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8.1 Introduction 

Since the early ‘90, Geographical Information System (GIS) has become a 

sophisticated system for maintaining and analysing spatial and thematic information 

on spatial objects. DBMSs are increasingly important in GIS, since DBMSs are 

traditionally used to handle large volumes of data and to ensure the logical consistency 

and integrity of data, which also have become major requirements in GIS. Today 

spatial data is mostly part of a complete work and information process. In many 

organisations there is a need to implement GIS functionality as part of a central 

Database Management System (DBMS), at least at the conceptual level, in which 

spatial data and alphanumerical data are maintained in one integrated environment. 

Consequently DBMS occupies a central place in the new generation GIS architecture. 

An extended description on how GIS architecture has evolved can be found in 

Vijlbrief and Oosterom van 1992. GISs used to be organised in a dual architecture 

consisting of separated data management for administrative data in a Relational 

DBMS and spatial data in a GIS. This was caused by different nature of 

alphanumerical and spatial data, and the inability of early DBMSs to handle spatial 

attributes. In the dual architecture (Figure 8.1 left) the two parts are connected with 

each other via links based on unique id’s. The spatial attributes are not stored in the 

DBMS and therefore they are unable to use the traditional database services such as 

querying and indexing. In the dual architecture consistency of the data is hard to 

manage. For example if a parcel is deleted in the spatial part, subjects can no longer 

have a relationship with this parcel, which is maintained in the non-spatial part.  

The solution to the problems of dual architecture was a layered architecture in 

which all data is maintained in a single RDBMS. Since spatial data types were at that 

time not supported at DBMS level, knowledge about spatial data types was maintained 

in middle ware (Figure 8.1 middle). Spatial information was maintained in the DBMS 

by means of  Binary Large Objects  (BLOBs). SQL cannot process data stored as  
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architecture, right: integrated architecture (courtesy of Vijlbrief and Oosterom van 

1992). 

Figure 8.1. Evolving architectures of GIS. Left: dual architecture; middle: layered 

 

 

BLOBs and therefore the data depends on the host application code, which handles the 

data in BLOB format. This solution requires data transport from the DBMS to middle 

ware and consequently queries cannot be optimally implemented.  

In recent times DBMSs are evolving towards an integrated architecture in which 

all data is maintained in one object-relational DBMS (Figure 8.1 right). Presently, 

most mainstream DBMSs support spatial data types and spatial functions by means of 

Abstract Data Types (ADTs).  This architecture is more beneficial for the integrity and 

consistency of the data.  

This chapter is devoted to the role of DBMS in new generation GIS architecture 

and focuses on the manner spatial data can be managed, i.e., stored and analysed, in 

DBMSs. Two important aspects of DBMS functionality are addressed in detail, i.e., 

spatial models and spatial analysis. Special attention is placed on the third 

dimension (3D) because of the increased demand for 3D modelling, analysis and 

presentations in many applications. The discussion in this chapter is restricted only 

to vector models, i.e., raster models are outside the scope of this chapter.  

The chapter is organised as follows: Section 8.2 outlines modelling of spatial 

features in DBMSs, both using geometrical primitives and topological structure. 

Section 8.3 makes an overview of possibilities to perform spatial analysis in DBMS. 

Section 8.4 provides case studies and elaborated discussion on topology versus 

geometry in DBMS. Section 8.5 is devoted to the third dimension. It starts with 

examples of 3D GIS applications and elaborates on available techniques and new 

developments required for full 3D support. The chapter ends with a discussion on 

the role of DBMSs in the new generation GIS architecture considering both data 

storage and spatial functionality.  
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multipolygon. The multipolygon is one type consisting of several polygons.

 

 

8.2 Spatial models in DBMS  

A lot of progress is observed in the management of spatial and non-spatial information 

for objects in one integrated DBMS environment, called a geo-DBMS. The 

OpenGeospatial Consortium (OGC) largely contributed to this progress. The 

OpenGeospatial Consortium adopted the ISO 19107 international standard (ISO 2001) 

as Topic 1 of the Abstract Specifications: Feature Geometry99. These Abstract 

Specifications provide conceptual schemas for describing the spatial characteristics of 

spatial objects (geographic features, in OGC terms) and a set of spatial operations 

consistent with these schemas and with vector geometry and topology up to three 

dimensions embedded in 3D space. According to the specifications, the spatial object 

is represented by two structures, i.e., geometrical structure, i.e., simple feature, and 

topological structure, i.e., complex feature. While the geometrical structure provides 

direct access to the coordinates of individual objects, the topological structure 

encapsulates information about their spatial relationships.  

The OGC Abstract Specifications have been transformed into Implementation 

Specifications, of which the most relevant for DBMSs is the OGC Simple Features 

Specification for SQL (OGC 1999), which provide guidance on how spatial objects 

have to be maintained in object relational DBMS environments. Sub-section 8.2.3 

briefly describes the implementation strategies of mainstream DBMSs. Since the 

native maintenance of topology by DBMS is still in an ascent stage, special attention 

is paid to topological models. The problems associated with 3D topological models as 

well as some prototype implementations are discussed in detail.  

8.2.1 Geometrical primitives in DBMS 

Informix (Informix 2000), Ingres  (Ingres 1994), Postgres (PostGIS) and MySQL have 

implemented spatial data types and spatial operators more or less according to the 

Simple Features Specification for SQL of OGC. The implementation is based on 

Abstract Data Types (ADTs) that support storage, retrieval, query and update of 

simple spatial features, i.e., points, lines and polygons, and a set of spatial operations  

built on top of them.  

Currently, no 3D primitive is implemented.  However, most DBMSs, including 

Oracle, Postgres, IBM, Ingres, Informix, support the storage of simple features in 

3D space. In general, it is possible to store for example a polygon in 3D. 3D 

volumetric objects can be stored in a geometrical model as polyhedrons using 3D 

polygons, i.e., a body with flat faces, in two ways: as a set of polygons or as 
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Our tests with different representations have shown advantages and disadvantages of 

both approaches (Stoter and Zlatanova 2003). An advantage of 3D multipolygons 

compared to list of polygons is that they are identifiable as one object by front-end 

applications, e.g., GIS and CAD, which can access objects stored in the DBMS. 

