
Server side technology and interface for client 

The tGAP (topological Generalized Area Partitioning) structure is a collection of data structures that enable 
generalisation of spatial data. These structures store results of a generalisation process, and allow selection of 
features to be shown for any required level of detail (LoD), performing in that way an on-fly map 
generalisation by feature selection in tGAP. The generalization process reduces the level of detail by merging 
unimportant features to more important features (see Figure 1). Data forming a partition of space is 
considered. Results of the generalisation process are stored in the tGAP structure. It stores the geometry only 
for features belonging to the highest level of detail. As we work with a topological model for storing spatial 
data, geometry is indeed stored only for edges forming boundaries of area features. References for the 
relation between a face, i.e. an area feature, and its boundary edges (typical references of a topological 
model) are stored in the tGAP structure. Specific references stored from the tGAP structure are those 
between highest LoD features, and features created during the generalisation. For area features created from 
merging, tGAP structure stores references to the merged features. Each feature is associated with an 
importance range, which is used for selecting the right features for a required LoD. A relation is established 
between importance values and (LoD, which is compatible and translated to) scale of a map1. 

Merging of less important faces to more important faces is based on importance values associated to each 
face. Figure 1 illustrates the generalization process for the map partition shown in ‘Step 0’. The other maps in 
Figure 1 show the result of the generalization in steps, and are labelled according to that. The result of each 
step is a (map) partition. A map2 is a collection of faces, and each face is constructed by the set of edges that 
form its boundary. The collection of faces that should be visible at a certain scale determines the collection of 
edges that should be visible, namely edges that are in the boundary of at least one of these faces. There is a 
last issue in the generalization process: boundary edges get simplified as the level of detail decreases. This 
can be also seen in Figure 1.  

 
Figure 1. Merging of faces based on importance values. Different colours show different classes. Faces are 

numbered, and edges are labelled with letters. The subscript to a face number is its importance value. 

                                                            
1 Considering this relation, we use the terms LoD and map scale interchangeably. 
2 For simplicity we will use the term ‘map’ throughout the text, meaning a map partition.  
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To capture the generalization process we need to keep track of the merging of faces in each step, how this is 
reflected to the boundary edges, and the simplification of edges. The data structures forming the tGAP take 
care of these three issues. The tGAP structure consists of a face tree holding the hierarchy of faces formed by 
merging, an edge forest that holds the corresponding relations between boundary edges, and BLG (Binary 
Line Generalization) trees, one tree for each edge that holds information about edge simplification.  

The coming sections explain the tGAP structure and its implementation. Generalization process shown in 
Figure 1 is used for illustration. Section 1 describes how the tGAP is filled from the merging; Section 2 
explains how tGAP is used to select the right features for a given importance level (to be translated to map 
scale). The implementation of tGAP structure in Oracle Spatial is explained in Section 3. Section 4 contains 
ideas about progressive transfer and visualisation on the client side. 

1. Creating the tGAP structure 
The tGAP structure consists of a face tree, an edge forest, and BLG trees. Building of each structure is treated 
separately in the coming sections.  

Face tree 
Generalization is performed in steps. Each step merges two existing faces to a new face. The merged faces 
are replaced by the new face, which continues further in the merging process. The new face and the merged 
faces have a parent-child relation. The process ends when only one face is left. The hierarchy of faces created 
by this process is a binary tree.  Figure 2 shows this hierarchy – the face tree created by the generalisation 
process of Figure 1. Leaf nodes in the tree are the original faces, i.e. faces at the highest LoD. The root of the 
tree is the complete area of the map, union of all the original faces. Faces created during the generalization 
process form the other nodes of the tree.  

