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7.1 Introduction 
Constraints are important in every GI modelling process but until now have 
received only ad hoc treatment, depending on the application domain and the tools 
used. In a dynamic context, with constantly changing geo-information, constraints 
are very relevant; any changes arising should adhere to specified constraints, 
otherwise inconsistencies (data quality errors) will occur. In GIS, constraints are 
conditions that must always be valid for the model of interest. This chapter argues 
that constraints should be part of the object class definition, just as with other 
aspects of that definition, including attributes, methods and relationships. 
Furthermore, the implementation of constraints (whether at the front-end, database 
level or communication level) should be driven automatically by these constraints’ 
specifications within the model. But, this is not possible yet, so this chapter will 
describe some implementation steps as interactively executed.  

In certain applications some functions (linear programming in spatial decision 
support systems, survey least squares adjustment, cartographic generalisation, 
editing topologically structured data, etc.) partially support constraints. However, 
the constraints are not an integral part of the system and the constraint specification 
and implementation are often one and the same, and deep in the application’s source 
code. The result is that the constraints are hidden in some subsystems (with other 
subsystems perhaps unaware of these constraints) and it may be very difficult to 
maintain the constraints in the event that changes are required. This is true for (G)IS 
in general, but is especially true for dynamic environments, with changing objects, 
where the support of constraints is required but presents a challenge. Example 
applications include cadastral or topographic data maintenance, Virtual Reality 
(VR) landscape design, and Web feature service. 

7.1.1 Context 
There are situations where certain types of constraints are well supported. Domain 
value constraints and referential integrity constraints in relational DBMSs (Date and 
Darwen, 1997) are standard functionalities. For example whenever one object refers 
to another via a foreign key, the DBMS checks that the referred object exits, 
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otherwise the transaction or change will not be committed. Another more specific 
GIS example is the support of topological constraints, such as certain types of 
objects, which may not overlap. Topological constraints can be supported within the 
DBMS, by, for example, LaserScan Radius topology (2003) and Oracle spatial 10g 
(2003) with topology, or they can be supported at the ‘middleware’ level such as in 
ESRI (2002). Within the context of VR systems, constraints are often implemented 
as the behaviour of objects. An illustration is the constraint ‘two trees (objects) 
cannot grow on the same location’, which is realised (hard coded in the edit 
environment) by collision detection, a well-known computer graphics technique. 
Referential integrity, topological correctness and collision detection are just a few 
examples of constraint types, but the available solutions may only work in certain 
subsystems. Other subsystems may not be aware of these and may have different 
‘opinions’ of correct data. So constraints must be implemented at various levels (or 
subsystems), including application (edit, simulate,…) level, data exchange 
(communication) level and database level.  

Although support for integrity constraints is patchy, there has been some research 
in this area. Primarily, integrity constraints are related to data quality (Hunter, 1996) 
and the source of errors (Collins and Smith, 1994) such as during data collection, 
data input, data storage, data manipulation, data output and the use of results. 
Cockcroft (1997) was one of the first researchers presenting a taxonomy of (spatial) 
integrity constraints. A contribution of the current chapter is a refinement of this 
taxonomy. Cockcroft (2004) advocated an integrated approach to handling integrity, 
based on a repository that contains the model together with the constraints. 
Cockcoft (2004) concluded that the constraints should be part of the object class 
definition, similar to other aspects of the definition. The repository is used both by 
the database and the application as a consistent source of integrity constraints. The 
current chapter continues these investigations into the possibilities of managing 
constraints in an integrated system-wide manner and adds data communication as an 
additional part of the system where constraints are important. It should be noted that 
much of the presented material is still a ‘vision’ and complete implementation is 
still in progress, though important parts have been proven.  

7.1.2 Chapter overview 
This chapter demonstrates the need for the integral support of constraints through 
four quite different cases: a VR system for landscape design (Section 7.2), cadastral 
data maintenance (Section 7.3), topographic data maintenance (Section 7.4) and a 
Web feature service (Section 7.5). All four applications deal with dynamic 
situations. The landscape design has an explicit temporal aspect, namely the 
simulation of tree growth. During both the initial design and the simulation these 
constraints should be met. In the case of the cadastral application, when parcels are 
changed, constraints have to be satisfied otherwise this could lead to 
inconsistencies, such as parcels overlapping or lacking an owner. Not further 
discussed, is in-car navigation using a topographic base map: if the moving point 
belongs to a car, a constraint could be that the point should always be on, or near, a 
road or related features, such as a parking lot. Based on the different constraints, 
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experiences in the four cases (and the relevant literature), a classification of 
constraints is given in Section 7.6. Constraints can be related to the properties of an 
object itself and can also be based on relationships between objects. Constraints 
such as ‘a tree must always be green’ or ‘the salary of a staff member should be 
higher or equal to the minimum salary’ illustrate constraints based on properties of 
only one object. Examples of constraints considering relationships between two 
objects are ‘a Yucca tree must never stand in water’ and ‘the salary of the boss must 
always be higher than the salaries of the other staff’. These constraints require 
formal description and definition. Section 7.7 discusses the formal specification of 
constraints within a (conceptual) model. The implementation of constraints, with 
focus on the DBMS, is described in Section 7.8. This chapter’s last section 
concludes with the principal results and proposes further research directions. 

7.2 Constraints in a landscape design VR system 
With SALIX-2 (van Lammeren et al., 2002) a user can interactively introduce new 
objects (trees, bushes, etc.) to a 3D landscape. As is the case in reality, sometimes 
new objects have to be a certain distance from each other (for example, two trees 
have to be planted not closer that 3 m), from other objects or are even not in an area 
at all, for example a tree on a road (Louwsma, 2004). 

7.2.1 SALIX background 
Digitally supported landscape design contains intriguing challenges. These 
challenges have to do with modelling the changes in time of the architectural 
primitives (mainly trees and shrubs) and modelling the relation between 
architectural objects, their architectural primitives and their spatial configuration. 
Virtual Reality (VR) tools such as VR-construction sets and VR-viewers are widely 
available, and provide opportunities to experiment with a wide range of design 
proposals using a geo-database representation. Such (VR) geo-information systems 
offer a three-dimensional laboratory to experiment with landscape design proposals. 
SALIX-2 is a simulation program, exploiting these possibilities, developed for 
students of landscape architecture at Wageningen University (van Lammeren et al., 
2002) (see Figure 7.1). 

VR-scene manipulations make it possible to interact with a virtual scene object 
(Heim, 1998) such that an object (or its attributes) in the scene can be deleted or 
added. With SALIX-2 the underlying idea is a virtual environment for simulating 
the growth of plantation objects (bushes and trees). The students are able to plant 
bushes and trees interactively. Just as in the real world, one should be restricted 
from planting in particular areas. For that reason the system has to be provided with 
constraints related to the type of plantation and geo-information objects.  
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Figure 7.1. 3D scenes of SALIX-2: an interactive landscape modelling system. Lower right part: A 
constraint is violated in SALIX-2c (note the red, highlighted trees on colour version following page 

XXX).   

  

7.2.2 Selected constraint examples 
The SALIX-2 system currently maintains three classes of objects: trees, bushes and 
ground surfaces. The possible ground surfaces are water, paving, soft_paving, grass 
and bridge. There are five possible types of trees/bushes (CorAve, CorMAs, 
FraxExc, QueRob, RosCAn). Examples of rules for the position of objects in geo-
VR environments can be: a tree must not overlap with water or a tree must be 
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covered by a polygon with destination forest. For these constraints it is logical to 
represent a tree as a circle (an extended object) and not as a point (centroid). Table 
7.1 shows examples of constraints for SALIX-2; see also Figure 7.2. 

