
Adaptive Segmentation for Scientific Databases
Milena Ivanova, Martin L. Kersten, Niels Nes

CWI, Amsterdam, The Netherlands
{milena,mk,niels}@cwi.nl

Abstract— In this paper we explore database segmentation in
the context of a column-store DBMS targeted at a scientific
database. We present a novel hardware- and scheme-oblivious
segmentation algorithm, which learns and adapts to the workload
immediately. The approach taken is to capitalize on (intermedi-
ate) query results, such that future queries benefit from a more
appropriate data layout. The algorithm is implemented as an
extension of a complete DBMS and evaluated against a real-life
workload. It demonstrates significant performance gains without
DBA assistance.

Emerging column-store database systems [1], [2], [3] call
for a revisit of the predominant segmentation techniques to
cope with resource limitations, e.g., disk IO, network, memory,
and CPU. As they deal with single columns only, their solution
space is less complex and enables a better outlook for a self-
organizing data segmentation scheme.

In this paper we present the design and evaluation of an
adaptive data segmentation technique for the MonetDB sys-
tem. The solution is based on extending its tactical optimizer
to modify query plans by injecting calls to a segment manager
to exploit intermediate results. The adaptive segmentation aims
for a data layout beneficial for the future queries based on the
recent past and the database state. It is closely related to the
crackers approach [4], which exploits value-based organization
per column to aggressively create new segments each and
every query. In contrast, our approach makes segmentation
decisions based on heuristic schemes aiming to balance the
sizes of disk-based data segments.

Our approach aligns with and extends the recently pro-
posed on-line tuning techniques [5], [6], [7], which focus
on an adaptive solution for the index selection problem by
monitoring the query load and changing the auxiliary access
structures (indices and materialized views) on-the-fly. The
adaptive segmentation reorganizes the data itself and partially
shares the overhead with the query execution. It is evaluated
against a real-life query load from the SkyServer project [8].
Self-organizing segmentation is urgent for the domain of
scientific databases, where unpredictable workloads against
high volume data come with usually scarce (human) resources
for data management.

The remainder is organized as follows: Section II introduces
the MonetDB system and Section III describes the main idea of
the adaptive segmentation. Two heuristic adaptation schemes
are presented in Section IV. The evaluation of the algorithms
is given in section V and Section VI summarizes.

MonetDB [1] is an open-source column-store DBMS. The
central storage component is a binary association table (),
i.e., a 2-column data structure. s can be defined over the
built-in data types and its elements are physically stored in
a contiguous area. There are no holes, deleted elements, or
auxiliary data in this storage structure, which means that a 
can be conveniently split at any point.

The query plans are described in the MonetDB Assemble
Language (MAL), which provides a rich set of relational
operators over s. Their execution paradigm is based on
materialization of all intermediate results. The  storage
enables a different physical organization (sort order, segmen-
tation, etc.) to be chosen for each column in a SQL table.
In particular, if an ordered column is segmented on value,
a compact meta-index on the segments speeds up selections
while having very small storage needs.

Our quest to produce a self-managing system that reorga-
nizes data transparently to the user leads to the choice of the
tactical optimization layer of the MonetDB software stack,
where global resource decisions are made and MAL programs
are transformed to cope with specific cases [9]. We merely
have to identify candidate s and inject calls to a segment
optimizer, which transforms operations against a segmented
 into an instruction sequence over the segments of the 
relevant for the query. The optimizer uses heuristic schemes to
decide about splitting a  and injects calls to a reorganizing
module. This allows segment reorganization to be performed
in an on-line manner during the regular work of the system.

In the context of our SQL front-end the head type of a 
is always  and the tail type is derived from an SQL column.
The  is often kept implicit, i.e. derived from the position of
the element in the table and an administrative offset. The result
s are sorted on the head, which benefits many relational
algebra algorithms.

The  representation severely limits the segmentation
alternatives to the tail, head, a combination of both, or derived
from another . Range segmentation on the head allows to
keep implicit  column, and hence it is space efficient and
advantageous for many expensive relational operations, such
as hash joins on very large BAT.

Range segmentation on the tail is a value-based partitioning
scheme, which means that query execution can avoid touching
non overlapping segments. However, it destroys head-ordering

II. BACKGROUND

I. INTRODUCTION

III. ADAPTIVE SEGMENTATION

978-1-4244-1837-4/08/$25.00 © 2008 IEEE ICDE 20081412

and requires  materialization. This increases the storage
needs and slows down the individual element access.

