RGI 233 WP4

) ESRI Nederland

SILVERLIGHT TGAPVIEWER
Customer TU Delft Contractor ESRI Nederland B.V.
Customer contact Theo Tijssen Author Ben de Vries
Date December 2008
Version 0.1
Status concept

© 2008 ESRI Nederland

Version history

ad
'

g

%) ESRI Nederland
o

1y

A L
[EL Rl e

Version | Date Update Author
0.1 18-dec-2008 | WP4 BdV
]
Distribution list
Date Name Department
18-dec-2008 | Theo Tijssen TU Delft, OTB

Version: 0.1

RGI 233 WP4
Silverlight TGapViewer

page ii of iii

S

il

(%) ESRI Nederland
e

A L
[EL Rl e

Contents
1. INErOdUCLION ccoveeeeneeeniiiennnenineensseessanessneessanessasessanesssssesssnssssssssssssssssnsssssnens 1
LI.1 System CONtEXt....coiiiiiiiiiiiiiiiite et ee e e 1
1.2 Original g0als WP2........uoiiiiiiiieee ettt et 1
1.3 Accomplished goals in WP2 ... 2
1.4 Accomplished goals in WP4ccooiiiiiiiiiiii e 2
2. TGap service capabilities........ccceeeeiiiivinnriiiciiisissnneeiieiiisissnnneeeeiccsssssnnseeesecsans 4
2.1 GetTGapData.....ccooiiiiiiiiiiiee e e 4
2.2 GetProgressiveTGapData..........eeeeuvieieeiiiieeiiie e eieee e e e e e eevee e e 5
3. Client implementation........cccccinvivveeeeiiisssissnneeeeccsssssssseeeecsssssssssssssessssssssssnees 7
3.1 High level deSi@nccooiiiiiieiiie e 7
T B 1< 73 1 I (<) Uy o D SRS 8
3.2.1 Map and rendering..........coecveeeriierriieenieeniieesiee et 8
3.2.2 Map refresh CYCIe ..oooviiiiiiiiiiee e 9
3.2.3 CONfIGUIAtION. ...uviiiiiiiiiiiiiecitee ettt ettt e 10
3.2.4 TGapConfigEdItOrc.uveeieiiiiieeeeee e 11
3.2.5 Map element ClaSSEScevveeruiirriieiiieeiiieeiee e 12
3.2.6 GetProgressiveTGapData..........cccceeeieiiiiieiniiiie e, 13
T T T T3 1 1 11 £ 15
5. Development t0OIScceeeeeiiinnnnniieneiiisinnnnreeeecsssssssneeeenessssssssteesessssssssssssssses 18
(VT G717 1 T4 11 11 1L 19
6.1 Performance GetTGapDatacooueirviiiiiiiieiiiiiiiie e 19
6.2 Performance GetProgressiveTGapDatacccceevviiiniieniiieneiinieene, 19
6.3 Silverlight and graphics..........ccccvviiiiiiiiiiiiiiii e 19
Version: 0.1 RGI 233 WP4 page iii of iii

Silverlight TGapViewer

—
(1) ESRI Nederland

1. Introduction

This report describes the implementation of a map viewer which can visualize tGAP
(topological Generalized Area Partitioning) data structures. The first implementation of this
viewer was done last year in WP2 with the ArcGIS Server Mobile toolkit. That toolkit had
little or no facilities for animations. Since the requirements for animations were still high, a
new viewer has been developed with the Microsoft Silverlight 2.0 SDK. That SDK is
available since june 2008.

Only the client side implementation is described here. The tGAP data structures are created
and maintained in a tGAP server environment. The server side technology for tGAP is
described in a separate report.

1.1 System context

TGap
TGa_p Client Map
Service Viewer

o tGAP data structures are published on the server through a tGAP service
(WFS/SOAP).

e The map viewer client application sends requests to the tGAP service and displays the
results.

1.2 Original goals WP2
e Service
o The tGAP data would originally be published through a WFS service.
e Dynamic map refresh

o The objective was to implement a map viewer on a mobile platform that,
dependent of the required map scale, would dynamically refresh itself while
connected with the tGAP service.

e Animated rendering

o The map view should render in an animated way. The map’s image should
not be displayed at once but instead should build up in a smooth way. Map
elements should fade out/fade in gradually when the map image changes as a
result of zooming or panning. Also map labels should smoothly fade in and
fade out.

e Testdata

o Several different TGap datasets will be available through a service for testing
from OTB at TU Delft.

