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Abstract

A promising approach to submit a vector map from a server to a mobile client
is to send a coarse representation first, which then is incrementally refined.
We consider the problem of defining a sequence of such increments for areas
of different land cover classes in a planar partition. In order to submit well-
generalised datasets, we propose a method of two stages: First, we create a
generalised representation from a detailed dataset, using an optimisation ap-
proach that satisfies certain cartographic constraints. Secondly, we define a
sequence of basic merge and simplification operations that transforms the most
detailed dataset gradually into the generalised dataset. The obtained sequence
of gradual transformations is stored without geometrical redundancy in a struc-
ture that builds up on the previously developed tGAP (topological Generalised
Area Partitioning) structure. This structure and the algorithm for intermediate
levels of detail (LoD) have been implemented in an object-relational database
and tested for land cover data from the official German topographic dataset
ATKIS at scale 1:50 000 to the target scale 1:250 000. Results of these tests al-
low us to conclude that the data at lowest LoD and at intermediate LoDs is well
generalised. Applying specialised heuristics the applied optimisation method
copes with large datasets; the tGAP structure allows users to efficiently query
and retrieve a dataset at a specified LoD. Data are sent progressively from the
server to the client: First a coarse representation is sent, which is refined until
the requested LoD is reached.
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Figure 1: Comparison of two aggregation methods.

1. Introduction

In recent years the Internet has become an important source of digital maps
for mobile users. However, applications suffer from bandwidth limitations and
restricting devices like small displays. Sending a large-scale map for each request
is expensive and time consuming. From a user’s perspective this is unsatisfac-
tory if zoom and pan interactions are needed, for example, to first navigate to
an area of interest. As this task does not require a map at highest resolution, it
is reasonable to send less detailed maps first. In order to define these represen-
tations such that characteristic features are preserved, automatic generalisation
methods are needed.

In this paper we discuss the generalisation problem in the context of vector
datasets for mobile users and focus on the generalisation of areas in a planar
partition. This kind of representation is often used for topographic data. Gener-
alising such data requires different operators, for example, aggregation, collapse,
and line simplification.

Figure 1 illustrates a common generalisation problem. The sample in Fig. 1(a)
was taken from the German topographic database ATKIS DLM 50, which con-
tains the same amount of details as a topographic map at scale 1:50 000. In
order to generalise these data, we need to satisfy size constraints defined for
the lower level of detail (LoD) that we aim to achieve. In many countries, such
constraints are defined in specifications of topographic databases, for example,
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in Germany1, Canada2, and Australia3.
Obviously, size constraints can be satisfied by aggregation, that is, by com-

bining the input areas into fewer composite regions. This can be done, for
example, by iteratively selecting the least important area in the dataset and
merging it with its most compatible neighbour until all areas have sufficient
size. Different measures of compatibility and importance have been proposed
(Cheng and Li, 2006; van Oosterom, 2005). Figure 1(b) shows the result of
the algorithm when applying size constraints defined for the ATKIS DLM 250,
which corresponds to scale 1:250 000. Though all areas in the output have suf-
ficient size, the example reveals a shortcoming of the iterative algorithm: As
the algorithm only takes the compatibility between adjacent areas into account,
large parts of the dataset change their class. In particular, the group of non-
adjacent settlement areas is lost. This is because each single settlement area
is too small for the target scale and becomes merged with a neighbour of an-
other class, for example, forest. However, together the group of settlements
would reach the required size. In order to preserve such groups, we developed
an optimisation method for aggregation that minimises the change of land cover
classes while ensuring contiguous regions of sufficient size (Haunert and Wolff,
2006). The result is shown in Fig. 1(c): The small settlements are grouped
into one large composite region. Generally, constraint- and optimisation-based
approaches to map generalisation are considered highly flexible and capable of
providing high-quality results (Harrie and Weibel, 2007).

Though the simple iterative algorithm cannot offer results of the same qual-
ity as the optimisation method, it has a feature that is useful for progressive
data submission: The algorithm does not only yield a dataset at a single output
LoD, but, in each iteration, also defines an intermediate result. When zooming
in, the merge operations simply need to be inverted, in order to gradually re-
fine the dataset. We have earlier developed the tGAP (topological Generalised
Area Partitioning) structure to store the results of the gradual generalisation
process (van Oosterom, 2005); with this it is possible to progressively submit a
dataset by sending data at a low LoD first and refining the dataset by sending
increments.