Since the n-ary relations are broken into a series of s,
all should be split in the same way to realise a traditional
horizontal partitioning. Derived segments of a  B contain
elements with the same OID as the correspondent segments
of A. The derived segmentation is beneficial for tuple re-
constructing joins and in a distributed setting, where keeping
all corresponding segments at a single site avoids network
costs. In this work we focus on the value-based segmentation.

To illustrate the work of the segment optimizer, we use the
following code snippet with a range selection over a  R.

X1:bat[:oid,:dbl] := sql.bind("sys","P","r",0);
X14 := algebra.select(X1,A0,A1);

Here X1 is a variable bound to the  R, and A0 and A1
variables are bound to constants specifying the selection range.
The segment optimizer finds out in the segment meta-index
that  is a segmented  and transforms the snippet above
into the following sequence:

Y1:bat[:oid,:dbl] := bpm.take("sys_P_r");
Y2 := bpm.new(:oid,:dbl);
barrier rseg := bpm.newIterator(Y1,A0,A1);
T1 := algebra.select(rseg,A0,A1);
bpm.addSegment(Y2,T1);
rseg := bpm.adapt(rseg,A0,A1,T1);

redo rseg := bpm.hasMoreElements(Y1,A0,A1);
exit rseg;

The new code includes a predicate enhanced iterator that
uses the segment meta-index to return only those R segments
that overlap with the selected range [A0, A1]. The partial
selection results over those segments are registered in the
meta-index as pieces of the segmented result  Y2.

Having on hand the materialized result of the selection T1,
the optimizer calls the adapt module to reorganize the original
segment  on-the-spot. The processing time of the current
query increases, but the total overhead of re-segmentation is
minimized, since it re-uses the materialized selection result.

The adaptive scheme implemented in MonetDB explores
two routes: randomized decision making and adaptive pag-
ination. Both use heuristics to minimize overhead of the
reorganization decision algorithm.

A. The Gaussian Dice

The Gaussian dice (GD) scheme uses a ’learning’ random
generator that reflects the changing segment status as time
progresses. The basis is a Gaussian probability distribution G
with µ = 0.5 and σ = S izeS /TotS ize, where S izeS is the
size of the segment S considered for splitting, and TotS ize
is the total size of the . This σ value gives preference to
operations splitting relatively big segments.

The function O(x) = G(x)/G(0.5) is used as a decision
function with x set to the ratio S izeP/S izeS , where S izeP is
the size of the produced segment P. Whenever a segmentation
decision is made, we randomly draw a number r ∈ [0..1) and

check if r < O(x). In this way operations splitting a segment
in a ratio close to x = 0.5 have higher probability to be used
for reorganization than selections extracting small pieces.

B. Adaptive Pagination Model

In an adaptive pagination model(APM) the reorganization
decision is taken deterministically using segment size esti-
mates. Aiming to achieve balanced segment sizes, we intro-
duce a pair of bounds: a lower bound Mmin is used to guard
the system against fragmentation into too small pieces, while
an upper bound Mmax,Mmin < Mmax specifies how many extra
reads the system is ready to pay for point queries. The APM
rules are as follows:

1) if S izeS < Mmin, the segment is left intact.
2) if S izeS > Mmin the segment is reorganized if all of its

sub-segments have estimated size above Mmin.
3) if the selection creates small pieces with size under the

Mmin bound, it is considered inappropriate to be used for
splitting. However, there are evidences that the segment
might be queried again in the near future. The segment is
reorganized if S izeS > Mmax choosing a splitting point
among the query bounds or an approximation of the
mean value in the segment.

A characteristic of the APM scheme is that sizes of
segments touched by queries converge relatively fast to the
interval Mmin <= S izeS <= Mmax. By adjusting the parameters
Mmin and Mmax we can tune the policy to be more or less
aggressive in issuing column reorganizations.

Experiments are run on a two Dual Core AMD Opteron(tm)
Processor 270 2GHz with 8GB memory using a 100GB sample
of the SDSS-4 database. This fits on a simple desktop PC, but
certainly makes the database disk bound on most queries.

The test queries select ranges over a  . Three work-
loads, 200 queries each, were extracted from the SkyServer
log:  picks 1 out of every 300 queries and covers
the attribute domain uniformly;  extracts 200 subsequent
queries from the log which access two very limited areas of the
domain, and  consists of four pieces of 50 subsequent
queries with changing point of access.

Figure 1 shows the average time spent in adaptation vs.
selection after the first 200 queries. For all workloads the
adaptation overhead for the APM schemes is smaller than
for Gaussian Dice. The former one is more conservative in
splitting small segments. Similarly, the overhead for APM1-5
is bigger than for APM1-25 due to splitting when a small range
is selected out of a segment with size 5MB < S izeS < 25MB.

