

Draft version 0.8

Bsik project 3D Topografie

Friso Penninga TU Delft
Han Wammes Oracle

December 2006

Report RGI – 011 - 05

Concepts of the simplicial
complex-based data model
for 3D Topography

 OTB Research Institute for Housing, Urban and Mobility Studies 1

 OTB Research Institute for Housing, Urban and Mobility Studies 1

Introduction

In this report the new data model and its implementation will be described. Part I of
the report consists of a paper describing the model and its implementation. Part II of
the report consists of three appendices describing the initial creation and loading of
the tetrahedron table, the creation of the required functions and procedures and the
preperation of the TEN structure for query and analysis.

Delft, December 2006

2 OTB Research Institute for Housing, Urban and Mobility Studies

 OTB Research Institute for Housing, Urban and Mobility Studies 3

Part I

4 OTB Research Institute for Housing, Urban and Mobility Studies

4 OTB Research Institute for Housing, Urban and Mobility Studies

A Compact Topological DBMS Data Structure
For 3D Topography

Friso Penninga and Peter van Oosterom

Delft University of Technology, OTB, section GIS Technology,
Jaffalaan 9, 2628 BX the Netherlands

F.Penninga@tudelft.nl, oosterom@tudelft.nl

Abstract. The objective is to develop a data structure that is capable
of handling large data volumes and offers support for querying, analy-
sis and validation. Based on earlier results (i.e. the full decomposition
of space, the use of a TEN structure and applying Poincaré simplicial
homology as mathematical foundation) a simplicial complex-based TEN
structure is developed. Applying simplicial homology offers full control
over orientation of simplexes and enables one to derive substantial parts
of the TEN structure, instead of explicitly store the entire network. The
described data structure is developed as a DBMS data structure and
the usage of views, function based indexes and 3D R-trees result in a
compact topological 3D data structure.

1 Introduction

1.1 Motivation

Most current topographic data sets are limited to representing the real world in
two dimensions. Nevertheless, due to developments in multiple land use, environ-
mental modelling and data acquisition techniques, attention is shifting towards
3D topographic data modelling. Early 3D developments focused mostly on 3D
visualisation, while with the maturing of 3D GIS research the scope has broad-
ened and now also includes 3D query and analysis. As a result the need arised
for a data structure capable of storing 3D data and supporting 3D query and
analysis (see Figure 1). As data volume increases substantially with the step
from 2D to 3D, which is partly due to new high point density data acquisition
techniques (see Figure 2), maintaining data consistency becomes an important
objective of the new data structure.

The objective of the research is to develop a data structure that is capable
of handling large data volumes and offers support for querying, analysis and
validation. An obvious step in dealing with large data volumes is to use spatial
databases. Even though 3D coordinates can be used in some spatial databases,
3D data types are still missing [1]. Defining a new 3D data type is part of the
research and in this research tetrahedrons will be used as building blocks for the
3D models.

2

Fig. 1. Increasing reality: shift from 2D analysis to 3D

Fig. 2. Terrestrial laser scanning provides insight in complex objects

3

1.2 Related research

Research in the field of 3D GIS has been performed for about the last two
decades. Zlatanova et al. [2] give an overview of the most relevant developments
in this period. Related to the topics introduced in this paper, Carlson [3] can be
seen as the starting point as he introduced a simplicial complex-based approach
of 3D subsurface structures. However, this approach was limited to the use of
0-, 1- and 2-simplexes in 3D space. Extending this into higher dimensions (as
indicated by Frank and Kuhn [4]) is mentioned as a possibility. The explicit use
of 3D manifolds to model 3D features is explored by Pigot [5, 6] and Pilouk [7]
introduces the TEtrahedral irregular Network (TEN), in which the 3-simplex is
used as building block. A topological data model based on 2D simplicial com-
plexes (in 2D space) is introduced [8] and implemented in the PANDA system
[9], an early object-oriented database. In applications polyhedrons are often used
as 3D primitive [10, 11].

2 Previous research

2.1 Modelling 3D Topography: full decomposition of 3D space

With respect to modelling 3D topographic data two fundamental observations
are of great importance [12]:

– Physical objects have by definition a volume. In reality, there are no point,
line or polygon objects, only point, line or polygon representations exist (at a
certain level of generalisation). The ISO 19101 Geographic information - Ref-
erence model [13] defines features as ’abstractions of real world phenomena’.
In most current modelling approaches the abstraction (read ’simplification’)
is in the choice for a representation of lower dimension. However, as the
proposed method uses a tetrahedral network (or mesh), the simplification is
already in the subdivision into easy-to-handle parts (i.e. it is a finite element
method!).

– The real world can be considered a volume partition: a set of nonoverlapping
volumes that form a closed modelled space. As a consequence, objects like
’earth’ or ’air’ are explicitly part of the real world and thus have to be
modelled.

Inclusion of air and earth objects is often considered unnecessary, thus more
serving the abstract goal of ’clean modelling’ than an actual useful goal. This is
however not the case. These air and earth objects do not just fill up the space
between features of the other types, but are often also subject of analyses, such
as noise and odour modelling.

Although the model consists of volume features, some planar features might
still be very useful, as they mark the boundary (or transition) between two
volume features. The new approach supports these planar features, but only as
’derived features’, meaning that these features are lifetime dependent from their

4

parents (the two neighbouring volume features). For instance, a ’wall’ might be
the result of the association between a ’house’ and the ’air’. These planar features
may even have attributes, but semantically they do not bound the building. In
other words: the house is represented by a volume, with neighbouring volumes
that may represent air, earth or perhaps another adjacent house.

2.2 Using a Tetrahedral irregular network (TEN)

After initial ideas [14] on a hybrid data model (an integrated TIN/TEN model,
based on the pragmatic point of view: model in 2,5D where possible and only
in exceptional cases switch to a full 3D model) the decision was made [12] to
model all features in a single TEN. The preference for these simplex-based data
structures is based on certain qualities of simplexes:

– Well defined: a n-simplex is bounded by n + 1 (n − 1)-simplexes. E.g. a
2-simplex (triangle) is bounded by 3 1-simplexes (edges)

– Flatness of faces: every face can be described by three points
– A n-simplex is convex (simplifies amongst others point-in-polygon tests)

A disadvantage of simplexes is the introduction of a 1:n relationship between
features and their representations. Increasing complexity and data volume are
usually the result. However, the problem of complexity might be tackled by a
well-designed user interface. An average user should handle features (as poly-
hedrons) and internally these polyhedrons can be tetrahedronised and inserted
into the topographic data model. The data volume problem is tackled in our
approach by utilising the mathematical foundations of simplicial complexes.

2.3 Mathematical foundation: Poincaré simplicial homology

The new volumetric approach uses tetrahedrons to model the real world. These
tetrahedrons in the TEN structure consist of nodes, edges and triangles. All
four data types are simplexes: the simplest geometry in each dimension. A more
formal definition [15] of a n-simplex Sn can be given: a n-simplex Sn is the
smallest convex set in Euclidian space IRmcontaining n+1 points v0, . . . , vn that
do not lie in a hyperplane of dimension less than n. As the n-dimensional simplex
is defined by n+1 nodes, it has the following notation: Sn =< v0, . . . , vn >. The
boundary of a n-simplex is defined by the following sum of n − 1 dimensional
simplexes [16] (the hat indicates omitting the specific node):

∂Sn =
n∑

i=0

(−1)i < v0, . . . , v̂i, . . . , vn >

This results in (see Figure 3):

S1 =< v0, v1 > ∂S1 =< v1 > − < v0 >
S2 =< v0, v1, v2 > ∂S2 =< v1, v2 > − < v0, v2 > + < v0, v1 >
S3 =< v0, v1, v2, v3 > ∂S3 =< v1, v2, v3 > − < v0, v2, v3 >

+ < v0, v1, v3 > − < v0, v1, v2 >

5

Fig. 3. Simplexes and their boundaries (From [15])

It is assumed that all simplexes are ordered. As a simplex Sn is defined by
n + 1 vertices, (n + 1)! permutations exist. All even permutations of an ordered
simplex Sn =< v0, . . . , vn > have the same orientation, all odd permutations
have opposite orientation. So edge S1 =< v0, v1 > has boundary ∂S1 =< v1 >
− < v0 >. The other permutation S1 = − < v0, v1 >=< v1, v0 > has boundary
∂S1 =< v0 > − < v1 >, which is the opposite direction. In a similar way the
boundaries of the other five combinations of S2 and the other 23 combinations
of S3 can be given. As a consequence operators like the dual of a simplex become
very simple: it only requires a single permutation.

Another favourable characteristic is that with S3 either all normal vectors of
the boundary triangles point inwards or all normal vectors point outwards. It
is a direct result from the definition of the boundary operator, as it is defined
in such a way that ∂2Sn is the zero homomorphism, i.e. the boundary of the
boundary equals zero. Now consider ∂2S3. The boundary of a tetrahedron con-
sist of four triangles, and the boundaries of these triangles consist of edges. Each
of the six edges of S3 appears two times, as each edge bounds two triangles. As
the zero homomorphism states that the sum of these edges equals zero, this is
the case if and only if the edges in these six pairs have opposite signs. The edges
of two neighbouring triangles have opposite signs if and only if the triangles have
the same orientation, i.e. either both are oriented outwards or both are oriented
inwards. This characteristic is important in deriving the boundary of a simpli-
cial complex (construction of multiple simplexes). If this identical orientation is
assured for all boundary triangles of tetrahedrons (which can be achieved by a
single permutation when necessary), deriving the boundary triangulation of a
feature will reduce to adding up boundary triangles of all related tetrahedrons,
as internal triangles will cancel out in pairs due to opposite orientation. Figure
4 shows an example in which all boundaries of the tetrahedrons are added up in
order to obtain the boundary triangulation of the building.

