MonetDB/SQL Meets SkyServer: the Challenges of a Scientific Database

M. Ivanova N. Nes

R. Goncalves

M. Kersten

Centrum voor Wiskunde en Informatica
Kruislaan 413, Amsterdam
{M.Ivanova, Niels.Nes, R.A.Goncalves, Martin.Kersten} @ cwi.nl

Abstract

This paper presents our experiences in porting the
Sloan Digital Sky Survey(SDSS)/ SkyServer to the state-
of-the-art open source database system MonetDB/SQL.
SDSS acts as a well-documented benchmark for scien-
tific database management. We have achieved a fully
functional prototype for the personal SkyServer, to be
downloaded from our site. The lessons learned are 1)
the column store approach of MonetDB demonstrates
a great potential in the world of scientific databases.
However, the application also challenged the function-
ality of our implementation and revealed that a fully
operational SQL environment is needed, e.g. including
persistent stored modules; 2) the initial performance is
competitive to the reference platform, MS SQL Server
2005, and 3) the analysis of SDSS query traces hints
at several techniques to boost performance by utilizing
repetitive behavior and zoom-in/zoom-out access pat-
terns, that are currently not captured by the system.

1 Introduction

In the recent Lowell report [1] the scientific world
has been identified as a major challenge for database
technology. Current solutions are far from perfect and
rethinking in several dimensions is urgently needed, e.g.
support for ARRAY- based processing in the context of
SQL [17].

A scientific database can be characterized as a large
data-warehouse, where ad-hoc querying is prevalent.
However, unlike its administrative business counterpart,
the data is much more noisy, requires extensive numeric
processing, and calls for fast extract/transform/load op-
erations in the scientific work flow. The scientific
archive we are working with is the Sloan Digital Sky
Survey(SDSS)[14], an astronomy survey aiming at cre-
ating a digital map of a big part of the Universe. The
survey has already collected several terabytes of data.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

Crossing the great divide between database and as-
tronomy research has been pioneered by J. Gray in the
SkyServer project[6], which provides public access to
the SDSS warehouse for astronomers and a wide pub-
lic. After a decade of disillusions working with emerg-
ing persistent object-oriented languages (C++), the Sky-
Server team convincingly showed the potentials of a
SQL-based solution, challenging the SQL server team
to support the complexity of a real-life astronomy ap-
plication.

Despite the wide availability of the data and applica-
tion logic, few database groups have made an attempt
to port the application to their DBMS of choice. There
have been informal reports on attempts to get it work-
ing on Oracle and DB2, but none has reached a level
of maturity to compare with and learn from. Often the
SQL-dialect is not supported, or calls for missing fea-
tures in the kernel or optimizer. Likewise, financial con-
straints may hinder setting up a multi terabyte database
in a research lab.

The MonetDB/SkyServer project has been set up as
an experimental study of large scale databases based
on the MonetDB platform [9], an open-source database
system developed for over a decade at CWI. The goal of
the project is to provide a counter proof for the MS SQL
Server implementation and to act as a platform for de-
veloping novel algorithms to support the data manage-
ment challenges in the domain of scientific databases.
In this paper we address the following issues: 1) func-
tional improvements in MonetDB and adaptations of the
original SkyServer application to get it up and running,
2) the initial performance figures, and 3) the analysis
of query traces that gives insights about the system us-
age and shows opportunities for performance improve-
ments.

The SkyServer schema was designed around the MS
SQL Server engine and application load. Auxiliary ta-
bles and covering indices are heavily used to speed up
important query classes and even to compensate for lim-
itations encountered in the MS SQL Server query opti-

IEE |-:

COMPUTER
SOCIETY

mizer. A large collection of application specific func-
tions are defined as SQL-functions.

We aimed at porting SkyServer as closely as possi-
ble and also at performing all experiments on the same
hardware platform. This required significant invest-
ment in developing features missing in MonetDB/SQL.
Shortly after our first porting attempt, it became clear
that a 10% space reduction is easily attainable without
significant performance loss, due to the column store
approach in MonetDB.

In parallel, we extensively studied the query logs of
SkyServer from August 2006. This sequence of 1.3M
queries was analyzed for repetitive patterns and hints
for optimization. Aside from the inherent functional
structure of the website [15], it elicits a user behavior
amenable to multi-query optimization.