In contrast to the iterative merging procedure, optimisation methods for map
generalisation normally generate datasets at a single target LoD, that is, they
do not define a sequence of datasets that could be used for gradual refinement.
Our ambition is to combine the benefits of both approaches: We still wish to
provide the data in a hierarchical structure that allows for a gradual refinement
when zooming in, but would like to be more free in choosing the method to
produce representations at low LoDs. For example, we would like to apply

1Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik
Deutschland: ATKIS-Objektartenkatalog. http://www.atkis.de [Accessed 09 January 2009]

2National Resources Canada: National Topographic Data Base, Data Dictionary. http:

//ftp2.cits.rncan.gc.ca/pub/bndt/doc/dictntd3_en.pdf [Accessed 09 January 2009]
3Geoscience Australia: Topographic Data and Map Specifications. http://www.ga.gov.

au/mapspecs/250k100k/ [Accessed 09 January 2009]
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our existing optimisation method or any other method available. In order to
achieve this, we suggest to set up the tGAP structure with two representations
at different LoDs: the most detailed dataset and a generalised dataset, which,
in this paper, is obtained with our optimisation method. With this input, the
iterative algorithm can be controlled to meet the given result or, from a different
view, it can be used to define intermediate LoDs.

The rest of this paper is structured as follows. In Sect. 2 we review related
work. Section 3 presents our generalisation approach to define a sequence of
LoDs that allows for a gradual refinement of the lowest LoD into the highest
LoD. In Sect. 4 we introduce the constrained tGAP structure that allows the
generalisation process to be recorded. We show how to use this structure for
reconstructing a required LoD and for progressive submission of data. Section 5
gives an outlook on future research and concludes the paper.

2. Related work

In this section we discuss related work on map generalisation in general
(Sect. 2.1) and, in particular, in the context of progressive transfer of vector
data (Sect. 2.2).

2.1. Map generalisation
Map generalisation is the process of deriving a map of smaller scale from a

given map. This task is closely related to the definition of cartographic con-
straints (Beard, 1991; Weibel and Dutton, 1998). Violated constraints are com-
monly referred to as conflicts that need to be resolved by generalisation opera-
tors, for example, areas that are too small to be represented in a certain scale
need to be aggregated or collapsed (Bader and Weibel, 1997). In the map gen-
eralisation literature, it is often mentioned that constraints are contradicting,
thus can only be satisfied to a certain degree. For example, Galanda (2003)
notes that “map generalization has to compromise between different competing
needs (i.e., generalization constraints)”. In mathematics, the term constraint
has another meaning, that is, a constraint can be satisfied or not, but there is
no state in between (Papadimitriou and Steiglitz, 1998). In the following we use
the term constraint with this meaning and refer to potentially competing needs
as objectives, for example, changes of land cover classes should be small.

The optimisation of objectives in map generalisation is often done by appli-
cation of meta-heuristics such as hill climbing and simulated annealing (Ware
and Jones, 1998). In recent years, the application of multi-agent systems has
become a mainstream approach (Barrault et al., 2001). This allows different gen-
eralisation operators to be integrated. Galanda (2003) discusses this approach
in the context of polygon maps, using a hill-climbing strategy for optimisation.
Researchers in the field of computational geometry have proposed global and de-
terministic optimisation approaches, for example, to solve the line simplification
problem (de Berg et al., 1998). Often specialised heuristics are needed to find
efficient algorithms. We formalised the aggregation task in map generalisation
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as optimisation problem and also proposed a deterministic approach, which is
based on mixed-integer programming (Haunert and Wolff, 2006). The iterative
aggregation algorithm that we discussed in Sect. 1 has been applied in different
versions by other authors, for example, Jaakkola (1997) uses a similar algorithm
for the generalisation of raster data with land-cover information. Cheng and Li
(2006) as well as van Smaalen (2003) discuss criteria that need to be considered
for automated aggregation.