Furthermore, this approach has one-to-one correspondence between a record and an 

object. The major disadvantage of both implementations is that the DBMS does not 

recognise the 3D object, e.g., volume cannot be computed. In addition, spatial 

functions on 0D, 1D and 2D primitives defined in 3D space project the spatial data on 

a 2D plane. The way out is support of real 3D volumetric data types. A possibility of 

this work, a 3D primitive as polyhedron is defined as part of the geometrical spatial 

model of Oracle Spatial, including validation functions and spatial functions in 3D. 

8.2.2  Topological structures in DBMS 

Topological structures are generally used to represent planar or space partitions 

without redundancy and to represent (linear) networks. In planar and space partitions, 

spatial objects are defined on the basis of non-overlapping partitions. A large number 

of 2D topological structures are already available in the literature, of which some of 

them have been implemented in commercial and non-commercial systems and 

populated with data (LaserScan100; Oosterom and Lemmen 2001; Oracle Spatial 

10g101). Many 3D topological structures are also reported but only a few of them are 

further extended to support spatial operations.  

OGC has also recognised the need for topology standardisation. Implementation 

Specifications for topological structures, i.e., complex features in OGC terms are 

currently being developed by the OpenGeospatial Consortium in cooperation with 

ISO. The new interfaces will build on the OGC Simple Features Specification to 

address feature collections and more complex objects and concepts including curves 

and surfaces in 2D and 3D, compound geometries, arcs and circle interpolations, 

conics, polynomial splines, topology and solids. The interfaces will cover creation, 

querying, modifying, translating, accessing, fusing, and transferring spatial 

information. 

To illustrate current state of the art of topological structure in DBMS, this section 

continues with the view of OGC and ISO about topological primitives (sub-section 

8.2.2.1), a non-commercial implementation of 2D topological structure (sub-

section 8.2.2.2) and commercial solution LaserScan Radius Topology100 and Oracle 

Spatial 10g (sub-section 2.2.3). Similarly to a 3D geometrical primitive, 3D 

topological structure has not (yet) been implemented as part of a DBMS. Sub-section 

2.2.4 describes non-commercial implementations of a 3D topological structure.  

 

having a 3D geometrical primitive at DBMS level is shown in Arens et al. 2003. In 
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8.2.2.1 ISO and OGC about primitives 

 

‘Face’ is the topological equivalent of the geometrical primitive ‘polygon’. There is a 

slight difference between the definitions of face and polygon in ISO and the OGC 

specifications for SQL.  

According to the ISO standard a face is defined by edges as the orientation is 

strictly defined (anti-clockwise). A face can have holes (called inner rings) and the 

orientation of the edges is in clockwise order. Every edge has a reference to preceding 

and succeeding edges. The definition of a polygon needs refinements. For example, it 

is not clear whether the outer boundary of a polygon is allowed to touch itself nor is it 

2003). However, since only one outer boundary is allowed, a polygon with two outer 

boundaries defining potentially disconnected areas is certainly invalid. 

As was stated before, the OpenGeospatial Consortium adopted the ISO Spatial 

Schema as Abstract Specifications and transformed these to the implementation level 

in the OGC Simple Feature Specification for SQL. Since the OGC Specifications for 

SQL are based on geometry, only the geometrical primitives are defined. A polygon is 

defined as a simple, planar surface. Rings may touch each other in at most a point and 

self-intersection of outer and inner rings is not allowed (Oosterom et al. 2003). Inner 

rings, which divide the polygon in disconnected parts, are also not allowed. Note that 

OGC does not address orientation of polygons. 

 
8.2.2.2 Non-commercial implementation of 2D topological structure in DBMS 

 

A lot of implementations of non-commercial 2D topological models are currently in 

use. An excellent example is the topological model developed and implemented by the 

Netherlands’ Kadaster (Oosterom and Lemmen 2001). The model is based on the 

winged-edge structure (Baumgart 1975) The most important tables are ‘boundary’, 

i.e., cadastral boundaries, and ‘parcel’, i.e., parcel identifiers. The edges in the boundary 

table contain references to other edges according to the winged edge structure, which 

are used to form the complete boundary chains, i.e., parcels. The edges also contain a 

reference to the left and right parcel. A parcel has exactly one reference to one of the 

surrounding boundaries and one reference to a boundary of each enclave. The 

structure of the topological references and the relationship between parcels and 

boundaries is visualised in Figure 8.2. 

The apparent disadvantage of non-commercial topological structures organised in 

the DBMS is the fact that DBMSs are not aware of the geometry of spatial objects. To 

be able to perform some spatial operation, e.g., compute area, a function that ‘realises’ 

the geometry from the topological relationships has to be developed to support the 

topological model in a GIS environment. Several approaches are possible depending 

on  the  underlying  topological structure. Two different implementations of such a  
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 (courtesy of Oosterom and Lemmen 2001) 

 

Figure 8.2. Topological structure in the spatial DBMS of the Netherlands’ Kadaster 

 

uses the information on the relationship between edges. The second solution is based 

on the left-right information of edges.  
In the first implementation, the function creates a polygon geometry according 

Oracle Spatial and ISO rules: the coordinates of the outer ring are listed in anti-

clockwise order and the coordinates of the enclaves are listed in clockwise order. To 

generate the parcel polygon, the function starts with the first boundary, which is 

referred to in the parcel table. Then the connecting boundary in anti-clockwise order is 

found. This step is repeated until the polygon is closed. The polygon is constructed by 

connecting all linestrings of the found boundaries. In case of enclaves, the same 

procedure is followed but in clockwise order.  

The second implementation of the ‘return_polygon’ function uses only the left-

right information stored with every parcel boundary and a (geometrical) comparison to 

find and join connected boundaries in a ring. Here the boundaries that have the given 

parcel to the left or to the right are selected. The boundary of the parcel is composed 

by repeatedly joining boundaries that end at the same endpoint. Enclaves are realised 

in the same way. The orientation of the rings, i.e., clockwise or counter-clockwise does 

not follow from the algorithm and must be calculated afterwards. 