Figure 1 illustrates the 6 steps for the generalization of the map shown in Step 0. A dashed arrow shows the 
least important face and its most compatible neighbour (where the arrow is headed). In the original map, 
Step 0, face 6 has the lowest importance value, 0.2, and face 2 is its only neighbour, therefore the most 
compatible face. In step 1 the two faces are merged into a new face, labelled 7. The two faces labelled 6 and 2 
cease existing at the importance level 0.2, whereas face 7 starts existing at this importance level. The 
importance value of face 7 is calculated, 0.5, and the face is considered for the next step in the merging 
process. The process continues until all is merged to one face, labelled 11.  Figure 2 shows the hierarchy of 
faces created from this generalization process. A node in the tree is a face. Each node is associated with the 
importance range for which the node exists – the values below the node. In the right side of the tree are 
shown the steps performed to create the tree, each step is associated with its importance value. Nodes in the 
tree are levelled with the step in which they stop existing.  
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 Figure 2. The face tree. Nodes in the tree are faces, and lines depict the merging of two faces into the 
parent face. Ranges associated to each node show the importance level at which the face is visible.  
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Merging is (currently) performed one by one: the least important face is merged to the most compatible 
neighbour. Merging is thus based on an importance value for each face, and compatibility between pairs of 
faces. The importance value of a face is calculated via a function e.g. as the product of the face area with the 
weight of the face class. The compatibility is calculated by another function, e.g. as the product of the length 
of the common boundary between two neighbour faces with a similarity value between their classes.  

The merging process starts with the original faces.  The least important face is selected first, then its most 
compatible neighbour. The two faces are merged to a new face, which gets the class of the more important 
face, i.e. the compatible neighbour. The importance value of the new face is calculated. The two merged faces 
are discarded from the next step of the merging process, and the new face is added. The next step continues 
in the same way: first selecting the current least important face, then its most compatible neighbour, merging 
these two faces to a new one that takes the class of the compatible neighbour. Each step performs a change in 
the map, while between two consecutive steps the map is unchanged. Therefore, the number of steps is 
equal to the number of changes a map undergoes. (For the current generalisation this is one less than the 
number of faces at the highest LoD.) 

Edge forest 
Area features can be stored in two different ways: explicitly storing their geometry, or storing the geometry 
of boundary edges together with references to faces of which they form the boundary. The second way of 
storing is not redundant, and it is known as topological storage (or topological model). Different topological 
models exist, e.g. the left-right topology, or winged edge topology. We store faces using the left-right 
topology without edge references. This model stores the edge geometry (as a directed arc with start and end 
node), together with references to the left and right face of the edge. Each face is then constructed from the 
list of edges that refer to it as a left or right face. That determines the types of face changes that effect edges. 
Edges that constitute the boundary of the two merged faces at a certain step undergo three kinds of changes. 
An edge disappears if it is part of the common boundary of the two merged faces. The other edges may 
continue existing, but the left or right face of each edge is changed. Two edges may join to form only one 
edge. An edge takes the importance value from the importance of the step in which it changed. The three 
cases of edge changes are illustrated with examples in the coming paragraphs.   

Edge ‘k’ is common boundary between the merged faces 2 and 6 (see Figure 1), and it disappears at step 1, 
importance level equal to 0.2. An example of an edge that changes its left or right face is edge ‘h’ in step 1; its 
left face changes from 2 in step 0, to face 7 in step 1. Figure 3 shows the changes occurred to the edges in step 
1. Edge ‘k’ disappears, edge ‘d’ changes its right face from 2 to 7, edges ‘e’ and ‘h’ change their left face from 
2 to 7.  
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When a face disappears, like face 5 in Step 3 (see Figure 1), its boundary edge ‘i’ joins the connected edges ‘g’ 
and ‘j’.  Figure 4 shows changes that occurred to edges in Step 3, importance equal to 0.35. The three edges 
‘g’, ‘i’, ‘j’ joined to edge ‘n’, and disappear at that step. Edge ‘l’ disappears, as it is the common boundary 
between the merged faces, 5 and 4. Edge ‘c’ changes its left face from 4 to the new created face 9. 

