
Server side technology and interface for client

The tGAP (topological Generalized Area Partitioning) structure is a collection of data structures that enable
generalisation of spatial data. These structures store results of a generalisation process, and allow selection of
features to be shown for any required level of detail (LoD), performing in that way an on-fly map
generalisation by feature selection in tGAP. The generalization process reduces the level of detail by merging
unimportant features to more important features (see Figure 1). Data forming a partition of space is
considered. Results of the generalisation process are stored in the tGAP structure. It stores the geometry only
for features belonging to the highest level of detail. As we work with a topological model for storing spatial
data, geometry is indeed stored only for edges forming boundaries of area features. References for the
relation between a face, i.e. an area feature, and its boundary edges (typical references of a topological
model) are stored in the tGAP structure. Specific references stored from the tGAP structure are those
between highest LoD features, and features created during the generalisation. For area features created from
merging, tGAP structure stores references to the merged features. Each feature is associated with an
importance range, which is used for selecting the right features for a required LoD. A relation is established
between importance values and (LoD, which is compatible and translated to) scale of a map1.

Merging of less important faces to more important faces is based on importance values associated to each
face. Figure 1 illustrates the generalization process for the map partition shown in ‘Step 0’. The other maps in
Figure 1 show the result of the generalization in steps, and are labelled according to that. The result of each
step is a (map) partition. A map2 is a collection of faces, and each face is constructed by the set of edges that
form its boundary. The collection of faces that should be visible at a certain scale determines the collection of
edges that should be visible, namely edges that are in the boundary of at least one of these faces. There is a
last issue in the generalization process: boundary edges get simplified as the level of detail decreases. This
can be also seen in Figure 1.

Figure 1. Merging of faces based on importance values. Different colours show different classes. Faces are

numbered, and edges are labelled with letters. The subscript to a face number is its importance value.

1 Considering this relation, we use the terms LoD and map scale interchangeably.
2 For simplicity we will use the term ‘map’ throughout the text, meaning a map partition.

Page 1

To capture the generalization process we need to keep track of the merging of faces in each step, how this is
reflected to the boundary edges, and the simplification of edges. The data structures forming the tGAP take
care of these three issues. The tGAP structure consists of a face tree holding the hierarchy of faces formed by
merging, an edge forest that holds the corresponding relations between boundary edges, and BLG (Binary
Line Generalization) trees, one tree for each edge that holds information about edge simplification.

The coming sections explain the tGAP structure and its implementation. Generalization process shown in
Figure 1 is used for illustration. Section 1 describes how the tGAP is filled from the merging; Section 2
explains how tGAP is used to select the right features for a given importance level (to be translated to map
scale). The implementation of tGAP structure in Oracle Spatial is explained in Section 3. Section 4 contains
ideas about progressive transfer and visualisation on the client side.

1. Creating the tGAP structure
The tGAP structure consists of a face tree, an edge forest, and BLG trees. Building of each structure is treated
separately in the coming sections.

Face tree
Generalization is performed in steps. Each step merges two existing faces to a new face. The merged faces
are replaced by the new face, which continues further in the merging process. The new face and the merged
faces have a parent-child relation. The process ends when only one face is left. The hierarchy of faces created
by this process is a binary tree. Figure 2 shows this hierarchy – the face tree created by the generalisation
process of Figure 1. Leaf nodes in the tree are the original faces, i.e. faces at the highest LoD. The root of the
tree is the complete area of the map, union of all the original faces. Faces created during the generalization
process form the other nodes of the tree.