The experience in SkyServer porting hints at a num-
ber of research topics calling for our attention. Multi-
query optimization in a scientific field is less complex
than foreseen. The zoom-in/zoom-out behavior and
querying focusing on the same area can easily be rec-
ognized and exploited for pre-caching. Usage statistics
reveal that some pieces of data are much more inter-
esting for the scientists than others. That calls for in-
vestigating indexing techniques differentiating data de-
pending on the usage frequency. Since SQL functions,
including table-valued ones, are intensively used, their
optimization becomes important for the system perfor-
mance. Some of the possible approaches are caching
and re-using results, and function in-lining.

One of the main purposes of SkyServer is to sup-
port astronomers in their research activity. The latter
includes a variety of data mining tasks, such as finding
interesting objects, correlations, and classifications. Be-
sides retrieving the stored data, data mining algorithms
require high performance, an area where MonetDB is a
promising candidate.

The rest of the paper is organized as follows: the
next section presents the main distinguishing proper-
ties of MonetDB/SQL. Section 3 describes our experi-
ences in porting the SkyServer application, and Section
4 presents our observations from the query log analysis.
The evaluation of the SkyServer port in terms of func-
tionality and performance is presented in Section 5. We
discuss directions for future work in Section 6 and con-
clude in Section 7.

2 MonetDB/SQL

In this section we briefly introduce the MonetDB
server and SQL compiler. A growing class of database
engines are geared at exploitation of a column-oriented
store [16, 2]. In this field, relational tables are broken

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

vertically, with each column representing a single rela-
tional attribute. This approach leads to a much simpli-
fied system architecture[3] and opens routes to increase
performance through compression[18]. The benefits
come from a better streamlining of the data flow from
disk through memory into the CPU caches. Column-
oriented data stores are particularly beneficial in data
warehousing and data mining applications, which are
often used on scientific databases. The primary reason
is that most applications do not need the hundreds of
columns of a relational table with scientific measure-
ment data, but merely require looking at just a few at
a time. The immediate benefit of the column store
approach is that only data relevant for processing is
fetched from disk.

MonetDB is a fully functional column store devel-
oped over a decade at CWL. It consists of a two-layered
architecture of a database server and a number of front-
ends. The server is addressed in a proprietary language,
called MonetDB Assembly Language(MAL). MAL is
a relational algebra language derived from MIL[3]. It
supports a large collection of relational primitives, func-
tions, and easy linkage with user defined functions. The
operators work on the basis that each produces a mate-
rialized result. Moreover, the operators encode runtime
optimization decisions, which in other systems are part
of a cost-based optimizer. For example, the MAL join
operator makes a runtime decision about utilization of
additional indices, exploitation of sort-orders, and data
type specific opportunities. It results in encapsulation
of several hundreds of highly tuned join algorithms.

This approach significantly simplifies the front-end
compilers. The SQL front-end parses SQL queries and
compiles them into MAL plans exploiting the SQL lan-
guage and schema semantics. It should (and can) only
focus on the volume reductions achievable. The front-
end compiler also selects MAL optimizer components
to be activated, e.g. common expression elimination,
dead code removal, parallelism, etc.

In this way a three-tier optimizer architecture is
achieved with a clear division of tasks. The bottom
layer focuses on operational optimization using the ac-
tual state of the machine. The top layer is geared at
exploiting the schema semantics, and the middle layer
is geared at tactical decisions. It is the place to decide
on e.g. (pre-)caching results, scheduling, etc. For more
information we refer to the MonetDB Version 5 docu-
mentation at http://monetdb.cwi.nl/.

3 Porting experiences

Data management of SkyServer is provided by MS
SQL Server. Next, we describe our experiences in port-

IEE |-:

COMPUTER
SOCIETY

Photo

Tiling |
[specobjan_| Spectro

SpecPhotoAll

QSO

Neighbors

PhotoObjAll

| PhotoAuxAll ‘ PhotoTag ‘

Meta

Figure 1. SDSS Database Schema

ing MySkyServer to the MonetDB platform. MySky-
Server is a sub-project of SkyServer providing a 1%
subset of its data for personal download and experimen-
tation. The port and its evaluation were done on the
currently available MyBestDR4 data set!.

Porting a sizable application to a new database plat-
form, especially a research vehicle, is a major undertak-
ing. Unlike its commercial counterparts, bits and pieces
of the open-source version have not been developed to
the fullest extent, let alone tested in all areas. Hence,
SkyServer porting gave a strong impulse in developing
the missing MonetDB features and also served as a se-
rious platform for evaluating system functionality and
performance.