2.2. Progressive transfer of vector data
The idea of gradually refining low-resolution vector data in mobile appli-

cations has been discussed by several researchers. The refinement of terrain
models in computer graphics is presented by De Floriani et al. (2000). But-
tenfield (2002) presents an algorithm for the gradual refinement of polyline
coordinates; the method is based on the line simplification algorithm of Dou-
glas and Peucker (1973) and assures that topological properties are preserved.
Brenner and Sester (2005) present a method to gradually refine building ground
plans. As in our first method by iterative aggregation, a sequence of refinement
increments results from an inverted sequence of simplification steps. Operators
for simplification and reconstruction of simplified data are proposed by Yang
(2005) and Yang et al. (2005). Simplification is performed with a constrained
removal of vertices; a consistent topology is kept by enforcing a set of rules.
Reconstruction operators restore the original data from the simplified versions.

Ai et al. (2005) propose a changes accumulation model, which sees the dif-
ference between two consecutive representations as an addition or subtraction
of change patches, therefore the difference between a source and a target scale
as an accumulation of such changes. Taking the example of a river network,
Bo et al. (2008) present a structure that is based on a changes accumulation
model, which is used for progressive transfer. Bertolotto and Egenhofer (2001)
and Follin et al. (2005) generally express differences between different given
vector maps by atomic generalisation and refinement operators. These include
the merge operation of two areas, which is sufficient to model the differences in
the example of Fig. 1(a) and (c). However, we need to define an appropriate
sequence of such pairwise merges, as we intend to also show intermediate results.

Methods for the definition of intermediate representations between two scales
are proposed by Cecconi (2003) and Merrick et al. (2007). Both are based on
morphing algorithms between polygonal lines that allow for a smooth animation
when zooming in or out. The interpolated generalisation proposed by Mon-
monier (1989) follows a similar approach: it uses a smaller scale representation
of data to guide the generalisation at intermediate scales. First, matching be-
tween features from the two scales should be performed; this is followed by the
interpolated displacement and simplification. Also the method of Brenner and
Sester (2005) includes a morphing technique to give an impression of a contin-
uous process, which is referred to as continuous generalisation. However, these
morphing techniques are not used to provide a gradual transformation between
two given maps that would allow for a progressive refinement. We do not con-
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Figure 2: Approaches to create a sequence of LoDs.

sider the problem of animating discrete steps in a smooth way, thus avoid the
term continuous generalisation.

3. Map generalisation approach for defining a sequence of LoDs

Our basic assumption is that we are given an algorithm for the classical
map generalisation problem, that is, for a given input dataset we can produce
a dataset at any reduced LoD by appropriately setting the parameters of the
algorithm. We can apply our optimisation approach for this task or any other
generalisation method available. Figure 2 illustrates three different ideas to
generate a sequence of LoDs by applying such an algorithm.

In Fig. 2(a) the most detailed dataset is used as input for the algorithm to
generate all levels of the sequence. Though each single dataset is well gener-
alised, the obtained sequence of datasets does not conform to the idea of gradual
refinement, for example, a line boundary that appears at a smaller LoD may
not be present at a higher LoD.

An alternative approach is to generate the sequence of LoDs in small steps, in
each step using the previously generated dataset as input for the generalisation
algorithm (Fig. 2(b)). The iterative method that we previously used to set
up the tGAP structure follows this approach. Though it leads to a sequence
of relatively small changes between two consecutive LoDs, it entails the risk of
getting unsatisfactory results at low LoDs. In particular, this iterative approach
does not allow us to optimise global quality measures, for example, to minimise
changes of land cover classes between the highest LoD and the lowest LoD.