 

 

 

 

 

Figure 3. Changed edges in Step 1. The green colour shows edges to which change have occurred.   
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Figure 4. Changes edges in Step 3. The light green shows changes happening in this step, the dark 
green are changes occurred in previous steps.  
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Edges that disappear at a step remain isolated from the growing hierarchy of edges. This hierarchy does not 
have a single root; therefore it is not a tree. We call it a forest. The complete edge forest for the merging 
process of Figure 1 is shown in Figure 5. Ranges attached to an edge form the importance range at which the 
edge  (associated with the left-right face information) exists. In the right sides there are the steps at which 
changes occurs, each step associated with its importance level. Nodes in the forest are aligned with the step 
at which the edge information is changed.   
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The BLG trees 
There is a BLG (Binary Line Generalisation) tree for each edge. The BLG tree stores the results of the 
Douglas-Peucker algorithm for line simplification. Douglas-Peuker algorithm is on the oldest and most 
popular algorithms used for line simplification. It uses the closeness of a vertex to a line segment to decide if 
a vertex will be included or not in the simplified version of the line for a given tolerance.  

The algorithm starts with the roughest approximation of an edge being the straight line connecting the two 
end nodes.  For each inner vertex, the distance to this straight line is calculated. The furthest vertex from the 
straight line is included in the list of vertices forming the next approximation of the edge. This new 
approximation consists then of two line segments (see Figure 6). For each new line segment, distances of all 
inner vertices to the line segment are calculated.  Again, the furthest vertices to each line segment are 
included for the next edge approximation.  This process continues until all vertices have a distance assigned. 
This distance is considered as a tolerance value for the vertex, and it is used to decide if the vertex will be 
shown for a certain LoD. 

 

Figure 5. The edge forest. Ranges associated to a node show the importance values at which the edge 
information is unchanged.  
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Figure 6 illustrates the application of Douglas-Peuker algorithm to an edge. The first step (left image) is the 
roughest approximation of the edge as the line segment connecting the start and end nodes of the edge, 
shown in green circles. The furthest vertex from this line segment is the 4th vertex (shown in orange). It is 
selected to be part of the approximation for the next step. Edge approximation in the second step is made of 
the line segment 〈v1, v4〉 between 1st and 4th vertex, and the line segment 〈v4, v8〉 between 4th and 8th vertex. 
For each line segment, the furthest vertex is calculated: vertex 3 is the furthest from 〈v1, v4〉 line segment, and 
vertex 6 is the furthest from 〈v4, v8〉 line segment. The 3rd and 6th vertex are added to the edge approximation 
for the next step, which is made of four line-segments 〈v1, v3〉, 〈v3, v4〉, 〈v4, v6〉, and 〈v6, v8〉. The third step 
calculates the distance of 2nd vertex from line 〈v1, v3〉, distance of 5th vertex from 〈v4, v6〉, and distance of 7th 
vertex from 〈v6, v8〉. Addition of these vertices to the third approximation produces the original edge. The 
algorithm finishes after the third step.  

 

 

 

 

 

 

 

Results of the Douglas-Peuker algorithm are stored in a tree. Nodes of the tree are inner vertices of the edge, 
associated with the tolerance (i.e. the calculated distance). The root of the tree if the furthest vertex from the 
straight line connecting end nodes of the edge. Each step of the Douglas-Peuker algorithm adds to every leaf 
node vi of the current tree (created from previous step) at most two nodes, added in the tree as children of vi. 
The new nodes are the furthest vertices to the two line segments parting from vi. They are one at the left and 
the other at the right of vi, and are put accordingly in the tree to the left and right of node vi. The tree formed 
in that way is a binary tree. Figure 7 gives the BLG tree for the edge simplification shown in Figure 6, and 
Figure 8 shows Douglas-Peuker algorithm for edges ‘i’ and ‘j’ together with their BLG trees storing the 
results of the algorithm.   

