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Abstract— Many spatial phenomena exhibit vagueness. Rep-
resentation of such phenomena requires vague objects. In
previous work, we provided definitions for vague objects:
vague points, vague lines, and vague regions. Each of these
objects is presented as a fuzzy set in IR2 that satisfies well-
defined properties. In this paper, we propose a number of
geometric measures for vague objects, using the concept of mass
distribution. The membership function of a vague object can
be seen as a mass distribution. According to this view, a crisp
object is a body with constant density, and a vague object is a
body of varying density. We provide mathematical definitions
for length of a vague line, area of a vague region, centroid of
a vague object, as well as a measure for the vagueness of an
object. The length of a vague line and the area of a vague
region are indeed the mass of the vague line and of the vague
region, respectively. Both metrics give an average of the values
of the corresponding crisp metric on the α-cuts of the vague
object. The centroid of a vague object is its centre of mass
associated with a membership degree. The last metric functions
as a measure of the degree of vagueness for a vague object.

I. INTRODUCTION

Many natural phenomena exhibit vagueness. This is ba-
sically the existence of borderline cases. For example, the
boundary between two vegetation classes is often a transition
zone instead of a sharp line. That means, there are locations
for which we cannot decide with full certainty whether the
vegetation belongs to one class or to another. A proper
understanding and modelling of these phenomena requires
representation of vagueness in spatial information and rea-
soning under vagueness. There are two principal views on
the root cause of vagueness: the first sees vagueness as an
inherent property of the phenomena, the second considers it
to be linguistic [12]. Many–valued logics, of which fuzzy
logic is the most widely used, offer a solution to the first
view, considering vagueness as a matter of degree. We
subscribe to the first view of vagueness, and use fuzzy theory
to handle it.

Current GIS and spatial database systems are constructed
under the assumption that spatial objects are crisp. They
offer types for representing crisp objects, and operators
to perform analysis and reasoning over crisp objects. In
previous work [7], [9], we have defined types for vague
objects, together with operators like set operators and spatial
relations, and have implemented these in an open GIS
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software package [8]. Object types that we distinguish are
vague points, vague lines, and vague regions. Any of these
objects is presented as a fuzzy set µ in IR2 that satisfies
specific properties. This paper provides metrics for vague
objects: average length AvLength for a vague line, average
area AvArea for a vague region, Centroid and Vagueness for
a vague object of any type. We consider the membership
function µ of a vague object as a mass distribution over
the object extent, i.e. its support set, supp(µ). Metrics for
vague objects are calculated from the concept of body mass.
The length AvLength of a vague line, and the area AvArea
of a vague region are calculated as the body mass of the
vague object. The Centroid of a vague object is its centre of
mass, associated with a membership value, calculated as an
average of object membership values. The last, Vagueness,
is a measure for the vagueness of an object, calculated from
the mass of the vague object and the mass of its extent.

The paper is structured as follows. Section II summarizes
previous work on metrics for fuzzy sets in general, and
metrics for fuzzy spatial objects. Section III describes the
object types that we work with: vague points, vague lines,
and vague regions. Section IV provides metrics definitions:
length, area, centroid, and vagueness degree. Section V
illustrates these metrics in an example application from air
quality in the Netherlands. Section VI closes the paper with
discussions and conclusions. At different places we need to
use or compare our metrics to geometric measures of crisp
objects. We use different fonts to distinguish vague types
and metrics from their crisp analogues: LucidaCasual-Italic is
used for the names of vague types and metrics, LucidaCasual
is used for crisp metrics.

II. PREVIOUS WORK

Several metrics have been proposed in fuzzy set theory,
and some more specific metrics are proposed in fuzzy image
processing research. Distance and fuzziness measures are
discussed in fuzzy theory, whereas fuzzy image process-
ing offers geometric measures for vague objects. Different
metrics have been proposed for the distance between fuzzy
sets [3], [5], [6], [10], [14]. There are also different proposals
for geometric measures on vague objects, like area, perime-
ter, diameter [4], [13], [15], [16]. Here we discuss first the
fuzziness measures offered by fuzzy theory, and then discuss
the proposals for the geometric measures length and area.