6

Fig. 4. Deriving the boundary triangulation from the TEN

7

3 A simplicial complex-based TEN structure

3.1 Conceptual model

In a TEN structure tetrahedrons are usually defined by four triangles, triangles
by three edges and edges by two nodes. Geometry is stored at node level. As
a result reconstructing geometry of for instance a tetrahedron becomes a rel-
atively laborious operation. In simplicial homology simplexes of all dimensions
are defined by their vertices. Relationships between other simplexes, for instance
between tetrahedrons and triangles, can be derived by applying the boundary
operator. As a result [17], there is no need for explicit storage of these relation-
ships. This concept is illustrated in the UML class diagram in Figure 5. The
associations between the tetrahedron, triangle and edge class and the node class
show that these simplexes are specified by an ordered list of nodes. The interrela-
tionships between tetrahedrons, triangles and nodes (the boundary/coboundary
relationships) are derived and signed (i.e. oriented).

Figure 5 shows also the concept of the full decomposition of space. The real
world consists of volume features and features of lower dimension are modelled as
association classes. As a result, instances of these classes are lifetime dependent
from a relationship between two volume features.

3.2 Vertex encoding

In the simplicial complex-based approach simplexes will be defined by their
vertices, resulting in a lot of references to these vertices. Since the geometry
is the only attribute of a vertex, adding a unique identifier to each point and
building an index on top of this table will cause a substantial increase in data
storage. To deal with this an alternative approach is used. It is based on the
observation that adding a unique identifier is a bit redundant, as the geometry
in itself will be a unique identifier as well. To achieve this the coordinate pair is
concatenated into one long identifier code. Sorting this list will result in a very
basic spatial index. In a way this approach can be seen as building and storing an
index, while the original table is deleted. The possibilities of applying techniques
like bitwise interleaving, 3D Morton or Peano-Hilbert coding are recognised, but
for reasons of insightfulness the concatenated version will be used in this paper.

Figure 6 illustrates this idea of vertex encoding in a simplicial complex-based
approach. A house is tetrahedronised and the resulting tetrahedrons are coded
as concatenation of their four vertices’ coordinates. Each row in the tetrahedron
encoding can be interpreted as x1y1z1x2y2z2x3y3z3x4y4z4. For reasons of sim-
plicity only two positions are used for each coordinate element. Therefore the
last row (100000000600100600100608) should be interpret as the tetrahedron de-
fined by the vertices (10, 00, 00), (00, 06, 00), (10, 06, 00) and (10, 06, 08), which
is the tetrahedron at the bottom right of the house.

8

Fig. 5. UML class diagram of the simplicial complex-based approach

9

Fig. 6. Describing tetrahedrons by their encoded vertices

4 Implementation: proof of concept

In order to provide more insight in the proposed new approach this section will
outline the current DBMS implementation. It is developed and tested with a
small toy dataset, consisting of 56 tetrahedrons, 120 triangles, 83 edges and
20 nodes. At this moment the required tetrahedronisation algorithms are not
implemented yet, although previous research did focus on this topic [17, 18].
As a temporal workaround the toy dataset was tetrahedronised by hand and the
same dataset was used in a previous implementation (a classical TEN approach).
Based on this implementation a 2D viewer (Oracle MapViewer) was adapted for
3D data by the use of a function rotateGeom. Both the implementation and the
viewer are described in [17]. In Figure 7 the small dataset can be seen in the
MapViewer. The dataset basically represents a small piece of the earth surface
with a house and a road on top of it.

This section will start with creating the data structure, i.e. to define the
table and views to store tetrahedrons, triangles, edges and nodes. After that it
will be shown that also the constraints can be derived, so no additional explicit
storage is required. The next topic is deriving topological relationships. The
section continues with some remarks on validation, followed by some examples
on querying and analysis and ends with initial remarks on performance.

4.1 Building the data structure

The tetrahedron table is the only table in the implementation. It consists of a
single column (NVARCHAR2)in which the encoded tetrahedrons are described in
the form x1y1z1x2y2z2x3y3z3x4y4z4id. Note that besides the geometry also an
unique identifier is added, which refers to a volume feature that is (partly) rep-
resented by the tetrahedron. Each tetrahedron has positive orientation, meaning

10

Fig. 7. Adapting the 2D MapViewer for 3D data by a function rotateGeom

11

that all normal vectors on boundary triangles are oriented outwards. This con-
sistent orientation is required to ensure that each boundary triangle appears two
times: once with positive and once with negative orientation. To achieve this,
each tetrahedron’s orientation is checked. All tetrahedrons with inward orienta-
tion are replaced by tetrahedrons with outward orientation:

create or replace procedure tettableoutwards
(...)

checkorientation(codelength,currenttetcode,bool);
if (bool = 0) then

permutation12(codelength,currenttetcode,newtetcode);
update tetrahedron
set tetcode=newtetcode where current of tetcur;

(...)

The checkorientation procedure compares the direction of the normal vec-
tor of one of the boundary triangles with a vector from this triangle to the
fourth (opposite) point of the tetrahedron. In case of an inward orientation a
single permutation is carried out by the procedure permutation12, which per-
mutes the first and second vertex: permutation12(< v0, v1, v2, v3 >) results in
< v1, v0, v2, v3 >.

Based on the encoded tetrahedrons the boundary triangles can be derived by
applying the boundary operator:

create or replace procedure deriveboundarytriangles(
(...)
a := (SUBSTR(tetcode,1,3*codelength));
b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
id := (SUBSTR(tetcode,1+12*codelength));
ordertriangle(codelength,’+’||b||c||d||id, tricode1);
ordertriangle(codelength,’-’||a||c||d||id, tricode2);
ordertriangle(codelength,’+’||a||b||d||id, tricode3);
ordertriangle(codelength,’-’||a||b||c||id, tricode4);
(...)

Note that the triangles inherit the object id from the tetrahedron, i.e. each
triangle has a reference to the volume feature represented by the tetrahedron of
which the triangle is part of the boundary. The reason for this will be introduced
later in this section. It can also be seen that each boundary triangle is ordered by
the ordertriangle procedure. The objective of this procedure is to gain control
over which permutation is used. A triangle has six (= 3!) permutations, but it is
important that both in positive and negative orientation the same permutation
is used, as they will not cancel out in pairs otherwise. The ordertriangle
procedure always rewrites a triangle < a, b, c > such that a < b < c holds, which
is an arbitrary criterion.

12

Slightly altered versions of the deriveboundarytriangles procedure are
used to create the triangle view. The modified procedures derive respectively
the first, second, third and fourth boundary triangle of a tetrahedron. The re-
sulting view contains all triangles and their coboundaries (the coboundary of a
n-dimensional simplex Sn is the set of all (n + 1)-dimensional simplexes Sn+1

of which the simplex Sn is part of their boundaries ∂Sn+1). In this case the
coboundary is the tetrahedron of which the triangle is part of the boundary.
This coboundary will prove useful in deriving topological relationships later in
this section. The view is created as:

create or replace view triangle as
select deriveboundarytriangle1(3,tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle2(3,tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle3(3,tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle4(3,tetcode) tricode,
tetcode fromtetcode from tetrahedron;

The resulting view will contain four times the number of tetrahedrons, and every
triangle appears two times: once with positive and once with sign negative sign
(and not in a permutated form, due to the ordertriangle procedure).

In a similar way the views with edges and nodes can be constructed. In
current implementation edges are undirected en do not inherit object ids, as no
application for this is identified at the moment. However, strict application of the
boundary operator would result in directed triangles. With the tetrahedron table
and triangle, edge and node view the data structure is accessible at different
levels. Due to the encoding of the vertices, both geometry and topology are
present at every level, thus enabling switching to the most appropriate approach
for every operation.

4.2 Creating views with derived constraints

Features in the model are represented by a set of tetrahedrons. To ensure that
these tetrahedrons represent the correct geometry, the outer boundary is triangu-
lated and these triangles are used as constraints. This implies that these triangles
will remain present as long as the feature is part of the model (i.e. they are not
deleted in a flipping proces). To achieve this, the incremental tetrahedronisation
algorithm needs to keep track of these constrained triangles. In contrast with
what one might expect, it is not necessary to store these constraints explicitly,
as they can be derived as well:

create or replace view constrainedtriangle as

13

select t1.tricode tricode from triangle t1
where not exists (select t2.tricode from triangle t2

where t1.tricode = t2.tricode*-1);

This statement uses the fact that although every triangle (in a geometric sense)
appears two times (with opposite orientation) in the triangle view, not every
triangle code appears two times. As stated before the triangle code is a concate-
nation of the encoded vertices and the inherited object id from the tetrahedron
(its coboundary). This implies that for internal triangles (i.e. within an object)
the triangle and its dual will have (apart from the sign) the exact same triangle
code (geometry + object id), but in case of boundary triangles (i.e. constrained
triangles) this code will differ due to the different inherited object id’s. So in
simplified form, consider triangle codes -1,7,2,-7,-3 and 1. In this case triangles 2
and -3 will be constrained triangles. Deriving constrained edges from constrained
triangles is straightforward, as all boundary edges from constrained triangles are
constrained edges.

