At this moment: tetrahedronization by hand 'Toy' dataset: 56 tetrahedrons, 120 triangles, 83 edges, 20 nodes

I mplementation Loading data in tetrahedron table

CREATE TABLE tetrahedron(tetcode NVARCHAR2(100));

LOAD DATA INFILE 'data/miniset.data' APPEND INTO TABLE tetrahedron fields terminated by ' ' (tetcode)

Result: table with tetrahedrons

014025012014035012022035012014035018003 014025012022035012022025012022025018003 014025012014025018014035018022025018003 022035012014035018022035018022025018003 014025012022035012014035018022025018003 014025018014035018022025018018025021003 014035018018035021022035018018025021003 014035018022035018022025018018025021003 020055000000000010040010012040000011001 020055000000000010000010011040010012001 020055000000010011040016012040010012004 020055000000010011000016011040016012004 020055000000016011040016012022025012001 020055000000016011014025012022025012001 020055000000016011014025012014035012001 020055000000016011000050012014035012001

I mplementation
 Fixing orientation tetrahedrons

Objective: all tetrahedrons oriented outwards
\longrightarrow each boundary triangle appears two times: $1 \times$ pos., $1 \times$ neg.

```
CREATE OR REPLACE PROCEDURE tettableoutwards
(...)
checkorientation(codelength,currenttetcode,bool);
IF (bool = 0) THEN
    permutation12(codelength,currenttetcode,newtetcode);
    UPDATE tetrahedron SET tetcode=newtetcode WHERE CURRENT OF tetcur;
(...)
END;
```

checkorientation
permutation12
: angle normal vector and vector to opposite point
$:\left(v_{0}, v_{1}, v_{2}, v_{3}\right) \longrightarrow\left(v_{1}, v_{0}, v_{2}, v_{3}\right)$

I mplementation
 Deriving boundary triangles

Applying boundary operator:

$$
\left.\partial S_{n}=\sum_{i=0}^{n}(-1)^{i}<v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right\rangle
$$

Procedure:

```
CREATE OR REPLACE PROCEDURE deriveboundarytriangles(
    (...)
    a := (SUBSTR(tetcode,1,3*codelength));
    b := (SUBSTR(tetcode,1+3*codelength, 3*codelength));
    c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
    d := (SUBSTR(tetcode,1+9*codelength, 3*codelength));
    id := (SUBSTR(tetcode,1+12*codelength))
    ordertriangle(codelength,'+'||b||c||d||id
    ordertriangle(codelength,' -'||a||c||d| id,
    ordertriangle(codelength,'+'||a||b||d| id,
    ordertriangle(codelength,' -'||a||b||c||id,
        (...) (...)
```

tricode1); tricode2);
tricode3); tricode4);

Note: triangles inherit ID of object which is represented by the tetrahedron of which they are a boundary!

Example:

014025012014035012022035012014035018003
$\begin{array}{lll}\mathbf{a} & : & 014025012 \\ b & : & 014035012 \\ \text { c }: & 022035012 \\ \text { d } & : & 014035018\end{array}$
$\begin{array}{l:l}\text { a } & : \\ \text { b } & 014025012 \\ \text { c } & 014035012 \\ \text { d } & 022035012 \\ \text { i } & 014035018\end{array}$
$\begin{array}{lll}\text { a } & : & 014025012 \\ \text { b } & : & 014035012 \\ \text { c } & : & 022035012 \\ \text { d } & : & 014035018\end{array}$
$\begin{array}{lll}\text { a } & : & 014025012 \\ \text { b } & : & 014035012 \\ \text { c } & : & 022035012 \\ \text { d } & : & 014035018\end{array}$
id: 003
see next slide for results of ordertriangle
\int resuts of ordertriangle

I mplementation
 Ordering triangles

Objective: gain control over which permutation is used
ordertriangle rewrites in form $<a, b, c>$ such that $a<b<c$

$$
<v_{0}, v_{1}, v_{2}>
$$

$$
<v_{0}, v_{2}, v_{1}>
$$

$$
<v_{2}, v_{0}, v_{1}>
$$

$$
<v_{2}, v_{1}, v_{0}>
$$

$$
<v_{1}, v_{2}, v_{0}>
$$

$$
<v_{1}, v_{0}, v_{2}>
$$

I mplementation Creating view triangle

```
CREATE OR REPLACE VIEW triangle AS
    SELECT deriveboundarytriangle1(3,tetcode) tricode FROM tetrahedron
    UNION ALL
    SELECT deriveboundarytriangle2(3,tetcode) tricode FROM tetrahedron
    UNION ALL
    SELECT deriveboundarytriangle3(3,tetcode) tricode FROM tetrahedron
    UNION ALL
    SELECT deriveboundarytriangle4(3,tetcode) tricode FROM tetrahedron;
```

Four functions: first gives first boundary, etc.
Result: \#triangles $=4$ * \#tetrahedrons
Every triangle appears two times: once with sign +, once with sign (and NOT in a permutated form \longrightarrow due to ordertriangle!)