Figure 1 illustrates the 6 steps for the generalization of the map shown in Step 0. A dashed arrow shows the
least important face and its most compatible neighbour (where the arrow is headed). In the original map,
Step 0, face 6 has the lowest importance value, 0.2, and face 2 is its only neighbour, therefore the most
compatible face. In step 1 the two faces are merged into a new face, labelled 7. The two faces labelled 6 and 2
cease existing at the importance level 0.2, whereas face 7 starts existing at this importance level. The
importance value of face 7 is calculated, 0.5, and the face is considered for the next step in the merging
process. The process continues until all is merged to one face, labelled 11. Figure 2 shows the hierarchy of
faces created from this generalization process. A node in the tree is a face. Each node is associated with the
importance range for which the node exists – the values below the node. In the right side of the tree are
shown the steps performed to create the tree, each step is associated with its importance value. Nodes in the
tree are levelled with the step in which they stop existing.

Page 2

 Figure 2. The face tree. Nodes in the tree are faces, and lines depict the merging of two faces into the
parent face. Ranges associated to each node show the importance level at which the face is visible.

1
0-0.3

2
0-0.2

3
0-0.4

4
0-0.35

5
0-0.35

6
0-0.2

7
0.2-0.3

8
0.3-0.6

9
0.35-0.4

10
0.4-0.6

11
0.6-0.9

Step 5 .6

Step 4 .4

Step 3 .35

Step 2 .3

Step 1 .2

Step 0 0

Merging is (currently) performed one by one: the least important face is merged to the most compatible
neighbour. Merging is thus based on an importance value for each face, and compatibility between pairs of
faces. The importance value of a face is calculated via a function e.g. as the product of the face area with the
weight of the face class. The compatibility is calculated by another function, e.g. as the product of the length
of the common boundary between two neighbour faces with a similarity value between their classes.

The merging process starts with the original faces. The least important face is selected first, then its most
compatible neighbour. The two faces are merged to a new face, which gets the class of the more important
face, i.e. the compatible neighbour. The importance value of the new face is calculated. The two merged faces
are discarded from the next step of the merging process, and the new face is added. The next step continues
in the same way: first selecting the current least important face, then its most compatible neighbour, merging
these two faces to a new one that takes the class of the compatible neighbour. Each step performs a change in
the map, while between two consecutive steps the map is unchanged. Therefore, the number of steps is
equal to the number of changes a map undergoes. (For the current generalisation this is one less than the
number of faces at the highest LoD.)

Edge forest
Area features can be stored in two different ways: explicitly storing their geometry, or storing the geometry
of boundary edges together with references to faces of which they form the boundary. The second way of
storing is not redundant, and it is known as topological storage (or topological model). Different topological
models exist, e.g. the left-right topology, or winged edge topology. We store faces using the left-right
topology without edge references. This model stores the edge geometry (as a directed arc with start and end
node), together with references to the left and right face of the edge. Each face is then constructed from the
list of edges that refer to it as a left or right face. That determines the types of face changes that effect edges.
Edges that constitute the boundary of the two merged faces at a certain step undergo three kinds of changes.
An edge disappears if it is part of the common boundary of the two merged faces. The other edges may
continue existing, but the left or right face of each edge is changed. Two edges may join to form only one
edge. An edge takes the importance value from the importance of the step in which it changed. The three
cases of edge changes are illustrated with examples in the coming paragraphs.

Edge ‘k’ is common boundary between the merged faces 2 and 6 (see Figure 1), and it disappears at step 1,
importance level equal to 0.2. An example of an edge that changes its left or right face is edge ‘h’ in step 1; its
left face changes from 2 in step 0, to face 7 in step 1. Figure 3 shows the changes occurred to the edges in step
1. Edge ‘k’ disappears, edge ‘d’ changes its right face from 2 to 7, edges ‘e’ and ‘h’ change their left face from
2 to 7.

Page 3

When a face disappears, like face 5 in Step 3 (see Figure 1), its boundary edge ‘i’ joins the connected edges ‘g’
and ‘j’. Figure 4 shows changes that occurred to edges in Step 3, importance equal to 0.35. The three edges
‘g’, ‘i’, ‘j’ joined to edge ‘n’, and disappear at that step. Edge ‘l’ disappears, as it is the common boundary
between the merged faces, 5 and 4. Edge ‘c’ changes its left face from 4 to the new created face 9.