Version: 0.1 RGI 233 WP4 pagina 1 van 19
Silverlight TGapViewer

) ESRI Nederland

e Mobile platform

o The map viewer must be deployed on a windows mobile device. For this
reason the initial development environment (for WP2) chosen was the ESRI
ArcGISServer Mobile Application Development Framework for .NET.

1.3 Accomplished goals in WP2
e Service

o The ESRI client technology does not yet support WES services. The support
for WFS services is planned for the next major release of ArcGIS. TU Delft
has therefore created a standard SOAP service which publishes the same
information as the WFS service did. The geometries are packaged in GML
format. At the client side logic has been implemented to interpret the soap
response and unpack the GML geometries.

e Dynamic map refresh

o The tGAP database was not fully prepared to receive map requests for an
absolute map scale. Instead it was possible to request a map for a certain set
of predefined scale levels. A scale level is an integer value that does not
correspond to a map scale. Valid scale levels range from 2 — 160. Since there
was no logic to relate a certain map scale to a predefined scale level, the
dynamic aspect of map viewing was not implemented.

e Animated rendering

o All requirements regarding animated rendering can not be implemented by
the ESRI technology at this moment. Therefore all these requirements have
been left out and shifted forward to work package 4. It means that the current
implementation of the map viewer renders its graphics in a standard way.

e Testdata

o The available testdata in tGAP consists of a set of cadastral polygons. Not too
much data but just good enough to demonstrate the concepts.

e Mobile device

o Since there was no suitable mobile device available, the work package team
decided that the map viewer could be deployed on a standard windows
desktop platform. The program logic can easily be ported to a Windows
Mobile 5 or 6 deployment platform. The user interface would have to be
redesigned.

1.4 Accomplished goals in WP4
e Service

o The SOAP service that was used in WP2 is still functioning and was used for
the new client implementation.

e Dynamic map refresh

Version: 0.1 RGI 233 WP4 pagina 2 van 19
Silverlight TGapViewer

) ESRI Nederland

o In this WP there is no more need to use scale ranges in the TGap service
requests. Given a desired mapextent, the service chooses the proper scale
level.

e Animated rendering

o Using animated rendering in a web browser is only possible when using
FLEX (Adobe Flash) or Silverlight (Microsoft Windows Presentation
Foundation, WPF) technology. Since the Microsoft Silverlight 2.0 SDK was
just released recently, it was decided to build the map viewer with Silverlight
2.0.

o Silverlight offers, just like WPF, various ways to do animations:

» Fading in and out, translating, rotating and scaling of graphic objects
given a “from” and a “to” value. The time that an animation should
last is given by a “duration” value.

o A Silverlight application runs inside any standard web browser. The TGap
viewer has been tested in Internet Explorer 7.0 and FireFox 3.0.

e Testdata

o The number of test datasets on the OTB server has been increased for WP4.
The performance of the TGap service was improved.

o The only negative aspect is still the amount of data in the response of a TGap
request. The TGap service does not really generalize the geometries of the
objects that are sent back from the TGap service. It would be nice if some
form of “weeding” could be implemented at the TGap side. As a result the
current transmission time of a TGap response over the internet takes
relatively long. Sometimes seconds. While the rendering, including
animation, at the client side takes just a fraction of that time.

e Mobile device

o In WP4 we still have no mobile device available. The intention was there to
use a mobile flavor of the Silverlight SDK to implement the viewer on a
Windows Mobile 6.0 device. However, the release of the Silverlight Mobile
SDK is postponed by Microsoft to Q2 - 2009.

o The current implementation only functions in a web browser on a desktop
machine. The plan is to convert the WP4 Silverlight viewer to a mobile
version as soon as the Silverlight Mobile SDK becomes available.

Version: 0.1 RGI 233 WP4 pagina 3 van 19
Silverlight TGapViewer

ESRI Nederland

A L
[EL Rl e

2. TGap service capabilities

The TGap service capabilities in WP4 as they are published by OTB have changed since
WP2. These are some of the most important capabilities:

2.1 GetTGapData

<xsd:element name="getTgaplDataElement">
<¥sd:complexType>
<¥s5d:seqguence>
<xsd:element name="tgapName" nillable="true" type="xsd:string" />
<xsd:element name="windowXmin" nillable="true" type="xsd:decimal"™ />
<xsd:element name="window¥min" nillable="true" type="xsd:decimal" />
<xsd:element name="windowXmax" nillable="true" type="xsd:decimal"™ />
<xsd:element name="window¥Ymax" nillable="true" type="xsd:decimal" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

A GetTGapData request takes the name of the desired tgap plus the extent for which
tgap objects must be returned. The response from the service contains lists with edges
and faces that look like this:

<xsd:complexType name="TgaplLayerUser">
<xsd:complexContent mixed="false">
<xsd:extension base="tns:TgaplayerBase™>
<xsd:sequence>
<xsd:element name="edges™ nillable="true" type="tns:Edgelist" />
<xsd:element name="faces" nillable="true" type="tns:FacelList" />
</x®sd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexTypes>

Each edge in an edgelist contains these attributes:

<xsd:extension base="tns:EdgeObjectBase">
<¥sd:sequence>
<xsd:element name="startNodeId" nillable="true" type="xsd:decimal" />
<xsd:element name="rightFaceId" nillable="true" type="xsd:decimal" />
<xsd:element name="endNodeId" nillable="true" type="xsd:decimal" />
<xsd:element name="edgeId" nillable="true" type="xsd:decimal"™ />
<xsd:element name="leftFaceId" nillable="true" type="xsd:decimal" />
<xsd:element name="coordinates" nillable="true" type="xsd:string" />
</xsd:sequence>
</xsd:extension>

The coordinates of an edge are used to construct the geometry of an edge. The left-
and right-faceID’s are used to reconstruct the topological structure for the faces.

Each face in the facelist contains these attributes:

Version: 0.1 RGI 233 WP4 pagina 4 van 19
Silverlight TGapViewer

ESRI Nederland

A L
[EL Rl e

<xsd:extension base="tns:FaceObjectBase">
<xsd:seguence’>
<xsd:element name="featureClassId" nillable="true" type="xsd:decimal" />
<xsd:element name="faceId" nillable="true" type="xsd:decimal"™ />
</xsd:sequence>
</xsd:extension>

The geometry for a face can be constructed by collecting the edges belonging to that
face (left or right) and chaining the edges in the correct order and in the correct
direction based on the start- and end-nodes of the edges for that face.

Faces can be classified based on featureClassID. During rendering in the viewer the
fillcolor for a face can be assigned based on featureClassID.

2.2 GetProgressiveTGapData

Besides the GetTGapData request the WP4 service also supports a
GetProgressiveTGapData request. This request does not respond by sending all the
edges and faces in a given extent but only those edges and faces that have changed
compared to the previous extent. The idea behind this is to reduce the amount of data
that is transferred over the internet for each response. The response consists of a
number of “transactions”. Each transaction consists of a set of changes in edges and
faces. See the following descriptions for more details.

<x=zd:elenent name=*getProgressiveTgapbataElensnt™s

w =i] xToumias

ﬂKFIZF?ILfZ;‘f
£xad:alemant ne="Tgaplana™ Llable="trua™ tType="xad:atring™ />
<xsdielenent name="windowCurrentinin®™ n: type="x=d: =
xadialenant me="windoWCurrant fmin® ype="Ead >
wxsdie_ement pamesTwindowCurrsentinsax™ ot E= xsd: >
<Eadialenant nE="WwindoWCurrant fRax™ ypE="Ead Ed
<xsdielenent nane="windowfewinin® nillable=%t Fu=d:decar
<xadialenant ne="windouwewynin® Ilable="TFL ="gad:decin

nane="windoudieyinax™ nil_.ab e="tru=" == s dec
ne="windoWwieuinax™ Llable="trus™ Type="E3d:decimna

A GetProgressiveTGapData request needs these arguments:
e The desired tgapname from which to extract the tgap objects

e The current (old) map extent and the new map extent. The tgap request will
determine the differences between the two extents and send those changes
back in the response.

The response consists of a list with transactions. Each transaction contains the
following:

Version: 0.1 RGI 233 WP4 pagina 5 van 19
Silverlight TGapViewer

ESRI Nederland

A L
[EL Rl e

<xsd:extension base="tns:FaceUpdateBase">
<xsd:seguence>
<xsd:element name="transactionId" nillable="true" type="xsd:decimal”™ />
<xs5d:element name="edges" nillable="true"™ type="tns:EdgelList"™ />
<xs5d:element name="faces"™ nillable="true"™ type="tns:FacelList" />
</xsd:sequence>
</xsd:extension>

The lists with edges and faces are identical to the lists with edges and faces described
earlier with the GetTGapData response. The logic, needed to reconstruct the face’s
geometries, is therefore identical to the logic that was used to reconstruct the
geometries from the GetTGapData response.

RGI 233 WP4 pagina 6 van 19

Version: 0.1
Silverlight TGapViewer

—
(1) ESRI Nederland

3. Client implementation

3.1 High level design

TGap Services
(TU Delit)

ArcGIS Server

Services (ESRI) Web Browser

Silverlight
application
(ESRI)

The TGap service(s) are published by OTB at TU Delft. A Silverlight application is published
by ESRI NL. The application is accessed through a URL which can be requested from any
web browser. The application is then shipped to the client, inserted in the browser and starts
running. The first time the application is used, the browser will install the Silverlight plugin.
After the plugin is installed, the first thing the application will do is to load a configuration
file that is shipped with the application. The configuration file contains all sorts of settings
for display options, the URL’s for the TGap service and optionally URL’s for additional map
services from a ArcGIS Server at ESRI NL.