4.3 Creating views with derived topological relationships

In a TEN the number of possible topological relationships is limited. As the
TEN can be considered as a decomposition of space, relationships like overlap,
cover or inside do not occur. Only relationships based on the interaction be-
tween tetrahedron boundaries occur. Tetrahedrons (and their boundaries) are
either disjoint or touch. The case in which two boundary triangles touch (i.e.
the faces touch each other) is the neighbour relation. Two related relationships
are derived in views in the implementation. The first is the relationship between
a triangle and its dual. This relationship is important in the proces of finding
neighbours from tetrahedrons. The view is created by a select statement that
uses the identical geometric part of the triangle codes:

create or replace view dualtriangle as
select t1.tricode tricode, t2.tricode dualtricode
from triangle t1, triangle t2
where removeobjectid(3,t2.tricode) =
-1 *removeobjectid(3,t1.tricode);

By combining the triangle view and the dualtriangle view, neighbouring tetra-
hedrons can be found:

create or replace function getneighbourtet1(
(...)
select fromtetcode into neighbourtet from triangle
where tricode = (select dt.dualtricode from dualtriangle dt

where dt.tricode =
deriveboundarytriangle1(codelength,tetcode));

(...)

14

and based on functions like this one the view with tetrahedrons and their neigh-
bours can be created.

4.4 Validating the data structure

The data structure can be validated by applying the Euler-Poincaré formula:
N −E + F − V = 0 with N the number of nodes, E the number of edges, F the
number of faces and V the number of volumes (including the exterior). As can be
seen in Figure 8, the Euler-Poincaré formula holds for all simplicial complexes,
including simplicial complexes that consist of simplexes of different dimensions.
Due to this characteristic dangling edges and faces cannot be detected, but for
instance holes (i.e. missing faces) can be detected.

Within the simplicial complex-based approach the validation strategy is to
start with a valid tetrahedronisation and to check every update for correctness
before committing it to the database. As a result one will migrate from one valid
state into another valid state. This strategy will also include the application of for
instance flipping algorithms for the deletion of vertices [19], as such algorithms
are designed to maintain a valid TEN during each step of the proces.

Other correctness checks can be implemented, like for instance a check on
the triangle view to ensure that every triangle appears two times (with opposite
sign, ignoring the inherited object id’s). Also validation on feature level can be
considered, for instance one can check whether all constrained triangles form a
valid polyhedron. For more details on the validation of polyhedrons, see [20].

Fig. 8. Using Euler-Poincaré in 2D and 3D for validation: dangling edges and faces
remain undetected

15

4.5 Query and analysis

The presence of views helps to simplify a lot of queries as the functions on
which the views are based can be omitted from the queries. The most frequently
used elements and relationships are made available through these views. If one
is interested in for instance a boundary representation of a feature, one could
query the constrained triangle view with a specific object id. The resulting set of
constrained triangles will form a valid polyhedron, see Figure 9 for an example.
One might consider to simplify this polyhedron further by merging triangles with
identical (given a specific tolerance) normal vectors into polygons. However, a
polyhedron may consist of triangular faces and these triangulation might be
useful for visualisation purposes.

The number of analyses that can be performed on the TEN structure is
virtually unlimited. One can think of basic operations like distance, line-of-sight
or volume calculations, or more complex operations like tetrahedron-based buffer
and overlay [21]. Also a wide variety of simulations can be performed on the
tetrahedral mesh, like flooding or air flow simulations. Tetrahedronal meshes
can be used and optimized for simulation purposes [22, 23].

Fig. 9. Output in VRML: result of select tricode from constrainedtriangle

where getobjectid(3,tricode)=3;. This is the same object as in Figure 7

16

4.6 Performance

The tetrahedron table is potentially very large, so indexing becomes an impor-
tant aspect of the data structure. Sorting the table on the tetrahedron code will
function as an index, as tetrahedrons in a particular area will be stored closed to
each other in the table as well. However, a secondary index might still be needed.
As the tetrahedron code contains all geometry, constructing the minimal bound-
ing boxes and building a R-tree will be a logical step. To ensure performance for
queries on the views, function based indexes are created for all functions that
are used to create views.

5 Conclusions and Discussion

5.1 Conclusion

As stated in the introduction, the objective of this research is to develop a data
structure that is capable of handling large data volumes and offers support for
querying, analysis and validation. Based on earlier results (i.e. the full decompo-
sition of space, the use of a TEN structure and applying Poincaré simplicial ho-
mology as mathematical foundation) a simplicial complex-based TEN structure
is developed. Applying simplicial homology offers full control over orientation
of simplexes and enables one to derive substantial parts of the TEN structure,
instead of explicitly store the entire network. As a result only the single column
tetrahedron table has to be stored explicitly. Due to the encoded vertices and
inheritance of object id’s all constrained edges and faces can be derived, thus
avoiding redundant data storage. Since the topological relationships are also de-
rived, updating the structure turns out to be limited to updating the tetrahedron
tables. All implicit updates in less dimensional simplexes or topological relation-
ships propagate from this single update action. The described data structure
is developed as a DBMS data structure. Spatial DBMS characteristics as the
usage of views, function based indexes and 3D R-trees are extensively used and
contribute to the compactness and versatility of the data structure. Furthermore
a database is capable of coping with large data volumes, which is an essential
characteristic in handling large scale 3D data.

5.2 Discussion

An important question is whether the proposed method is innovative. As men-
tioned in section 1.2 both the idea to use a TEN data structure for 3D data and
using simplexes (in terms of simplicial homology) in a DBMS implementation
are described by other. However, the proposed approach reduces data storage
and eliminates the need for explicit updates of both topology and less dimen-
sional simplexes. By doing so, the approach tackles common drawbacks as TEN
extensiveness and laboriousness of maintaining topology. Furthermore, apply-
ing simplicial homology offers full control over orientation of simplexes, which
is a huge advantage especially in 3D. Integrating these concepts with database
functionality results in a new innovative approach to 3D data modelling.

17

References

1. Kothuri, R., Godfrind, A., Beinat, E.: Pro Oracle Spatial: The essential guide to
developing spatially enabled business applications. Apress (2004)

2. Zlatanova, S., Abdul Rahman, A., Pilouk, M.: 3D GIS: Current Status and Per-
spectives. In: Proceedings of Joint Conference on Geo-Spatial Theory, Processing
and Applications, Ottawa, Canada. (2002)

3. Carlson, E.: Three-dimensional conceptual modeling of subsurface structures. In:
Auto-Carto 8. (1987) 336–345

4. Frank, A.U., Kuhn, W.: Cell Graphs: A provable Correct Method for the Storage
of Geometry. In: Proceedings of the 2nd International Symposium on Spatial Data
Handling, Seattle, Washington. (1986)

5. Pigot, S.: A Topological Model for a 3D Spatial Information System. In: Pro-
ceedings of the 5th International Symposium on Spatial Data Handling. (1992)
344–360

6. Pigot, S.: A topological model for a 3-dimensional Spatial Information System.
PhD thesis, University of Tasmania, Australia (1995)

7. Pilouk, M.: Integrated Modelling for 3D GIS. PhD thesis, ITC Enschede, Nether-
lands (1996)

8. Egenhofer, M., Frank, A., Jackson, J.: A Topological Data Model for Spatial
Databases. In: Proceedings of First Symposium SSD’89. (1989) 271–286

9. Egenhofer, M., Frank, A.: PANDA: An Extensible Dbms Supporting Object-
Oriented Software Techniques. In: Datenbanksysteme in Büro, Technik und
Wissenschaft. Proceedings of GI/SI Fachtagung, Zürich, 1989. Informatik Fach-
berichten, Springer-Verlag (1989) 74–79

10. Zlatanova, S.: 3D GIS for urban development. PhD thesis, Graz University of
Technology (2000)

11. Stoter, J.: 3D Cadastre. PhD thesis, Delft University of Technology (2004)
12. Penninga, F.: 3D Topographic Data Modelling: Why Rigidity Is Preferable to Prag-

matism. In Cohn, A.G., Mark, D.M., eds.: Spatial Information Theory, Cosit’05.
Volume 3693 of Lecture Notes on Computer Science., Springer (2005) 409–425

13. ISO/TC211: Geographic information - reference model. Technical Report ISO
19101, International Organization for Standardization (2005)

14. Penninga, F.: Towards 3D Topography using a Feature-based Integrated TIN/TEN
Model. In Toppen, F., Painho, M., eds.: AGILE 2005, 8th Conference on Geo-
graphic Information Science. Conference Proceedings. Estoril, Portugal, May 26-
28. (2005) 373–381

15. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002) Available at
http://www.math.cornell.edu/ hatcher.

16. Poincaré, H.: Complément a l’Analysis Situs. Rendiconti del Circolo Matematico
di Palermo 13 (1899) 285–343

17. Penninga, F., van Oosterom, P., Kazar, B.M.: A TEN-based DBMS approach
for 3D Topographic Data Modelling. In Riedl, A., Kainz, W., Elmes, G., eds.:
Progress in Spatial Data Handling, 12th International Symposium on spatial Data
Handling, Springer (2006) 581–598

18. Penninga, F., van Oosterom, P.: Updating Features in a TEN-based DBMS ap-
proach for 3D Topographic Data Modelling. In Raubal, M., Miller, H.J., Frank,
A.U., Goodchild, M.F., eds.: Geographic Information Science, Fourth International
Conference, GIScience 2006, Münster, Germany, September 2006, Extended Ab-
stracts. Volume 28 of IfGI prints. (2006) 147–152

18

19. Ledoux, H., Gold, C.M., Baciu, G.: Flipping to robustly delete a vertex in a
Delaunay tetrahedralization. In: Proceedings International Conference on Compu-
tational Science and its Applications-ICCSA 2005. Volume 3480 of Lecture Notes
on Computer Science., Springer (2005) 737–747

20. Arens, C., Stoter, J., van Oosterom, P.: Modelling 3D spatial objects in a geo-
DBMS using a 3D primitive. Computers & Geosciences 31(2) (2005) 165–177

21. Verbree, E., van der Most, A., Quak, W., van Oosterom, P.: Towards a 3D Feature
Overlay through a Tetrahedral Mesh Data Structure. Cartography and Geographic
Information Science 32(4) (2005) 303–314

22. Joe, B.: Construction of three-dimensional improved-quality triangulations using
local transformations. SIAM Journal on Scientific Computing (6) (1995) 1292–1307

23. Cutler, B., Dorsey, J., McMillan, L.: Simplification and Improvement of Tetra-
hedral Models for Simulation. In Scopigno, R., Zorin, D., eds.: Proceedings of
Eurographics Symposium on Geometry Processing. (2004) 93–102

 OTB Research Institute for Housing, Urban and Mobility Studies 1

Part II

2 OTB Research Institute for Housing, Urban and Mobility Studies

2 OTB Research Institute for Housing, Urban and Mobility Studies

 OTB Research Institute for Housing, Urban and Mobility Studies 25

Appendix A Create and fill the tetrahedron table

This appendix contains all scripts as developed in the project. It reflects the current
state of implementation at December 20, 2006.