Figure 3. Changed edges in Step 1. The green colour shows edges to which change have occurred.

e
0.2

j f

h
0.2

l g i

k
0.2

a

d
0.2

b c d e h

Step 1 .2
Step 0 0

Figure 4. Changes edges in Step 3. The light green shows changes happening in this step, the dark
green are changes occurred in previous steps.

e
0.2

j
0.35

f
0.3

h
0.2

l
0.35

g
0.35

i
0.35

a
0.3

d
0.2

b

c
0.35

d
0.3

e
0.3

h
0.3

m h f c n

k
0.2

Step 1 .2
Step 0 0

Step 2 .3

Step 3 .35

Edges that disappear at a step remain isolated from the growing hierarchy of edges. This hierarchy does not
have a single root; therefore it is not a tree. We call it a forest. The complete edge forest for the merging
process of Figure 1 is shown in Figure 5. Ranges attached to an edge form the importance range at which the
edge (associated with the left-right face information) exists. In the right sides there are the steps at which
changes occurs, each step associated with its importance level. Nodes in the forest are aligned with the step
at which the edge information is changed.

Page 4

The BLG trees
There is a BLG (Binary Line Generalisation) tree for each edge. The BLG tree stores the results of the
Douglas-Peucker algorithm for line simplification. Douglas-Peuker algorithm is on the oldest and most
popular algorithms used for line simplification. It uses the closeness of a vertex to a line segment to decide if
a vertex will be included or not in the simplified version of the line for a given tolerance.

The algorithm starts with the roughest approximation of an edge being the straight line connecting the two
end nodes. For each inner vertex, the distance to this straight line is calculated. The furthest vertex from the
straight line is included in the list of vertices forming the next approximation of the edge. This new
approximation consists then of two line segments (see Figure 6). For each new line segment, distances of all
inner vertices to the line segment are calculated. Again, the furthest vertices to each line segment are
included for the next edge approximation. This process continues until all vertices have a distance assigned.
This distance is considered as a tolerance value for the vertex, and it is used to decide if the vertex will be
shown for a certain LoD.

Figure 5. The edge forest. Ranges associated to a node show the importance values at which the edge
information is unchanged.

e
0-0.2

j
0-0.35

f
0-0.3

h
0-0.2

l
0-0.35

g
0-0.35

i
0-0.35

a
0-0.3

d
0-0.2

b
0-0.4

c
0-0.35

d
0.2-0.3

e
0.2-0.3

h
0.2-0.3

m
0.3-0.6

h
0.3-0.4

f
0.3-0.4

c
0.35-0.4

n
0.35-0.4

p
0.4-0.6

o
0.4-0.6

q
0.6-

k
0-0.2

Step 1 .2

Step 2 .3

Step 3 .35

Step 4 .4

Step 5 .6

Step 0 0

Page 5

Figure 6 illustrates the application of Douglas-Peuker algorithm to an edge. The first step (left image) is the
roughest approximation of the edge as the line segment connecting the start and end nodes of the edge,
shown in green circles. The furthest vertex from this line segment is the 4th vertex (shown in orange). It is
selected to be part of the approximation for the next step. Edge approximation in the second step is made of
the line segment 〈v1, v4〉 between 1st and 4th vertex, and the line segment 〈v4, v8〉 between 4th and 8th vertex.
For each line segment, the furthest vertex is calculated: vertex 3 is the furthest from 〈v1, v4〉 line segment, and
vertex 6 is the furthest from 〈v4, v8〉 line segment. The 3rd and 6th vertex are added to the edge approximation
for the next step, which is made of four line-segments 〈v1, v3〉, 〈v3, v4〉, 〈v4, v6〉, and 〈v6, v8〉. The third step
calculates the distance of 2nd vertex from line 〈v1, v3〉, distance of 5th vertex from 〈v4, v6〉, and distance of 7th
vertex from 〈v6, v8〉. Addition of these vertices to the third approximation produces the original edge. The
algorithm finishes after the third step.