 
 

Table 7.1: Selected examples of relationship constraints for SALIX-2. 

Type of relation Constraints formulated with forced relations between 
objects 

Direction A bush always has to be placed south of a tree  
Topology Bushes always have to be disjoint or meet water  

A bush always has to meet or be disjoint with paved areas 
(also thematic constraint) (2 predicates) 

Metric Trees always have to be positioned > 1 metre from paving  
Temporal An oak always grows for 70 years  
Quantity/ Aggregate 
(sum) 

There must always be at least 10 trees on the specified 
ground surface 

Thematic A bush always has to meet or be disjoint with paved areas 
(note the mixed topological constraint) 

Complex The distance between trees inside water always is > 8 m 
AND the distance between the tree and the edge of the 
water always has to be < 0.5 metre AND the species must 
be a salix 

 
 

7.2.3 Some lessons 
The main lessons learnt with respect to the constraint support requirements of 
SALIX-2, the VR landscape modelling system are (Louwsma, 2004): 

 
� constraints occur at different places, both in the VR user interface and 

data storage; 
� when designing, immediate feedback to the user is important (see Figure 

7.1, bottom); and 
� simulation adds another ‘dimension’ to constraints, when creating an 

initial plantation layout everything may be correct, but after 5 years of 
simulated growth there may be conflicts, e.g. trees get too close. 

7.3 Constraints in a cadastral application 
In this section a cadastral data maintenance system (another application in which 
constraints play a major role) is discussed. Although cadastral systems also 
maintain important legal and administrative information, this section’s focus is the 
spatial side of cadastre. 
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Figure 7.2. UML classs diagram representing the objects of intrest and their constraints in SALIX-2 (see 
colour insert following page XXX). 

 

7.3.1 Dutch cadastral data 
The Dutch cadastral map is based on a winged-edge topology structure (Van 
Oosterom and Lemmen, 2001); see Figure 7.3. The DBMS is considered very clean,  
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topologically. Further, the model contains redundancy in the topological references: 
both the (meaningless system) object_id reference to the left and right parcels and 
the (meaningful user) parcel_number references to the left and right parcels are 
stored and maintained. The topological consistency checks are hard coded and built 
into both the editor and the check-in software at the DBMS server side. However, 
the checks are currently not implemented within the DBMS itself (Ingres). The data 
set covers the Netherlands and contains history from 1997 to the present. The total 
number of current boundaries (polylines) is about 22,000,000 and the number of 
current parcels (topological faces) about 7,000,000. If all historic versions are 
counted, numbers roughly quadruple. There is a separate, but linked, subsystem 
containing the legal and administrative data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3. Winged-edge topology structure of the cadastral map. 
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7.3.2 Some examples of cadastral data constraints 
Due to redundancies in the system and because, in general, topology references can 
be derived from the metric information, a large number of consistency checks can 
be defined for the cadastral model. Over 50 constraints have been defined, in a 
number of different categories. In this section some example categories will be 
presented, accompanied by SQL select statements, which in the case of correct data 
should not find any objects. These statements could be considered the body of SQL 
assertions, with the ‘create assertion’ part skipped (see Section 7.8). (Discussion of 
constraints related to attribute value domain checks are also skipped, being trivial.) 
Five categories of cadastral constraints will be discussed. 
 
1. Metric checks. The first example finds closed ‘arcs’ (but not circles), which can 

be detected by checking that the first and last (third) point defining the arc 
match, see CCVQ1 (Appendix 1 with the Cadastral Constraint Violation 
Queries). A second example constraint disallows straight ‘arcs’ (see Figure 
7.4). Another example ensures every parcel has a reference point, which should 
be within the area of the parcel; this reference point should also be in the 
bounding box of the parcel, which is easily checked with the CCVQ2. The final 
example is that two different boundaries should not intersect, but should be 
disjoint or touch at their end points. 

2. Existence of topological references. This can be compared to referential 
integrity checks in some administrative databases. A complication is that 
topological references can be signed (+ or -) in order to indicate proper 
orientation. The first constraint in this category checks whether the left (and 
right) parcel references from the boundaries do indeed exist (CCVQ3). The 
next example checks whether the winged-edge boundary-boundary reference 
(in this case the first left references) exists (CCVQ4). Then, starting from the 
parcel, a number of topological reference checks can be imagined. For 
example, as parcels can have island boundaries, these references also have to be 
correct. So, the reference from the parcel to the island boundary reference must 
exist. Further, as a parcel can have any number of islands (and the number of 
islands is encoded as an explicit attribute), it must be checked whether the 
correct number of parcel references are specified and if they all refer to existing 
boundaries. The final example in this constraint category checks whether the 
reference from the parcel to its outer boundary exists (CCVQ5). 
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Figure 7.4. Some metric errors in the cadastral dataset (top: small gap between two boundaries, bottom: 

straight line encoded as circular arc). 
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3. The correctness of a topological reference, see Figure 7.5. A first example in 
this category is the check that two consecutive boundaries must have the same 
parcels on one side. In total there are eight combinations that have to be 
checked as each of the four winged-edge boundary-boundary references is 
signed, that is, the direction of the next edge may have to reversed (thereby 
switching the left and right hand sides). CCVQ6 checks the positive first left 
reference. A similar constraint in this category is that the end point of one 
boundary is the start of the next. As with the previous consistency check, there 
are again eight combinations which have to be checked; CCVQ7 shows the 
positive first left case again. Also in this category of constraints is the check as 
to whether the island boundary has the parcel at the correct side. Another 
constraint is whether the first coordinate of the island boundary lies within the 
bounding box of the parcel. Finally a check is given to see whether the outer 
boundary and parcel references back-and-forth are consistent (CCVQ8).  

4. The fourth category of constraints to be considered is a referential integrity 
check, which determines whether two subsystems are consistent. The two 
subsystems are the geometric subsystem (LKI) and the administrative and legal 
subsystem (AKR). Every ground parcel in AKR should also be present in LKI 
(CCVQ9). 

5. Temporal constraints ensure that the time intervals of two consecutive versions 
of an object do touch and assume no gaps or overlaps in the time dimensions of 
an object. 
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Figure 7.5. Some topology reference errors in the cadastral dataset (top: island reference is missing, 

bottom: parcel refers to wrong island). 
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7.3.3 Some lessons from cadastral data 
The cadastral dataset is considered clean and is, by the nature of its structure, 
designed to avoid certain errors, such as overlapping parcels. During the conversion 
in 1977 from the old to the new version all consistency errors were resolved and 
removed. Further, the cadastral data has been delivered to many different customers 
and loaded into different systems, each of which is potentially sensitive to different 
errors.  As the customers pay for the data, they will complain quickly about errors. 
However as the constraints discussed in the previous section and applied to the 
production data of 2004 have clearly illustrated, certain errors have, despite 
everything, been (re-)introduced (see van Oosterom et al. [2005] for more details). 
One important lesson has been that one should trust neither front-end nor middle 
ware alone for consistency checking, but implement checking throughout the whole 
system and particularly within the DBMS, which will contain what is considered 
valid data shared by multiple users. Further, even if the errors are not noticed in the 
production environment, they may be harmful in the users’ environments; e.g. 
straight ‘circular arcs’. Despite a thorough treatment of the different categories of 
constraints, not all possible constraints have been discussed. In the category of 
topological correctness, for example, it is not considered whether the complete 
domain is covered with parcels. This is an important type of topological constraint 
as there should be no gaps – in the cadastral case this is equivalent to an area 
without an owner.  