First an empty table is defined:

CREATE TABLE tetrahedron
(
 tetcode NVARCHAR2(100)
);

Then the table is filled with the results from the tetrahedronisation:

LOAD DATA
INFILE 'data/miniset.data'
APPEND
INTO TABLE tetrahedron
fields terminated by ' '
(tetcode)

26 OTB Research Institute for Housing, Urban and Mobility Studies

 OTB Research Institute for Housing, Urban and Mobility Studies 27

Appendix B Creating functions and procedures

Note the following general assumptions:

 All coordinates are assumed to be positive integers
 Coded tetrahedrons are not signed (orientation is changed (if necessary) by an

odd permutation)
 Coded triangles and edges are signed (and ordered (result of procedures) to have

the same permutation as dual, only sign differences)
 An equal number of digits is used for all coordinates (e.g. 3 for x1, 3 for y1, 3 for

z1, 3 for x2,...)
(this number is refered to as codelength (in example above codelength=3))

 Vectors are similarly coded and terms are signed (sign for each term is NOT part
of codelength)

==
 CREATION OF FUNCTIONS

==

CREATE OR REPLACE FUNCTION cayleymengerdeterminant5x5(input1
NUMBER, input2 NUMBER, input3 NUMBER, input4 NUMBER, input5
NUMBER, input6 NUMBER)
 RETURN NUMBER
 AS LANGUAGE JAVA
 NAME 'Friso.cayleymengerdeterminant5x5(double, double,
 double, double, double, double) return double';
/

CREATE OR REPLACE FUNCTION cayleymengerdeterminant4x4(input1
NUMBER, input2 NUMBER, input3 NUMBER)
 RETURN NUMBER
 AS LANGUAGE JAVA
 NAME 'Friso.cayleymengerdeterminant4x4(double, double,
 double) return double';
/

28 OTB Research Institute for Housing, Urban and Mobility Studies

==
 CREATION OF PROCEDURES

==

======
Acts on TETRAHEDRON

Procedure name : getcenterpoint
Parameters :
integer - codelength (number of digits used for a coordinate (so
for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (the coded tetrahedron in form
xxyyzzxxyyzzxxyyzzxxyyzzididid)
nvarchar2 - centerpoint (of tetrahedron, coded as xxyyzz. output)

Description : calculates centrepoint (rounding coordinates to in-
tegers again) of tetrahedron
======

CREATE OR REPLACE PROCEDURE getcenterpoint(codelength IN INTEGER,
tetcode IN NVARCHAR2, x OUT NUMBER, y OUT NUMBER, z OUT NUMBER)
IS
 coordsum NUMBER;
BEGIN
 FOR i IN 0..2
 LOOP
 coordsum := 0;

 FOR j IN 0..3
 LOOP
 coordsum := coordsum +
(SUBSTR(tetcode,1+i*codelength+j*3*codelength,codelength));
 END LOOP;

 IF (i=0) THEN
 x := coordsum/4;
 ELSIF (i=1) THEN
 y := coordsum/4;
 ELSIF (i=2) THEN
 z:= coordsum/4;
 END IF;
 END LOOP;

END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 29

======
Acts on TRIANGLE

Procedure name : calculatenormal
Parameters :
integer - codelength (number of digits used for a coordinate (so
for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tricode (the coded triangle in form
xxyyzzxxyyzzxxyyzzxxyyzzididid. postive sign required!)
nvarchar2 - normalvec (of triangle, coded as xxyyzz. output)

Description : calculates normal vector of signed triangle
======

CREATE OR REPLACE PROCEDURE calculatenormal(codelength IN INTEGER,
tricode IN NVARCHAR2, normalvec OUT NVARCHAR2)
IS
 sign NVARCHAR2(1);
 x1 NVARCHAR2(100);
 x2 NVARCHAR2(100);
 x3 NVARCHAR2(100);
 y1 NVARCHAR2(100);
 y2 NVARCHAR2(100);
 y3 NVARCHAR2(100);
 z1 NVARCHAR2(100);
 z2 NVARCHAR2(100);
 z3 NVARCHAR2(100);
 normx NVARCHAR2(100);
 normy NVARCHAR2(100);
 normz NVARCHAR2(100);
 absnormx NVARCHAR2(100);
 absnormy NVARCHAR2(100);
 absnormz NVARCHAR2(100);
BEGIN
 sign := (SUBSTR(tricode,1,1));
 x1 := (SUBSTR(tricode,2,codelength));
 x2 := (SUBSTR(tricode,2+3*codelength,codelength));
 x3 := (SUBSTR(tricode,2+6*codelength,codelength));
 y1 := (SUBSTR(tricode,2+codelength,codelength));
 y2 := (SUBSTR(tricode,2+4*codelength,codelength));
 y3 := (SUBSTR(tricode,2+7*codelength,codelength));
 z1 := (SUBSTR(tricode,2+2*codelength,codelength));
 z2 := (SUBSTR(tricode,2+5*codelength,codelength));
 z3 := (SUBSTR(tricode,2+8*codelength,codelength));
 normx := (y2-y1)*(z3-z1)-(z2-z1)*(y3-y1);
 normy := (z2-z1)*(x3-x1)-(x2-x1)*(z3-z1);
 normz := (x2-x1)*(y3-y1)-(y2-y1)*(x3-x1);

 IF (normx<0) THEN
 absnormx := (SUBSTR(normx,2));
 WHILE (length(absnormx)<codelength)
 LOOP
 absnormx := '0'||absnormx;
 END LOOP;
 IF (sign='+') THEN
 normx := '-'||absnormx;
 ELSE
 normx := '+'||absnormx;
 END IF;
 ELSE
 WHILE (length(normx)<codelength)
 LOOP

30 OTB Research Institute for Housing, Urban and Mobility Studies

 normx := '0'||normx;
 END LOOP;
 normx := sign||normx;
 END IF;

 IF (normy<0) THEN
 absnormy := (SUBSTR(normy,2));
 WHILE (length(absnormy)<codelength)
 LOOP
 absnormy := '0'||absnormy;
 END LOOP;
 IF (sign='+') THEN
 normy := '-'||absnormy;
 ELSE
 normy := '+'||absnormy;
 END IF;
 ELSE
 WHILE (length(normy)<codelength)
 LOOP
 normy := '0'||normy;
 END LOOP;
 normy := sign||normy;
 END IF;

 IF (normz<0) THEN
 absnormz := (SUBSTR(normz,2));
 WHILE (length(absnormz)<codelength)
 LOOP
 absnormz := '0'||absnormz;
 END LOOP;
 IF (sign='+') THEN
 normz := '-'||absnormz;
 ELSE
 normz := '+'||absnormz;
 END IF;
 ELSE
 WHILE (length(normz)<codelength)
 LOOP
 normz := '0'||normz;
 END LOOP;
 normz := sign||normz;
 END IF;

 normalvec := normx||normy||normz;
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 31

======
Acts on 3D VECTORS

Procedure name : anglebetweenvectors
Parameters :
integer - codelength (number of digits used for a coordinate (so
for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - normvec (normal vector, coded vector in format +xxx-
yyy-zzz) (3D vectors only!)
nvarchar2 - veccode1 (difference vector between one of the triang-
le points and opposite point
angle - number (angle between the two vectors in radians!)

Description : calculates the angle between two 3D vectors. The re-
sulting angle is in radians
======

CREATE OR REPLACE PROCEDURE anglebetweenvectors(codelength IN
INTEGER, normcode IN NVARCHAR2, veccode1 IN NVARCHAR2,
 angle OUT NUMBER)
IS
 dotproduct INTEGER;
 length1 INTEGER;
 length2 INTEGER;

BEGIN
 dotproduct := 0;
 length1 := 0;
 length2 := 0;

 FOR i IN 0..2
 LOOP
 dotproduct := dotproduct + (sub-
str(normcode,1+i*(codelength+1),codelength+1))*(substr(veccode1,1+
i*(codelength+1),codelength+1));
 length1 := length1 + po-
wer(substr(normcode,1+i*(codelength+1),codelength+1),2);
 length2 := length2 + po-
wer(substr(veccode1,1+i*(codelength+1),codelength+1),2);
 END LOOP;

 angle := ACOS(dotproduct/((SQRT(length1))*(SQRT(length2))));
END;
/

32 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TETRAHEDRON

Procedure name : checkorientation
Parameters :
integer - codelength (number of digits used for a coordinate (so
for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (the coded tetrahedron in form
xxyyzzxxyyzzxxyyzzxxyyzzididid)
number - isoutwards (indicates whether the normals of the boun-
dary faces of a tetrahedron point outwards (1) or inwards (0)