Results of the Douglas-Peuker algorithm are stored in a tree. Nodes of the tree are inner vertices of the edge,
associated with the tolerance (i.e. the calculated distance). The root of the tree if the furthest vertex from the
straight line connecting end nodes of the edge. Each step of the Douglas-Peuker algorithm adds to every leaf
node vi of the current tree (created from previous step) at most two nodes, added in the tree as children of vi.
The new nodes are the furthest vertices to the two line segments parting from vi. They are one at the left and
the other at the right of vi, and are put accordingly in the tree to the left and right of node vi. The tree formed
in that way is a binary tree. Figure 7 gives the BLG tree for the edge simplification shown in Figure 6, and
Figure 8 shows Douglas-Peuker algorithm for edges ‘i’ and ‘j’ together with their BLG trees storing the
results of the algorithm.

 Figure 8. Douglas-Peuker simplification for edges 'i' and 'j', and their BLG trees.

4

3

6 2
5

7

Figure 6. Three steps of Douglas-Peuker algorithm for edge simplification. The edge is drawn in thick
black line; edge approximation on each step is drawn in thin dashed line. Vertices in green are part of

the approximation; in orange are vertices selected for inclusion in the next approximation.

 (.7) 4

3 (.4) 6 (.3)

2 (.4) 5 (.2) 7 (.5)

Figure 7. The BLG tree resulting from Douglas-Peuker edge simplification of Figure 6.
Vertex number is shown in bold face, and tolerance for each vertex is given in brackets.

3 (.6)

2 (.1) 4 (.5)

5 (.6)

3

0.6

2 4 7 2

4
0.1

0.5 5

0.6

i

6
5

 (.9) 5

2 (.5) 6 (.3)

7 (.1) 4 (.3)

3 (.2)

j

There are cases when existing edges are to be joined to form only one edge boundary of a face at a lower
LoD. For example, edges ‘g’, ‘i’, and ‘j’ are joined to edge ‘n’ in step 3 of the generalisation process (see
Figure 1 and Figure 4). The geometry of edge ‘n’ is the union of geometries of the ‘g’, ‘i’, and ‘j’ edges. We
use the BLG trees of the composing edges to form the geometry of the new edge ‘n’. For each part of ‘n’ –
‘g’, ‘i’, and ‘j’ – we use the simplification performed already, i.e. we use the BLG trees of ‘g’, ‘i’, and ‘j’. The
common node between ‘g’ and ‘i’, and the common node between ‘i’ and ‘j’, are inner vertices for the new
edge ‘n’, but they have no tolerance value assigned. Joining of BLG trees is done in pairs, and a tolerance
value is calculated for the common node. Figure 9 (left) shows the joined BLG tree for edges ‘i’ and ‘j’. A
tolerance value 1.4 is associated to the common node, named ‘ij’.

 (1.4)

Page 6

Figure 9 (right) illustrates the calculation of the tolerance for the common node. The tolerance value for the
common node ‘ij’ is not calculated in the same way as for inner vertices of an edge (by Douglas-Peuker
algorithm). It is estimated from the top tolerance of edges ‘i’ and ‘j’, and the distance of node ‘ij’ to the
straight line connecting the end nodes of the joined line. The formula for the calculation is: tolij =
max{tolroot(i), tolroot(j)} + dist(ij, 〈s_i, e_j〉) = max{0.6, 0.9} + 0.5 = 1.4

When there are more than two edges to be joined, as it is the case of edge ‘n’ composed of three edges ‘g’, ‘i’,
and ‘j’, the full joining is done in steps. For the example of edge ‘n’, BLG trees of ‘i’ and ‘j’ are joined first,
then the joined BLG of ‘i’ and ‘j’ is joined with the BLG tree of ‘g’. The tolerance of the common node is again
estimated as previously. Tolerance value for the common node is bigger than the tolerance of all inner
vertices, which means a common node is the first vertex selected for joined edge approximation, and during
visualization will appear before any other vertex.