3.1 SkyServer schema

The SkyServer schema is a 200-page document with
79 tables, 40 views, and 156 functions of which 29 are
table valued functions. By and large, any team involved
in porting the application is faced with a substantial ef-
fort to get it to run.

The schema, shown in Figure 1, is organized in five
sections among which PHOTO and SPECTRO contain
the most important factual data from the SDSS sur-
vey. The PHOTO section has a star-flake structure cen-
tered in the PHOTOOBJALL table and its companion
PHOTOAUXALL. This table contains 446 columns,
which already stresses the capabilities of most (com-
mercial) DBMSs. A single record occupies already
1824 bytes, and most of the fields are real numbers rep-
resenting CCD measurements. The table contains more
than 270 million rows. The main table of the SPECTRO
part of the schema contains the spectrum measurements
for approximately 1% of the photo data.

In order to handle this demanding application, the
MS SQL Server implementation uses a variety of in-
dexing techniques and auxiliary tables. All tables have
primary and foreign key constraints supported by B-
tree indices. In addition, many tables have covering in-
dices on one or more columns, speeding up searches if

'Meanwhile, a new data set MyBestDRS was released.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

any of the columns are included in a WHERE clause.
Several auxiliary tables are used to speed up impor-
tant classes of queries. For example, the NEIGHBORS
table groups together pairs of SDSS objects within
an a priori given distance bound of 0.5 arcminutes.
This results in approximately 9 closest neighbors pre-
computed and stored per object. The PHOTOTAG ta-
ble is a vertical partition of the PHOTOOBJALL table
that stores redundantly its most popular 100+ columns.
This redundancy aims to alleviate the record-based ac-
cess problem, i.e. that the entire record of hundreds
of columns needs to be read from disk even if just a
few columns are needed. Often, queries select corre-
lated columns from the photo- and spectrum data tables.
Those queries are sped up by a pre-computed join stored
in the SPECPHOTOALL table. To help the optimizer in
some situations that are hard for automatic detection,
auxiliary tables are introduced to lead the selection on
the main tables.

3.2 Schema adaptation

The porting started with a schema adaptation which
required MS SQL Server specifics in the schema defi-
nition to be cast to the standard SQL:2003 which Mon-
etDB aims to adhere to. Examples include data types
(’datetime” corresponds to “timestamp” in the stan-
dard), SQL extensions specifying hints for data stor-
age (PRIMARY KEY CLUSTERED), etc. Some identifiers
chosen in SkyServer schema clashed with SQL:2003 re-
served words, such as ”’dec”, "match”, and row”.

The conversion of the programmable part of the
schema from MS SQL Server syntax into a SQL:2003
syntax was time consuming and required some manual
work. This included tasks from simple replacement of
string concatenation (’+’ vs. the standard ’||”) to imple-
mentation of MS specific operations and functions, such
as bit-wise logical AND and OR and the STUFF function.

Besides the formal syntax changes, the database
schema was logically modified to some extent. Uti-
lizing our observation about data redundancy and the
advantages of column based storage of MonetDB, we
replaced some of the tables replicating data for perfor-
mance purposes with views. We evaluated the bene-
fits of this replacement by investigating its effect on
the storage requirements and query performance. As
a result PHOTOTAG and SPECPHOTOALL tables were
dropped from the schema saving approximately 10%
of the storage needs. However, the NEIGHBORS table
based on computed distances between objects proved to
be much more efficient than the computed view and we
kept it as it is. An another modification is that we lim-
ited the index support to primary and foreign keys, and

IEE |-:

COMPUTER
SOCIETY

did not create the covering non clustered indices, intro-
duces in the original schema for performance purposes.

3.3 Adaptation of functionality

We implemented in MonetDB/SQL the SkyServer
functions related to the query capabilities, leaving web
site related functionality for the future. A major change
with respect to the original schema is the implementa-
tion of spatial access methods. While SkyServer sup-
ports three methods: HTM, Zones, and Regions[5], we
implemented only the Zones algorithm, a choice justi-
fied by results reported by the SkyServer team[4]. In
addition to being easily implementable entirely in SQL,
the method brings benefits like avoiding the need for a
foreign HTM library, and enabling the use of an SQL
optimizer. This choice provided successfully spatial ac-
cess functionality needed by the majority of the query
log, leaving aside only a small percentage of queries
that call some of the methods in the HTM library di-
rectly.