Description : supposes poincare tetrahedron, so orientation of all
four boundary triangles is identical (either all inwards or all
outwards) of tetrahedron v0v1v2v3 it takes boundary v1v2v3
orientation is positive). the normal vector of this triangle is
calculated. a second vector is constructed, from v1 to v4. The an-
gle between these two vectors is calculated. if it is smaller than
90 degrees (0.5*PI) the orientation is inwards, otherwise outwards
======

CREATE OR REPLACE PROCEDURE checkorientation(codelength IN
INTEGER, tetcode IN NVARCHAR2, isoutwards IN OUT NUMBER)
IS
 angle NUMBER;
 tricode NVARCHAR2(100);
 veccode1 NVARCHAR2(100);
 normalvec NVARCHAR2(100);
 diffchar NVARCHAR2(100);
 absdiffchar NVARCHAR2(100);
 oppositepoint NVARCHAR2(100);
 diff NUMBER;
BEGIN
 oppositepoint := SUBSTR(tetcode,1,3*codelength);
 tricode := '+'||SUBSTR(tetcode,1+3*codelength);
 calculatenormal(codelength,tricode,normalvec);
 veccode1 := '';

 FOR i IN 0..2
 LOOP
 diff := (SUBSTR(oppositepoint,1+i*codelength,codelength))-
(SUBSTR(tricode,2+i*codelength,codelength));
 IF (diff<0) THEN
 diffchar := TO_CHAR(diff);
 absdiffchar := SUBSTR(diffchar,2);

 WHILE (LENGTH(absdiffchar)<codelength)
 LOOP
 absdiffchar := '0'||absdiffchar;
 END LOOP;
 veccode1 := veccode1||'-'||absdiffchar;

 ELSE
 absdiffchar := TO_CHAR(diff);

 WHILE (LENGTH(absdiffchar)<codelength)
 LOOP
 absdiffchar := '0'||absdiffchar;
 END LOOP;
 veccode1 := veccode1||'+'||absdiffchar;

 OTB Research Institute for Housing, Urban and Mobility Studies 33

 END IF;
 END LOOP;

 anglebetweenvectors(codelength,normalvec,veccode1,angle);

 IF (angle>(3.1415926535897932384626433832795/2)) THEN
 isoutwards := 1;
 ELSE
 isoutwards := 0;
 END IF;
END;
/

34 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TETRAHEDRON

Procedure name : permutation34
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (coded tetrahedron)
nvarchar2 - tetcodeperm (coded permutated tetrahedron)

Description : Performs a permutation of the last two vertices in
the tetrahedron code. This single permutation causes a chance of
orientation (i.e. inwards instead of outwards or vice versa) of
the tetrahedron. For simplexes of dimension < 3 usage of signed
ordered encodings is preferred above permutations (as in that case
one cannot be sure which of the equivalent permutations is used)
======

CREATE OR REPLACE PROCEDURE permutation34(codelength IN INTEGER,
tetcode IN NVARCHAR2, tetcodeperm OUT NVARCHAR2)
IS
BEGIN
 tetcodeperm :=
(SUBSTR(tetcode,1,6*codelength))||(SUBSTR(tetcode,1+9*codelength,3
*codelength))||

(SUBSTR(tetcode,1+6*codelength,3*codelength))||(SUBSTR(tetcode,1+1
2*codelength));
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 35

======
Acts on TRIANGLE

Procedure name : ordertriangle
Parameters : \
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tricode (code triangle: signxxyyzzxxyy...ID)
nvarchar2 - ordered tricode (coded trianglke signxxyyzzxxyy..ID)
with codevertex1<codevertex2<codevertex3

Description : Orders a triangle based on the coordinate code of
each vertex, from small to large, in order to ensure that each
triangle and its dual have the same code (apart from the sign) and
not one of thheir equivalent permutations
======

CREATE OR REPLACE PROCEDURE ordertriangle(codelength IN INTEGER,
tricode IN NVARCHAR2, orderedtricode OUT NVARCHAR2)
IS
 sign NVARCHAR2(1);
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 id NVARCHAR2(100);
BEGIN
 sign := (SUBSTR(tricode,1,1));
 a := (SUBSTR(tricode,2,3*codelength));
 b := (SUBSTR(tricode,2+3*codelength,3*codelength));
 c := (SUBSTR(tricode,2+6*codelength,3*codelength));
 id := (SUBSTR(tricode,2+9*codelength));

 IF (a<b) THEN
 IF (b<c) THEN
 orderedtricode := tricode;
 ELSE
 IF (a<c) THEN
 IF (sign = '+') THEN
 orderedtricode := '-'||a||c||b||id;
 ELSE
 orderedtricode := '+'||a||c||b||id;
 END IF;
 ELSE
 orderedtricode := sign||c||a||b||id;
 END IF;
 END IF;
 ELSE
 IF (b<c) THEN
 IF (a<c) THEN
 IF (sign = '+') THEN
 orderedtricode := '-'||b||a||c||id;
 ELSE
 orderedtricode := '+'||b||a||c||id;
 END IF;
 ELSE
 orderedtricode := sign||b||c||a||id;
 END IF;
 ELSE
 IF (sign = '+') THEN
 orderedtricode := '-'||c||b||a||id;

36 OTB Research Institute for Housing, Urban and Mobility Studies

 ELSE
 orderedtricode := '+'||c||b||a||id;
 END IF;
 END IF;
 END IF;

END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 37

======
Acts on TETRAHEDRON

Procedure name : sorttetrahedron
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (coded tetrahedron: nxxyyzzxxyy...ID)
nvarchar2 - sorted tetcode (coded tetrahedron xxyyzzxxyy..ID) with
codevertex1<codevertex2<codevertex3

Description : Orders a tetrahedron based on the coordinate code of
each vertex, from small to large, in order to ensure that each
triangle and its dual have the same code (apart from the sign) and
not one of thheir equivalent permutations
======

CREATE OR REPLACE PROCEDURE sorttetrahedron(codelength IN INTEGER,
tetcode IN NVARCHAR2, sortedtetcode OUT NVARCHAR2)
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 d NVARCHAR2(100);
 id NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tetcode,1,3*codelength));
 b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
 c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
 d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
 id := (SUBSTR(tetcode,1+12*codelength));

 IF (a<b) THEN
 IF (b<c) THEN
 IF (b<d) THEN
 IF (c<d) THEN
 sortedtetcode := a||b||c||d||id;
 ELSE
 sortedtetcode := a||b||d||c||id;
 END IF;
 ELSE
 IF (a<d) THEN
 sortedtetcode := a||d||b||c||id;
 ELSE
 sortedtetcode := d||a||b||c||id;
 END IF;
 END IF;
 ELSE
 IF (a<c) THEN
 IF (c<d) THEN
 IF (b<d) THEN
 sortedtetcode := a||c||b||d||id;
 ELSE
 sortedtetcode := a||c||d||b||id;
 END IF;
 ELSE
 IF (a<d) THEN
 sortedtetcode := a||d||c||b||id;
 ELSE

38 OTB Research Institute for Housing, Urban and Mobility Studies

 sortedtetcode := d||a||c||b||id;
 END IF;
 END IF;
 ELSE
 IF (a<d) THEN
 IF (b<d) THEN
 sortedtetcode := c||a||b||d||id;
 ELSE
 sortedtetcode := c||a||d||b||id;
 END IF;
 ELSE
 IF (c<d) THEN
 sortedtetcode := c||d||a||b||id;
 ELSE
 sortedtetcode := d||c||a||b||id;
 END IF;
 END IF;
 END IF;
 END IF;
 ELSE
 IF (b<c) THEN
 IF (a<c) THEN
 IF (a<d) THEN
 IF (c<d) THEN
 sortedtetcode := b||a||c||d||id;
 ELSE
 sortedtetcode := b||a||d||c||id;
 END IF;
 ELSE
 IF (b<d) THEN
 sortedtetcode := b||d||a||c||id;
 ELSE
 sortedtetcode := d||b||a||c||id;
 END IF;
 END IF;
 ELSE
 IF (c<d) THEN
 IF (a<d) THEN
 sortedtetcode := b||c||a||d||id;
 ELSE
 sortedtetcode := b||c||d||a||id;
 END IF;
 ELSE
 IF (b<d) THEN
 sortedtetcode := b||d||c||a||id;
 ELSE
 sortedtetcode := d||b||c||a||id;
 END IF;
 END IF;
 END IF;
 ELSE
 IF (b<d) THEN
 IF (a<d) THEN
 sortedtetcode := c||b||a||d||id;
 ELSE
 sortedtetcode := c||b||d||a||id;
 END IF;
 ELSE
 IF (c<d) THEN
 sortedtetcode := c||d||b||a||id;
 ELSE

 OTB Research Institute for Housing, Urban and Mobility Studies 39

 sortedtetcode := d||c||b||a||id;
 END IF;
 END IF;
 END IF;
 END IF;

END;
/

40 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TETRAHEDRON

Procedure name : deriveboundarytriangles
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (coded tetrahedron: xxyyzzxxyy...ID)
nvarchar2 - tricode1 (coded triangle: signxxyyzzxxyy..ID) with co-
devertex1<codevertex2<codevertex3
nvarchar2 - tricode2 (coded triangle: signxxyyzzxxyy..ID) with co-
devertex1<codevertex2<codevertex3
nvarchar2 - tricode3 (coded triangle: signxxyyzzxxyy..ID) with co-
devertex1<codevertex2<codevertex3
nvarchar2 - tricode4 (coded triangle: signxxyyzzxxyy..ID) with co-
devertex1<codevertex2<codevertex3

Description : Derives the four boundary triangles of a tetrahedron
by applying the boundary operator of the simplical complex homolo-
gy. All resulting triangles are ordered (v0<v1<v2) and signed(+/-)
======