2. Using tGAP structure
Once the tGAP structure is built, it can be used to select features that should be shown for a certain scale.
Once a map scale is given, it is translated to importance value, which is used to select features. A face will be
shown if the given importance value is in the importance range of the face. Figure 10 gives faces to be shown
for an importance value equal to 0.38. The importance value 0.38 is in the importance range [0.35, 0.4)
formed between steps 3 and 4. The map created from Step 3 is unchanged for values in this range. Faces to
be shown are the leaf nodes of the (sub)tree created by cutting all nodes with importance values lower than
0.38. These are faces 3, 8, and 9; their importance ranges include the value 0.38. They form a partition of
space, being leaf nodes of the binary (sub)tree.

ij

BLG-tree i

3 (.6)

2 (.1) 4 (.5)

5 (.6)

BLG-tree j

5 (.9)

2 (.5) 6 (.3)

7 (.1) 4 (.3)

3 (.2)

i j

0.5

s_i

ij

e_j

Figure 9. Joining of two BLG trees (left), and the tolerance calculation for the common node (right).

Page 7

Figure 10. Faces to be shown for the importance level 0.38.

b

c

f

h

8 0.6

m

9 0.6

3 0.4

n

Edges to be shown at the importance value 0.38 are leaf nodes in the forest remained after cutting nodes with
importance less than 0.38. Those are the edges that include the importance value 0.38 in their importance
range. They are the boundaries of faces to be shown for that importance, namely, faces 3, 8, and 9. Figure 11
shows the edges to be displayed at the importance value 0.38.

A relation can be established between map scale and tolerance values of edge vertices. Once a scale is chosen
for a map, it has to be translated to a tolerance value. For each edge to be shown at that scale, this tolerance
value is used to select nodes from its BLG tree. The selected vertices, together with the start and end node of
the edge, form the edge approximation that is to be displayed.

The Douglas-Peuker algorithm is non-monotonic for the Euclidean distance used for tolerance calculation.
That is to say, going down the tree does not guarantee decreasing tolerance values. For example, the BLG
tree of edge ‘j’ – Figure 8, right – has decreasing tolerance values, whereas the BLG trees of edges ‘g’ and ‘i’ –
Figure 7 and Figure 8 left, respectively – do not have decreasing tolerance values. For a given tolerance
value, a BLG tree is descended to select vertices that will form the edge geometry for that value. For
example, the geometry of edge ‘g’ (see Figure 6, and Figure 7 for its BLG tree) for a tolerance value equal to
0.32 is made of vertices v2, v3, and v4, together with its start and end node. Figure 12 shows how the BLG tree
of edge ‘g’ is descended to select the right vertices for the given tolerance 0.32. The tolerance of the root is
bigger than the given tolerance, therefore v4 is selected. Its right child, v6, has a tolerance smaller than 0.32.
The node is not selected; descending stops at that node. Its left child instead has a bigger tolerance that .32.
Node v3 is selected; descending goes further in this direction. The only child of v3, node v4, has a tolerance
bigger than 0.32 and it is therefore selected.

Figure 11. Edges to be shown for the importance level 0.38. Selected edges are drawn in orange.

e h
0-0.2

j
0-0.35

f
0-0.3

0-0.2

l
0-0.35

g
0-0.35

i
0-0.35

a
0-0.3

0-0.2

b
0-0.4

c
0-0.35

d
0.2-0.3

e
0.2-0.3

h
0.2-0.3

m
0.3-0.6

d

h
0.3-0.4

f
0.3-0.4

c
0.35-0.4

n
0.35-0.4

p
0.4-0.6

o
0.4-0.6

q
0.6-

k
0-0.2

Step 1 .2
Step 0 0

Step 2 .3

Step 3 .35

Step 4 .4

Step 5 .6

.38

.38

1 0-0.3

2

0-0.2

4

0-0.35

5

0-0.35

6

0-0.2

7 0.2-0.3

10 0.4-0.6

0.6-

0-0.4 3

0.3-0.6 8

0.35-0.4 9

11

Step 5 .6

Step 4 .4

Step 3 .35

Step 2 .3

Step 1 .2
Step 0 0

Comment [t1]: A paper: “M.
 de Berg, P.