The implementations differ in the underlying geometrical primitive. In the 

winged-edge implementation the outer ring of a face can touch itself in the outer 

boundary at exactly one point and in the left-right implementation this is not possible. 

This difference can be illustrated by the polygon as shown in Figure 8.3: a polygon 

function called ‘return_polygon’ are presented by Quak et al. 2003. The first solution 
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that has an island that touches the boundary in exactly one point. The relationship-

between-edges algorithm will generate a polygon with one self-touching outer ring  

which is not valid according to the OGC definition, while the left-right algorithm will 

return a polygon with a boundary and an island.  

 

 
 8.3. A polygon with a hole that touches the boundary 

 

The performance of both implementations also differs and is dependent on the 

complexity of the data: the more points in a boundary, the worse the performance. 

This is especially true for the left-right implementation, where the computational cost 

increases with the number of points. Also the more boundaries there are in a polygon, 

the worse the performance. This is especially true for the relationship-between-edges 

implementation since the more boundaries there are; the more select statements need 

to be performed.  
 

8.2.2.3 Commercial implementation of 2D topological structure in DBMS 

 

Compared to the user-implemented models, the implementation of topology structure 

in LaserScan Radius Topology100 is much more extensive, it is a ‘complete’ 

implementation of topology with support for linear networks and planar topology, 

including updates, insertions and deletions. All required topological references are 

stored explicitly: the winged edge representation in the edge-to-edge table makes up 

just a small part of the complete system (see Figure 8.4). Topological primitives are 

stored in the NODE, EDGE and FACE tables while faces are only stored by references 

to edges. A number of reference tables are used to store various types of topological 

references. The TOPO table is the link between the features and the topological 

structures. Topology is organised in ‘manifolds’. Associated with each manifold and 

with the system as a whole are some metadata and error tables. Before topologically 

structuring data in Radius Topology, the user can specify rules in order to control the 

way the structuring works, such as snap tolerances, which features/primitives are 

moved and which stay while snapping, etc. 

To realise geometry from a topologically structured dataset Radius offers a 

‘get_geom’ function that is equivalent to the ‘return_polygon’ function of the non-  

Figure
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 8.4. Radius Topology database tables (version 1.0), taken from LaserScan100 Figure

 

commercial implementations as described above. Most users however choose not to 

use this function, but instead store a copy of the geometry explicitly. This increases the 

storage requirements, but it means that there is no performance penalty when 

accessing geometries (e.g., for display or geometric queries) since the geometry is 

instantly available and does not have to be computed. The use of database triggers in 

the Radius Topology architecture ensures that the geometries and their topological 

representation are always synchronised. Additionally support for topological querying 

(containment, adjacency, connectivity, overlap) is available by means of a topo_relate 

operator.  

Louwesma et al. (2003) describe a performance test in which topology structure 

of Laserscan Radius Topology was compared to the geometrical primitive of Oracle 

Spatial 9i. In the topology case less points are stored by avoiding storing ‘common’ 

boundaries twice. However disk space requirements where much bigger in the 

topology case due to the increased number of topology primitives and references 

between them compared to the number of area features and the way geometry is 
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implemented in Oracle Spatial, small objects have relatively much overhead. The total 

storage requirement for topology is intended for references, id’s and associated 

indexes that are required for the Radius topology structure. The storage requirement 

will probably be more favourable towards topology in the case of smaller scale data 

and data with a relatively high number of intermediate points in the boundaries. 

From the tests described in (Louwesma et al. 2003) it can be concluded that 

performance of geometrical querying on a data set topologically structured with 

Radius Topology is slower. This is due to the cost of computing the geometries on-

the-fly from the topological information. This occurs when geometries are not stored 

explicitly alongside the topology. For this reason users often store the geometries 

explicitly as described above. 

Oracle Spatial 10g also supports 2D topology101. The basic topology elements in 

an Oracle topology are nodes, edges and faces. A node is represented by a point and 

can be used to model an isolated point feature or edges. Every node has a coordinate 

pair associated with it to describe the spatial location of the node. An edge is bounded 

by a start- and an end-node and has a coordinate string describing the spatial 

representation. Each edge can consist of multiple vertices, represented by linear as 

well as circular arc strings. As each edge is directed, it is possible to determine which 

faces are located at the left and right hand side of the edge. A face is represented by a 

polygon (that can be reconstructed from the several edge strings) and has references to 

a directed edge on its outer and (if any) inner boundaries. Each topology has a 

universal face that contains all other nodes, edges and faces in the topology. 

Penninga and colleagues (Penninga 2004) tested the support of topology with two 

data sets from the Netherlands cadastre. The tests have shown that the current 

implementation does not completely avoid redundant data storage. The geometry is 

stored both in node and edge tables. However, as long as the user uses the supplied 

tools for data editing instead of directly updating the node, edge and face tables, data 

consistency can be efficiently maintained. In general Oracle topology can be 

considered a very suitable solution for the average user. The expert user might need to 

edit directly on the node, edge and face tables, as it is much quicker. More 

experiments are needed to explore the offered functionality.  
 

8.2.2.4 Non-commercial 3D topological structures in DBMS 

 

In 3D, there is no consensus on a single topological structure. Different topological 

structures can be defined depending on the number of primitives to maintain, and also 

the number and nature of relationships to explicitly store. The problems of defining 3D 

topological structures are relatively many compared to 2D. Due to the large amounts 

of data and higher complexity, one data structure representing a specific topological 

structure, which is appropriate for a certain application, may not be easy to serve 

another application. Unfortunately, 2D topological structures are not directly 

extendable to 3D. 2D structures are mostly built around the properties of an edge. One 
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8.5. UML class diagram of Simplified Spatial Model (Zlatanova 2000). 

 
Figure

edge has exactly two neighbouring nodes (begin and end) and exactly two 

neighbouring faces (left and right). This property is not true in 3D space.  An edge can 

have more than two neighbouring faces, i.e., the order of the faces has to be specified. 