The big advantage of an architecture like this is the easy way for deploying the application
and keeping the application uptodate. Each time the user references the application’s URL,
the whole application will be shipped to the client’s web browser. This shipping mechanism is
very efficient. The application is packaged in a zip file (TGap_Silverlight Map.xap). So, if
any change is made to the application on the ESRI server, the client browser will
automatically use that change when connecting to the application’s URL the next time.

The application can be accessed here:
http://arcgis93.esri.nl/tgap_silverlight mapweb/TGap_SilverLight MapTestPage.aspx

For a description of what Silverlight exactly is and how it works, see here:
http://msdn.microsoft.com/en-us/library/bb404700(VS.95).aspx

Version: 0.1 RGI 233 WP4 pagina 7 van 19
Silverlight TGapViewer

3.2 Detail design

) ESRI Nederland

TGapMap TGapConfigEditor
+MapExtent
Animat +Width +Show()
flmato +Height +Save()
+From +PointTransformer H
e ——{+ZoomDirect() - -
+Duration +PanDirect() TGapConfiguration
+Pan() +ZoomAnimated() +TGaplLayers
+Zoom() +PanAnimated() | [+Settings T GapConfiqurationxm|
+Resize() +ConfigurationFileName TGapConfiguration.xm|
+SetOpacity() +AgsLayers
+Fade()
TGapRenderer TGapHelp e
TGapDataConnector TGapPage +edges — E— TGapHelp.xml
faces h
+edges +UIElements [) +Show()
+faces +NavigationTools \:Ezlt;ﬁ:metnes
:gegGapDat?()TG Dat iEegend +Polygons TGapScaleBar
etProgressiveTGapData() “Render()
+RenderUpdates
dgies() +Update()
TGapLayer TGapFeature
+Name +1D
+Fill +ClassName
+Stroke +TGapName
+Visible +Geometry

Silverlight runs in a mini version of .NET. The most obvious way for implementing the code
logic is to make use of the C# programming language. The above diagram shows a number of
functional classes that were implemented with C#.

3.2.1 Map and rendering

The central part of the application is the web page class called TGapPage. This class contains
the user interface elements and basic logic to do web requests through the
TGapDataConnector class. All activity is triggered from the TGapMap class. This class
inherits from a Silverlight Canvas class. The geometries for the edges and faces are drawn on
this canvas.

The user triggers events from the TGapMap class. For example from zoom or pan actions.
These zoom and pan events trigger the TGapRenderer to request new data from the
TGapDataConnector. This class does the actual SOAP requests to the TGap service at OTB in
TU Delft. The results from the TGapDataConnector are consumed by the TGapRenderer. This
class creates geometries for the edges and faces from the topological structures that came
from the TGap service. The actual creation of geometry for one edge or one face is done in a
helper class TGapFeature.

During the rendering the geometries are given drawing attributes like FillColor, StrokeColor,
StrokeWidth and Transparency. The values for these attributes are derived from the
TGapLayer class. At the start of the application TGapLayer objects are created for each layer
described in the TGapConfiguration file. A more detailed description of the configuration
contents will follow later.

RGI 233 WP4
Silverlight TGapViewer

Version: 0.1 pagina 8 van 19

) ESRI Nederland

A L
[EL Rl e

As soon as the TGapRenderer has finished with creating the correct geometries for edges and
faces the TGapMap takes over and starts to refresh. The actual view for the user consists of
two TGapMap objects. There is a mapl and a map2. Mapl is the map that the user normally
sees and performs navigation on. Map2 normally lies behind map1 and is invisible.

When the user pans in map1, the map] is translated along the panned distance in an animated
way. The animation keeps going during the pan movement until the mousecursor is released.
Releasing the mouse cursor or just clicking one of the pan buttons is the trigger to start a full
map refresh.

All animations in the application are done by a generic Animator class. This class is not only
used for doing an animated pan or zoom in the map but is also used with userinterface
elements such as a menu that can hide/unhide when the mouse cursor hovers over a certain
area in the map.