, and A. Zarei,
thms for Line

A. Abam, M.
 Hachenberger
Streaming Algori
Simplification, to appear, 23rd
ACM Symp. on Computational
Geometry (SOCG), 2007” seems
to propose a monotonic
algorithm for a Fréchet
distance.

Page 8

3. Implementation of tGAP structure in Oracle Spatial
The tGAP structure is implemented as a collection of tables in Oracle Spatial (see Figure 13). Information
about faces is stored in a tGAP_face table: face identifier, minimum bounding box, area size, importance range
(imp_low and imp_high columns), parent id that allows to build the face tree, and a class attribute that is used
from generalization. Information about edges is split into tables tGAP_blg, tGAP_node, and tGAP_edge.
Geometry of edges is stored in the first two tables, which store BLG trees and start and end nodes,
respectively. To remove redundancy, a BLG tree in the tGAP_blg table stores only the inner vertices of its
edge. The start and end node of an edge are stored in the tGAP_node table, and retrieved via references
start_node_id and end_node_id in the tGAP_blg table. Other columns in the BLG table store the BLG tree in
tree_source, child1_id and child2_id store references to BLG trees for the joined BLG trees, and top_tolerance
stores the root tolerance. When tree_source is filled, then child1_id and child2_id are empty, and vice versa. The
tGAP_edge stores information of the edge forest: edge identifier, left and right face references, importance
ranges that change with face references, and a reference to the corresponding BLG tree in tGAP_blg table.

Figure 13. Diagram of tables and relationships that store the tGAP structure in Oracle Spatial.

A type BLGTREE is created for storing a BLG tree as a list of BLG nodes (in PL/SQL code):

Figure 12. Descending a BLG tree to select vertices to be shown at tolerance value 0.32. Nodes in green
are selected; the node in red is where the selection stops; its children (in grey) are not selected either.

3 (.4) 6 (.3)

2 (.4) 5 (.2) 7 (.5)

4 (.7)

Page 9

create type BLGnode as object (
x_coord number,
y_coord number,
left_node number,
right_node number,
tolerance float

);
create type BLGTREE as object varray(524288) of BLGnode;

The structure doesn’t store explicitly the vertex position in the original (i.e. highest LoD) edge. Vertex
positions are calculated following left and right references in the tree, when building edge geometry for a
given tolerance.

Tables storing information about our example generalization (Figure 1) are given below: information about
the face tree (Figure 2) is stored in tGAP_face table, and information about the edge forest (Figure 5) is stored
in tGAP_edge table.

tGAP_face table tGAP_edge table
id mbr_geometry area imp_low imp_high parent_id

1 0 0.3 8

2 0 0.2 7

3 0 0.4 10

4 0 0.35 9

5 0 0.35 9

6 0 0.2 7

7 0.2 0.3 8

8 0.3 0.6 10

9 0.35 0.4 10

10 0.4 0.6 11

11 0.6 0.9

id imp_low imp_high blg_id left_face_id right_face_id

a 0.00 0.30 a 0 1

b 0.00 0.40 b 0 3

c 0.00 0.35 c 0 4

d 0.00 0.20 d 0 2

e 0.00 0.20 e 2 1

f 0.00 0.30 f 1 3

g 0.00 0.35 g 3 4

h 0.00 0.20 h 4 2

i 0.00 0.35 i 3 5

j 0.00 0.35 j 3 4

k 0.00 0.20 k 2 6

l 0.00 0.35 l 4 5

d 0.20 0.30 d 0 7

e 0.20 0.30 e 7 1

h 0.20 0.30 h 4 7

m 0.30 0.60 m 0 8

f 0.30 0.40 f 8 3

h 0.30 0.40 h 4 8

c 0.35 0.40 c 0 9

n 0.35 0.40 N 3 9

o 0.40 0.60 O 0 10

p 0.40 0.60 P 10 8

q 0.60 Q 0 11
A 3D functional index is built to insure fast access to features in a given spatial extent and a given
importance range. It is based on a spatial index on bounding boxes of faces (or edges), plus importance
values.