Bandemer and Gottwald [2] presented two fuzziness mea-
sures, entropy and energy, for fuzzy sets in a finite space
X , summarizing definitions given by different authors. The
entropy evaluates the deviation of a fuzzy set from a crisp
set. The entropy for a crisp set equals 0, whereas a maximum
entropy is reached by a fuzzy set µ if every location x has
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a value µ(x) = 0.5. Three entropy measures are presented.
Entropy of a fuzzy set µ(x) is calculated as the maximum
value of the intersection of µ with its complement 1−µ over
all locations x: F1(µ) = max {(µ u (1− µ))(x) | x ∈ X}. A
second measure for entropy uses the cardinal instead of the
maximum value of intersection. For a set X , the cardinal, de-
noted card(X), is the number of its elements. The cardinal of
a fuzzy set is card(µ) =

∑
x∈X µ(x). The entropy of a fuzzy

set is calculated as: F2(µ) = 2 card
(
µ u (1 − µ)

)
/card(X),

where the factor 2 is included to normalize the values of F2.
The third entropy measure is an analogue of the uncertainty
measure from probability theory, the Shannon’s entropy:
F3(µ) = −c

∑
x∈X

(
µ(x) ln µ(x) + (1 − µ(x)) ln (1 −

µ(x))
)
. The two energy measures presented in [2] are also

built from the cardinal of a fuzzy set and its maximum value:
E1(µ) = card(µ), and E2(µ) = max {µ(x) | x ∈ X}.

Proposed geometric measures for vague objects can be
divided into two groups: metrics that are functions and
metrics that are numbers. Metrics of the first group associate
every membership degree α ∈ (0, 1] with a positive number
that is a measure for that degree. For example, Schneider [16]
proposes an area measure for a vague region that associates
with every α the area of the α-cut of the region. That same
idea is applied in [16] for the length of a vague line, as well
as for other metrics, like perimeter and diameter.

Metrics of the second group are positive numbers, cal-
culated by integrating over the membership function µ of
a vague object. Rosenfeld and Haber [13], [15] calculate
the area of a vague region µ as the volume between
the surface of the function µ(x, y) and the x, y plane:
area(µ) =

∫∫
µ(x, y) dx dy. They propose similar formulas

for the calculation of other metrics for vague regions: height,
width, perimeter, and diameter. Bogomolny [4] modifies
their formulas so that they satisfy known interrelations for
crisp regions, e.g., the isoperimetric inequality used for
characterizing the shape of a region. The area is modified to
the integral of the root of µ: area(µ) =

∫∫
µ1/2(x, y) dx dy,

and other measures are modified similarly. Schneider [16]
proposes some additional measures: length and strength for
vague lines, and elongatedness and roundedness for vague
regions. He calculates the length of a vague line µ from the

integral of

√(
∂µ1/2

∂x (x, y)
)2

+
(

∂µ1/2

∂y (x, y)
)2

over the line

extent supp(µ). Measures in common with the previous pa-
pers, e.g., area of a vague region, correspond to Bogomolny’s
measures.

III. TYPES FOR VAGUE OBJECTS

Vague objects are represented in this study by fuzzy sets
in IR2 with specific properties. The collection of fuzzy sets
in IR2 is denoted by F(IR2). We distinguish between vague
points, vague lines and vague regions, each represented by a
separate type. These types are VPoint, VLine, and VRegion.
They represent objects that are indivisible into components.
A vague point is an object of type VPoint, a vague line
is of type VLine, and a vague region is of type VRegion.
Membership values of a vague object range from 0 to 1

inclusive, often covering the whole range [0, 1]. A vague
object can also have a finite set of membership values.
A crisp object is a special case of a vague object; its
membership values are in the set {0, 1}.