An extensive study on 3D topological structures is presented in Zlatanova et al. (2004).  

One of these 3D structures (i.e., the Simplified Spatial Model, Zlatanova 2000) has 

been used to test 3D topological implementations in object-relational DBMS. In this 

structure, edges are not explicitly stored due to performance considerations (Coors 

2003). The role of the edge (=boundary) in 2D is now overtaken by the face 

(=boundary). Nodes describe faces and faces describe bodies. The 1D primitive as part 

of a body, is not explicitly stored (see Figure 8.5).  

This 3D topological structure can be implemented in various ways in a relational 

DBMS. The first straightforward approach is the relational implementation. The 

conceptual model can be converted directly into a relational data model. For each 

object (node, face, and body) a separate relational table is created. The NODE table 

contains the identifier of the node and the three coordinates. The FACE table contains 

the id of the face, a column denoting the anti clockwise order of the nodes in a face 

and the id’s of nodes that the face consists of. A BODY table contains references to 

the id’s of faces it consists of. Since the relationship between a face and constituting 

nodes is one-to-many (1:m), multiple rows represent one face. Theoretically, it is 

possible to have a separate column for each node but this approach is beneficial only 

in case the faces are triangles. Such an approach is reported by Coors (2003).  

Another possibility is the object-relational implementation. The list of id’s 

referring to lower-dimensional objects (faces, nodes) is stored in a newly defined 

object of type ‘variable array’ or ‘nested table’. Such a new object type can 

consequently be stored in a single column. This means that the number of rows in the 

object table is reduced to the actual number of the higher dimensional object (body, 

face). Object relational implementation is a two-step procedure, i.e., creating objects 

(ADTs) and creating tables with columns of the created data types. 
Similarly to the 2D case, the major disadvantage is that the DBMS is not aware of 

the spatial object. Spatial operations and spatial indexing offered by spatial DBMS 

cannot be used. To be able to use the spatial operations of DBMS, a function similar to 
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‘return-polygon’, as mentioned above for the 2D case, has been defined (Zlatanova 

2001). This function realises the geometry of the 3D spatial objects, based on the 

topological tables and returns a 3D geometrical primitive as described before, i.e., a 

polyhedron consisting of flat polygons defined in 3D.  

In general, regardless the type of topological structure used, the implementations 

have similar disadvantages as the ones specified for 2D user-implemented topological 

structures, i.e., the performance is relatively slow for certain queries. Operations on the 

topological model have to be further developed, to be able to use DBMS spatial 

operations, realisation has to be first performed. However, simple SQL statements 

comparing the identifiers of constituent primitives can perform a large number of 

topological operations. Section 8.3.3 describes a case study that illustrates the power 

of topological models in spatial analysis.   

8.3 Spatial analysis in DBMSs 

Spatial functionality is related to operations that are performed on spatial objects as 

very often no distinction is made between spatial and thematic components. In this 

chapter we will concentrate on the part of spatial functionality that is related to the 

spatial component. The most important aspect in the spatial domain is the framework 

for detecting spatial relationships. Amongst the different approaches (topology, 

distance, order, etc.) GIS society has largely accepted topology. OGC has adopted 

three topological frameworks: Boolean set of operations, Egenhofer operators and 

Clementini operators.  Using these frameworks a large number of operators can be 

developed. However, the question ‘who is responsible for the implementations’ (front-

end applications or spatial DBMS) is still open and even extensively discussed. 

Although several studies have shown that it is better to perform spatial operations 

close to the data, GIS vendors might not be willing to give up spatial analyses. In 

addition since spatial analyses in GISs have a long history, at least in the short-term 

feature spatial analyses in GIS front-ends will show better performance.    

In the introduction (section 1) the new generation GIS architecture was made 

clear, in which all spatial data is maintained (and recognised as such) at DBMS level, 

without the intervention of middle-ware software. The functionality concerning spatial 

analyses that DBMS has to offer in such an architecture depends very much on the 

scope and constraints of spatial analysis: what is spatial analysis and what is spatial 

analysis in the DBMS context. DBMSs are essential in applications in which large 

amounts of large-scale geo-data need to be maintained and managed, such as cadastral 

data or spatial data used in municipalities. In general we can say that GIS 

functionalities that are not specific to a certain application belong in the DBMS and 

not in GIS (or CAD) front-ends. Examples are the spatial functions that examine the 

topological relationships between spatial objects. Arguments for this are the logical 
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consistency of the data, better performance and better maintenance of the data, since 

unnecessary transport and conversions of data between DBMSs and GIS front-ends 

prone to errors can be avoided.  On the other hand spatial functions that are specific 

for certain applications should be implemented in front-ends. 

Here we consider the spatial analyses at DBMS-level that should be present to 

support the new generation GIS architecture. We will also give an overview on the 

spatial analyses that are currently supported in DBMSs. In the discussion (section 8.6) 

we will refine the statement on where spatial analyses should fit within the optimal 

architecture based on (past) trends both in computing technology, as well as in GIS.  

8.3.1 Which operations in DBMS? 

DBMS has not been designed to manage spatial objects, but does have a strictly 

defined functionality based on relational algebra and calculus (Ramakrishnan and 

Gehrke 2003). In principle, three generic operations are distinguished in the database 

literature (e.g., Tsichritzis and Lochovsky 1982): insert (add new data), delete (remove 

data from the database) and update (change existing data). A similar set of generic 

operations (but more elaborated) has to be available for spatial data. The operations 

related to introducing a new element, deleting and updating an existing one have to be 

extended with respect to the structure used, i.e., geometry or topology. Examples of 

such operations can be:    

 

• operations to organise the data according to the used topological structure, i.e., 

operations for planarity, convexity and discontinuity as they are defined in 

the model. 

• operators for consistency check: validation of the objects (e.g., polygon 

closed, body closed), node-on-line, node-on-face, node-in-body, line-on-face, 

line-in-body, intersection of lines, face-on-face, intersection of faces, face-in-

body.  