Porting SkyServer exposed as major deficiency in
MonetDB the lack of Persistent Stored Modules (PSM)
functionality. Our intention to stay as closely as pos-
sible to the standard drove us to implement this func-
tionality in the SQL compiler. The clean separation
of the SQL compiler and MonetDB server proved piv-
otal in reaching a functional working version within just
two months. The lack of SQL bindings to C-functions
was equally easily resolved. In order to provide a plat-
form for comparable experiments we ported the en-
hanced MonetDB version onto the same Windows plat-
form where the SkyServer distribution was running.

4 Query log analysis

In this section we present our findings over the 1.3M
query log. The main purpose of the log analysis was
to obtain properties and common patterns of usage that
suggest hints for increasing the performance. The anal-
ysis was performed over a trace of 1.2M queries ob-
tained by cleaning out the erroneous queries, and those
rejected by the server due to violation of execution time
or query cardinality limitations.

4.1 Spatial properties

The first observation is that spatial properties of the
data are intensively used in the queries: naturally the
celestial objects are identified and extracted based on
their position in the sky defined typically in the equato-
rial coordinate system as a pair of right ascension and
declination. As a result 83% of the queries contain calls

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

to some of the functions providing spatial access, such
as FGETNEARBYOBJEQ, FGETOBJFROMRECT, etc.
Hence, it is very important that the system provides an
efficient implementation of the spatial access functions.

4.2 Hot data sets and common pat-
terns

Even though the SkyServer schema contains more
than 70 tables, a relatively small core of photo and spec-
trum tables is accessed in the queries. Furthermore, the
queries on those tables follow a limited number of pat-
terns [11].

We also observed a correlation between entry points
in the SkyServer web site interface and the query pat-
terns in the SQL cache. One of the most common
query patterns responsible for approximately 25% of
the queries, is directly generated by the interface form
for radial search, while several others are its variants.
The query, illustrated below, selects the most popular
properties of primary photo objects in a given sky loca-
tion.

SELECT p.objID, p.run, p.rerun,
p.camcol, p.field, p.obj, p.type,

FROM fGetNearbyObjEq(195,2.5,3) n,
PhotoPrimary p

WHERE n.objID=p.objID

LIMIT 10;

The concentration of query activity around a small
number of tables and of a limited number of patterns,
hints at a workload-based optimizer infrastructure. In-
stead of providing a general optimizer with thousands of
rules covering all possible queries, the optimizer in such
a scientific application can be tuned towards the work-
load. This idea aligns with the MonetDB’s optimizer
toolkit approach, where specific optimizer modules can
be activated by the front-end compilers. This way, the
optimizer avoids exploring large portions of the space
of possible query plans.

All areas of the SDSS footprint are visited in a
month, but not all sky locations are equally popular, as
illustrated in Figure 2. The most often accessed area,
with more than 10K queries per month, corresponds to
the default values in the web form for radial search. Evi-
dently, interesting places described on the web site also
have a high probability of access with more than 100
queries per month. Caching and re-usage of such results
is feasible and can be learned without DBA interaction.

The divergence in the access frequency of spatial
areas hints at an opportunity to speed up the spatial ac-
cess by utilizing indexing methods providing fast access
to popular data, such as crackers [7].

IEE |-:

COMPUTER
SOCIETY

Spatial Access Distribution August 2006

80
60
40
20

Declination
o

20 |
-40
-60 LI LY s . . R TPy .
-80 - - ; :-
0 90 180 270 360
Right Ascention

(0-100] (1000-10000]
(100-1000] >10000

Figure 2. Query coverage on the sky

4.3 Inexperienced usage

Inexperienced user queries can be a real danger for
a scientific database. We observed a statistically sig-
nificant number of queries prematurely terminated by
the server (due to running against the CPU time limit)
reflecting inexperienced behavior. For example, due
to the lack of a join condition, many queries compute
Cartesian product of the 200M-row PHOTOOBJALL ta-
ble with itself or with some of its correlated tables, such
as the 7G-row PHOTOPROFILE table. Some queries
contain predicates with doubtful use, such as comparing
the mean flux (a real number) of an object to be equal
to an integer value. We also encountered function calls
with badly chosen parameters, e.g. negative right as-
cension, or coordinates in the Southern hemisphere that
are not in the footprint of the SDSS survey. A number
of queries with low selectivity have very large cardinal-
ity and generate a lot of network traffic. While this may
be the real intention in some cases, in others it is proba-
bly due to mistakes. The above observations show that
the time and cardinality limits put on query execution in
SkyServer are indeed helpful.