7.4 Constraints in a topographic application 
At first sight the types of constraints relevant to cadastral update and topographic 
update systems seem similar. But it has been decided to include a topographic 
application in this chapter’s cases. The reason is that currently the Dutch 
topographic data maintenance system is being completely redesigned. The new 
design contains constraints within the specifications of the data model. Besides 
renewing the production environment (including a move from separate files to one 
geo-DBMS), the product itself is being renewed as TOP10NL. It is more object-
oriented than map-oriented, contains nationwide unique identifiers and will be 
delivered in GML-3 from January 2006.  

7.4.1 Constraints in the TOP10NL 
The constraints were initially designed for the conversion process, to make sure the 
new topographic production system only contained clean data. However, the same 
constraints will be used during future production editing (and this has been 
successfully tested in prototype versions of the future system) and geo-DBMS 
check-in. The constraints are specified in one source, which contains the complete 
model (or specification) of all object classes, attributes and relationships. The model 
is encoded in an XML-format developed by Vertis and the Topographic Service. In 
the remainder of this subsection fragments from this XML-format will be shown to 
illustrate a number of example constraints. The following five types of constraints 
were recognised (using Vertis/Topographic Service terminology): 
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1. Single entity, single attribute (thematic). This example shows a domain 
constraint specifying the fact that the width of water should be between one and 500 
(metres) and the same XML encoding of this range domain type states that the 
default value is six (metres); see TMCX1 (Appendix 2 Topographic Model 
Constraints in XML). In the same category is the specification of valid values of the 
XML encoding for the railroad enumeration type, with allowed values ‘verbinding’ 
(connection) and ‘kruising’ (junction) given in TMCX2. 
2. Single entity, multiple attributes (thematic). An example from this category 
checks a road object constraint that the ‘NAAM_AWEG’ (name a-road) attribute is 
filled and then the attribute ‘WEGTYPE’ (road type) must contain a specific value; 
in this case ‘autosnelweg’ (highway). Note the specific operator ‘MVCONTAINS’ 
which is used in the case when a multi-valued attribute contains specific value(s). 
The corresponding XML fragment is given in TMCX3. 
3. Geometry (general rules, including minimum line length and minimum 
area). For example, if the width of a road is less than two metres, then the geometry 
type is line, otherwise the geometry type is area. The example from this category 
will not be further illustrated here in XML, because it is of the same type as the first 
category except that a constraint is specified for a geometric, not thematic, attribute. 
4. Topology (several subtypes: covering_without_gaps, no_overlap, coincide, 
…)  As the model of the Topographic Service is not based on a topological 
structure, but consists of individual point, polyline and polygon features, topology 
constraints look different from those used for the cadastral data set, which was 
based on a topological structure. One could even state, in this case, that constraints 
are even more important, because there is no other facility supporting topological 
data quality. TMCX4 shows the constraint that two roads ‘WEG_VLAK’ (road 
area) may not overlap at the same height  ‘HOOGTENIVEAU’ (height level). (Note 
the use of the topology operation ‘AREAOVERLAPAREA’ from the ESRI ArcGIS 
environment.) 
5. Relationship. Every feature must have at least one specified source. The example 
TMCX5 checks that the return value of the operator ‘BRONCOUNT’ (source 
count) is greater than ‘0’. 

7.4.2 Some lessons from the new topographic base data production system 
The fact that the constraints are specified together with the model and used as a 
source for the realisation of different (sub)systems is a great leap forward. The same 
constraints are applied during the initial conversion from the old to the new system, 
during interactive editing (ArcGIS environment; see Figure 7.6) and at data storage 
(Oracle DBMS) during check-in.  
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Figure 7.6. An error caught during editing of the topographic data. 
 

Of course, things can always be further improved, for example: 
1. the model itself could be specified in UML (and based on OGC/ISO TC211 

standards); 
2. instead of institutionally generated  (XML) constraint encoding, perhaps a 

standard would have been better, e.g. OCL; 
3. the exchange format is not (automatically) derived from the same source model 

(as used for the edit and storage subsystems); and, 
4. the constraints are not yet included in the exchange format. Some could 

possibly be included in standard GML/XML encoding (for example the 
domains constraints) but more research is needed for the other types of 
constraints. 

7.5 Constraints in a Web feature service 
The last case to be presented also relates to the cadastral domain, but the context is 
quite different: an Internet GIS environment. This different context will reveal new 
insights into the important role constraints play in real-world implementations, and 
the current difficulties experienced in supporting them. With the availability of the 
standard OpenGIS Web Feature Service (WFS) (OGC, 2002) protocol, it is now 
finally possible to realise Internet-based geo-information processing environments,  



                                                           Dynamic and Mobile GIS: Investigating Changes in Space and Time 118

where clients cannot only view but also edit (update) data stored at multiple servers, 
and where products of one vendor can be combined with the server products of 
another. An evaluation of the WFS-Transaction protocol was carried out using a 
case study known as ‘notary drafts cadastral parcel boundary’. The WFS protocol 
was analysed (Brentjens, 2004; Brentjens et al., 2004) and revealed, for more 
advanced edit scenarios, a number of possible improvements related to constraints. 

7.5.1 Web feature services 
Two classes of Web Feature Services are defined in the OpenGIS WFS 
specification: Basic WFS (for retrieving geographic features) and Transaction WFS 
(needed for editing geo-data) (OGC, 2002). The WFS protocol allows a client to 
retrieve geo-spatial (vector-) data encoded in Geography Markup Language (GML) 
from multiple Web Feature Services. GML is an XML encoding for the modelling, 
transport and storage of geographic information, including both the spatial and non-
spatial properties of geographic features (OGC, 2003).  

A ‘Basic WFS’ service implements the GetCapabilities, DescribeFeatureType 
and GetFeature requests. A client can request an XML-encoded capabilities 
document (containing the names of feature types that can be accessed via this 
service, the spatial reference system(s) and the spatial extent of the data, plus 
information about the operations that are supported) by sending the GetCapabilities 
request to the WFS service. The function of the DescribeFeatureType request is to 
generate an XML Schema document (XSD, 2004) with a description of the data 
structure of the feature types serviced by that WFS service. The GetFeature request 
allows for the retrieval of feature instances (with all or part of their attributes). 

A ‘Transactional WFS’ offers the functionality for modifying geographic 
features as well, such as insert, update and delete. In order to do so, a Transactional 
WFS implements the Transaction request (a set of insert, delete and update actions 
that belong together). It could optionally implement the LockFeature and the 
GetFeatureWithLock request. When the transaction has been completed, a WFS will 
generate an XML response indicating the completion status of the transaction (and a 
list of newly generated feature identifiers assigned to the new feature instances). 
The purpose of the LockFeature request is to invoke a mechanism ensuring 
consistency by preventing simultaneous editing of these features by other users. A 
Lock element uses a filter to specify which feature instances should be locked. 
Finally, by using the GetFeatureWithLock instead of the GetFeature request, a 
client requests features be retrieved and locked simultaneously. 