 

In addition to generic operations, DBMS offers a set of more elaborated operations 

known as selection, navigation and specialisation: 

 

• selection: retrieve operation under a particular condition; 

• navigation: describe the process of travelling through the database, following 

explicit paths from one record to the next in the search for some required 

piece of data; 

• specialisation: complex operation that allows a new object to be created on 

the basis of existing ones. 
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Also these three generic operations have to be available for spatial data in a spatial 

context. 

Selection in a spatial context is an operation that allows a number of data to be 

identified on the basis of three properties, i.e., logical position (first, last, prior), value 

of the content and/or relationship. An example of spatial selection operation is ‘select 

all the buildings that are located next to the park’. Furthermore, three basic groups of 

spatial selection operations should be offered at database level (Zlatanova et al. 2004): 

 

• metric operations: selection operations, requiring computations of geometric 

properties e.g., compute distance, volume, area, length, centre of gravity. The 

metric operations need coordinates of the spatial objects and the result is 

always quantitative.   

• proximity operations: These are selection operations related to spatial 

location, e.g., objects in a certain area/volume, field of view. Position 

operations largely benefit of the spatial index offered by DBMS to restrict the 

search. 

• relationship (topology) operations: selection operations based on spatial 

relationships. These operators will be dependent on the framework for 

detecting relationships. If topology is considered, the abstract specifications 

recommend three frameworks for implementation as was described before. 

Depending on the implementations (framework and model), topology 

operations are the ones expected to perform better on a topological model. 

 

Besides selection, navigation and specialisation operations in a spatial context 

have to be also considered at DBMS level. Navigation is an operation that permits a 

logical path to be followed on the basis of a selection. Examples of spatial navigation 

operations are route planning (e.g., multiple topology operations ‘meet’), shortest path 

(multiple topology operation ‘meet’ and multiple metric operation ‘distance’) and 

intervisibility. The navigation (in the database sense of the word, as it was explained 

above) should not be equated with spatial navigation (in the shortest-path sense). The 

latter is more of an analysis process using the data from the database and other 

external algorithms not standard within SQL or the DBMS.  However, spatial 

navigation operations use the inbuilt navigation capabilities of the DBMS.   

Examples of spatial specialisations are buffer, convex hull, union of objects and 

all types of generalisations. While navigation might be based only on topological 

operations, specialisations need in most of the cases the coordinates of objects. 

However, additional information retrieved on the basis of proximity or topology 

operations may be of use for some specialisations, e.g., union or generalisation.   

In contrast to the group of selection operations, specialisation and especially 

navigation in the spatial domain can be very complex and time consuming. If they are 

performed at a DBMS level on the server, the performance can decrease drastically. 
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Furthermore, such complex operations may not be needed for all kind of applications. 

Therefore, these operations could be considered for implementation by the front-end.  

8.3.2 Spatial operations currently offered by DBMSs 

The spatial functionality presently offered by mainstream DBMS covers in general 

lines the scope of operations discussed in the previous sub-section. We use Oracle 

Spatial 9i to illustrate the possibilities of spatial analysis in DBMSs.  

At database level, spatial operations can be defined utilising either geometrical or 

topological representations. It should be noticed (again) that the operations presently 

offered by the mainstream DBMS vendors (an exception is Oracle Spatial 10g) are 

built on the geometrical model due to lack of topology maintenance and therefore they 

work directly on the geometry (no geometrical realisation is needed). Oracle Spatial 9i 

supports the three groups of selection operations, i.e., topology operations, a variety of 

metric operations, proximity operations as well as simple specialisation operations. 

Another class of specialisation operations returns an aggregate of a collection of 

geometries.  These are not defined within OGC. Tables 8.1 and 8.2 show examples of 

spatial functions implemented by Oracle Spatial and the equivalent OGC functions. 

 
OGC   Oracle 

Equals   EQUAL 

Disjoint   DISJOINT 

Intersects  ANYINTERACT 

Touches  TOUCH 

Crosses   OVERLAPBDYDISJOINT 

Within   INSIDE 

Contains  CONTAINS 

Overlaps  OVERLAPBDYINTERSECT 

 

Table 8.1. Topological operations in the DBMS according to Implementation 

Specifications of OGC and Oracle implementations 
 

Unary operations 
 
OGC  Oracle  

Convexhull  SDO CONVEXHULL 

Area   SDO AREA 

Buffer   SDO BUFFER 

Centroid  SDO CENTROID 

Length   SDO LENGTH 

Boundary  SDO MBR 
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Binary operations 

OGC   Oracle 

Distance  SDO DISTANCE 

Intersection  SDO INTERSECTION 

Union   SDO UNION 

Difference  SDO DIFFERENCE 

Symdifference  SDO XOR 

 

Table 8.2. Metric and position operations according to Implementation Specifications 

of OGC and Oracle implementations 

 

Although not that common, spatial analysis on topological structure is also 

available, e.g., Laser-Scan Radius Topology, Oracle Spatial 10g, but the knowledge is 

still limited. One of the most important operations, i.e., the realisation of geometry was 

already discussed in Section 8.2. The complexity of the functions considerably varies 

with respect to the different implementations. For example, the geometry (coordinates) 

of a body can be extracted by only one SQL statement in the case of relational 

implementation if the geometry is maintained explicitly, but an embedded script is 

required  if the body is represented as ‘variable array’ of polygons. 

In principle, all the topology operations have to perform better on the topological 

model than on geometry alternatives. On the other hand, some operations (compute 

area, distance, etc.) on topological structured data will be slower than on geometrical 

primitives since it requires querying and joining different relational tables, which is 

also discussed in (Hoel et al. 2003). Another explanation for the better performance of 

these spatial operations on the geometrical model is the internal optimisations 

provided by the DBMSs and the possibility to apply spatial indexes. 

8.4 Topology or geometry 

The statement that topological querying (queries that only require explicitly stored 

relationships) is much faster than in the situation where only simple geometry is 

available, was tested in a case study described in section 8.4.1. In section 8.4.2 it is 

discussed what to prefer: topologically structured data or geometrically structured 

data. 
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8.4.1 Case study 

To illustrate the power of topological structure in performing relationship operations, 

we did an experiment in Oracle Spatial 9i, on a dataset, which is a selection of the 

cadastral database of the Netherlands. The test data set contains 1,788,019 parcels and 

5,599,089 boundaries. The topological structure used for this dataset is described in 

section 8.2.2.4. 