A vague point is a site with a known location, but
with uncertain membership to a phenomenon of interest.
Figure 1(a) illustrates a vague point. Densely populated
residential centres are examples of vague points. For each
residential centre we know the location precisely, but the
density level is a matter of degree. A vague point is defined
as a fuzzy set that has positive value at only one location
(x, y). This value gives the degree of membership of the site
(x, y) to the phenomenon of interest. The set of vague points
is

VPoint ≡
{

µ ∈ F(IR2) | ∃!(x, y) ∈ IR2, µ(x, y) > 0
}

.

If the membership value µ(x, y) is equal to 1, then µ is a
crisp point.

Fig. 1. Vague objects: (a) a vague point, (b) a vague line. Colour
saturation is used to show membership values: full saturation correspond
to membership value 1, low saturation shows low membership values.

A vague line is a linear feature with crisply defined extent,
but uncertain membership to some phenomenon of interest
for the points on the line. Figure 1(b) illustrates a vague
line. It is a simple curve (crisp line) with mostly gradual
transitions of membership values between neighbor points on
the line. Membership values are positive at every location on
the line, except, perhaps, at the end nodes. Stepwise changes
of membership values may occur along the line. A traffic
congestion on a road network is an example application
for vague lines. We know precisely where a road is, but
the congestion is a matter of degree. Part of the road is
completely blocked, and hence certainly belongs to the traffic
congestion, whereas away from the congestion, the car build-
up becomes less severe.

A vague line is built from a crisp line by applying a
membership function over locations on the crisp line. A
crisp line is a continuous, non-self intersecting curve, but
possibly closed. The membership function over the crisp line
is required to be almost everywhere continuous, allowing
stepwise changes in only a finite number of locations. Fig-
ure 2(a) is an example of a possible membership function for
a vague line. We build a fuzzy set in [0, 1] that satisfies the
continuity properties for a membership function, then transfer
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its membership values to the crisp line via a homeomorphism
h. Figure 2(b) illustrates the construction of a vague line from
a fuzzy set η in [0, 1], of which the function graph is given
in Figure 2(a).

Fig. 2. Vague line construction: (a) membership function η for the vague
line, (b) vague line built by transferring the membership values of the fuzzy
set η via the homeomorphism h. Observe how membership degrees in η
are carried over to µ.

The set of vague lines is defined as

VLine ≡
{

µ ∈ F(IR2) | ∃η ∈ F([0, 1]), η = η◦,

η connected

∃h : [0, 1] → IR2 homeomorphism in (0, 1)
and continuous in {0, 1} ,

µ = h̃(η) and
(
h(0) = h(1) ⇒ η(0) = η(1)

)}
.

The first part of the definition imposes conditions for the
membership function of the vague line. The regular closure
η = η◦ assures the continuity condition, connectedness
assures continuous extent of η over the whole [0, 1]. The
second part formulates conditions for the crisp line. This
is topologically equivalent to the unit interval [0, 1], i.e.,
there is a homeomorphism h from [0, 1] to the line in IR2,
and the line is l =

{
h(t) =

(
x(t), y(t)

) ∣∣ t ∈ [0, 1]
}

. To
allow closed lines, the homeomorphism is restricted to (0, 1),
requiring continuity at the end points 0 and 1. The third
part of the formula builds the vague line µ as the image
via homeomorphism h of the connected regular fuzzy set
η in [0, 1]: µ = h̃(η). When the vague line is closed, the
membership values at both end nodes must be equal. If the
fuzzy set η has a constant membership value 1 in the interval
[0, 1], then the vague line is a crisp line.

Fig. 3. Fuzzy sets in IR2: (a) and (b) vague regions, (c) a fuzzy set that
is not a vague region.

A vague region is a single-component fuzzy set that does

not have irregularities, like isolated vague points and vague
lines, spikes, or punctures and cuts, i.e. removed vague points
and vague lines, respectively. The fuzzy set of Figure 3(c)
has a puncture and a cut, both being irregularities that are not
allowed for a vague region object. The membership values
of a vague region change mostly gradually between neighbor
points in the region. Stepwise jumps can also happen between
sides of a line that is inside the region. Figures 3(a) and
3(b) illustrate vague regions. Air quality is a vague concept.
It is related to the concentration of pollutants like ozone,
NOx [18], [19]. High polluted areas (therefore of poor air
quality) are examples of vague regions. Some locations are
certainly polluted, i.e., of poor air quality, whereas others
can be considered polluted or not; they are polluted to some
degree.