4.4 Manual and script-based interac-
tion

We observed two types of interactions to the server:
manual and script-based. The manual traces reflect
user interaction with relatively long inter-query inter-
vals. Such a query sequence is often gradually refined
in terms of more selective predicate values or adjust-
ment of spatial parameters that takes the form of zoom-
in/zoom-out behavior.

Script-based behavior is characterized with very
short inter-query intervals and a small standard devia-
tion. The script-based queries constitute more than 84%

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

of the trace log when we set the threshold of those in-
tervals to 15 seconds. They come in two flavors: sky
scanners, traversing big areas of the sky, and point trac-
ers, focusing on the same area. Depending on the logic
in the script the system can predict future queries. Such
predictions can be used to steer caching and re-using of
query results.

4.5 Spatial overlap

We observed that many queries have some kind of
spatial overlap relationship such as equality, contain-
ment, or overlap of the accessed sky areas. The analysis
of 1M queries with valid parameters of their spatial ac-
cess functions showed that 24% of them participate in
some overlapping sequence where the sequences were
considered on a day by day basis. The sequence length
varies from 2 to 6246 steps with a mean value of 9.4
elements.

We considered five types of relationships between
two subsequently queried spatial areas:

e cquality ’=’
e containment in previous or zoom-in T’
e containing the previous or zoom-out O’.

e a version of zoom-out that is contained in earlier
queries 0’

e overlap 'x’

From a query execution point of view, the equality
and zoom-in patterns mean that spatial search of the cur-
rent query can be completely answered using the results
from the previous query spatial search. Zoom out and
overlap patterns allow for reusing the previous result set
for partially answering of the current search but also re-
quire a new search for the uncovered part of the spatial
area.

Overlapping patterns like *=lo=I" and ’=lolo===0’
are typical for traces of manual interaction. Long equal-
ity patterns like *======" characterize query sequences
generated by script-based interaction.

The detailed pattern statistics obtained over 1M spa-
tial queries is shown in Table 4.5 together with the dis-
tribution for pairs of patterns. The prevailing pattern
is equality (71%), followed by overlap (18%). The re-
maining 11 % describe zoom-in/zoom-out behaviour.
The big percentage of an equality relationship among
subsequent queries suggests a multi-query optimizer
that reuses the result of spatial search functions.

IEE l-i

COMPUTER

SOCIETY

Table 1. Frequency of overlapping pat-
terns

Pat | Total Following symbol
= I o X
= | 280340 | 262019 | 3594 | 7704 | 2560
I 17063 7877 213 | 2171 45
0 186 29 127 4 2
(¢} 23950 4577 | 11097 | 522 | 4406
X 70646 3421 1717 | 152 | 33049

5 Experiments and evaluation

Data management of SkyServer is provided by MS
SQL Server under Windows. To ensure comparabil-
ity of the results we used the Windows installation for
MonetDB5/SQL. The experiments ran on a machine
with AMD Opteron 246 processor and 4GB RAM un-
der Microsoft Windows Server 2003.

5.1 Data load

We ported the MyBestDR4 data set with approx-
imate size of 1.5 GB as SQL Server database into
MonetDB/SQL. The data was exported from the source
DBMS through its bulk copy utility. Bulk loading of
the tables carried the expected problems, such as en-
coding of specific values of string and text columns, and
mismatch of some foreign key values. It took about 7
minutes where most of the time was spent in constraint
checking. This is comparable with bulk import into MS
SQL Server on the same machine which also took about
7 minutes.

The image size of the MyBestDR4 data set loaded in
MonetDB is 850MB, which is approximately half the
size of the MS SQL Server database. The reason is
that redundant tables and covering indices are not stored
at all, while the primary indices are stored only as a
minimal sub-structure from which the entire indices are
re-created on-the-fly when columns are touched for the
first time.