3.2.2 Map refresh cycle

The same concept is valid for zooming. There are several different ways to perform zooming
in the map.

e Click on one of the zoom buttons. The map will zoom instantly in an animated way
according to a fixed zoom factor.

e Roll the mousewheel. Each mousewheel click will generate an animated zoom
according to a fixed zoom factor. There is a delay after each mousewheel click before
the map will start a refresh sequence. This is to prevent that a complete map refresh
cycle will start after each mousewheel click. The delay time is specified in the
configuration file along with other pan/zoom factors.

As soon as map1 needs a refresh (as a result from panning, zooming or switching layer
visibility on/off) a socalled refresh cycle is started. At the start of the refresh cycle all
geometries for edges and faces are available in the TGapRenderer. A refresh cycle consists of
these steps:

e Mapl is visible and shows the panned or zoomed result. This is just a translated (after
pan) or scaled (after zoom) version of map1. The map needs to be refreshed. But in an
animated way so that the new situation will gradually blend with the old situation and
at the end of the animation will show the final result as received from the renderer.

e C(Clear all contents from map2. Note: map2 is currently invisible so the user will not
notice that.

e Add new contents from the renderer to map2.

e Start an animation where map1 will slowly fade out and map2 will slowly fade in. At
the end of this animation map1 will be invisible and map2 with the new contents will
be visible.

e The end of the previous animation triggers the following steps:
o Clear all contents from map1 (which is currently invisible)

o Add new contents from the renderer to map1. The contents of map! and
map?2 are now identical. Only map1 is still invisible.

Version: 0.1 RGI 233 WP4 pagina 9 van 19
Silverlight TGapViewer

i

%) ESRI Nederland

o Instantly change the visibility of the maps: make map1 visible and make
map?2 invisible. This is not noticed by the user because the contents of both
maps are identical.

e This ends the map refresh cycle. Map2 is invisible and map1 is visible and ready for
the next user action and map refresh.

3.2.3 Configuration

The TGapConfiguration class reads a TGapConfiguration.xml file at the start of the
application. The configuration file can come from two different sources:

e Application resource
If the application is used for the first time the configuration data is read from the
embedded resource inside the shipped application. This is the configuration contents
as is defined by the developer of the application. The configuration is immediately
stored in the socalled isolated storage of the user.

e Isolated storage
If the application was used before or if the user has made use of the
TGapConfigEditor and saved the configuration in its personal profile, the
configuration will be read from the user’s personal configuration file in the user’s
isolated storage.

Isolated storage is a secure place on the file system of the user’s computer. This is the only
place where a Silverligth application can acces files. For security reasons a Silverlight
application is not allowed to access any other place on the file system.

This is the contents of the configuration file:

<ApplicationSettings=

=l--maps the response from the esr proxy server to the correct ArcGIS server output url--=
<PROXY_RESPONSE_MAPPING response="demo33" mapping="arcgis93.esn.nl"></PROXY_RESPOMNSE_MAPPING:
«!--duration for background raster image fade in during map refresh--=

<DURATION IMAGE FADE_IN=0.5</DURATION IMAGE FADE IN=

<l--the imitial transparency for the tgap layers. Can be adjusted with transparency slider--=
<LAYER_OPACITY_INITIAL=0.9</LAYER_OPACITY_INITIAL=

<I--duration for map fade in and fade cut during map refresh--=
<DURATION_MAP_FADE_OVER=>0.5</DURATION_MAP_FADE_CVER>
=DURATION_PROGRESSIVE_MAP_FADE_OVER=0.05=/DURATION_PROGRESSIVE_MAP_FADE_OVER=>
<!--duration for animatians during map zoom and pan--=
<DURATION_ZOOM_PAN_ANIMATION=0.5=/DURATION_ZOOM_PAN_ANIMATION=

<l--duration for the animated hide/unhide of the menu TOC--=
<DURATION_HIDE_TOC=0.5</DURATION_HIDE_TOC=

=l--the zoom factor when clicked on a zoom button or zoom key--=
<Z00M_FACTOR_CLICK=1.5</Z00M_FACTOR_CLICK=

«!--the zoom factor to apply when using the mousewheel--=
<ZOOM_FACTOR_WHEEL=1.25=</Z00M_FACTOR_WHEEL=>

<!--the pan factor to apply when clicked on a pan button or pan key--=
<PAN_FACTOR_CLICK=0.5=/PAN_FACTOR_CLICK>

=l--the delay before map is refreshed after rezize of the parent screen--=
<WAIT_TIME_AFTER_RESIZE=1.0</WAIT_TIME_AFTER_RESIZE=

=I--the delay befaore map is refreshed after using the mousewheel for zooming--=
<WAIT_TIME_AFTER_MOUSEWHEEL_ZOOM=0.75</WAIT_TIME_AFTER_MOUSEWHEEL ZOOM=
=l--the initial map extent in the center of the onginal extent. Used for better initial performance--=
<INITIAL_MAP WIDTH=400</INITIAL_MAP_ WIDTH=