 

 

 

 

 

 

 

 

 

 Figure 8. Douglas-Peuker simplification for edges 'i' and 'j', and their BLG trees. 
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Figure 6. Three steps of Douglas-Peuker algorithm for edge simplification. The edge is drawn in thick 
black line; edge approximation on each step is drawn in thin dashed line. Vertices in green are part of 

the approximation; in orange are vertices selected for inclusion in the next approximation. 
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Figure 7. The BLG tree resulting from Douglas-Peuker edge  simplification of Figure 6. 
Vertex number is shown in bold face, and tolerance for each vertex is given in brackets. 
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There are cases when existing edges are to be joined to form only one edge boundary of a face at a lower 
LoD. For example, edges ‘g’, ‘i’, and ‘j’ are joined to edge ‘n’ in step 3 of the generalisation process (see 
Figure 1 and Figure 4). The geometry of edge ‘n’ is the union of geometries of the ‘g’, ‘i’, and ‘j’ edges. We 
use the BLG trees of the composing edges to form the geometry of the new edge ‘n’. For each part of ‘n’ –   
‘g’, ‘i’, and ‘j’ – we use the simplification performed already, i.e. we use the BLG trees of ‘g’, ‘i’, and ‘j’. The 
common node between ‘g’ and ‘i’, and the common node between ‘i’ and ‘j’, are inner vertices for the new 
edge ‘n’, but they have no tolerance value assigned. Joining of BLG trees is done in pairs, and a tolerance 
value is calculated for the common node. Figure 9 (left) shows the joined BLG tree for edges ‘i’ and ‘j’. A 
tolerance value 1.4 is associated to the common node, named ‘ij’. 

 
 (1.4) 
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Figure 9 (right) illustrates the calculation of the tolerance for the common node. The tolerance value for the 
common node ‘ij’ is not calculated in the same way as for inner vertices of an edge (by Douglas-Peuker 
algorithm). It is estimated from the top tolerance of edges ‘i’ and ‘j’, and the distance of node ‘ij’ to the 
straight line connecting the end nodes of the joined line. The formula for the calculation is: tolij = 
max{tolroot(i), tolroot(j)} + dist(ij, 〈s_i, e_j〉) = max{0.6, 0.9} + 0.5 = 1.4 

When there are more than two edges to be joined, as it is the case of edge ‘n’ composed of three edges ‘g’, ‘i’, 
and ‘j’, the full joining is done in steps. For the example of edge ‘n’, BLG trees of ‘i’ and ‘j’ are joined first, 
then the joined BLG of ‘i’ and ‘j’ is joined with the BLG tree of ‘g’. The tolerance of the common node is again 
estimated as previously. Tolerance value for the common node is bigger than the tolerance of all inner 
vertices, which means a common node is the first vertex selected for joined edge approximation, and during 
visualization will appear before any other vertex. 

2. Using tGAP structure 
Once the tGAP structure is built, it can be used to select features that should be shown for a certain scale.  
Once a map scale is given, it is translated to importance value, which is used to select features. A face will be 
shown if the given importance value is in the importance range of the face. Figure 10 gives faces to be shown 
for an importance value equal to 0.38. The importance value 0.38 is in the importance range [0.35, 0.4) 
formed between steps 3 and 4. The map created from Step 3 is unchanged for values in this range. Faces to 
be shown are the leaf nodes of the (sub)tree created by cutting all nodes with importance values lower than 
0.38.  These are faces 3, 8, and 9; their importance ranges include the value 0.38. They form a partition of 
space, being leaf nodes of the binary (sub)tree.  
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Figure 9. Joining of two BLG trees (left), and the tolerance calculation for the common node (right). 
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Figure 10. Faces to be shown for the importance level 0.38. 
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Edges to be shown at the importance value 0.38 are leaf nodes in the forest remained after cutting nodes with 
importance less than 0.38. Those are the edges that include the importance value 0.38 in their importance 
range. They are the boundaries of faces to be shown for that importance, namely, faces 3, 8, and 9. Figure 11 
shows the edges to be displayed at the importance value 0.38.  

 

 

 

 

 

 

 

 

 

 

 

 

A relation can be established between map scale and tolerance values of edge vertices. Once a scale is chosen 
for a map, it has to be translated to a tolerance value. For each edge to be shown at that scale, this tolerance 
value is used to select nodes from its BLG tree. The selected vertices, together with the start and end node of 
the edge, form  the edge approximation that is to be displayed.  