4. Progressive transfer and visualisation
Given a certain spatial extent (i.e. search rectangle) and a certain scale from the client, the server selects data
from tGAP tables based on the spatial extent and a calculated importance range from (current and previous)
scale. Then it starts sending these data progressively. The server sends edges ordered by their importance
values (imp_high attribute alone, or in combination with imp_low?). Edge information sent by the server is
their geometry, together with left and right face references. The topology of faces is to be built at the client
side. A full importance range can be split into several intervals. The server collects all edges falling in an
interval, which form boundaries of a partition of the given spatial extent. A complete (partition) collection is
signalled to the client, which starts building topology for this collection edges. Faces are shown in the client
screen. Other edges coming from the server start appearing in the screen. When a signal for (another)
complete edge collection is coming, the client starts building topology for the new faces, and visualises them
in the screen.

Page 10

Edge geometry can be calculated in the server side and send to the client. This requires re-sending edge
geometry any time a more detailed shape is needed. Done differently, full information about edge can be
sent to the client only once. Client has functionality to build the right geometry (edge detail) for any
tolerance/scale. The following paragraph goes in more detail about ways to perform these.

Edge geometry can be created in the server from the BLG tree and a tolerance (calculated from scale) given
from client. Edge geometry is then sent to the client. When more detail is needed for a received edge, a
complete new (edge) geometry should be created and sent for the required detail. Another possibility is to
send, instead of edge geometry, the BLG tree of the edge, together with its start and end node. In this case,
the BLG structure, including functionality to create edge geometry, is required in the client side. A similar
approach for progressive transfer of data is followed in the GiMoDig project. A third possibility is to rewrite
a BLG tree in the server side as a sequence of vertices, and send this sequence to the client. For each vertex
the sequence contains information on vertex position (in the highest LoD edge), vertex-coordinates, and
vertex tolerance. The sequence can be ordered on tolerance values, which allows fast selection of vertices to
be shown for an edge at a given scale/tolerance. For example, the order of vertices for the BLG tree of Figure
7 is 〈(v4, 0.7); (v3, 0.4); (v2, 0.4); (v6, 0.3); (v7, 0.5); (v5, 0.2)〉 – tolerances are not monotonically decreasing,
whereas edge ‘j’, Figure 8 right, has decreasing tolerances: 〈(v5, 0.9); (v2, 0.5); (v6, 0.3); (v4, 0.3); (v3, 0.2); (v7,
0.1)〉. Selected vertices for a given tolerance will be ordered by the client according to the vertex position for
visualisation on the screen.

Literature
1. Martijn Meijers (2006). Implementation and testing of variable scale topological data structures. Master's Thesis

TU Delft, 2006, 114 p.

2. Peter van Oosterom (1990). Reactive Data Structures for Geographic Information Systems. PhD-thesis
Department of Computer Science, Leiden University, December 1990.

3. Peter van Oosterom (2005). Variable-scale topological data structures suitable for progressive data
transfer: the GAP-face tree and GAP-edge forest Cartography and geographic information science, 32, 331-
346.

4. GiMoDig – “Geospatial Info-Mobility Service by Real-Time Data-Integration and Generalisation”
(http://gimodig.fgi.fi/)

http://gimodig.fgi.fi/

	Server side technology and interface for client
	1. Creating the tGAP structure
	Face tree
	Edge forest
	
	
	The BLG trees

	2. Using tGAP structure
	3. Implementation of tGAP structure in Oracle Spatial
	4. Progressive transfer and visualisation

	Literature