</ApplicationSettings=>

Version: 0.1 RGI 233 WP4 pagina 10 van 19
Silverlight TGapViewer

ESRI Nederland

The element ConfigurationSettings contains pan-, zoom-factors and duration values for the
various animations that are used. Each ConfigurationSettings element has a comment line in
front of it with an explanation about the element’s meaning.

clamfroGlS Sanwe lapara sccanssd through 2257 slerisce--

- Aol Sharver Layarmss

= Arca] Sherver Lavyar estors Camid =" SR OL” - i ranier” yT =" T = urlw b Y roge R aan. il faropia) ras
EArACEL L OMep " erolaTh *1° sookalolor="125,0,0,0° 6 olor="135 110, 0" vinbis="0"%>

= Arca] Soarver Layar hstore Damid="0G0002" deccnizhon="FP mrpis” peametnyTrpa="moint” url="hitp: ercgied L ar Lol Arcis) rast) sarscms 5GP oa!
MapSsror” sirods Thicknemr="1" draksCoior="3551,0,0" (ickar="215%,758, 200,105 vmtla="0">

o FeeLlSSarsariaparn >

The section ArcGISServerLayers contains definitions and references to mapserver layers in
an ArcGIS Server. These layers can be used as background layers or as POI layers in the
TGap map.

<f=Cpdar defintions formab & AGE. &0 raranaresdy. Velal wpless babween 4 pnd 285,

TP

ETGapLereet Poytue e b sshie 0" descrinfh nm "EAges” Qedmetry Thn s Do bdire girome TR s i ke s " 15 50, 00" Flbokere" 5, 0800
e

TRl erpsr foaiue el bysshie ™ B0 DT oo poion =™ Beii-) ares ™ gednmetrs Troes " bpgon ™ stk Thicknesss =" § 7 strpkee Ok re ™50, L {0,100 1"
AICahar= 205, 156, I F2, 138 witiblew"1"">

CTEp s Peatie el by od e " 2200 ey poon =~ Res] ™ gemetry T i pokagin ™ shrokos Theokresss m ™y ™ pbrobos Co bk e ™0, 100, 005 10407
AICakar= 255, FO0 D00, 0L widbiew™1"1>

ETGapLeeer fayiueed i sshi="al00" deoription =" REFrsd” (ed ety Ty e " polgan™ Siroie Thaskresa ™" sbrabeCooe " B, 100, 100, 1007
AICakarm "2 55, 108 100, 1007 widbiaw™1"1>

ETCARLSRT PR R 8 S5 e SO0 Fe0r| DOHON ™ TE TR (et T et m ™ i T Sy T ottt ™. ™.) b om ™ 5], 1K, L (B 10
AECakar= "2 55 1 0 D00, 1007 wisiblew"1"1>

CTENplarpsr Pyt e b ed e "SI0 0 Fe00r DO =™ Waes™ [psd ety T s o m " G0l 6000 SER0ER TR RCR b "1™ i booalofor s ™50, 1000 L D0, 2007
AlCakar="255, 150200, 255 wikdbisw"1"1>

ETGApLeer fayiue el sshie"-359" dasoriotkin= Linkndwn" geometry Tvot="palppon” strpbeThickness =" 17 stmkeCpkir= "5 L 00,100, 100"
Aok e "5, 156, 100 207 vishie= "1

The section with TGapLayers defines attributes for each TGap layer. For example: layer name
and color values.

3.2.4 TGapConfigEditor

The user can access the configuration data via an editor screen. Activate the editor via the
menu botton “Configuration”.

TGap Viewer Configuration (personal settings)

<ApplicationSettings=

leermane tha racnanca fram tha acrm nravwe canrar o tha cnrract Arn2TS

Initially the TGapConfigEditor starts up with the configuration contents from the user’s
personal settings (from the user’s isolated storage). The title in the top frame indicates that.

I_ = A~ 2T Qarvar svar faaturaTlacoTd=-"000MN2" Az

Default! / Personall ,-"'Savg'l (Closel

The user can make changes to the configuration by just editing the values in the editor’s
screen. It is a very simple editor, there is only very simple checking performed during editing.
So, the user must be very careful with editing and needs basic understanding of valid XML
structures.

Do NOT change element or attribute names, only edit the element and attribute values.

Version: 0.1 RGI 233 WP4 pagina 11 van 19
Silverlight TGapViewer

ESRI Nederland

Changes can be saved by clicking the Save button. The configuration is then saved in the
personal isolated storage.