5.2 Functionality

To evaluate the functionality provided by our imple-
mentation, we used two sources: the list of data mining
queries in [6] (to be called a ’reference list’), and a sub-
set of the query log. After developing some missing
standard and MS-specific features, MonetDB/SQL can
execute all the queries in the reference list, except query

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

Test Set Queries

4033 870

T T T T T T T T T T T T T
500 - 1
MonetDB 5
MS SQL Server
MS SQL Server Tuned v

400 | -

Time in msec

300 |~ -1

H_piklLin |I 1 || I.I-I"

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

o

Figure 3. Elapsed times of the test set
queries

12 that contains a direct call to a method from the HTM
library which is not currently supported.

We also ran a subset of 20K queries from the query
log after we removed the queries irrelevant in our set-
tings, such as queries retrieving server name or access-
ing SkyServer personal data storage MYDB. The subset
was formed by randomly selecting a thousand queries
for each of 20 days. SkyServer with MonetDB could
execute 98% of this subset. The remaining queries uti-
lize expressions in their GROUP BY clause, a feature
supported in MS SQL Server, but not included in the
standard.

5.3 Performance

In order to test the performance, we selected queries
from the reference list(Q1-Q6), examples on the web
site(Q7-Q9), and the most frequent patterns in the query
log(Q10-Q14).

We made two measurements of the elapsed times in
the reference platform: First in MyBestDR4 database
which formed part of the distribution. Then a tuned
database was used where a number of statistics and ad-
ditional covering indices were created according to the
recommendations given by the database engine tuning
advisor run against the test set queries. The indices
added about 100MB to the database size.

The results shown in Figure 3 are promising. The
elapsed times of MonetDB/SQL implementation are
comparable and often better than the reference system.
The main reasons are as follows: the experimental data
set fits entirely in main memory and thus no I/O is in-
curred by the queries. Furthermore, due to the column
store of MonetDB, the execution engine touches only
columns relevant to the query. For example, query Q7

IEE I-'

COMPUTER

SOCIETY

from the test set shown bellow touches only 5 out of 59
columns of SPECOBJALL table.

SELECT specObjID, z,
FROM SpecObj
WHERE (SpecClass=fSpecClass ('QS0")
or SpecClass=fSpecClass ('HIZ_QS0"))
and z between 2.5 and 2.7
and zConf > 0.90;

zConf, SpecClass

The execution plan in MonetDB checks the predi-
cates on the individual columns and joins the interme-
diate results to form the final result set. The execution
of the same query in MS SQL Server starts with a non
clustered index scan that covers all columns but ZCONF.
To retrieve this last column, a clustered index seek is
performed.

Longer elapsed times in MonetDB for some queries
can be attributed to the following factors: due to the
column store, join of columns is needed to produce the
query result; MonetDB uses a sequential scan for range
queries, in contrast to the wide use of B-trees in the ref-
erence platform; and finally, our optimizer is under de-
velopment and sometimes produces sub-optimal plans.
All these factors contribute to the slow execution of
query Q11, illustrated in section 4.2. For example, the
spatial access function scans the columns with spatial
values, and the query touches 19 columns in the basic
PHOTOOBJALL table which incurs corresponding joins
to re-create the result records.

We noticed that queries for which MonetDB is faster
than the initial MS SQL Server database, such as Q3,
Q5, Q6, and Q8, performed a high number of I/O oper-
ations mainly due to non clustered index scan followed
by clustered index seek. Those queries improved sub-
stantially in the tuned database, where appropriate cov-
ering indices existed for them. An interesting excep-
tion is query QS, for which the index used in the tuned
database covers nine out of ten columns and thus does
not avoid clustered index seek needed to retrieve the last
column. After manual re-creation of a fully covering in-
dex, the query became 8 times faster than in the initial
database.

To summarize, the column store approach of Mon-
etDB showed to be capable of providing performance
comparable to the reference platform for the 1GB data
set. Tables with hundreds of columns are not a big is-
sue, taking into account that the majority of the queries
touch a limited number of columns.

6 Outlook

The evaluation of the SkyServer application port and
the observations from the query log raise the following

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

questions: 1) how can we further improve the perfor-
mance of the current MySkyServer on MonetDB plat-
form; 2) how can we scale the application to the full
2TB size, and 3) can we provide high performance as
required by data mining applications in astronomy re-
search?

6.1 Improving performance

The measurements presented in the previous section
were obtained using out-of-the-box MonetDB installa-
tion without any special tuning to the application. There
are several directions to boost the performance further.