7.5.2 Notary drafts new parcel boundary 
An example cadastral transaction is a notary who sketches a new parcel boundary as 
a parcel is split following a property transaction. The functional requirements for 
the interface between the Cadastral WFS server and the notary consist of the 
following requests (see Figure 7.7 top right): 1. Transfer whole parcel, 2. Merge two 
or more parcels, 3. Split parcel, 4. Get a reference cadastral map. The split of a 
parcel is the most interesting case as the required input is a parcel number; the result 
is a GML dataset with the parcel and context (if parcel does exist). The client action  
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is to add one (or more) parcel boundary within the area of the parcel to be split and 
thereafter every implied part of the parcel is uniquely labelled with a text string 
(usually one letter ‘A’, ‘B’,..), (see Figure 7.7, bottom). Below is an example of the 
WFS protocol to pose a request to get two types of features (with the 
DescribeFeatureType request): 

 
   http://130.161.150.109:8080/geoserver/wfs/wfs?request= 
    DescribeFeatureType&typeName=DRAFT_BOUNDARY,DRAFT_PARCEL  
 

Below the XML/GML fragment with geo-information is sent from the server to the 
client (or, in the case of an update, in the other direction): 

 
<gml:MultiLineString 
 srsName="http://www.opengis.net/gml/srs/epsg.xml#28992"> 

    <gml:lineStringMember> 
      <gml:LineString> 
        <gml:coordinates decimal="." cs="," ts=" "> 
          106417204,448719275 106367184,448675614 
        </gml:coordinates> 
      </gml:LineString> 
    </gml:lineStringMember> 
   </gml:MultiLineString> 

 
7.5.3 Evaluation of Transactional WFS 
Though ‘simple’ editing proceeds well, a number of observations related to editing 
complex situations, such as handling topology (van Oosterom, 1997), can be made. 
First, concerning the integrity constraints in transactions, validation of (changes in) 
features should prevent a dataset containing features that violate topological rules or 
other restrictions. The WFS specification defines some operations and mechanisms 
that can be used for the validation of single features. It is not so easy however to 
enforce integrity constraints that concern combinations of features (as in the case of 
topologically structured data) or constraints that follow business rules. The server 
may check certain integrity constraints after the client posts a transaction and as a 
result the transaction may fail. However, the client does not know what the 
constraints are (except for the conditions implied by the GML application schema 
defining the individual feature types). It may be quite frustrating for a client to 
update data and then receive errors. An ongoing research topic is how and where to 
check integrity constraints (and other business rules) in WFS-based distributed 
systems. 

One interesting question is whether it is possible (and meaningful) to translate 
constraints in the data model to constraints related to the structure of valid 
transactions. For example, a parcel split always implies at least deleting one old 
parcel, inserting a new boundary and two new parcel reference points on each side 
of the new boundary. How should constraints be related to operations in a valid 
transaction? 
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Figure 7.7. Case ‘notary edits cadastral map via Internet’ (top left: architecture of the Web feature 
server, top right: a number of typical cadastral edit operations, bottom: the edit Internet WFS client). 

7.6 Classification of constraints 
In order to better understand constraints and their use, it is important to classify 
them, including their spatial/dimensional aspects. Classification of the different 
types of (spatial) constraints reveals a complex taxonomy. Cockcroft (1997) 
presents a two-dimensional taxonomy of (spatial) constraints: the first axis is the 
static versus transitional (dynamic) distinction and the second axis is the 
classification into topological, semantic and user constraints. It is recognised that 
the transitional aspect of integrity constraints (allowed and valid operations; see also 
Section 7.5) is relevant, but in this chapter this is considered to be the ‘other side of 
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the same coin’. This section refines, based on the four presented cases, the second 
axis of Cockcroft’s taxonomy by recognising five subaxes (or five different criteria) 
for the classification of integrity constraints:  

 
1. the number of involved objects/classes/instances; 
2. the type of properties of objects and relationships between objects 

involved: topologic (neighbourhood or containment), metric (distance or 
angle between objects), temporal, thematic or mixed; 

3. the dimension (related to the previous axis): 2D, 3D or mixed time and 
space, that is, 4D; 

4. the manner of expression: ‘never may’ (bush never may stand in water) 
or ‘always must’ (tree always must be planted in open soil); and 

5. the nature of the constraint can be: ‘physically impossible’ (tree cannot 
float in the air) or ‘design objective’ (bush should be south of tree).  

 
With respect to the first subaxis of the constraint taxonomy, ‘the number of 
involved objects’, the following cases can be identified: 

 
1. one instance (restrictions on attribute values of a single instance); 
2. two instances from the same class (binary relationship); 
3. multiple instances of the same class (aggregate);  
4. two instances from two different classes (binary relationship); or  
5. multiple instances from different classes (aggregate). 

 
Further, the fourth subaxis, ‘the manner of expression’ has only practical value for 
communicating the constraints between the users. Once the objects and the 
constraints are formally defined, the expressions ‘never may’ and ‘always must’ can 
be represented by one constraint, e.g. by the one that is more efficient from an 
implementation point of view. For example, the constraint ‘a tree never may stand 
in water, or street or house’ is equivalent to the constraint ‘a tree always must be in 
a garden, or park’ under the assumption that there are only five possible ground 
objects: water, street, house, garden and park.  

Further consideration will be given to the second subaxis of the constraint 
taxonomy, that is constraints with respect to object attributes, spatial relationships 
and dimensions. A distinction is made between constraints:  

 
1.  related to properties (attributes) or the state of objects, whether thematic, 

temporal or spatial (see subsection 7.6.1); and 
2. based on (spatial) relationships between objects (see subsection 7.6.2).   
 

7.6.1 Constraints derived from the properties of objects 
The categories of constraints are: thematic (non-spatial business logic-like), 
temporal, spatial (area, perimeter, length) and also mixed. Thematic information 
about objects can be found in the attributes of the objects, such as house (number of 
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floors), road (maximum speed), grass (type). Thematic constraints ensure related 
attributes only get allowed values. Temporal property constraints specify allowed 
values for one or more of the time attributes; for example the start time (birth) of an 
object should be before the end time (death) of that same object. Other temporal 
property constraints may specify some valid values for time attributes; e.g. the 
date/time associated with an historic fact, should be somewhere in the past. Spatial 
constraints can be associated with spatial properties of one object such as size or 
shape. An example of size constraint can be ‘a tree should not become higher than 
30m’, ‘a canal must be at least 2 metres wide’, and a constraint on shape could be ‘a 
bush must be represented with a sphere’.    

7.6.2 Constraints derived from spatial relationships between objects 
The proposed (sub)classification of integrity constraints based on relationships 
between objects has the following components: 

 
1. thematic, ‘a parcel must always be owned by at least one person’. These 

relationship constraints are similar to the constraints for relationships found in 
business logic for non spatiotemporal systems.  

2. temporal, ‘the second object may only occur after the first object (adjacent in 
time)’. These relationship constraints are to be specified on the basis of 
frameworks for describing temporal relationships between objects. Peuquet 
(1995) and Kwon et al. (1999) describe the temporal relations between two 
time intervals. Given two time intervals, there are seven distinct ways in which 
these time intervals can be related (e.g. Before, Meets, Overlaps, Finishes, 
During, Starts, Equals). The temporal relations can be seen as relations between 
two objects with some time interval as existence time (with start and end time 
of existence as the boundaries of the time interval). 