If for some reason the user is not happy with the changes made after saving, he can still recall
the original configuration settings by clicking the Default button.

3.2.5 Map element classes

>

4 b

+ 5 <

menu

The map navigation tools are on a fixed position on the upper left part of the map. The tool
buttons have a tooltip that gets visible when hovering over a tool with the mouse cursor.
When hovering over the menu button a menu screen will show.

[100 m. g

Position: 121501, 486488 Extent: 400 x 237 m. facelD: 141018

The TGapScaleBar class shows itself on the map in the lower left part. The scalebar is
automatically adjusted after each map refresh. A status bar in the lower left part, just under
the map frame, shows the current cursor position in RD coordinates, the current map extent in
meters and optionally the ID of the face (polygon) under the current cursor position.

Confgurabion Hala
Owt Frog-emisa Tap Dein

Thap s
o ACWM_CEATAE

TGap Layers
_ | Edgas
Buit-up ores

Version: 0.1 RGI 233 WP4 pagina 12 van 19
Silverlight TGapViewer

ESRI Nederland

From the menu screen you can activate a Help screen that gives compact help instructions for
all main functions.

TGap Viewsr Help (version 1)

Hadp e i oriphon
Tidap o] uchion - "
Meng pnd Tabls o Conbei The Thup Larvios dodd A8 dupply 59y elsmeten on bl b revces piad doply e Faad
+ Coatljaratef méorretion munt b eoabed i She sasicetion; Sembolepy nforrmetion lke gesmety Ty
+ TEIOMETES [T R R L T, T
t TEApLANSS

RrerIH e Thw priqun i o @ Toen by b e lastureCani e The psherellen |6 fom & Toap s
TNITERS ST tha ik with Tep beyar definctions in Lhe conkpunstins Sl Yo should nok chpnga fhe fu

+ Mep navigalian Fra ic 53d sew TLna laper delrban b the kit Maks ours et the PedtersChadd it or
+ Pan baiong i Secngion chi Be charged b La kol lesguage camingt. The geomanyTyps S ke
+ 2pamba bl Far qapewrET s prhgen th FECodar mey b chargadd Par geamiatyTrrae polping we
+ Zrum btbins ary tha proeselor ey ba changed, Tha visdle attrbuie iesecaing whethar dhe fashurst
+ Ideriity beol ar v (00
+ Configuratian
+ Confamthan prmsbon § Codar dabrinee & gxbrrdghy b by brar arpureands g e @ in b e e i 1
+ Conlagerathin Taap fper S e braarspaarney’ ol the cobos’ eed vaagee Fromod Cunscasrend b 335 feckd)

E: thes ved pow of this codar
01 the gresr: part ok b cwlor
Bxthe blas el of b caler

+ Conbamtan ARG S& .

Wk e Taagaped wih fealerelmaald O srnd deassphion Ryar does et cope om &7
wdrad v thn e hoabion 4o ba sbla b viess Hey adges St ek op thar pobpooe feces.

1 dd b lasfiirnd B sE W Bafported from this Thus sarvice thees Meaborecbs e ma

-

B

When hovering with the mouse cursor over a help item in the left pane, the corresponding
help description is shown in the right pane. The help screen closes when the mouse cursor
leaves the help screen.

3.2.6 GetProgressiveTGapData

As explained before, this request returns a set of transactions where each transaction contains
a set of changed edges and faces. In each transaction’s list with changes some edges and/or
faces will be indicated as “to be removed” while others are indicated as “to be added”. The
edges and/or faces to be removed have a negative ID. The GetProgressiveTGapData request
needs two geographic extents as input arguments:

e The old extent. As it was during the last GetTGapData or GetProgressiveTGapData
query.

e The new extent. As it is after a user has panned or zoomed the map.

The idea behind the GetProgressiveTGapData request is to send only the changes between the
two extent (scale) levels back to the client. The client should start refreshing the map as soon
as the first transaction with changes has arrived at the client side. That means: apply the
contents of the first transaction to the contents of the map. After that the next transactions
should be applied one by one.

The theory (of OTB) is that by applying the changes in this way it will give the user a nicer
experience during a map refresh. Instead of seeing all the changes applied at once it would be
nicer to see the changes applied one by one.

For the user the total wait time will not change much. After all, for both methods
(GetTGapData and GetProgressiveTGapData) the total amount of data sent over the internet
should be more or less the same.

The wait time for the user is caused by the data transfer over the internet and not by the
rendering process at the client side. The size of the TGap service responses is relatively big.

Version: 0.1 RGI 233 WP4 pagina 13 van 19
Silverlight TGapViewer

) ESRI Nederland

Since there is no coordinate weeding taking place at the TGap server, a large extent response
is actually bigger then a small extent response while the total amount of TGap objects in the
response stays the same.