The set of vague regions is then defined as

VRegion ≡
{

µ ∈ F(IR2)| µ bounded, µ = µ◦, µ◦ connected
}

.

A vague region is bounded, meaning its support set is
bounded. The regular closure in IR2 assures continuity prop-
erties for the membership function: there can be stepwise
jumps along lines, i.e., vertical cliffs on the surface, but
no isolated discontinuities are allowed. Connected interior
assures the fuzzy set to be single-component. The highest
membership value may be less than 1. A crisp region is
a specific case of a vague region, when µ has a constant
membership equal to 1.

Type SVSpatial is the supertype of VPoint, VLine, and
VRegion. That is, any simple vague object, a vague point, a
vague line, or a vague region, is of the type SVSpatial. This
last type is useful in the definition of centroid and vagueness
degree measures below.

IV. METRICS FOR VAGUE OBJECTS

The membership function µ of a vague object can be
seen as a mass distribution. A crisp object is a body with
constant density, whereas a vague object has a varying
density. The total mass of a body consisting of a finite set
of locations is calculated from the sum of masses at every
location. A total mass distributed over a line is calculated
from the integral of the density function over the line extent:∫
supp(µ)

µ(x, y) dl. The mass distributed over an area is
calculated from the integral of the density function over the
area:

∫
supp(µ)

µ(x, y) dA [1]. Metrics presented in this section
are based on this concept of mass.

A. A length measure for vague lines

Suppose a vague line is built from a curve l given by the
parametric equation

(
x(t), y(t)

)
, and a membership function

η. The mass of the vague line is

Mass(µ) =

∫ 1

0

η(t)

√(
x′(t)

)2
+

(
y′(t)

)2
dt. (1)

If µ is a crisp line, its membership function is constant, i.e.,
η has the constant value 1 over the whole interval [0, 1]. The
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mass of the crisp line µ is

Mass(µ) =
∫ 1

0

√(
x′(t)

)2 +
(
y′(t)

)2
dt.

This equals the length of the curve l given by the parametric
equations.

Fig. 4. Two equal areas presenting (a) the mass of a vague line, (b) the
average length of a vague line.

The area shown in grey in Figure 4(a) is the integral
of η(l) dl over the line extent, i.e., the mass of the vague
line. Figure 4(b) shows the graph of the function Length(µ),
which, for every α in (0, 1], returns the length of the α-cut
µα =

{
p ∈ IR2|µ(p) ≥ α

}
. The area in grey in Figure 4(b)

is the integral of Length(µ) over [0, 1]. The two integrals
present two different ways of calculating the same area. The
average value of an integrable function f(x) on an interval
[a, b] is given by the formula f = 1

b−a

∫ b

a
f(x) dx [11]. Based

on this property, the integral of Length(µ) over [0, 1] is the
average of all α-cut lengths. From the equality of integrals
it follows that the mass of the vague line µ is the average of
the lengths of its α-cuts. We define the length measure on
vague lines, AvLength (for average length), as:

AvLength : VLine → IR+

∀µ ∈ VLine , AvLength(µ) = Mass(µ).

When µ is a crisp line, AvLength returns the same value as
the (crisp) length measure.

B. An area measure for vague regions

The mass of a vague region is

Mass(µ) =

∫ ∫
µ(x, y) dx dy. (2)

If µ is a crisp region, the membership function has a
constant value 1 over the whole extent, and Mass(µ) =∫∫

supp(µ)
dx dy equals the area of the extent of µ,

Area(supp(µ)).
Figure 5 applies membership values as the third coordinate

to obtain the surface in 3D. Memberships are also used for
colouring: low saturation indicates low membership value.
The mass of the vague region is the volume below the µ–
surface. We define a function Area(µ) that, for every α in
[0, 1], returns the area of the α-cut: Area(µα) =

∫∫
µα

dx dy.