I mplementation Creating view constrainedtriangle

```
CREATE OR REPLACE VIEW constrainedtriangle AS
    SELECT t1.tricode tricode FROM triangle t1
    WHERE NOT EXISTS (SELECT t2.tricode FROM triangle t2 WHERE t1.tricode =
    t2.tricode*-1);
```

Well, not every triangle appears two times:

A constrained triangle is a boundary between two objects
\longrightarrow two different id's \longrightarrow two different triangle codes!

Example: in -1,7,2,-7,-3,1 the constrained triangles are 2 and -3

I mplementation
 Creating views edge, constrainedledge

In current implementation edges are undirected en do not inherit object id's (as no application for this is identified at the moment)

```
CREATE OR REPLACE VIEW edge AS
    SELECT DISTINCT deriveabsboundaryedge1(3,tricode) edcode FROM triangle
    UNION
    SELECT DISTINCT deriveabsboundaryedge2(3,tricode) edcode FROM triangle
    UNION
    SELECT DISTINCT deriveabsboundaryedge3(3,tricode) edcode FROM triangle;
```

All boundary edges from constrained triangles are constrained edges:

```
CREATE OR REPLACE VIEW constrainedtriangle AS
    SELECT t1.tricode tricode FROM triangle t1
    WHERE NOT EXISTS (SELECT t2.tricode FROM triangle t2 WHERE t1.tricode =
t2.tricode*-1);
```


I mplementation Validating the structure (1/3)

After creating node view the structure can be validated:

3D Euler-Poincaré

3D: $n-e+f-v=0$

[^0]
I mplementation Validating the structure (2/3)

Limitations:

3D Euler-Poincaré holds for all simplicial complexes, including complexes build up of simplexes of different

Leonard Euler, 1707-1783 dimension (i.e. dangling edges and faces are allowed)

I mplementation Validating the structure (3/3)

3D Euler-Poincaré for current dataset:

$$
N-E+F-V=O
$$

$$
20-83+224-57<>0!
$$

\longrightarrow View triangle contains duals, need to be excluded from count:
> select count(*) from tetrahedron; COUNT (*)
> select count(*) from triangle; COUNT (*)

224
$>$ select count(*) from edge; COUNT (*)

83
$>$ select count(*) from node; COUNT (*)

20

```
SELECT COUNT(DISTINCT ABS(removeobjectid(3,tricode)))
    INTO numtri FROM triangle;
```


I mplementation Query and analysis (1/2)

Query: boundary triangulation of building (object ID = 3)

Elapsed: 00:00:00.09

I mplementation Query and analysis (2/2)

Volume of house, surface of boundary of house:
simplexvolume() implements Cayley-Menger determinant

Arthur Cayley, 1821-1895

Cayley-Menger determinant gives the volume of a simplex in j dimensions.

$$
j=2:-16 \Delta^{2}=\left|\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & c^{2} & b^{2} \\
1 & c^{2} & 0 & a^{2} \\
1 & b^{2} & a^{2} & 0
\end{array}\right| . \quad j=3: \quad 288 V^{2}=\left|\begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & d_{12}^{2} & d_{13}^{2} & d_{14}^{2} \\
1 & a_{21}^{2} & 0 & d_{23}^{2} & a_{24}^{2} \\
1 & d_{31}^{2} & d_{32}^{2} & 0 & d_{34}^{2} \\
1 & a_{41}^{2} & d_{42}^{2} & a_{43}^{2} & 0
\end{array}\right| .
$$

(with a, b, c and $d_{i j}$ length of simplex edges)

I mplementation Performance

I ndexing:

- Primary index: sort coded simplexes
- Secondary index: R-tree on tetrahedrons, using gettetrahedronmbb(), gettrianglembb() etc.

Coding:

- More work on encoding coordinates: bitwise interleaving, ...

I mplementation Final thougth

Polyhedron vs. TEN:
does a TEN really require that much more storage space than polyhedrons?

Building as polyhedron	Building as TEN
(1 volume)	8 tetrahedrons
7 faces	(24 triangles)
(15 edges)	(25 edges)
(10 points)	(10 nodes)

Conclusions \& future research

Result:

- Topological 3D (TEN) data structure, stored in one single-column table (!)
- with advantages of TEN, but not its drawbacks (?)
- based on a solid theoretical foundation (100 years old math)

Future research ideas:

- Inclusion of incremental constrained Delaunay tetrahedronization
- Test with real data (Den Bosch case?)
- Compare to Calin/Oracle11 polyhedron approach
- History (?)

Discussion

(with the living....)

TUDelft

[^0]: $(12-21+11=2)$