CREATE OR REPLACE PROCEDURE deriveboundarytriangles(codelength IN
INTEGER, tetcode IN NVARCHAR2, tricode1 OUT NVARCHAR2,
 tricode2 OUT NVARCHAR2,
tricode3 OUT NVARCHAR2, tricode4 OUT NVARCHAR2)
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 d NVARCHAR2(100);
 id NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tetcode,1,3*codelength));
 b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
 c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
 d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
 id := (SUBSTR(tetcode,1+12*codelength));
 ordertriangle(codelength,'+'||b||c||d||id, tricode1);
 ordertriangle(codelength,'-'||a||c||d||id, tricode2);
 ordertriangle(codelength,'+'||a||b||d||id, tricode3);
 ordertriangle(codelength,'-'||a||b||c||id, tricode4);
END;
/

CREATE OR REPLACE FUNCTION deriveboundarytriangle1(codelength
INTEGER, tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 d NVARCHAR2(100);
 id NVARCHAR2(100);
 tricode NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tetcode,1,3*codelength));
 b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
 c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
 d := (SUBSTR(tetcode,1+9*codelength,3*codelength));

 OTB Research Institute for Housing, Urban and Mobility Studies 41

 id := (SUBSTR(tetcode,1+12*codelength));
 ordertriangle(codelength,'+'||b||c||d||id, tricode);
 RETURN tricode;
END;
/

CREATE OR REPLACE FUNCTION deriveboundarytriangle2(codelength
INTEGER, tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 d NVARCHAR2(100);
 id NVARCHAR2(100);
 tricode NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tetcode,1,3*codelength));
 b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
 c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
 d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
 id := (SUBSTR(tetcode,1+12*codelength));
 ordertriangle(codelength,'-'||a||c||d||id, tricode);
 RETURN tricode;
END;
/

CREATE OR REPLACE FUNCTION deriveboundarytriangle3(codelength
INTEGER, tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 d NVARCHAR2(100);
 id NVARCHAR2(100);
 tricode NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tetcode,1,3*codelength));
 b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
 c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
 d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
 id := (SUBSTR(tetcode,1+12*codelength));
 ordertriangle(codelength,'+'||a||b||d||id, tricode);
 RETURN tricode;
END;
/

CREATE OR REPLACE FUNCTION deriveboundarytriangle4(codelength
INTEGER, tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 d NVARCHAR2(100);
 id NVARCHAR2(100);
 tricode NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tetcode,1,3*codelength));

42 OTB Research Institute for Housing, Urban and Mobility Studies

 b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
 c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
 d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
 id := (SUBSTR(tetcode,1+12*codelength));
 ordertriangle(codelength,'-'||a||b||c||id, tricode);
 RETURN tricode;
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 43

======
Acts on TRIANGLE

Procedure name : deriveboundaryedges
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tricode (coded triangle: signxxyyzzxxyy...ID)
nvarchar2 - edcode1 (coded edge: signxxyyzzxxyyzzID) with codever-
tex1<codevertex2
nvarchar2 - edcode2 (coded edge: signxxyyzzxxyyzzID) with codever-
tex1<codevertex2
nvarchar2 - edcode3 (coded edge: signxxyyzzxxyyzzID) with codever-
tex1<codevertex2

Description : Derives the three boundary edges of a signed triang-
le by applying the boundary operator of the simplical complex
homology. All resulting edges are ordered (v0<v1, as the triangles
are ordered) and signed(+/-)
======

CREATE OR REPLACE PROCEDURE deriveboundaryedges(codelength IN
INTEGER, tricode IN NVARCHAR2, edcode1 OUT NVARCHAR2,
 edcode2 OUT NVARCHAR2,
edcode3 OUT NVARCHAR2)
IS
 sign NVARCHAR2(1);
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 id NVARCHAR2(100);
BEGIN
 sign := (SUBSTR(tricode,1,1));
 a := (SUBSTR(tricode,2,3*codelength));
 b := (SUBSTR(tricode,2+3*codelength,3*codelength));
 c := (SUBSTR(tricode,2+6*codelength,3*codelength));
 id := (SUBSTR(tricode,2+9*codelength));
 IF (sign='+') THEN
 edcode1 := '+'||b||c;
 edcode2 := '-'||a||c;
 edcode3 := '+'||a||b;
 ELSE
 edcode1 := '-'||b||c;
 edcode2 := '+'||a||c;
 edcode3 := '-'||a||b;
 END IF;
END;
/

CREATE OR REPLACE FUNCTION deriveabsboundaryedge1(codelength
INTEGER, tricode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 b NVARCHAR2(100);
 c NVARCHAR2(100);
 edcode1 NVARCHAR2(100);
BEGIN
 b := (SUBSTR(tricode,2+3*codelength,3*codelength));
 c := (SUBSTR(tricode,2+6*codelength,3*codelength));
 edcode1 := b||c;
 RETURN edcode1;

44 OTB Research Institute for Housing, Urban and Mobility Studies

END;
/

CREATE OR REPLACE FUNCTION deriveabsboundaryedge2(codelength
INTEGER, tricode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 a NVARCHAR2(100);
 c NVARCHAR2(100);
 edcode2 NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tricode,2,3*codelength));
 c := (SUBSTR(tricode,2+6*codelength,3*codelength));
 edcode2 := a||c;
 RETURN edcode2;
END;
/

CREATE OR REPLACE FUNCTION deriveabsboundaryedge3(codelength
INTEGER, tricode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 a NVARCHAR2(100);
 b NVARCHAR2(100);
 edcode3 NVARCHAR2(100);
BEGIN
 a := (SUBSTR(tricode,2,3*codelength));
 b := (SUBSTR(tricode,2+3*codelength,3*codelength));
 edcode3 := a||b;
 RETURN edcode3;
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 45

======
Acts on EDGE

Procedure name : deriveboundarynodes
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - edcode (coded edge: xxyyzzxxyy..z or coded signed eg-
de: signxxyy..)
nvarchar2 - nodecode1 (coded node: xxyyzz)
nvarchar2 - nodecode2 (coded node: xxyyzz)

Description : Derives the two boundary nodes of a signed (or not)
edge by applying the boundary operator of the simplical complex
homology.
======

CREATE OR REPLACE PROCEDURE deriveboundarynodes(codelength IN
INTEGER, edcode IN NVARCHAR2, nodecode1 OUT NVARCHAR2,
 nodecode2 OUT NVARCHAR2)
IS
BEGIN
 IF (SUBSTR(edcode,1,1)='+') OR (SUBSTR(edcode,1,1)='-') THEN
 nodecode1 := (SUBSTR(edcode,2,3*codelength));
 nodecode2 := (SUBSTR(edcode,2+3*codelength,3*codelength));
 ELSE
 nodecode1 := (SUBSTR(edcode,1,3*codelength));
 nodecode2 := (SUBSTR(edcode,1+3*codelength,3*codelength));
 END IF;
END;
/

CREATE OR REPLACE FUNCTION deriveboundarynode1(codelength INTEGER,
edcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
BEGIN
 IF (SUBSTR(edcode,1,1)='+') OR (SUBSTR(edcode,1,1)='-') THEN
 RETURN (SUBSTR(edcode,2,3*codelength));
 ELSE
 RETURN (SUBSTR(edcode,1,3*codelength));
 END IF;
END;
/

CREATE OR REPLACE FUNCTION deriveboundarynode2(codelength INTEGER,
edcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
BEGIN
 IF (SUBSTR(edcode,1,1)='+') OR (SUBSTR(edcode,1,1)='-') THEN
 RETURN (SUBSTR(edcode,2+3*codelength,3*codelength));
 ELSE
 RETURN (SUBSTR(edcode,1+3*codelength,3*codelength));
 END IF;
END;
/

46 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TETRAHEDRON

Procedure name : gettetrahedronmbb
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (coded tetrahedron: xxyyzzxxyy...ID)
nvarchar2 - mbbcode (coded minimum bounding box: minxminyminzmaxx-
maxymaxz)

Description : Derives the minimum bounding box of a tetrahedron by
selecting the min x, y, z and max x, y, z.
======

CREATE OR REPLACE PROCEDURE gettetrahedronmbb(codelength IN
INTEGER, tetcode IN NVARCHAR2, mbbcode OUT NVARCHAR2)
IS
 a NVARCHAR2(100);
 tempmin NVARCHAR2(100);
 tempmax NVARCHAR2(100);
 defmin NVARCHAR2(100);
 defmax NVARCHAR2(100);
BEGIN
 FOR j IN 0..2
 LOOP
 tempmin := (SUBSTR(tetcode,1+j*codelength,codelength));
 tempmax := (SUBSTR(tetcode,1+j*codelength,codelength));
 FOR i IN 1..3
 LOOP
 a :=
(SUBSTR(tetcode,1+i*3*codelength+j*codelength,codelength));
 IF (a<tempmin) THEN
 tempmin := a;
 END IF;
 IF (a>tempmax) THEN
 tempmax := a;
 END IF;
 END LOOP;
 defmin := defmin||tempmin;
 defmax := defmax||tempmax;
 END LOOP;
 mbbcode := defmin||defmax;
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 47

======
Acts on TRIANGLE

Procedure name : gettrianglembb
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tricode (coded triangle: signxxyyzzxxyy...ID)
nvarchar2 - mbbcode (coded minimum bounding box: minxminyminzmaxx-
maxymaxz)

Description : Derives the minimum bounding box of a tetrahedron by
selecting the min x, y, z and max x, y, z.
======