Fig. 5. A vague region shown in 3D with membership values as the third
coordinate. Membership values are also used for colour saturation.

The integral of Area(µ) over [0, 1],
∫ 1

0
Area(µα) dα, produces

the volume of Figure 5. This integral is an average of areas of
all α-cuts of the vague region µ. Thus, this average is equal
to the mass of the vague region. Based on this equality, we
name the area measure AvArea, for average area. It is defined
as

AvArea : VRegion → IR+

∀µ ∈ VRegion , AvArea(µ) = Mass(µ).

When µ is a crisp region, AvArea returns the same result as
the crisp Area measure.

C. The centroid of a vague object

The centroid of a crisp object, i.e., the centre of mass, is
defined from the mass of the object and its moments [11].
We first show how mass and moments are translated to vague
object types, considering their membership function to be the
mass density function.

For a body µ consisting of a finite set of locations, the
mass and moments, Mx for the x direction, My for the y
direction, are

Mass(µ) =
∑

p∈supp(µ)

µ(p), (3)

Mx(µ) =
∑

(x,y)∈supp(µ) y µ(x, y),

My(µ) =
∑

(x,y)∈supp(µ) xµ(x, y).

A vague point has only one location, therefore its mass and
moments are written more simply as Mass(µ) = µ(x, y),
Mx(µ) = y µ(x, y), and My(µ) = xµ(x, y), where (x, y) is
the only location with positive membership value.

The mass of a vague line is provided in equation 1. The
moments of a vague line are

Mx(µ) =
∫ 1

0
y(t) η(t)

√(
x′(t)

)2 +
(
y′(t)

)2
dt,

My(µ) =
∫ 1

0
x(t) η(t)

√(
x′(t)

)2 +
(
y′(t)

)2
dt.

Mass of a vague region has been provided (eq. 2). Mo-
ments of a vague region are

Mx(µ) =
∫ ∫

y µ(x, y) dx dy, My(µ) =
∫ ∫

xµ(x, y) dx dy.

The centroid of a vague object is a vague point. Its
coordinates are calculated from its mass and moments as the
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coordinates of the centre of mass. Its membership degree is
the ratio between the mass of the object and the mass of its
support set. If the object µ is a vague point, the Mass of its
support set is 1, as it is the cardinal of a single element set.
Mass of the support set of a vague line is the length of its
extent, while for a vague region it is the area of the region
extent. Using mass functions, and moments we can define
Centroid as:

Centroid : SVSpatial → VPoint

∀µ ∈ SVSpatial,

Centroid(µ) =
(

My(µ)

Mass(µ)
, Mx(µ)

Mass(µ)
, Mass(µ)

Mass(supp(µ))

)
.

The assumption is that mass and moment functions will be
replaced accordingly to the type of the object they operate
with. Centroid returns a crisp point when applied to a crisp
object.

D. The vagueness degree of an object

We propose a metric Vagueness to measure the degree
of vagueness for a vague object. It takes a value in the unit
interval [0, 1]. A low value indicates low vagueness, and high
value signals high vagueness. The metric is determined as the
1-complement of the ratio of the object’s mass and the mass
of its support set. Vagueness of a vague point is calculated as
Vagueness(µ) = 1−µ(x, y), where (x, y) is the location with
positive membership. For a vague line, it is Vagueness(µ) =
1 − AvLength(µ)/Length(supp(µ)), and for a vague region
it is Vagueness(µ) = 1 − AvArea(µ)/Area(supp(µ)). Using
again mass functions, to be replaced according to the object
type, we define our Vagueness as:

Vagueness : SVSpatial → [0, 1]

∀µ ∈ SVSpatial , Vagueness[µ] = 1− Mass(µ)

Mass(supp(µ))
.

Value 0 is reached when the object is crisp. A maximal value
is reached when the 1-cut of an object is empty, or it has a
lower dimension than the object.