Due to the smaller upper bound Mmax the APM1-5 scheme
creates smaller segments than APM1-25 as shows the segment
statistics in Table I. Smaller segments give bigger gain from
saved scanning as illustrated by the reduced selection times in
Figure 1.

Figure 2 shows the cumulative query times for the adaptive
schemes compared against non-segmented database. For all
workloads the initial overhead for APM reorganization slows

IV. SEGMENTATION SCHEMES

V. EVALUATION

1413

 700

 600

 500

 400

 300

 200

 100

APM 1-5APM 1-25GDNoSegm

A
v
g

 T
im

e
 i
n

 m
s
e

c

Random workload

adaptation
selection

APM 1-5APM 1-25GDNoSegm

Skewed workload

adaptation
selection

APM 1-5APM 1-25GDNoSegm

 700

 600

 500

 400

 300

 200

 100

Changing workload

adaptation
selection

Fig. 1. Times for adaptation and selection

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200

C
u

m
m

u
la

ti
v
e

 t
im

e
 i
n

 m
s
e

c

Query #

Non segmented
Gaussian Dice
APM: 1-25 MB

APM: 1-5 MB

(a) Random workload

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200

C
u

m
m

u
la

ti
v
e

 T
im

e
 i
n

 m
s
e

c

Query #

Non segmented
Gaussian Dice
APM: 1-25 MB

APM: 1-5 MB

(b) Skewed workload

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200

C
u

m
m

u
la

ti
v
e

 T
im

e
 i
n

 m
s
e

c

Query #

Non segmented
Gaussian Dice
APM: 1-25 MB

APM: 1-5 MB

(c) Changing workload
Fig. 2. Cumulative times

TABLE I
S S

Load Scheme Segm.# Avg size Deviation
Random GD 31 5.6 7.9
Random APM 1-25 23 7.6 7.5
Random APM 1-5 62 2.8 1.3
Skewed GD 100 1.7 9.9
Skewed APM 1-25 6 28.9 9.6
Skewed APM 1-5 10 17.4 14.5

down the first queries but provides better system response after
a relatively small number of queries. The total overhead of
APM schemes for skewed workload (Fig. 2b) is smaller than
for random load, since the reorganization affects a very limited
area of the domain.

The GD scheme shows bigger overhead than APM with
worst performance for skewed load. The skewed queries hardly
differ in their selection predicate and chop very small pieces.
As a result 80% of the segments contain less than a 1000
tuples, which are expensive to reorganize and in addition
incurs gluing of small pieces for the subsequent queries.

The performance for changing workload in Figure 2c il-
lustrates how shifting the point of query interest triggers
reorganization of untouched segments. It results in a temporal
increase of the overhead after queries 50 and 100, which
saturates soon after too.

Scientific databases require efficient database segmentation
for their ad-hoc workloads and high performance exploratory
queries. Unfortunately, these environments often set aside lim-
ited resources for (human) data management. Self-organizing
databases have become a must.

In this paper we have demonstrated how self-organizing
database algorithms find their natural embedding in the tactical
optimizer layer of MonetDB. The evaluation of sample poli-
cies against the SkyServer application shows that the overhead
in data administration is negligible and that query performance
drastically improves on real-life query streams.

[1] (2007) MonetDB. [Online]. Available: http://monetdb.cwi.nl/
[2] M. Stonebraker et al., “C-Store: A Column Oriented DBMS,” in Proc.

VLDB, 2005.
[3] R. MacNicol and B. French, “Sybase IQ Multiplex - Designed For

Analytics.” in Proc. VLDB, 2004, pp. 1227–1230.
[4] S. Idreos, M. L. Kersten, and S. Manegold, “Database Cracking,” in Proc.

CIDR, Asilomar, CA, USA, January 2007.
[5] K. Sattler, E. Schallehn, and I. Geist, “Autonomous Query-Driven Index

Tuning,” in Proc. IDEAS, 2004, pp. 439–448.
[6] K. Schnaitter, S. Abiteboul, et al., “COLT: Continuous On-line Tuning,”

in Proc. SIGMOD, 2006, pp. 793–795.
[7] N. Bruno and S. Chaudhuri, “An Online Approach to Physical Design

Tuning,” in Proc. ICDE, 2007, pp. 826–835.
[8] (2007) Sloan Digital Sky Survey / SkyServer. [Online]. Available:

http://cas.sdss.org/dr6/en/
[9] M. Ivanova, M. L. Kersten, and N. Nes, “Self-organizing Strategies for

a Column-store Database,” in Proc. EDBT, 2008, to appear.

VI. CONCLUSIONS

REFERENCES

1414

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Martin L. Kersten