3. spatial. The formalisation of spatial relationship constraints is closely related to 
the formalisation of (spatial) associations between the objects. Thus when 
defining constraints the following subtypes exist: 
a. topology  ‘no trees and bushes inside water polygons; no trees and bushes 

inside paving polygons’. Topological constraints are to be constructed 
using frameworks for neighbourhoods (Egenhofer, 1989; Clementini et al., 
1993). For example, if the boundaries of the two objects intersect but the 
interiors do not, the conclusion is that the objects meet. The constraint ‘no 
bush in water’ can be translated to ‘no point-in-polygon’ (assuming that a 
bush is represented as a point and water as a polygon), corresponding to 
the topology relationship ‘not inside’. 

b. direction ‘the trees should always be north of paving polygons, so people 
can walk in the sunshine’. Direction constraints are to be based on 
formalism for directional relations (Papadias and Theodoridis, 1997). The 
directional relations are defined as the position of an object with respect to 
another object, as the directions can be given in degrees in the range of [0°,  
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360°] or verbally (Northeast, North, Northwest, West, Southwest, South, 
Southeast, East) with each expression standing for an interval of degrees. 
Algorithms are also developed to assign the right direction to an object.  

c. distance ‘no trees inside the water, except if < 1 metre from edge or water 
bushes > 1 metre from paving (so the leaves do not overlap the paving)’. 
Distance constraints impose a constraint on a (Euclidian) distance between 
objects. They can be expressed in linear metres, or by more approximate 
linguistic terms such as ‘closer than’, ‘further than’ or ‘interval distance’.  

4. mixed, such as quantity (or aggregate): ‘the maximum number of 10 plantation 
objects in a specified area in the centre of the park’. It is common to mix these 
fundamental types of relationship constraints. Specifying a certain density of 
objects in a certain area is only implicitly related to spatial relationships. 
Knowing the distribution of objects in a certain area, the minimum distance 
between two objects can be computed and, eventually, the approach for metric 
constraints can be used. From a user point of view, however, a more intuitive 
approach will to specify a number per given area. This constraint can be given 
as a minimum, exact or maximum number of objects for an area (surface 
density). Examples of density constraints are ‘maximum number of houses in a 
residential area’ or ‘minimum number of trees in an area’. Examples can be 
‘one tower, three benches and one statue must be placed in this garden’. This 
exact number of certain objects can be seen as a special case of a density 
constraint, because it can be defined as an exact number of certain objects for 
the whole area in the 3D model. 

7.6.3 Dimensional aspects of constraints  
The last aspect to be discussed here is related to dimension. In general all spatial 
relationship constraints can be specified for both 2D and 3D objects. Constraints 
can concern the 2D ground plane or the 3D objects (bushes and trees) that could be 
placed on the ground plane to create a spatial configuration. The rules concerning 
the ground plane find their origin in local policy and in the fact that some 
designations conflict with each other. The policy makers define area designations 
and note them in plans. For example, some areas get an urban designation, some 
rural and others are agricultural. These designations of the ground plane can easily 
be stored as an additional attribute of the separate polygons. However the policy 
makers’ defined restrictions could still conflict: e.g. a road can never lie in water 
(except when a bridge or tunnel is built), a forest never lies on a major road and all 
houses should be reachable by a path or road. On the other hand, such conflicting 
constraints could be a source for strategic spatial decision making; and the rules for 
3D objects can even be more complex, too.  

7.7 Specifying constraints 
Having seen the importance of constraints in different applications and presented a 
refined taxonomy, the next issue is how to specify the constraints. First of all, the  
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specification of the constraints has to be intuitive for the user. The constraints have 
to be included in the object model. This model should be as formal as possible to be 
able to derive constraint implementations within the different subsystems (edit, 
store, exchange). Formal modelling is an essential part of every large project, but it 
is also helpful in small and medium-sized projects. Using a formal model permits 
communicating ideas with other professionals as well as describing clear, 
unambiguous views on implementation strategies. The Unified Modelling Language 
(UML), now a more or less ‘default’ state-of-the-art approach, will be used for 
object-oriented modelling (OMG, 2005a, Ch. 3). UML is a graphic language, which 
gives a wide range of possibilities for representing objects and their relationships. In 
general the language can be used for modelling business processes, classes, objects 
and components, as well as for distribution and deployment modelling. UML 
consists of diagram elements (icons, symbols, paths, strings), which can be used in 
nine different types of diagrams. The most appropriate diagram is the class diagram. 
It provides formalism for describing the objects/classes, with their attributes and 
behaviour, and relationships between these objects, such as association, 
generalisation and aggregation.   

Despite their potential for formalizing objects and processes, UML class 
diagrams are typically not sufficiently refined to provide all the relevant aspects of 
constraints. Constraints are often initially described in natural language. Practice has 
shown that this results in ambiguities. In order to write unambiguous constraints, a 
non-graphic language is provided within UML for the further modelling of 
semantics (knowledge frameworks), namely the Object Constraint Language (OCL) 
(OMG, 2005b, Ch. 6). When an OCL expression is evaluated, it simply returns a 
binary value. The state of the system will not change when the evaluation of an 
OCL expression returns false. The advantage of using OCL is that – as with UML 
class diagrams – generic tools are available to support OCL (i.e. it is not GIS-
specific); OCL has been used successfully in the context of GIS, an example is the 
IntesaGIS project with the GeoUML model specifying the ‘core’ geographic 
database for Italy (Belussi et al., 2004). The context of an invariant is specified by 
the relevant class; e.g. the object class ‘parcel’ is the context of the constraint ‘the 
area of a parcel is at least 5 m2. It is also possible within a constraint to use the 
association between two classes (e.g. every instance of the object class ‘parcel’ must 
have at least one owner, which could be depicted as an association with the class 
‘person’). OCL enables one to formally describe expressions and constraints in 
object-oriented models and other object modelling artefacts. Below are two 
examples in UML/OCL syntax (keywords in bold print): 

 
  context Parcel inv minimalArea: 
       self.area > 5 
 
  context Parcel inv hasOwner: 

         self.Owner -> notEmpty() 
 

Figure 7.2 shows the UML class diagram with the objects and the constraints 
(depicted as associations) used for SALIX-2 (introduced in Section 7.2 and Table  
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7.1). In principle there is no difference between a ‘data model’ relationship 
(association, aggregation, specialization) and a ‘data model’ integrity relationship 
constraint. Both are depicted as lines in the UML class diagram. From a high level 
conceptual (philosophical) point of view the difference may be very small. 
However, normal associations are often indented, in subsequent implementations, to 
be explicitly stored (in one or both directions), while the relationship constraints 
should not result in such an explicit storage, but in a consistency rule in the 
implementation environment. In order to make a difference between the two, 
normal relationships are depicted in black while integrity relationship constraints 
are depicted in colour. In the diagram notes can be used to explain the constraints on 
relationships and/or properties. These notes can contain either UML/OCL or natural 
language text. 

7.8 Implementation of constraints 
The specified UML (OCL) models (including the constraints), managed in a 
repository, should be the foundation for all subsystems, including the 
edit/simulation environment, the storage database (further described in the DDLs of 
the DBMS) and the data exchange subsystems. The edit/simulation application 
subsystem will not be discussed here. However, it is considered important to 
incorporate the integrity constraints from the model (automatically) in the 
applications (as has been done in the topographic application; see Section 7.4). With 
respect to data exchange, the eXtensible Markup Language (XML) can be used for 
the models containing the class descriptions at class level (XML schema document 
‘xsd’) and for the data at object instance level (‘normal’ XML document with data 
‘xml’). XML documents also include the geometric aspect of objects (e.g. 
LandXML, GML, X3D). Further investigations are needed to incorporate integrity 
constraints in the XML schemas. The UML models (incl. the OCL) with constraints 
should be automatically translated to XML schemas. Note that this is different to 
encoding a UML model in an XML document according to the XML Metadata 
Interchange (XMI). In this section the implementation of integrity constraints will 
be illustrated with database examples. When the data are correctly stored in the 
DBMS all users will have access to the same consistent dataset. 

