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ABSTRACT 
“Most of the science and decision making involved in 
geo-information is the product of collaborative teams. 
Current geospatial technologies are a limiting factor 
because they do not provide any direct support for group 
efforts.” ----- [18] 

In this paper we present a method to enhance geo-collaboration 
by communicating relevant info about users to other team 
members. We give examples on how knowledge about the 
cognitive load, affective load, location, and task relevant 
information of the user can enhance geo-collaboration. Next we 
give a short literature review of geo-collaboration research. This 
is followed by a section about critical state recognition with the 
use of a cognitive task load, an affective task load, and a 
performance model. We conclude that research is needed to test 
critical state recognition in the field and see what support is 
best. 

Categories and Subject Descriptors 
H.1.2 [Information Systems]: User/Machine Systems – Human 
Factors.  

General Terms 
Performance, Human Factors, Theory 
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1. INTRODUCTION 
Imagine an emergency situation such as a fire or an earthquake. 
Teams of rescue workers are sent into the field to do urban 
search and rescue (USAR) in the area. To search the area as fast 
as possible a work area is assigned to each of the team members. 

Physiologically, cognitively, and psychologically rescue work is 
a demanding task [19]. With a mobile system that displays a 
map the rescue workers can see where the other team members 
are, what their state is, and what their assigned search range is. 
Furthermore, the rescue workers can indicate points of interest, 
such as locations where victims are found (dead or alive). This 
information can be communicated to the team. 
The state of the user influences his/her preferences and 
performance. Firstly, the search range that a rescue worker is 
able to search through depends on the cognitive and affective 
task load. For example, searching for victims in collapsed 
buildings is physiologically and cognitively more demanding 
than searching for victims that lay out in the open [19]. The 
affective task load also influences the search range, since 
rescuing a victim can boost the performance while finding 
several dead victims may decrease the performance due to the 
affective state of the rescue worker. Depending on the decrease 
or increase in search range, the work areas can be dynamically 
redistributed, automatically or manually. The redistribution 
should be visualized on the mobile displays of the team 
members. 
Secondly, knowledge about the task load of the user can 
enhance the communication between team members. They can 
decide not to ask for help or share information with a team 
member, because the team member has a high task load, 
something that people already do in face-to-face 
communication: when a passenger in a car sees that there is a 
demanding situation for the driver he/she stops talking for a 
moment.  
Finally, team members can use knowledge about the task load of 
another team member to decide helping him/her. If the task load 
is high or the task load is significantly lower then one would 
expect he/she might need help. When for example one of the 
rescue workers is not moving and task load is very low, he or 
she could be injured. 
Recognition of situations wherein the task load of the user is 
very high, very low, or deviates from the expected task load can 
enhance geo-collaboration in emergency situations. 

2. GEO-COLLABORATION 
In the IT Roadmap to a Geospatial future [18] geo-collaboration 
is identified as essential for teams that discuss geo-information 
and/or are located at different locations. Furthermore they 
observed that collaboration is not supported in current 
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geospatial technologies. While for co-located teams and with the 
increasing usage of mobile devices by professionals this need 
has increased. In recent years some work has been done on this 
topic, but it is still a rather underdeveloped field. In this section 
we present an overview of relevant work for geo-collaboration. 
Sharing information between team member using geospatial 
information enhances the development of common ground and 
reduces the workload of individual team members for three 
reasons [14]: 
1) Visual representations can support computational 

offloading, reducing the cognitive load. 
2) Visual representations can substantially help to structure a 

problem to make it comprehensible and increase both 
individual and group understanding.  

3) Visual representations provide limits on the kinds of 
inferences and interpretations that can be made. 

During the planning phase geo-collaboration can be used for 
decision making [3]. Team members are enabled by the 
geospatial information to explore the spatial decision problem, 
experiment with choice alternatives, and formulate alternatives.  
Although most geo-collaboration research is focused on the 
planning phase, real-time information during the execution 
phase is also important. There is a need to know where team 
members are, what they are doing, and what their workload is 
for a successful collaboration [15]. This is important while it 
gives information about who is available to help, who needs to 
be relieved from some work, who needs help, and what is the 
overall state of the mutual goal. In Section 3 we will elaborate 
on how the state of the user can be recognized. 
The geospatial information and the information about team 
members in both the planning and the execution phase should be 
visualized in a way that is understandable in a glance. The way 
of information visualization is dependent on the device a team 
member has and the information he/she needs, dependent on 
his/her function and task [4]. With the development of a mobile 
application the challenges of a small screen for information 
visualization and interaction should be taken into account [13]. 