The first tests with the GetProgressiveTGapData request were not very promising. First of all
it appeared that a progressive response after zooming in on the map was actually larger than a
normal response. Meaning that a progressive request takes longer than a normal request.
Secondly the contents of the transaction updates don’t seem to be correct. If the edges and
faces that are marked as “to be removed” are actually removed from the map there will be
some white spots on the map after all the transactions are applied. This means that not all
“removed” faces are replaced with new “added” faces in the transaction updates. It seems the
contents of the transactions is not correct.

Since the GetProgressiveTGapData mode does not work properly it is not enabled by default.
To use this mode you have to explicitly activate this mode via a checkbox button in the menu.

o g s Hedp

Gt Frogarsts es Tiang Cuds

Tiesm names

After having checked this button, all subsequent map refreshes will be handled by the
GetProgressiveTGapData request.

Version: 0.1 RGI 233 WP4 pagina 14 van 19
Silverlight TGapViewer

ESRI Nederland

4. Screenshots

1
J

Zoomed out to the maximum extent of a TGap dataset. In this case the centre of Amsterdam.
Only a few TGap objects are shown in the map. Due to the small scale many objects are

unioned to larger objects. The legend explains the colors in the map.

r

B s gy —

Version: 0.1

RGI 233 WP4
Silverlight TGapViewer

pagina 15 van 19

ESRI Nederland

Zoomed in to an extent of about 1000 meter in the centre of the map. The objects in the map
show more detail then in the full extent map. Some of the map area is now classified as build-
up area.

i
/

% N\

L ——) L

— —

e

Zoomed in to an extent of 400 meter shows clearly how the details in the map have changed
compared to the previous extent.

- [

I.ll.- Foagm i s e g ([st oty lmﬂnilﬂhﬂh
B! T e —— i T b o e

The two ArcGIS Server layers (defined in the configuration) are now visible. The areal
picture serves as background image. Together with the background image it becomes clear
that the green faces are the inner gardens within the building blocks.

Version: 0.1 RGI 233 WP4 pagina 16 van 19
Silverlight TGapViewer

@1‘1 ESRI Nederland

AN
The points layer represents points of interest. That layer is rendered on top of the background
and TGap layers. The attributes for a poi become visible when hovering the mouse cursor

over a poi in the map. The symbology of the pois in this case is very simple. The symbology
could be customized by defining such in the configuration file.

Version: 0.1 RGI 233 WP4 pagina 17 van 19
Silverlight TGapViewer

—
(1) ESRI Nederland

5. Development tools

For the development of the client application, the following tools have been used:
e Development environment: Microsoft Visual Studio 2008
e Development language: C#
e Web development: Microsoft Silverlight 2.0

e ESRI ArcGIS Server map services through the REST endpoint. These are only used
to add the background- and poi-layer to the map.

Version: 0.1 RGI 233 WP4 pagina 18 van 19
Silverlight TGapViewer

—
(1) ESRI Nederland

6. Conclusions

6.1 Performance GetTGapData

A GetTGapData response for a full extent request on the dataset with the centre of
Amsterdam is 630KB and takes 3 seconds to transfer over the internet from the server to
the client. When zoomed in to an extent of 500 meter the response is 86KB and takes 0.3
seconds to transfer. The total number of TGap objects in both cases is about the same. It
shows that the user experience, a wait time of 3 seconds, can be greatly improved by
applying a simple form of generalization (coordinate weeding) at the TGap server side.
This would improve the data transfer time dramatically.

6.2 Performance GetProgressiveTGapData

Updating a map with the GetProgressiveTGapData request mode after having displayed
the map initially using the default GetTGapData request mode, it appears that the second
mode produces a larger response than the first mode. In other words, updating the map
with progressive updates takes more time than creating the map initially. For example: the
initial map with an extent of 1200 meters was created from a response with a size of
347KB. Zooming in to the map with a factor of 1.5 using the progressive update mode
created a response with a size of 465KB. Maybe the idea behind the progressive update is
good but the implementation of it is not good yet and therefore not suited to be tested.

6.3 Silverlight and graphics

The use of a Silverlight client proved to be successful. Especially the performance of the
graphics system is acceptable. Rendering about 100 TGap objects with some 10.000
vertices and dispaying them on a canvas takes less than 0.25 seconds. The interactive
behavior of the map (dynamic panning and zooming) stays very good with these amounts
of graphics on the canvas.

Version: 0.1 RGI 233 WP4 pagina 19 van 19
Silverlight TGapViewer