CREATE OR REPLACE PROCEDURE gettrianglembb(codelength IN INTEGER,
tricode IN NVARCHAR2, mbbcode OUT NVARCHAR2)
IS
 a NVARCHAR2(100);
 tempmin NVARCHAR2(100);
 tempmax NVARCHAR2(100);
 defmin NVARCHAR2(100);
 defmax NVARCHAR2(100);
BEGIN
 FOR j IN 0..2
 LOOP
 tempmin := (SUBSTR(tricode,2+j*codelength,codelength));
 tempmax := (SUBSTR(tricode,2+j*codelength,codelength));
 FOR i IN 1..2
 LOOP
 a :=
(SUBSTR(tricode,2+i*3*codelength+j*codelength,codelength));
 IF (a<tempmin) THEN
 tempmin := a;
 END IF;
 IF (a>tempmax) THEN
 tempmax := a;
 END IF;
 END LOOP;
 defmin := defmin||tempmin;
 defmax := defmax||tempmax;
 END LOOP;
 mbbcode := defmin||defmax;
END;
/

48 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TETRAHEDRON

Procedure name : tetedgelengthsquare
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (coded tetrahedron: xxyyzzxxyy...ID)
number - a (square of length of edge v1v2)
number - b (square of length of edge v1v3)
number - c (square of length of edge v1v4)
number - d (square of length of edge v2v3)
number - e (square of length of edge v2v4)
number - f (square of length of edge v3v4)

Description : Calculates the square of the lengths of the six ed-
ges of a tetrahedron. Used as input for Cayley-Menger determinant
======

CREATE OR REPLACE PROCEDURE tetedgelengthsquare(codelength IN
INTEGER, tetcode IN NVARCHAR2, a OUT NUMBER, b OUT NUMBER, c OUT
NUMBER,
 d OUT NUMBER,
e OUT NUMBER, f OUT NUMBER)
IS
 x1 NVARCHAR2(100);
 y1 NVARCHAR2(100);
 z1 NVARCHAR2(100);
 x2 NVARCHAR2(100);
 y2 NVARCHAR2(100);
 z2 NVARCHAR2(100);
 x3 NVARCHAR2(100);
 y3 NVARCHAR2(100);
 z3 NVARCHAR2(100);
 x4 NVARCHAR2(100);
 y4 NVARCHAR2(100);
 z4 NVARCHAR2(100);
BEGIN
 x1 := (SUBSTR(tetcode,1,codelength));
 y1 := (SUBSTR(tetcode,1+codelength,codelength));
 z1 := (SUBSTR(tetcode,1+2*codelength,codelength));
 x2 := (SUBSTR(tetcode,1+3*codelength,codelength));
 y2 := (SUBSTR(tetcode,1+4*codelength,codelength));
 z2 := (SUBSTR(tetcode,1+5*codelength,codelength));
 x3 := (SUBSTR(tetcode,1+6*codelength,codelength));
 y3 := (SUBSTR(tetcode,1+7*codelength,codelength));
 z3 := (SUBSTR(tetcode,1+8*codelength,codelength));
 x4 := (SUBSTR(tetcode,1+9*codelength,codelength));
 y4 := (SUBSTR(tetcode,1+10*codelength,codelength));
 z4 := (SUBSTR(tetcode,1+11*codelength,codelength));
 a := power((x2-x1),2)+power((y2-y1),2)+power((z2-z1),2);
 b := power((x3-x1),2)+power((y3-y1),2)+power((z3-z1),2);
 c := power((x4-x1),2)+power((y4-y1),2)+power((z4-z1),2);
 d := power((x3-x2),2)+power((y3-y2),2)+power((z3-z2),2);
 e := power((x4-x2),2)+power((y4-y2),2)+power((z4-z2),2);
 f := power((x4-x3),2)+power((y4-y3),2)+power((z4-z3),2);
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 49

======
Acts on TRIANGLE

Procedure name : triedgelengthsquare
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tricode (coded triangle: signxxyyzzxxyy...ID)
number - a (square of length of edge v1v2)
number - b (square of length of edge v1v3)
number - c (square of length of edge v2v3)

Description : Calculates the square of the lengths of the six ed-
ges of a tetrahedron. Used as input for Cayley-Menger determinant
======

CREATE OR REPLACE PROCEDURE triedgelengthsquare(codelength IN
INTEGER, tricode IN NVARCHAR2, a OUT NUMBER, b OUT NUMBER, c OUT
NUMBER)
IS
 x1 NVARCHAR2(100);
 y1 NVARCHAR2(100);
 z1 NVARCHAR2(100);
 x2 NVARCHAR2(100);
 y2 NVARCHAR2(100);
 z2 NVARCHAR2(100);
 x3 NVARCHAR2(100);
 y3 NVARCHAR2(100);
 z3 NVARCHAR2(100);
BEGIN
 x1 := (SUBSTR(tricode,2,codelength));
 y1 := (SUBSTR(tricode,2+codelength,codelength));
 z1 := (SUBSTR(tricode,2+2*codelength,codelength));
 x2 := (SUBSTR(tricode,2+3*codelength,codelength));
 y2 := (SUBSTR(tricode,2+4*codelength,codelength));
 z2 := (SUBSTR(tricode,2+5*codelength,codelength));
 x3 := (SUBSTR(tricode,2+6*codelength,codelength));
 y3 := (SUBSTR(tricode,2+7*codelength,codelength));
 z3 := (SUBSTR(tricode,2+8*codelength,codelength));
 a := power((x2-x1),2)+power((y2-y1),2)+power((z2-z1),2);
 b := power((x3-x1),2)+power((y3-y1),2)+power((z3-z1),2);
 c := power((x3-x2),2)+power((y3-y2),2)+power((z3-z2),2);
END;
/

50 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TRIANGLE AND TETRAHEDRON

Procedure name : simplexvolume
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - simplexcode (coded triangle: signxxyyzzxxyy...ID or
coded tetrahedronxxyyzzxx...ID)
number - simplexvolumea (i.e. volume of tetrahedron or area of
triangle)

Description : Calculates the volume of a 3- or 2-simplex, using
the Cayley-Menger determinant
======

CREATE OR REPLACE PROCEDURE simplexvolume(codelength IN INTEGER,
simplexcode IN NVARCHAR2, simplexvolume OUT NUMBER)
IS
 a NUMBER;
 b NUMBER;
 c NUMBER;
 d NUMBER;
 e NUMBER;
 f NUMBER;
 det NUMBER;
BEGIN
 IF (((SUBSTR(simplexcode,1,1)) = '+') OR
((SUBSTR(simplexcode,1,1)) = '-')) THEN
 triedgelengthsquare(codelength,simplexcode,a,b,c);
 det := cayleymengerdeterminant4x4(a,b,c);
 simplexvolume := SQRT(det/-16);
 ELSE
 tetedgelengthsquare(codelength,simplexcode,a,b,c,d,e,f);
 det := cayleymengerdeterminant5x5(a,b,c,d,e,f);
 simplexvolume := SQRT(det/288);
 END IF;
END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 51

======
Acts on TABLE called TETRAHEDRON

Procedure name : tettableoutwards
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
number - number of changed tetrahedrons (i.e. number of formar-
ly inwards oriented tetrahderons)
number - number of unchanges tetrahedrons (i.e. number of te-
trahedrons already outwards oriented

Description : ckecks for all tetrahedrons in the tetrahedron table
whether they are oriented outwards. if not, the tetrahedrons are
replaced by an outwards oriented permutation (permutation of v0
and v1)
======

CREATE OR REPLACE PROCEDURE tettableoutwards(codelength IN
INTEGER, changes OUT NUMBER, nochanges OUT NUMBER)
IS
 CURSOR tetcur IS
 SELECT tetcode FROM tetrahedron FOR UPDATE;
 tetcode NVARCHAR2(100);
 currenttetcode NVARCHAR2(100);
 newtetcode NVARCHAR2(100);
 bool NUMBER;
 a NUMBER;
BEGIN
 dbms_output.put_line('ja');

 a := 0;
 changes := 0;
 nochanges := 0;
 OPEN tetcur;
 LOOP
 FETCH tetcur INTO tetcode;
 EXIT WHEN tetcur%notfound;
 dbms_output.put_line(tetcode);
 checkorientation(codelength,tetcode,bool);

 a:= a+1;

 dbms_output.put_line(bool);
 dbms_output.put_line(a);
 IF (bool = 0) THEN
 permutation34(codelength,tetcode,newtetcode);
 UPDATE tetrahedron SET tetcode=newtetcode WHERE CURRENT
OF tetcur;
 changes := changes+1;
 ELSE
 nochanges := nochanges+1;
 END IF;
 END LOOP;
 CLOSE tetcur;
END;
/

52 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TABLE called TETRAHEDRON

Procedure name : sorttettable
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
number - number of changed tetrahedrons (i.e. number of unsor-
ted tetrahderons)
number - number of unchanges tetrahedrons (i.e. number of te-
trahedrons already sorted correctly

Description : ckecks for all tetrahedrons in the tetrahedron table
whether the tetrahedron code is sorted (based on the coordinate
code of each vertex, from small to large, in order to ensure that
each triangle and its dual have the same code (apart from the
sign) and not one of their equivalent permutations
======

CREATE OR REPLACE PROCEDURE sorttettable(codelength IN INTEGER,
changes OUT NUMBER, nochanges OUT NUMBER)
IS
 CURSOR tetcur1 IS
 SELECT tetcode FROM tetrahedron FOR UPDATE;
 tetcode NVARCHAR2(100);
 newtetcode NVARCHAR2(100);
 bool NUMBER;
 a NUMBER;
BEGIN
 a := 0;
 changes := 0;
 nochanges := 0;
 OPEN tetcur1;
 LOOP
 FETCH tetcur1 INTO tetcode;
 EXIT WHEN tetcur1%notfound;
 sorttetrahedron(codelength,tetcode,newtetcode);
 UPDATE tetrahedron SET tetcode=newtetcode WHERE CURRENT OF
tetcur1;
 changes := changes+1;
 END LOOP;
 CLOSE tetcur1;