Since SQL92 ‘general constraints’ (assertions) are part of the standard and could 
be used to implement the OCL constraints. However, assertions are not supported in 
the currently available DBMSs and developers are referred to the use of triggers and 
procedures. Assertions may be considered as an intermediate step between 
UML/OCL and the actual implementation of constraints with triggers and 
procedures in the DBMS, therefore assertions will be discussed further in 
Subsection 7.8.1. This section will further present the implementation of constraints 
for the landscape modelling system SALIX-2 (see Subsection 7.8.2), in DBMS, 
using triggers (see Subsection 7.8.3).  

Once the system is extended with support for constraints, the user should be 
informed about the kinds of constraints available. This can be a simple list of all the  
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maintained constraints, or a more sophisticated attempt-alert approach in the 
interactive edit environment. 

The apparent benefit of front-end implementation is direct interaction with the 
user. For example, if a user places a plantation object in the VRML scene, fast 
feedback of the validity of this placement can be realised if the constraints are also 
maintained in the visual environment (e.g. the VR component of the SALIX-2 
system). However, the possibilities of changing the constraints within the VR-
environment are limited, because currently the constraints are ‘hard-coded’ in the 
VR application code, as in many other edit/simulation environments. In future 
development environments it should be possible to automatically generate the part 
of the VR program application code that implements the constraints (as specified in 
UML/OCL).  

Database implementation offers better management of constraints. If the 
constraints are stored in a database, they are stored in a central place, easily 
accessible and therefore easily adaptable. If in the VR/SALIX-2 example the 
application only connects to the database when saving or loading a plantation plan 
(such as with SALIX-2), there is not a connection during the interactive creation 
(editing) of the plantation plan. So the user only gets feedback when the plantation 
plan is saved, not when the plantation object is placed. An obvious and simple 
improvement is to automatically connect to the database after the user finishes a 
‘logical edit unit’. In this way immediate feedback is given, generated by the 
database, but presented in the edit environment. 

Supporting integrity constraints in all subsystems is probably the optimal 
solution. That is, storing the constraints in a (model) repository on a central location 
and encapsulating this information in the different subsystems. Using this approach 
the feedback of the system will be significantly improved. However, if the 
constraints would be independently implemented more than once, this may lead to 
inconsistency between the subsystems. Therefore it is very important that the 
implementation of the constraints in the VR-environment is automatically derived 
and consistency is guaranteed. 

7.8.1 Support for constraints in DBMS 
In this subsection the support for constraints within the SQL92 is presented and 
compared to the actual functionality available in a number of DBMSs. According to 
the standard, three types of constraint are defined: 

 
1. domain constraints, for example enumeration and range types; 
2. general constraints (assertions) for any situation; and, 
3. base table constraints, related to tables. 

 
Domain constraints are relatively simple and will not be further discussed. The two 
other types are more interesting. With general constraints, also called assertions, 
and a rich set of spatial operators, many of the different types of constraints 
described in this chapter can be specified  (according to the SQL 92 standard). The 
syntax of an assertion is: 
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CREATE ASSERTION <assertion_name> CHECK <constraint_body> 
 

This syntax is quite simple and straightforward. When an attempt is made to 
commit the changes in a database, after a set of updates, inserts, and deletes, the 
assertion is checked and if the expression evaluates ‘true’ than the commit succeeds, 
otherwise it fails and the database remains in the old state. One could easily imagine 
automatic generation of these assertions from the UML/OCL invariants in ways 
similar to those by which database table definitions (DDL) can be derived from 
UML class diagrams.  

To illustrate this a few examples will be given. First, an integrity constraint 
involving an aggregation ‘the maximum height of the trees should be less than 10 
(metres)’: 

create assertion size_is_ok check  
  ((select max(height) from tree) < 10);  
 

The same constraint can be formulated differently with the ‘exists’ construction in 
SQL, again specified as an assertion: 

create assertion size_is_ok2 check  
 (not exists (select * from tree where height >= 10))  

 
Next, a different example showing a constraint involving a topological relationship 
‘there should be no tree standing in the water’: 

 
create assertion tree_not_in_water check  
 (not exists (select * from tree, water  
    where inside(tree.loc, water.polygon)));  

 
It is clear from these examples that assertions are very powerful as any thematic, 
temporal, topological and geometric condition can be specified, between any 
number of tables. So, if assertion could be automatically derived from the 
UML/OCL models, this would conveniently implement constraints in the database. 
However, despite the fact the assertions are part of the SQL92 standard there is 
apparently no current DBMS (commercial or non-commercial) supporting their 
implementation (Oracle, DB2, Ingres, Informix, PostgreSQL, MySQL). The 
alternative might be base table constraints as in theory they are functionally 
equivalent to assertions. For example the previous constraint ‘there should be no 
tree standing in the water’ can be written as the following base table constraint: 

 
create table tree (id integer, height integer, loc point,  
  constraint tree_not_in_water check  
    (not exists (select * from water  
               where inside(loc, water.polygon))));  
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However, again there is disappointment as the mainstream DBMSs do not support 
base table constraints with subselects. That leaves the question ‘What types of 
database table constraints are supported?’ Below in more detail are the four types of 
database table constraints that are supported in Ingres (and this is quite 
representative for other DBMSs): 

 
 

1. Unique constraint 
 
   create table ape(name char(10) unique not null, ....);  
 
2.  Referential constraint 
 

  create table mary(id integer,  
 ape_name char(10) references ape(name))  

 
3.  Primary key constraint  
 

  create table ape2(name char(10) primary key, ....);  
  create table mary2(id integer,  
 ape_name foreign key (name) references(ape2));  

 
4.  Check constraint (this is the only one with some ‘semantic’ load)  
 

  create table nut(balance integer  
check (balance > 0), spending integer);  

  create table nut2(balance integer, spending integer,  
     constraint not_too_much check (spending < balance));  

 
Though useful, these four types of constraint are not powerful enough to support the 
(spatial) constraints of the examples. One last option available for general constraint 
implementation in DBMSs is the use of triggers (and often in combination with 
procedures). Below is a constraint, now implemented as a trigger in Oracle (and 
similar functionality is available in other DBMSs) that checks whether the value of 
‘a_value’ is not above the allowed maximum. 

 
create trigger not_too_much  
 after insert or update of a_value on a_table  
 
  DECLARE  
    total number;  
  BEGIN  
    select sum(a_value) into total from a_table;  
    if (total >= 100) then  
      raise_application_error (  
        num => -20000,  
        msg => 'Cannot add/update "a_value", sum too big');  
    end if;  
  END; 
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The advantage of this solution is that, although not pleasant to code, it really works. 
In practice CASE tools can generate some parts of the code; e.g. Oracle's CDM 
Ruleframe (see Subsection 7.8.3 for more details). With respect to the support of 
constraints in DBMS, as mentioned in Section 7.1, specific support for topology 
structures is improving (this can be compared to the built-in support of referential 
integrity constraints). As already mentioned some available solutions for managing 
topology constraints within the database are: 

 
� Oracle 10g (2003) spatial includes some initial support for topological 

structures (DBMS checks topological consistency; e.g. is a loop closed, no 
crossing edges), 

� LaserScan Radius topology is a (Oracle) DBMS solution (LaserScan, 
2003, Louwsma et al., 2003) and  

� also more ‘middleware’ types of solutions are available with support for 
topology constraints; for example the ESRI geo-database (ESRI, 2002). 