The query that we use in this experiment is to find all adjacent parcels to the 

parcel with object identifier 6862 (see Figure 8.6).  The query was performed on both 

a topologically structured dataset and a geometrically structured dataset. The 

geometries of the parcels were therefore stored explicitly in the geometrical primitive 

of Oracle Spatial by means of the return_polygon function (section 8.2.2.2). A spatial 

index was built on the geometry-column to speed up spatial analyses.   

 

 

For the data set described by geometrical primitives, the query to find all adjacent 

parcels is given below using a ‘subselect’ structure, in which the polygons of parcels 

are stored in the table ‘parcels_geom’ in the column named ‘shape’.  

 
select object_id from parcels_geom where sdo_relate(shape,  
(select shape from parcels_geom where object_id=6862), 
 ‘MASK=TOUCH’) = ‘TRUE’; 
 

The query uses the built spatial index. 

parcel 6862’. 

Figure 8.6. Data set used to perform the test query: ‘find all parcels adjacent to 
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The query finds all parcels that have a ‘touch’ relationship with parcel ‘6862’ 

using the spatial operator ‘sdo_relate’ which is implemented on geometrical 

primitives. The result is: 

 
OBJECT_id                                                                     
-------------                           
 7142                                   
 2067                                 
 2066                              
 7141                                 
 2065                              
 6862                                    
 6861                                    
7 rows selected. 
 
Elapsed: 00:00:22.05 

 

In the topologically structured data set, all adjacent parcels to parcel ‘6862’ can be 

found when all the boundaries are selected that have the specific parcel on the left or 

right side. The next step is to find the parcel that is located on the other side of the 

selected boundaries: 

 
select l_obj_id, r_obj_id from boundary where  
r_obj_id=6862 or l_obj_id=6862; 

 

The result is: 
 
L_OBJ_id R_OBJ_id 
--------------  ----------- -----  
 2066    6862 
 6862    7141 
 6861    6862 
 6862   7142 
 
Elapsed: 00:00:00.01 

 

The same test was performed for parcel ‘7142’ with 28 adjacent parcels. The 

processing time for this second query was 22.56 seconds for the geometrical query and 

00.01 seconds for the topological query. The queries were repeated a number of times 

which resulted in processing times of the same order every time. These examples show 

that the topological query is indeed faster on a topologically structured data set than on 

data set described with the geometrical primitives.  

There is another conclusion that can be drawn from the first query: the results differ. 

The topological query does not give parcels ‘2067’ and ‘2065’ as a result since these 

parcels touch parcel ‘6862’ only at a point and are therefore not seen as adjacent parcels 
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from the topological point of view as defined in the winged-edge structure. The result set 

in spatial analyses using topological structure is therefore dependent of the topological 

structure implemented. The geometrical query does find parcels  ‘2067’ (neighbour on 

the right of parcel ‘2066’) and ‘2065’ as adjacent parcels since they do touch parcel 

‘6862’, even if it is only at a point. The geometrical query could be further specified by 

adding the condition that boundaries of two parcels should also overlap.  

Although this case study is related to 2D data, a 3D comparison case study could 

even show bigger differences, as geometrical queries in 3D require more complex 

algorithms than 2D functions. This has a big influence on the computational 

complexity of topological queries that work on 3D geometrical primitives compared to 

topological queries that work on topologically structured data. 

8.4.2 Discussion 

The question whether or not to manage topology in DBMS is still challenging. 

Extensive argumentation for the need to organise the topology at DBMS level is given 

 

• it avoids redundant storage and is therefore more compact than a  geometrical 

model  

• it is easier to maintain the consistency of data after editing  

• it is more efficient during the visualisation in some types of front-ends, 

because less data has to be read from disk and transferred to clients 

• it is the natural data model for certain applications; e.g., during surveying an 

edge is collected together with attributes belonging to a boundary  

• it is more efficient for certain query operations, e.g., find neighbours 

 

On the other hand geometrical queries on topological structure are much slower than 

on geometrical primitives, since a geometrical realisation is always required, by which 

several tables need to be queried that contain the lower dimensional objects. The same 

is true for visualisation of spatial data. Another problem of topologically structured 

data is the required storage capacity compared to the storage capacity needed for the 

geometrical primitives. Every row in the tables defining the topological structure has 

its overhead, and the references require a lot of storage capacity. An advantage of the 

topological structure is that topology structure management can be used in storage 

(maintaining consistency), data management and retrieval of data.  

In principle, we believe that only one model, i.e., topological model, should be 

sufficient to manage spatial data in DBMS. However since performance of 

geometrical queries as well as of visualisation favours the geometrical model, which 

will be even more apparent in 3D, it could be argued that a DBMS that support both 

in Oosterom et al. 2002a. Some of the advantages are listed bellow:  
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models simultaneously would be the most appropriate solution. In this case spatial 

objects are maintained in geometrical primitives and topological structure 

simultaneously and triggers are defined between the two representations to keep the 

two different representations up-to-date. Of course this solutions undermines the 

argument that topology structure avoids redundancy of the data. Another disadvantage 

is that the storage of spatial data becomes even less efficient compared to the 

topologically structured data. 

8.5 3D and Geo-DBMS 

The need for 3D information is rapidly increasing. Many examples of applications that 

have a growing interest in 3D information have been cited  (Oosterom et al. 2002b; 

Oosterom et al. 2002c). Traditionally, the military applications were the first to look 

for 3D solutions and provided the first elaborated systems for 3D visualisation and 

the third dimension. In this section first examples of the growing need for 3D geo-

information are given (section 8.5.1). In the second subsection (8.5.2) the question is 

addressed whether current DBMS technology is appropriate to meet the growing need 

for 3D geo-information. 