3. CRITICAL STATE RECOGNITION 
For the critical state recognition we will use three different 
models; a cognitive task load model, an affective task load 
model, and a performance model (Figure 1) to reach robust 
recognition. All models receive information from context, 
psychophysiology, and behavior to base their output on [21]. 
Critical situations are defined by metrics of both a specific type 
and the match or mismatch between the three types of metrics 
(e.g. the human may be in an emotional or affective state that is 
not appropriate for the cognitive demands imposed by the task. 
3.1.1 Cognitive task load 
For the Cognitive Task Load (CTL), three factors prove to 
determine operator performance substantially [10; 11; 20] 
(Figure 2). The first factor is percentage time occupied by the 
task. In addition to the operational and contextual demands, 
human’s cognitive processing speed determines this pressure for 
an important part, that is, the speed of executing elementary 
cognitive processes. Particularly, time pressure is high when the 
processes require a lot of attention and focused concentration. 
Cognitive processing speed is determined by the individual 
capabilities to search and compare known visual symbols or 

patterns, to perform simple (decision-making) tasks, and to 
manipulate and deal with numbers in a fast and accurate way.  
Second, the task complexity affects the level of information 
processing (LIP) (cf. the skill-rule-knowledge framework of 
Rasmussen [25]) and thereby the cognitive task load. Task 
information that is processed automatically, results into actions 
that are hardly cognitively demanding. Performance of routine 
procedures results into relatively efficient problem solving. 
Problem solving and action planning for relatively new 
situations can involve a heavy load on the limited capacity of 
working memory. Human’s expertise and experience with the 
tasks have substantial effect on their performance and the 
amount of cognitive resources required for this performance. 
Higher expertise and experience result in more efficient, less-
demanding deployment of the resources.  
Third, the CTL theory distinguishes task switching or sharing as 
a third load factor to address the demands of attention shifts or 
divergences. Complex task situations consist of several different 
tasks, with different goals. These tasks appeal to different 
sources of human knowledge and capacities and refer to 
different objects in the environment. Switching entails a change 
of applicable task knowledge. Figure 1 presents the “load” space 
of the user. When the load is in the middle area of the figure the 
mental load is not too high or too low.  Angular points; 1, 2, and 
8 represent respectively underload, vigilance [11], and overload. 
When both time occupied and task switching are high lockup 
can appear [20]. The CTL model has been successfully applied 
in the field [10; 11]. 

3.1.2 Affective task load 
In cognitive science emotions were discarded for a long time 
[30], but research in psychology and neuroscience has identified 
the crucial role emotion has in decision-making and social 
interaction. Now it is widely accepted that cognitive processes 
are closely related to emotions. Emotions are shown to have 
both positive and negative effects on cognitive processes [1; 6; 
28]. Both people with lesions in their emotional system (i.e. 
“pure rational human beings”, see [6], and people with high 
emotional responses show impaired decision making [1; 28].  As 
shown by Sorg and Whitney [28] and Al’Absi, et al. [1], stress 
impairs the working memory. Affective states influence both 
low-level and higher-level perceptual, cognitive, and motor 
processes. Affective states can help activate or inhibit particular 
actions, and perception or processing of specific stimuli. In this 
way the mental model of the user is influenced by his/her 
affective state and experimental research has shown that the 
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Figure 1 Critical state recognition 
CTL = Cognitve Task Load, ATL = Affective Task Load
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mental model plays a critical role in decision making [12]. 
Anxious people have a negative mental model of the world and 
research shows that they have a bias for negative interpretation 
of events and items [16].  
This shows that Affective Task Load (ATL) is also an important 
factor for critical state detection. For characterizing the ATL, 
we will focus on the underlying, often physiologically 
correlated factors (e.g. arousal) and map these onto distinct 
dimensions. Such dimensional models are helpful in both 
recognition and expression, as well as in models of emotion 
generation, in situations where sufficient data may not be 
available for more highly differentiated responses. As in the 
FeelTrace model [5], we distinguish two dimensions to define 
the affective (or emotional) state: the arousal level—low versus 
high—and the valence—positive versus negative (Figure 2). A 
large benefit of a dimensional model is that it enables us to 
predict more subtle emotions then when we would use a 
classification in for instance the six basic emotions (happy, sad, 
surprise, angry, fear, disgust) [7]. Critical affective states are 
bored (passive/negative) and stressed (active/negative). We 
expect that we measure underload in the CTL when the user is 
bored and that we find stress in the ATL when the user is 
overloaded. The ATL can help disambiguate the CTL and 
performance outcomes and also indicate critical states when the 
models do not match at all. 