 

7.8.2 Example assertions for the landscape design case 
Though assertions are not directly supported in the available DBMSs, they are 
compact representations of integrity constraints and form convenient intermediate 
representations for generation from the UML/OCL model, for their final 
implementation within the database. A number of example constraints from the 
landscape design system, SALIX-2 will be presented as assertions. The tables of 
SALIX-2 that are used in the assertions are: prcv_treesrd_point (plantation objects 
of type trees and bushes) and prcv_gvkrd_poly (ground surface with description 
water, paving, soft_paving, grass, and bridge). The examples introduced in Section 
7.2, Table 7.1. and illustrated in the UML class diagram of Figure 7.1., will be used. 
The first example is ‘Bushes never lie inside water’ (note the use of the Oracle 
‘sdo_relate’ operator): 

 
  create assertion constraint_1 check (not exists ( 
  select * from prcv_treesrd_point t, prcv_gvkrd_poly g  
   where t.treetype in (‘CorAve’, ‘CorMas’, ‘RosCan’)  
     AND g.descript = ‘water’  
     AND sdo_relate (g.geom., t.geom., ‘mask=inside, 

querytype=window’)=’TRUE’))  
 

The second example is a metric constraint specifying ‘Trees always have to be 
positioned > 1 metre from paving’ (again, note the use of the Oracle spatial operator 
‘sdo_within_distance’): 
 

  create assertion constraint_3 check (not exists ( 
  SELECT * FROM prcv_treesrd_point t, prcv_gvkrd_poly g  
   WHERE t.treetype IN (‘FraxExc’, ‘QueRob’)  
     AND g.descript IN (‘paving’, ‘soft_paving’)  
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AND sdo_within_distance (g.geom., t.geom., 
‘distance=1’) =’TRUE’))  

 
These examples show how easily and naturally all kinds of constraints can be 
specified. The last example includes an aggregation function to specify the 
constraint ‘There must always be at least three trees on a specified ground surface’ 
(for this constraint the grass polygon with id 20 is used): 

 
  create assertion constraint_4 check ( ( 
  SELECT count(t.treeid) FROM prcv_treesrd_point t, 
prcv_gvkrd_poly g  
   WHERE t.treetype IN (‘FraxExc’, ‘QueRob’)  
     AND g.id=20  
     AND sdo_relate(t.geom,g.geom,   

‘mask=ANYINTERACT,querytype=window’)=’TRUE’  
  ) >=3)  
 

7.8.3 Triggers and procedures 
The assertions are easy to specify, but as mentioned, not supported in mainstream 
DBMSs. Therefore triggers (and procedures) offer the only practical way to 
implement constraints. Triggers can be seen as small programs checking certain 
conditions and prompting alerts with respect to the conditions. Using triggers one 
can achieve the same effect as by defining assertions. A functionally correct, but not 
very efficient, way to implement the assertions would be to glue all Boolean 
expressions of the individual assertions into one large Boolean expression. During 
every commit to the database, this expression is checked (via a trigger and 
procedure) and if the result is false, the transaction fails. However, this is not an 
efficient implementation and in this subsection triggers and procedures will be used 
in a more ‘customised’ way.  However, one has to develop the more specific code 
for the triggers (and the used procedures) oneself. The syntax of specifying a trigger 
is:  

CREATE [OR REPLACE] TRIGGER <trigger_name> 
BEFORE | AFTER 
INSERT OR UPDATE [<column(s)>] OR DELETE ON <table_name> 
[FOR EACH ROW [WHEN (condition)]] 
<trigger_body> 
 

A partial example (‘bush must not stand in the water’) of an implemented constraint 
in a DBMS using triggers and procedures is given in (Louwsma, 2004). Within the 
front-end application a new object is created and an insert statement is sent to the 
DBMS. The statement is checked for integrity constraints and feedback is given 
through DBMS outputs. In order to avoid the ‘low level’ hand-coding of constraints 
(or business rules), Oracle provides a development tool called Custom Development 
Method (CDM) for automatically generating this code for the DBMS (Muller, 2002; 
Boyd, 2001). The CDM RuleFrame is the business rules implementation framework 
of CDM. The rules consist of three parts (Muller, 2002):  
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1. a function that indicates when the rule should be validated;  
2. a function that performs the actual validation, when the previous function 

indicates the need; and, 
3. a handling procedure, that manages the communication with the outside world.  
 
CDM RuleFrame does not check business rules at the moment the user performs 
insert, update or delete statements. Rather, CDM RuleFrame stacks the rules that 
have to be enforced and checks them only at the moment of commit. Stacking the 
rules and the business rule enforcement is performed in the Transaction 
Management component. 

7.9 Conclusion and future developments 
7.9.1 Results obtained 
Constraints have not attracted much attention in GIS, despite the need for them in 
dynamic GIS applications as illustrated in the four different cases where constraints 
were analysed. Each case had its own language specifying the constraints (natural 
text, XML format, SQL assertions). It was concluded that formalisation is needed 
and that (spatial) constraints must be specified in UML/OCL. This chapter also 
proposed a classification (taxonomy) of the constraint types relevant to a dynamic 
GIS environment based on: 1) number of involved objects/classes; 2) properties of 
objects and/or relationships between objects: metric, topological, temporal, thematic 
or mixed; 3) dimension (2D, 3D or 4D); 4) manner of expression ‘never may’ or 
‘always must’; and, 5) nature of the constraint ‘physically impossible’ or ‘design 
objective’. 

From the single UML/OCL model specification, implementation of different 
parts of the system should be automatically derived although current environments 
are not yet capable of supporting this. The implementation should be: 1) front-
ended, allowing to generate direct feedback to the users during editing; 2) during 
data definition, thus making sure only valid data are stored and accepted; and 3) 
during the communication or data exchange in the case of loosely coupled clients 
and servers, thus making sure the client is aware of the constraints. Database 
assertions do seem quite close to the UML/OCL invariants and it is therefore rather 
disappointing that these assertions are not yet implemented in mainstream DBMSs. 
Currently, the implementation of the more complex constraint types, which includes 
nearly all spatial constraints, has to be realised by triggers and procedures.  

7.9.2 Further investigations 
In real interactive applications an end-user who is a non-programmer, such as a 
landscape designer, must be able to change, delete or make new constraints. 
Therefore finding an easy way to interactively specify constraints is required. This 
is closely related to modelling. For example looking to the UML class diagram with 
all relevant object classes and their (restricted) relationships. 
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The user should get visual ‘feedback’ during editing; e.g. red or green 
highlighted areas during insert. These highlights should be derived from constraints, 
the instance geometry in a DBMS and be based on spatial functionality such as 
buffers and overlays. An investigation should take place to see whether the 
highlighted areas can be created inside the DBMS (and presented as views) or using 
specific GIS software.  

This research can be extended to 2½D or 3D referenced objects. The objects of 
interest are currently often limited to point objects, polyline objects and polygon 
objects, but should be extended to volume (polyhedron) objects. However, data 
types and operations for 2½D and 3D geometry in DBMS are not yet available, but 
will be indispensable for implementing 2½D and 3D constraints concerning 2½D or 
3D objects. 

One issue not yet mentioned in this chapter is that, with a number of user-
specified constraints, conflicts may arise; therefore, a good mechanism has to be 
developed to check for this. When users can change the constraint definitions of an 
existing application, then a conflict check should take place. This is of concern for 
existing software. For example topology constraints can be implemented in the 
ESRI (2002) geo-database software, but there is no check as to whether these 
conflict with each other. This can result in unwanted system behaviour; e.g. ‘an 
infinite loop’ correcting one error, which results in another error. There will never 
be a correct situation satisfying both rules (integrity constraints) as they are 
conflicting. 