8.5.1 Growing need for 3D information 

The growing need for 3D geo-information is felt in different disciplines:  

 

Applications in urban areas 

• Urban planning is one of most demanding areas pushing 3D developers to 

provided fast modelling approaches, extended visualisation, interaction tools, 

influence of new buildings and infrastructure on the existing environment can 

be best visualised in 3D environments using virtual reality or augmented 

reality environments such as in Figure 8.7, which is important for 

presentation to citizens. In addition, 3D visualisations of planned 

infrastructure and underground constructions enables providing more insight 

into the vertical planning of regions. 

• Cadastres traditionally register property rights to real estate on 2D parcels 

since the individualisation of land started with a subdivision of land using 2D 

boundaries. In today’s world there is growing pressure on land that has led to 

stratified property (property units on top of and engaging each other). 

Cadastres throughout the world are confronted with the challenge how to 
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register and visualise stratified properties. This requires an extension of the 

cadastral map in 3D (Figure 8.8) (Oosterom and Lemmen 2003). 

• Pipelines and tunnels can be better protected against damage when their 3D 

location can be visualised in the real world (Roberts et al. 2002). For 

example, knowledge about the location of cables and pipelines can avoid 

damage during excavation. Based on knowledge of the location of 

constructions precisely defined restrictions can be imposed on the owners of 

the surface land from doing anything that could damage the underground 

construction. 

• Location-based services (LBS) for shopping, tourism, rescue operations etc. 

is another area, where the use of 3D visualisation and most probably 3D GIS 

 

Applications in non-urban areas 

• Road, railway, canal construction and maintenance benefits largely by 3D 

environments (Bresters 2003). 

• Landscape modelling seeks specific 3D tools for interactive design and 

simulation (Lammeren et al.102; Blaschke and Tiede 2003). 

• In telecommunications the decision on the locations of antennas requires 3D 

analyses to obtain information on the area that can be covered and on the 

costs of using the specific location. 

 

3D Spatial analyses 

• Maintaining 3D information on real-world objects enables the management 

of 3D characteristics of buildings, e.g., calculating the volume of buildings 

(for tax purposes) or dictating a maximum construction height and depth. 

• 3D geo-information can serve as input for spatial modelling such as 

modelling noise levels  (Kluijver and Stoter 2003) and risk modelling for 

buildings when a tunnel is drilled (Netzel and Kaalberg 1999). 

• Geological applications require 3D analysis, e.g., finding fractures or salt 

 

Environmental management 

• Knowledge about 3D characteristics of natural processes can be used to 

impose limitations and obligations, e.g., in case of noise control, odour 

nuisance and safety measures. 

• In order to predict the consequences of bursting of dikes (flooding), a good 

terrain model is needed together with 3D software (Werner 2002;  Zipf 

2004). 

• Zoning plans that have to regulate different types of land use on top of each 

other. An example of a zoning plan that had to deal with 3D information is 

is rapidly increasing (Coors 2002; Höllerer et al. 1999)    

domes, computing volumes of repositories, etc. (Wees et al. 2002). 
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the ‘Noord-Zuid lijn’ in Amsterdam. In Amsterdam a metro-tunnel is drilled 

from north to south, the ‘Noord-Zuidlijn’. A zoning plan was needed in 

which the use of a tunnel below other types of land use was guaranteed. The 

tunnel is planned partly below houses. Figure 9 shows part of the map that 

was produced for this zoning plan. It is a 2D map. The areas on the 2D map 

are encoded as ‘multi-layers’ and the 3D information (tunnel below houses) 

is added as a description in the legend and not as a 3D spatial description. 

Consequently, the zoning plan of the Noord-Zuidlijn does not include 3D 

spatial information (also not elsewhere in the zoning plan).  

 

8.5.2 Towards 3D DBMSs 

Developments in the area of 3D GIS are motivated by both a growing need for 3D 

information, as illustrated above, and technology developments. Concerning new 

technologies, significant progress has been observed in 3D data collection techniques 

and corresponding procedures for 3D object reconstruction. Computers (processors, 

memory, graphical cards and disk space devices) have become more efficient in 

processing large data sets. Elaborated tools and devices to display and interact with 3D 

data are already available on the market. 

These developments pose the important question ‘what is the readiness of spatial 

DBMSs for the third dimension’.  The following sub-sections discuss this matter. 

 
8.5.2.1 Other representations in DBMSs 

 
The previous sections the readiness of geo-DBMS for boundary representations were 

discussed in detail. DBMS vendors still have not made the step to implement 3D data 

types in their geometrical models as was mentioned in section 8.2.1. Specifications for 

3D features and consensus on a 3D topological structure have not been achieved as 

discussed in section 8.2.2.4. The current trend is to develop specific ad hoc solutions 

when using 3D geo-information instead of building a database for maintaining spatial 

objects. Non-commercial implementations of 3D GIS models can be found in 

Besides boundary representations, other approaches may appear also useful for 

3D: Constructive Solid Geometry (CSG) and voxel representation (regular space 

subdivision). All approaches show advantages and disadvantages considering different 

criteria. The main advantage of boundary representations is that it is optimal for 

representing real-world objects. The boundary of real-world objects can be observed,  
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8.7. Visualisation of planned bridge, using a VR environment. 

 

 

 

 

of establishing limited real rights (right of superficies, right of long lease) on three 

parcels (left), therefore the cadastral map does not reflect the real situation. 3D insight 

in the legal status requires extension of the cadastral map in 3D (right). 

Figure

Figure 8.8. 3D cadastre example: the legal status of one building is established by means 
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 8.9. 3D zoning plan of metro tunnel (Noord-Zuid lijn) in Amsterdam. 

‘Ondergronds railtrace waarboven’ means ‘Subsurface metro line on which’. 

 

Figure

measured and surveyed from properties that are visible, i.e., ‘boundaries’. Furthermore 

most of the rendering engines are based on boundary representations, i.e., triangles. 

Unfortunately boundary representations are not unique and constrains (rules for 

modelling) may get very complex. Constraints of 3D objects are even more complex 

to deal with: are open-space objects possible, how to determine neighbours in 3D, how 

to ensure planarity of faces in 3D etc. Furthermore many large-scale real-world objects 

(trees, traffic signs, building ornaments, statues) or geological objects (surfaces, 

repositories, caves) may result in representations with unnecessarily high complexity.  