The Douglas-Peuker algorithm is non-monotonic for the Euclidean distance used for tolerance calculation. 
That is to say, going down the tree does not guarantee decreasing tolerance values. For example, the BLG 
tree of edge ‘j’ – Figure 8, right – has decreasing tolerance values, whereas the BLG trees of edges ‘g’ and ‘i’ – 
Figure 7 and Figure 8 left, respectively – do not have decreasing tolerance values. For a given tolerance 
value, a BLG tree is descended to select vertices that will form the edge geometry for that value. For 
example, the geometry of edge ‘g’ (see Figure 6, and Figure 7 for its BLG tree) for a tolerance value equal to 
0.32 is made of vertices v2, v3, and v4, together with its start and end node. Figure 12 shows how the BLG tree 
of edge ‘g’ is descended to select the right vertices for the given tolerance 0.32. The tolerance of the root is 
bigger than the given tolerance, therefore v4 is selected. Its right child, v6, has a tolerance smaller than 0.32. 
The node is not selected; descending stops at that node. Its left child instead has a bigger tolerance that .32. 
Node v3 is selected; descending goes further in this direction. The only child of v3, node v4, has a tolerance 
bigger than 0.32 and it is therefore selected.  

Figure 11. Edges to be shown for the importance level 0.38. Selected edges are drawn in orange.  
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3. Implementation of tGAP structure in Oracle Spatial  
The tGAP structure is implemented as a collection of tables in Oracle Spatial (see Figure 13). Information 
about faces is stored in a tGAP_face table: face identifier, minimum bounding box, area size, importance range 
(imp_low and imp_high columns), parent id that allows to build the face tree, and a class attribute that is used 
from generalization.  Information about edges is split into tables tGAP_blg, tGAP_node, and tGAP_edge. 
Geometry of edges is stored in the first two tables, which store BLG trees and start and end nodes, 
respectively. To remove redundancy, a BLG tree in the tGAP_blg table stores only the inner vertices of its 
edge. The start and end node of an edge are stored in the tGAP_node table, and retrieved via references 
start_node_id and end_node_id in the tGAP_blg table. Other columns in the BLG table store the BLG tree in 
tree_source, child1_id and child2_id store references to BLG trees for the joined BLG trees, and top_tolerance 
stores the root tolerance. When tree_source is filled, then child1_id and child2_id are empty, and vice versa. The 
tGAP_edge stores information of the edge forest: edge identifier, left and right face references, importance 
ranges that change with face references, and a reference to the corresponding BLG tree in tGAP_blg table.  

 
Figure 13. Diagram of tables and relationships that store the tGAP structure in Oracle Spatial. 

A type BLGTREE is created for storing a BLG tree as a list of BLG nodes (in PL/SQL code):  

Figure 12. Descending a BLG tree to select vertices to be shown at tolerance value 0.32. Nodes in green 
are selected; the node in red is where the selection stops; its children (in grey) are not selected either. 
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create type BLGnode as object ( 
x_coord number, 
y_coord number, 
left_node number, 
right_node number, 
tolerance float 

);  
create type BLGTREE as object varray(524288) of BLGnode; 

The structure doesn’t store explicitly the vertex position in the original (i.e. highest LoD) edge. Vertex 
positions are calculated following left and right references in the tree, when building edge geometry for a 
given tolerance.  