The observed relatively limited number of query pat-
terns leads to the idea for a workload-driven optimiza-
tion framework. Such a framework allows tuning the
optimizer to the needs of a specific scientific applica-
tion and saves on optimization time needed to support
general query classes.

Analysis of the query log showed that many queries
share the same pattern, differing only in constant values,
or have substantial common sub-expressions. This ob-
servation hints at multi-query optimization as a promis-
ing approach to improve performance and increase
query throughput.

The usage patterns observed in the manual in-
teractions look like felescoping the database where
zooming-in/ zooming-out is applied to the sky area of
interest. In the script-based interactions, many queries
retrieve the same sky location. This points our attention
to materialization and re-use of the results of spatial ac-
cess functions. Since MonetDB materializes all inter-
mediate results, this translates into extending the query
plan space to include re-use of materialized results and
applying a caching advise policy that specifies which
results to keep and for how long.

Important functionality in the application is imple-
mented as SQL functions. In addition to materializing
function results, in-lining of SQL functions needs to be
investigated that would allow the SQL optimizer to per-
form a better job.

As it was shown for the queries with low perfor-
mance, MonetDB currently uses sequential scan to sup-
port range-based queries. Although the scan of a sin-
gle column in main memory has competitive perfor-
mance for small to average size columns, there is a
room for improvement by enhancing the MonetDB in-
dex structures. The emerging cracking scheme, which
self-organizes based on data access frequency, seems
particularly applicable[10, 7].

IEE |-:

COMPUTER
SOCIETY

6.2 Partitioning and distribution

The current prototype works with 1% of the Sky-
Server data set that fits in the main memory of modern
PCs. To handle the complete 2TB data set is a chal-
lenging task for our implementation, whose develop-
ment was focused around efficient processing of data in
main memory. To provide the scalability and speed-up
required by the full-size SkyServer application, we cur-
rently investigate two directions: partitioning and dis-
tribution.

In a single server scenario we need a mechanism to
localize and load into main memory the smallest pos-
sible data subset which is relevant to the query. In
addition to the indexing techniques mentioned above,
data partitioning can be used for maximum scale-up and
speed-up. This means that, along with vertical frag-
mentation in the basis of MonetDB design, some form
of horizontal fragmentation is needed. There are sev-
eral alternatives for this. Horizontal data partitioning in
record store systems is a well established research area
whose results are used in commercial DBMSs. Given
the limited number of query patterns, another possi-
bility is to apply the workload-based categorical parti-
tioning suggested for SkyServer database in [13]. The
cracking scheme described above may also prove ben-
eficial to generate partitions. We need to investigate
how to efficiently combine these methods with verti-
cal fragmentation, since processing of a partitioned col-
umn does not remove the need of joining the result with
other, probably full-size, columns used in the query.

In a multi-server scenario setting, distribution and
replication can provide further scale-up and speed-up.
Distributed database technology has a long standing re-
search tradition in business applications. This applica-
tion domain had a strong influence on the techniques de-
ployed for transaction management and query process-
ing. The scientific domain, however, often has simpler
transaction requirements. Timely propagation and non-
destructive additions are more common than e.g. the
real-time behavior of financial applications. Recent re-
search on middleware on proactive measures in partially
replicated databases could provide a technology bridge
between both domains [12, 8].

6.3 Data mining

The SkyServer project bridged the first gap between
the two fields of astronomy and database research. We
made great progress in porting this large application
to MonetDB/SQL, but aim at a much higher goal to
help astronomers in their search for new astronomical
events, objects, phenomena, etc. The unique features

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007 IEEE

of MonetDB/SQL, such as main memory DBMS, ver-
tical fragmentation and cache aware processing, will
open a number of research directions currently not pos-
sible with the disk based system used by the SkyServer
project.

One of the envisioned directions of research is as-
tronomical data mining. It looks beyond single stars
or galaxies, but tries to find correlations between astro-
nomical events and to make classifications. One of the
approaches is cracking the query tasks into a sequence
of (interdependent) sub-queries to steer scientific data
mining algorithms and to interactively explore science
data. The sub-queries can be controlled by user interest,
anticipated results, and the resource costs.

7 Conclusions

Scientific databases pose new challenges to the
database community. Even the porting of an existing
application to your favorite DBMS may take several
months. Let alone if you start from a functionally in-
complete SQL implementation.