Finally more research is needed for topics such as: the automatic translation of 
UML/OCL to XML schema (as used in the exchange); the automatic translation of 
UML/OCL models to the edit environment (as in the case of the topographic data 
maintenance application); the relationship between consistent data and operations 
(as illustrated in the Web feature service case) and extending the constraints to 
space-time/simulation. The ultimate goal would be to support an environment in 
which it is possible to delete, change and add new constraints and automatically 
rebuild new versions of the different subsystems, during edits, storage and data 
exchange. Good support for constraints in a dynamic GIS environment is essential 
for data quality control and decisions based on these data. 
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Appendix 1. Cadastral constraint violation queries (CCVQ) in 
SQL 
 
/* CCVQ1 */ 
SELECT object_id, numpoints(shape),  
  anypoint(shape, 1), anypoint(shape, 2), anypoint(shape, 3) 
FROM xfio_boundary  
WHERE numpoints(shape)=3 and interp_cd=3 and tmax = 0 and 
  ogroup = 6 and (anypoint(shape, 1) =  anypoint(shape, 3));  
/* CCVQ2 */ 
SELECT object_id FROM lki_parcel   
WHERE inside(location, geo_bbox) != 1; 
/* CCVQ3 */ 
SELECT l_obj_id FROM lki_boundary 
WHERE l_obj_id not in (select object_id from lki_parcel);  
/* CCVQ4 */ 
SELECT object_id, fl_line_id FROM lki_boundary 

WHERE abs(fl_line_id) not in (select object_id from lki_boundary); 
 

/* CCVQ5 */ 
SELECT object_id, line_id1 FROM lki_parcel 
WHERE abs(line_id1) not in (select object_id from lki_boundary); 
/* CCVQ6 */ 
SELECT s.object_id, s.fl_line_id 
FROM xfio_boundary s, xfio_boundary r 
WHERE s.fl_line_id > 0 and s.fl_line_id=r.object_id and 
  s.tmax=0 and s.ogroup=6 and r.tmax=0 and r.ogroup=6 and 
  s.r_obj_id <> r.l_obj_id; 
  
/* CCVQ7 */ 
SELECT s.object_id, s.fl_line_id 
FROM xfio_boundary s, xfio_boundary r 

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/docs/ptc/05-06-06.pdf
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WHERE s.fl_line_id > 0 and s.fl_line_id=r.object_id and 
  s.tmax=0 and s.ogroup=6 and r.tmax=0 and r.ogroup=6 and 
  (anypoint(s.shape, 1) <>  anypoint(r.shape, 1)); 
  
/* CCVQ8 */ 
SELECT s.object_id, s.line_id1 
FROM xfio_parcel s, xfio_boundary r 
WHERE s.line_id1 > 0 and s.line_id1=r.object_id and 
  s.tmax=0 and s.ogroup=46 and r.tmax=0 and r.ogroup=6 and 
  (s.object_id <>  r.r_obj_id); 

 
/* CCVQ9 */ 
SELECT count(*),municip FROM mo_object 
WHERE pp_i_ltr='G' and x_akr_objectnummer not in 
  (select x_akr_objectnummer from lki_parcel) 
GROUP BY municip; 

 

Appendix 2. Topographic model constraints in XML 
 

TMCX1: 
  <Domein>   
 <Naam>dWaterBreedte</Naam>   
 <Registreren>J</Registreren>   
 <Beschrijving>Breedte voor Waterdeel</Beschrijving>   
 <Type>Range</Type>   
 <DataType>int</DataType>   
 <CodedValueData/>   
 <RangeData>   
  <Minimum>1</Minimum>   
  <Maximum>500</Maximum>   
  <Default>6</Default>   
 </RangeData>   
 <SplitRegel>Duplicate</SplitRegel>   
 <MergeRegel>DefaultValue</MergeRegel>   
  </Domein>  
 
TMCX2: 
  <Domein>   
 <Naam>dSpoorTypering</Naam>   
 <Registreren>J</Registreren>   
 <Beschrijving>Typeringen voor Spoorbaandeel</Beschrijving>    
 <Type>CodedValue</Type>   
 <DataType>int</DataType>   
 <CodedValueData>   
  <Code>44</Code>   
  <Value>verbinding</Value>   
  <Default>J</Default>   
 </CodedValueData>   
 <CodedValueData>   
  <Code>45</Code>   
  <Value>kruising</Value>   
  <Default>N</Default>   
 </CodedValueData>   
 <RangeData>   
  <Minimum/>   
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  <Maximum/>   
  <Default/>   
 </RangeData>   
 <SplitRegel>Duplicate</SplitRegel>   
 <MergeRegel>DefaultValue</MergeRegel>   
  </Domein>  
 
TMCX3: 
  <AttribuutRegel>   
 <Nummer>att007a</Nummer>   
 <VervolgNummer/>   
 <Categorie/>   
 <Beschrijving>Als Naam_Aweg is ingevuld,  
  dan WegType moet 'autosnelweg' bevatten</Beschrijving> 
  
 <FoutMelding>WegType bevat niet autosnelweg</FoutMelding>   
 <TriggerNiveau>1</TriggerNiveau>   
 <VervolgOperator/>   
 <FeatureKlasse>EDT_WEG_VLAK</FeatureKlasse>   
 <AlsAttribuut>NAAM_AWEG</AlsAttribuut>   
 <AlsOperator>!=</AlsOperator>   
 <AlsWaarde>""</AlsWaarde>   
 <DanAttribuut>WEGTYPE</DanAttribuut>   
 <DanOperator>MVCONTAINS</DanOperator>   
 <DanWaarde>|autosnelweg|</DanWaarde>   
  </AttribuutRegel>  
TMCX4: 
  <AttribuutRegel>   
 <Nummer>top04</Nummer>   
 <VervolgNummer/>   
 <Categorie/>   
 <Beschrijving>Indien Wegvlak overlapt met Wegvlak  
  dan moet HOOGTENIVEAU verschillend zijn</Beschrijving> 
  
 <FoutMelding>Wegvlak overlapt Wegvlak</FoutMelding>   
 <TriggerNiveau>1</TriggerNiveau>   
 <VervolgOperator/>   
 <FeatureKlasse>EDT_WEG_VLAK</FeatureKlasse>   
 <AlsAttribuut>OBJECTID</AlsAttribuut>   
 <AlsOperator>AREAOVERLAPAREA</AlsOperator>   
 <AlsWaarde>EDT_WEG_VLAK</AlsWaarde>   
 <DanAttribuut>HOOGTENIVEAU</DanAttribuut>   
 <DanOperator>!=</DanOperator>  
 <DanWaarde>FEATURE2.HOOGTENIVEAU</DanWaarde>   
  </AttribuutRegel>  
 
TMCX5: 
  <AttribuutRegel>   
 <Nummer>brn01</Nummer>   
 <VervolgNummer/>   
 <Categorie/>   
 <Beschrijving>Iedere feature moet een Bron 
hebben</Beschrijving>   
 <FoutMelding>Geen Bron</FoutMelding>   
 <TriggerNiveau>1</TriggerNiveau>   
 <VervolgOperator/>   
 <FeatureKlasse>EDT_WEG_VLAK</FeatureKlasse>   
 <AlsAttribuut>OBJECTID</AlsAttribuut>   
 <AlsOperator>&gt;=</AlsOperator>   
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 <AlsWaarde>0</AlsWaarde>   
 <DanAttribuut>OBJECTID</DanAttribuut>   
 <DanOperator>BRONCOUNT&gt;</DanOperator>   
 <DanWaarde>0</DanWaarde>   

  </AttribuutRegel>
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