END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 53

======
Acts on SIMPLEX with ID

Function name : getobjectid
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - simplexcode (coded simplex: xxyyzzxxyy...ID)

Description : Returns object ID, to be used in SQL select state-
ments, for instance for finding all tetrahedrons or triangles of a
specific object.
======

CREATE OR REPLACE FUNCTION getobjectid(codelength INTEGER, sim-
plexcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
BEGIN
 RETURN (SUBSTR(simplexcode, LENGTH(simplexcode)-codelength+1));

END;
/

======
Acts on SIMPLEX with ID

Function name : removeobjectid
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - simplexcode (coded simplex: xxyyzzxxyy...ID)

Description : Returns simplexcode without object ID
======

CREATE OR REPLACE FUNCTION removeobjectid(codelength INTEGER, sim-
plexcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
BEGIN
 RETURN (SUBSTR(simplexcode, 1, LENGTH(simplexcode)-
codelength));

END;
/

54 OTB Research Institute for Housing, Urban and Mobility Studies

======
Acts on TABLE TETRAHEDRON and VIEWS TRIANGLE, EDGE and NODE

Function name : validatestructure
Parameters : nvarchar2 - result (result of validation)

Description : Performs several checks:
check1: Euler count (num of nodes - num of edges + num of triang-
les - (num of tetrahedrons + external volume)
check2: number of triangles equals number of unique triangles
check3: number of triangles equals four times number of tetrahe-
drons
======

CREATE OR REPLACE PROCEDURE validatestructure(result OUT
NVARCHAR2)
IS
 numnode NUMBER;
 numedge NUMBER;
 numtri NUMBER;
 numtri1 NUMBER;
 numtri2 NUMBER;
 numtet NUMBER;
 check1 NUMBER;
 check2 NUMBER;
 check3 NUMBER;

BEGIN
 SELECT COUNT(*) INTO numnode FROM node;
 SELECT COUNT(*) INTO numedge FROM edge;
 SELECT COUNT(DISTINCT ABS(removeobjectid(3,tricode))) INTO num-
tri FROM triangle;
 SELECT COUNT(*) INTO numtet FROM tetrahedron;
 check1 := numnode - numedge + numtri - (numtet+1);

 SELECT COUNT(*) INTO numtri1 FROM triangle;
 SELECT COUNT(DISTINCT tricode) INTO numtri2 FROM triangle;
 check2 := numtri1 - numtri2;

 check3 := numtri1 - 4*numtet;

 IF (check1+check2+check3 = 0) THEN
 result := 'Validation result: OK';
 ELSE
 IF (check1 <> 0) THEN
 result := 'Euler condition not satisfied';
 END IF;
 IF (check2 <> 0) THEN
 result := result||'-'||'Triangles not unique';
 END IF;
 IF (check3 <> 0) THEN
 result := result||'-'||'Error in deriving boundary triang-
les';
 END IF;
 END IF;

END;
/

 OTB Research Institute for Housing, Urban and Mobility Studies 55

======
Acts on TETRAHEDRON

Function name : getneighnourtet1-4
Parameters :
integer - codelength (input. number of digits used for a coordi-
nate (so for xxxyyyzzzxxxyyyz... codelenght=3, not 9!)
nvarchar2 - tetcode (coded tetrahedron: xxyyzzxxyy...ID)

Description : Returns neighbouring tetrahderon by using the tri-
angle and dualtriangle view
======

CREATE OR REPLACE FUNCTION getneighbourtet1(codelength INTEGER,
tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 neighbourtet NVARCHAR2(100);
BEGIN
 select fromtetcode into neighbourtet from triangle
 where tricode=(select dt.dualtricode from dualtriangle dt where
dt.tricode=deriveboundarytriangle1(codelength,tetcode));
 RETURN neighbourtet;
END;
/

CREATE OR REPLACE FUNCTION getneighbourtet2(codelength INTEGER,
tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 neighbourtet NVARCHAR2(100);
BEGIN
 select fromtetcode into neighbourtet from triangle
 where tricode=(select dt.dualtricode from dualtriangle dt where
dt.tricode=deriveboundarytriangle2(codelength,tetcode));
 RETURN neighbourtet;
END;
/

CREATE OR REPLACE FUNCTION getneighbourtet3(codelength INTEGER,
tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 neighbourtet NVARCHAR2(100);
BEGIN
 select fromtetcode into neighbourtet from triangle
 where tricode=(select dt.dualtricode from dualtriangle dt where
dt.tricode=deriveboundarytriangle3(codelength,tetcode));
 RETURN neighbourtet;
END;
/

CREATE OR REPLACE FUNCTION getneighbourtet4(codelength INTEGER,
tetcode NVARCHAR2)
RETURN NVARCHAR2 DETERMINISTIC
IS
 neighbourtet NVARCHAR2(100);
BEGIN
 select fromtetcode into neighbourtet from triangle
 where tricode=(select dt.dualtricode from dualtriangle dt where
dt.tricode=deriveboundarytriangle4(codelength,tetcode));
 RETURN neighbourtet; END; /

56 OTB Research Institute for Housing, Urban and Mobility Studies

 OTB Research Institute for Housing, Urban and Mobility Studies 57

Appendix C Preparing the data structure

-- Rewrite tetrahedron table to achieve consistent outwards
orientation
var a number;
var b number;
exec sorttettable(3,:a,:b);

var c number;
var d number;
exec tettableoutwards(3,:c,:d);

-- Creating function based indexes to support view triangle

CREATE INDEX deriveboundarytriangle1_idx ON tetrahe-
dron(deriveboundarytriangle1(3,tetcode));
CREATE INDEX deriveboundarytriangle2_idx ON tetrahe-
dron(deriveboundarytriangle2(3,tetcode));
CREATE INDEX deriveboundarytriangle3_idx ON tetrahe-
dron(deriveboundarytriangle3(3,tetcode));
CREATE INDEX deriveboundarytriangle4_idx ON tetrahe-
dron(deriveboundarytriangle4(3,tetcode));

-- Creating view triangle with fields tricode and tetcode (tetra-
hedron the triangle is boundary of)

CREATE OR REPLACE VIEW triangle AS
 SELECT deriveboundarytriangle1(3,tetcode) tricode, tetcode
fromtetcode FROM tetrahedron
 UNION ALL
 SELECT deriveboundarytriangle2(3,tetcode) tricode, tetcode
fromtetcode FROM tetrahedron
 UNION ALL
 SELECT deriveboundarytriangle3(3,tetcode) tricode, tetcode
fromtetcode FROM tetrahedron
 UNION ALL
 SELECT deriveboundarytriangle4(3,tetcode) tricode, tetcode
fromtetcode FROM tetrahedron
;

-- Creating view dualtriangle (two columns: triangle and its dual,
both encoded including an inherited objectid

CREATE OR REPLACE VIEW dualtriangle AS
 SELECT t1.tricode tricode, t2.tricode dualtricode
 FROM triangle t1, triangle t2
 WHERE removeobjectid(3,t2.tricode) = -1
*removeobjectid(3,t1.tricode)
;

58 OTB Research Institute for Housing, Urban and Mobility Studies

-- Creating function based indexes to support view tetrahedron-
neighbours

CREATE INDEX getneighbourtet1_idx ON tetrahe-
dron(getneighbourtet1(3,tetcode));
CREATE INDEX getneighbourtet2_idx ON tetrahe-
dron(getneighbourtet2(3,tetcode));
CREATE INDEX getneighbourtet3_idx ON tetrahe-
dron(getneighbourtet3(3,tetcode));
CREATE INDEX getneighbourtet4_idx ON tetrahe-
dron(getneighbourtet4(3,tetcode));

-- Creating view tetrahedronneighbours

CREATE OR REPLACE VIEW tetrahedronneighbours AS
 SELECT tetcode tetcode, getneighbourtet1(3,tetcode) ntet1, get-
neighbourtet2(3,tetcode) ntet2,
 getneighbourtet3(3,tetcode) ntet3, get-
neighbourtet4(3,tetcode) ntet4
 FROM tetrahedron
;

-- Creating view constrainedtriangle (with inherited object id's)

CREATE OR REPLACE VIEW constrainedtriangle AS
 SELECT t1.tricode tricode FROM triangle t1
 WHERE NOT EXISTS (SELECT t2.tricode FROM triangle t2 WHERE
t1.tricode = t2.tricode*-1)
;

-- Creating view edge (without inherited object id's and orienta-
tion)

CREATE OR REPLACE VIEW edge AS
 SELECT DISTINCT deriveabsboundaryedge1(3,tricode) edcode FROM
triangle
 UNION
 SELECT DISTINCT deriveabsboundaryedge2(3,tricode) edcode FROM
triangle
 UNION
 SELECT DISTINCT deriveabsboundaryedge3(3,tricode) edcode FROM
triangle
;

-- Creating view constrainededge (without inherited object id's
and orientation)

CREATE OR REPLACE VIEW constrainededge AS
 SELECT DISTINCT deriveabsboundaryedge1(3,tricode) edcode FROM
constrainedtriangle
 UNION

 OTB Research Institute for Housing, Urban and Mobility Studies 59

 SELECT DISTINCT deriveabsboundaryedge2(3,tricode) edcode FROM
constrainedtriangle
 UNION
 SELECT DISTINCT deriveabsboundaryedge3(3,tricode) edcode FROM
constrainedtriangle
;

-- Creating view node

CREATE OR REPLACE VIEW node AS
 SELECT DISTINCT deriveboundarynode1(3,edcode) nodecode FROM ed-
ge
 UNION
 SELECT DISTINCT deriveboundarynode2(3,edcode) nodecode FROM ed-
ge
;