In such cases CSG or voxels might be much more appropriate.  At certain stage Geo-

DBMS have to open for other 3D representations.  
 

8.5.2.3 3D visualisation of spatial features stored in DBMS 

 
3D models usually deal with large data sets, requiring efficient hardware and software 

for visualisation. Different levels of detail (high detail when objects are close by and 

low detail when objects are further away) in a model improve efficiency of navigating 

through a model (Kofler 1998; Pasman and Jansen 2002). In new generation GIS 

architecture, the 3D data maintained in DBMS should be accessible by front-ends in a 

very efficient way. A study on the accessibility of 3D data organised in a DBMS by 
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different front-ends is described in (Stoter and Zlatanova 2003). This study has clearly 

shown large possibilities for visualisation of 3D data organised in a DBMS, in this 

case Oracle Spatial 9i.  However, to be able to query, identify and edit the 3D objects 

requires still some more research. 

To improve performance, different representation of objects such as low-

resolution geometries and imposters  (image of object instead of geometry) can be 

either stored in the DBMS or created on the fly. The main problems of storing multiple 

presentations are fitting high detailed data to low level of detail and the redundant 

storage of representations. 

A problem that comes with visualising 3D geo-data compared to 2D geo-data is 

readability of the data towards improved realism. To make a view realistic one can 

add, apart from traditional characteristics such as colour, illumination, shade, fog, 

textures, shadow, texture, and material to the geometry. Interacting in 3D 

environments, i.e., exploring 3D models also requires specific techniques. The new 

issue from a database point of view is the management of data, i.e., images, geo-

referencing between images and geometry, etc., needed for realistic 3D visualisation 

and dynamics. The problem is well known and much discussed in 2D and traditional 

map production, i.e., if the geometry is described in a Digital Landscape Model, the 

8.6 Outlines and further research 

In this chapter we have discussed the responsibility of DBMS in new generation GIS 

architecture in which spatial features together with non-spatial features are maintained 

in an integrated DBMS environment and edited and visualised in all kinds of front-

ends. The location where spatial analysis should fit in this architecture is not yet clear. 

DBMSs have made the first step, they offer support and maintenance of spatial 

objects in geometrical models and some operations that allow spatial analysis of 

objects stored as geometrical primitives. The geometric operators offered as well as 

the possibility to use them in SELECT statements in different combinations form an 

extended set of tools for query and analysis. Still many issues related to the 

implemented data structuring and required operations have to be addressed. The 

geometrical model has been implemented but is still not complete. Real 3D geometric 

types are missing. Ad hoc solutions for representations of 3D objects can be found. 

Even some generic operations (edit, retrieve, etc.) are possible. However, validations 

of 3D objects, such as closures, and metric operations, such as volume, center, gravity, 

etc., need further development. Also visualisation of and navigation through 3D 

environments require additional attributes to be maintained in the DBMS compared to 

2D applications. The lack of 3D support in DBMSs should be a point of attention both 

visualisation parameters are then provided by the Digital Cartographic Model.   
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in research and in practice in the coming years as was illustrated by examples from 

practise in which a growing need for 3D information was met. 

Now the 2D geometrical model has been implemented in mainstream DBMSs 

based on the OGC Implementation Specifications for SQL, the next step should be the 

implementation of the topological model and implementation of topology operators. 

Once implemented at a database level a large number of navigation operations can be 

implemented. The performance of the topological relationship operations also still 

needs improvements. Many DBMS are intensively working on topological models, 

which will definitely result in topology support at DBMS level in the coming few 

years. Laser-Scan Radius Topology and Topology-Network Model of Oracle Spatial 

(10g) are the first examples. A very tricky issue is the type of topology and 

dimensionality of the models. Current efforts are toward providing 2D topology that 

most probably will restrict the topology operators to 2D. Moreover, maintenance of 

many topological models appears unavoidable. 

As was described in the introduction, DBMS plays an important role in the new 

generation GIS architecture. Does it mean that a DBMS will and should include all 

spatial analyses, including complex spatial analyses that have been optimised in GISs 

during decades? Does it mean that traditional GIS software (or extended with attribute 

maintenance CAD software) has to convert to a tool for import, visualisation, editing 

and exploration of spatial data? 

Many spatial functionalities are (and probably will be) available only at the front-

end and not at DBMS level (e.g., spatial analyses which are specific for certain 

domains and applications, tools for inserting new data, interaction tools for starting 

spatial analyses, visualisation tools). Also, too many operations performed at a DBMS 

level may lead to overloading of the server and affecting the performance of the 

DBMS. On the other hand, too few operations provided by DBMS will result in 

development of many functionalities by the front-end, i.e., duplication of development 

efforts and resources. This question is still challenging: which spatial operations 

should DBMSs take over? In principal, generic spatial functionalities that are not 

specific to a certain application belong in the DBMS and not in front-end applications. 

On the other hand, complex spatial functionalities that are specific for certain 

applications should be implemented within front-ends. 

In this context we defined generic and supporting spatial operations, i.e., selection, 

navigation and specialisation. In contrast to the group of selection operations, 

specialisation and navigation in the spatial domain can be very complex and time 

consuming. If they are performed at a DBMS level (on the server), the performance 

can decrease drastically. Furthermore, such complex operations may not be needed for 

all kind of applications. Therefore, complex operations falling in the group of 

specialisation and navigation operations can be considered to be left for 

implementation by the front-end with respect to a particular application, while DBMSs 

have to support the more generic selection operations, i.e., metric, proximity and 

topology, and relatively simple specialisation and navigation operations. 
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Another relevant question in this discussion is whether spatial functionalities 

implemented in the DBMS will replace spatial functions that were originally built in 

GISs. GIS has become an important instrument in work-processes of companies and 

governmental offices. There has been a lot of money and effort invested by GIS 

vendors for selling their software and for giving support. They may not be willing to 

give up spatial analyses, i.e., the main part of GISs by which GISs will be reduced to a 

editing, visualisation and retrieving tool. 
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