Tables storing information about our example generalization (Figure 1) are given below: information about 
the face tree (Figure 2) is stored in tGAP_face table, and information about the edge forest (Figure 5) is stored 
in tGAP_edge table.  

tGAP_face table tGAP_edge table 
id mbr_geometry area imp_low imp_high parent_id 

1   0 0.3 8 

2   0 0.2 7 

3   0 0.4 10 

4   0 0.35 9 

5   0 0.35 9 

6   0 0.2 7 

7   0.2 0.3 8 

8   0.3 0.6 10 

9   0.35 0.4 10 

10   0.4 0.6 11 

11   0.6 0.9   

id imp_low imp_high blg_id left_face_id right_face_id 

a 0.00 0.30 a  0 1 

b 0.00 0.40 b  0 3 

c 0.00 0.35 c  0 4 

d 0.00 0.20 d  0 2 

e 0.00 0.20 e 2 1 

f 0.00 0.30 f 1 3 

g 0.00 0.35 g  3 4 

h 0.00 0.20 h  4 2 

i 0.00 0.35 i 3 5 

j 0.00 0.35 j 3 4 

k 0.00 0.20 k 2 6 

l 0.00 0.35 l  4 5 

d 0.20 0.30 d 0 7 

e 0.20 0.30 e 7 1 

h 0.20 0.30 h 4 7 

m 0.30 0.60 m 0 8 

f 0.30 0.40 f 8 3 

h 0.30 0.40  h  4 8 

c 0.35 0.40  c  0 9 

n 0.35 0.40 N 3 9 

o 0.40 0.60 O  0 10 

p 0.40 0.60 P 10 8 

q 0.60   Q  0 11  
A 3D functional index is built to insure fast access to features in a given spatial extent and a given 
importance range. It is based on a spatial index on bounding boxes of faces (or edges), plus importance 
values.  

4. Progressive transfer and visualisation 
Given a certain spatial extent (i.e. search rectangle) and a certain scale from the client, the server selects data 
from tGAP tables based on the spatial extent and a calculated importance range from (current and previous) 
scale. Then it starts sending these data progressively. The server sends edges ordered by their importance 
values (imp_high attribute alone, or in combination with imp_low?). Edge information sent by the server is 
their geometry, together with left and right face references. The topology of faces is to be built at the client 
side. A full importance range can be split into several intervals. The server collects all edges falling in an 
interval, which form boundaries of a partition of the given spatial extent. A complete (partition) collection is 
signalled to the client, which starts building topology for this collection edges. Faces are shown in the client 
screen. Other edges coming from the server start appearing in the screen. When a signal for (another) 
complete edge collection is coming, the client starts building topology for the new faces, and visualises them 
in the screen.  
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Edge geometry can be calculated in the server side and send to the client. This requires re-sending edge 
geometry any time a more detailed shape is needed. Done differently, full information about edge can be 
sent to the client only once. Client has functionality to build the right geometry (edge detail) for any 
tolerance/scale. The following paragraph goes in more detail about ways to perform these. 

Edge geometry can be created in the server from the BLG tree and a tolerance (calculated from scale) given 
from client.  Edge geometry is then sent to the client. When more detail is needed for a received edge, a 
complete new (edge) geometry should be created and sent for the required detail. Another possibility is to 
send, instead of edge geometry, the BLG tree of the edge, together with its start and end node. In this case, 
the BLG structure, including functionality to create edge geometry, is required in the client side. A similar 
approach for progressive transfer of data is followed in the GiMoDig project. A third possibility is to rewrite 
a BLG tree in the server side as a sequence of vertices, and send this sequence to the client. For each vertex 
the sequence contains information on vertex position (in the highest LoD edge), vertex-coordinates, and 
vertex tolerance. The sequence can be ordered on tolerance values, which allows fast selection of vertices to 
be shown for an edge at a given scale/tolerance. For example, the order of vertices for the BLG tree of Figure 
7 is 〈(v4, 0.7); (v3, 0.4); (v2, 0.4); (v6, 0.3); (v7, 0.5); (v5, 0.2)〉 – tolerances are not monotonically decreasing, 
whereas edge ‘j’, Figure 8 right, has decreasing tolerances: 〈(v5, 0.9); (v2, 0.5); (v6, 0.3); (v4, 0.3); (v3, 0.2); (v7, 
0.1)〉. Selected vertices for a given tolerance will be ordered by the client according to the vertex position for 
visualisation on the screen.  
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