3.1.3 Performance 
For the team performance, we will apply “classical” measures 
for effectiveness and efficiency, and relate them to trust and 
situation awareness metrics. The performance model will 
represent which tasks are active (e.g. the tasks the operator is 
attending to), and the quality of the performance (e.g. time). 
This model also takes into account factors such as, fatigue and 
circadian rhythm.  

3.1.4 Measures 
To identify critical states with the different models, the models 
need input from the context, psychophysiology, and behavior 
sensing. 
Context 
The application can use information from the context as input 
for the models. Context information can be divided into 
information about the user, about the environment/situation, and 
about the domain knowledge of the application. Information 
about the user can be a user model, the task the user has, and the 
social role the user has. Environment information is the 

knowledge of where for example fires are, while domain 
knowledge is that people in a disaster area have a high chance 
on being stressed. 

Psychophysiology 
The physiology can give information about the arousal and 
valence of the user. Rani [24] uses cardiac response, 
electrodermal response and electromyographic response to 
detect anxiety levels. These responses qualify anxiety 
reasonably well. The muscles in the face also give information 
about the physical and mental workload of the user. Metaxas 
[17] describes a method to recognize stress from the face. They 
use Hidden Markov Models for this purpose, but recognition 
from the face is difficult due to varying light conditions. 
Another option is to recognize valence and arousal from the 
voice, stress for example is the variation in prosodic emphasis 
[8; 22; 23; 26; 27; 29]. To be dependable the voice has to be 
monitored over a longer period of time. Several features, such as 
mean pitch, spectral entropy, jitter, vowel length, can be 
analyzed with, for instance, different Hidden Markov Models 
[8] to measure valence and arousal. By measuring the valence 
and arousal multimodal the recognition is more robust and 
better. A drawback of all the options we mentioned is that none 
of them has ever been used outdoors or while users were 
physically active. In certain work environments such as USAR 
users will be both. 

Behavior sensing 
People give a lot of information about their state by their 
behavior. They change the way they walk and speak. From 
straight up they can go to a crouching position or change their 
dialogue from elaborate to to the point. But also the 
effectiveness, efficiency, and situation awareness give 
information about the state of the user such as fatigue. In an 
USAR scenario for instance the effectiveness of a user is low 
when he/she does not find victims or finds victims in a time 
consuming manner (efficiency). Questionnaires are used in 
sensing behavior such as, stress or cognitive load, in the field [2; 
9]. A drawback of the use of questionnaires in the USAR area is 
that there is no time for filling out questionnaires and the 
assessment of user state should be real time.   

4. Discussion and Future Work 
In this paper we suggested how critical state recognition can 
improve the team performance by both enhancing the planning 
before and during a (search) action. Search areas can be 
dynamically distributed, the level of information sharing can be 
adapted, and team members can decide to help a team member 
for whom a critical state is recognized. As a result team task 
load can decrease, the shared mental model can improve, and 
the performance can increase. We presented a critical state 
recognition method that uses three models; cognitive task load, 
affective task load, and performance. It is technically possible to 
implement all three models. The next step is to validate the 
critical state recognition models in experiments. At the moment 
we think of evaluation within a gaming simulation.  
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