V. AN APPLICATION EXAMPLE

Air quality is an important issue for human health. Inter-
national and national projects [17] are working on setting up
measures to improve air quality. In the Netherlands, it is the
task of Milieu en Natuurplanbureau (MNP, the Netherlands
Environmental Assessment Agency) to measure and model
the air quality. Measurements for different pollutants like
NO2, ozone, etc., are performed at different stations of
the air quality monitoring network. The operational priority
substances (OPS) dispersion model provides information for
NO2 large scale concentration. Measurements along roads
are used to add local concentration caused by traffic to the
large scale concentration maps. For this example, we use
a constant value 18µg/m3 over all the highways. Local
concentration are calculated by linearly decreasing this value
with the distance from a highway, reaching 0 at 3km away.
Figure 6 shows large-scale and total NO2 concentration in
2001.

Fig. 6. NO2 concentration in 2001: large-scale (left), total concentration
(right). Darker colour shows higher concentration.

A concentration of 40µg/m3 is a limit value for air
quality [17]. A range about this value is used as transition
boundary between high and low concentration regions. To
adjust for the uncertainties of the OPS model, we consider the
standard deviation of the OPS output to build the transition
boundary: 40± 2σ. Figure 7 is the graph of the membership
function for high concentration NO2 in 2001.

Fig. 7. Membership function for high NO2 concentration in year 2001.

We have OPS outputs for years 2000–2006, converted
to ArcGIS raster data. Total concentration raster maps are
created from these, adding local concentration as described
above (constant through years). Membership functions are
applied to yearly rasters of total concentration to extract high
concentration regions for every year. Figure 8 shows high
concentration regions for years 2001 and 2006.

It is important to know how air quality changes through
years [19]. An indicator for improvement of air quality
through years may be the decrease of area size of polluted
regions. AvArea metric can be used to measure the area of
high concentration regions on different years. Vague regions
of high NO2 concentration are created separately from large-
scale and total concentration data. The average areas for these
regions are calculated with a VisualBasic script in ArcGIS,
and results are plotted separately in Figure 9. It may be
interesting to see how the centre of pollution is moving.
Centroid metric on vague regions produces the centre of
mass of a vague region. Applying it to regions of high
concentration in consecutive years will give an indication
on the direction of movement of air pollution.

For this example we considered the NO2 concentration
to be constant along highways. Van Breugel [17] models the
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Fig. 8. Objects of high NO2 concentration in 2001 and 2006. Darker colour
shows higher membership value.

Fig. 9. Graph of areas of high concentration regions from 2000 to 2006.

annual mean NO2 concentration along highways. This allows
to extract polluted highways from the road network as vague
lines. Length of polluted highways may be an indicator for
traffic contribution to air pollution. AvLength metric on vague
lines can measure the length of pollution along roads.

VI. DISCUSSION AND CONCLUSIONS

The metrics proposed in this paper are based on the
concept of body mass. We consider the membership function
of a vague object to be a density function. We propose a
length measure, AvLength, for a vague line that is calculated
as the mass of the vague line. This measure produces an
average of lengths of all α-cuts of the vague line. AvArea
for a vague region is an area measure, calculated again as
the mass of the vague region. It produces an average of areas
of all α-cuts of the vague region. Centroid is defined for a
vague object of any type, and it is always a vague point.
The coordinates of the vague point are the centre of mass
of the object; its membership value is an average value of
all memberships of the object. Area measure AvArea that we
propose coincides with the area proposed by Rosenfeld [13].

A Vagueness measure is defined for a vague object of any
type. This metric takes into account membership values and

their distribution. It is maximal when the 1-cut of a vague
object is of lower dimension that the object itself, or its is
empty. Vagueness of a crisp object is equal to 0. Rough set
theory offers a metric for roughness of a set. Translated to
vague objects, the roughness measure of an object µ would
be the ratio between the size of the 1-cut of the object and
the size of its support set: Mass(µ1)/Mass(supp(µ)). This
metric is coarser than the Vagueness measure we propose.
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