In this paper we have reported on our experiences
along this track. A fully functional implementation of
MySkyServer on MonetDB/SQL has been realized. The
performance figures show that a column store approach
can provide competitive performance and is promising
for the scientific domain.

Unlike the production system based on Mi-
crosoft SQL Server, the MonetDB open-source plat-
form provides the necessary context for further re-
search. It can be obtained from our project website
http://monetdb.cwi.nl.

There are clear roads for in-depth studies and im-
provements in the way we support SkyServer. For ex-
ample, the query zoom-in/zoom-out behavior opens up
the road to develop algorithms for cache management
utilizing this behavior for query optimization. The fo-
cus of attention gives proper handles to distribute and
locally cache a small portion of the database. Usage
analysis shows possibilities for improvements we want
to investigate.

Acknowledgments

The authors would like to thank to the SkyServer
team for delivering the data. This work was supported
by Bsik Bricks program.

IEE |-:

COMPUTER
SOCIETY

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]
(15]

(16]

(17]

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)

S. Abiteboul, R. Agrawal, P. Bernstein, et al. The Low-
ell database research self-assessment. Commun. ACM,
48(5):111-118, 2005.

P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. CIDR,
Asilomar, CA, USA, 2005.

P. A. Boncz and M. L. Kersten. MIL primitives for
querying a fragmented world. The VLDB Journal,
8(2):101-119, October 1999.

J. Gray, M. A. Nieto-Santisteban, and A. S. Szalay.
The Zones algorithm for finding points-near-a-point
or cross-matching spatial datasets. MSR-TR-2006-52,
April 2006.

J. Gray, A. S. Szalay, A. R. Thakar, G. Fekete,
W. O’Mullane, M. A. Nieto-Santisteban, G. Heber, and
A. H. Rots. There goes the neighborhood: Relational
algebra for spatial data search, April 2004.

J. Gray, A. S. Szalay, A. R. Thakar, P. Z. Kunszt,
C. Stoughton, D. Slutz, and J. vandenBerg. Data min-
ing the SDSS SkyServer database. MSR-TR-2002-01,
January 2002.

S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In Proc. CIDR, Asilomar, CA, USA, January
2007.

L. Irdn-Briz, H. Decker, R. de Juan-Marin, F. Castro-
Company, J. E. Armendariz-Ifiigo, and F. D. Mufioz-
Escoi. Madis: A slim middleware for database replica-
tion. In Euro-Par, pages 349-359, 2005.

M. L. Kersten. Database architecture fertilizers: Just-
in-time, just-enough, and autonomous growth. In Y. E.
Toannidis, M. H. Scholl, et al., editors, EDBT, volume
3896 of Lecture Notes in Computer Science, page 1.
Springer, 2006.

M. L. Kersten and S. Manegold. Cracking the Database
Store. In Proc. CIDR, pages 213-224, Asilomar, CA,
USA, January 2005.

T. Malik, R. Burns, and N. Chawla. A black-box ap-
proach to query cardinality estimation. In Proc. CIDR,
Asilomar, CA, USA, January 2007.

E. Pacitti, C. Coulon, P. Valduriez, and M. T. Ozsu. Pre-
ventive replication in a database cluster. Distributed and
Parallel Databases, 18(3):223-251, 2005.

S. Papadomanolakis and A. Ailamaki. Autopart: Au-
tomating schema design for large scientific databases
using data partitioning. In SSDBM, pages 383-392.
IEEE Computer Society, 2004.

Sloan Digital Sky Survey, http://www.sdss.org/.

Sloan Digital Sky Survey / SkyServer,
http://cas.sdss.org/.

M. Stonebraker, D. J. Abadi, A. Batkin, et al. C-Store:
A Column-oriented DBMS. In Proc. VLDB, Trond-
heim, Norway, 2005.

A. R. van Ballegooij, R. Cornacchia, A. P. de Vries,
and M. L. Kersten. Distribution rules for array database
queries. In Proceedings of the International Workshop
on Database and Expert Systems Application, pages
55-64, Copenhagen, Denmark, August 2005.

0-7695-2868-6/07 $25.00 © 2007 IEEE

[18] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Super-

scalar RAM-CPU cache compression. In Proceedings
of the International Conference of Data Engineering
(IEEE ICDE), Atlanta, GA, USA, 2006.

IEE l-:

COMPUTER

SOCIETY