Figure 2(c) shows a third approach, which we propose to overcome the dis-
advantages of both other methods: We first create the dataset at lowest LoD
and then define a sequence of intermediate representations (Fig. 2(c)). Using
our optimisation method for the first stage, we can ensure a well-generalised
dataset at lowest LoD. In order to define the intermediate LoDs, we apply a
modified version of the iterative algorithm that we earlier applied to set up the
tGAP structure. We present both stages of our method in the remainder of this
section.
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3.1. Generalisation method for the lowest LoD
Our generalisation method for deriving the dataset at the lowest LoD com-

prises three generalisation operators that we apply in succession: A skeleton-
isation method that collapses narrow areas and area parts to lines (Haunert
and Sester, 2008), an optimisation method that aggregates areas to satisfy size
constraints (Haunert and Wolff, 2006), and an optimisation method for line
simplification (de Berg et al., 1998). Figure 3 shows a sample from the in-
put dataset ATKIS DLM 50 that we generalised with this work flow according
to specifications for the ATKIS DLM 250. We refer to the input dataset as
ShighLoD. Applying the collapse operator to ShighLoD we obtain Scoll, applying
the aggregation operator to Scoll we obtain Saggr, and finally, applying the line
simplification operator to Saggr we obtain the generalised dataset SlowLoD.

Comparing Figures 3(a) and 3(b) we observe that the river area (blue) in
the upper right corner of Fig. 3(a) collapses. This is because the area’s width is
lower than 50 m – a threshold that we defined according to the resolution of a
map at scale 1:250 000. Our procedure, which is based on straight skeletons, also
allows us to collapse area parts, for example, the narrow connection between
the main body of the large settlement (red) and the small annex on its left side.
Bader and Weibel (1997) presented a similar collapse procedure, which uses a
skeleton based on a triangulation of a polygon.

Aggregation is necessary to satisfy size constraints defined for the target
LoD, which in our case are given with the specifications of the ATKIS DLM 250.
In contrast to existing methods, our approach is not based on iterative merging
of pairs of areas. Instead, we solve the problem by optimisation, aiming to
keep class changes small and to create geometrically compact composite regions
while satisfying size constraints; we allow for different size threshold for different
classes. In order to quantify class changes we apply a semantic distance δ : Γ2 →
R+

0 with Γ being the set of all land cover classes. With this distance we express
the global cost for class change as

fclass =
∑
v∈V

w(v) · δ(γ(v), γ′(v)) , (1)

with V being the set of all areas in the input dataset, w : V → R+ their size,
γ : V → Γ their class before aggregation, and γ′ : V → Γ their class after
aggregation. With the semantic distance δ we can express, for example, that
we would rather change a grassland area into farmland (low value for δ) than
into settlement (high value for δ). Different authors have proposed methods to
derive such measures from given data models (Rodŕıguez and Egenhofer, 2004;
Yaolin et al., 2002).

Additionally, our method allows different compactness measures to be ap-
plied. We proved that aggregating areas into contiguous regions while ensur-
ing size constraints and spending a minimum cost for class change is NP-hard
(Haunert and Wolff, 2006), which means that we cannot hope to find an effi-
cient and exact algorithm. Therefore, we solved the problem by mixed-integer
programming and specialised heuristics. In particular, we introduced a heuristic
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Figure 3: Applied generalisation work flow.
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that allows arbitrarily large datasets to be decomposed into multiple instances
of manageable size (Haunert, 2007). We tested this method on a dataset of
ATKIS DLM 50 having an extent of 22 km × 22 km. This corresponds to a
complete sheet of a map at scale 1:50 000. The processing took 82 minutes on a
Linux server with 4 GB RAM and a 2.2 GHz AMD-CPU. The sample in Fig. 3
was taken from this dataset. Though the settlements in Fig. 3(b) do not have
sufficient size for the target LoD, the method creates a settlement of sufficient
size by including adjacent forest areas (Fig. 3(c)); this leads to a solution of little
class changes and compact shapes. Compared to the iterative merging proce-
dure we reduced the costs for class change by 20%, the costs for non-compact
shapes by 2%, and the overall costs by 8%. In summary, with the developed
heuristic our approach yields high-quality results in modest time.

In order to avoid cluttered maps at small scale, we apply a line simplifi-
cation algorithm of de Berg et al. (1998) that defines the simplified line by a
subsequence of the original line vertices (Fig. 3(d)). The method ensures the
bandwidth criterion, that is, for each vertex of the original line the distance to
the simplified line does not exceed a user-defined tolerance. Furthermore, the
method ensures the topological correctness of the planar partition. Subject to
these constraints the number of vertices in the simplified line is minimised.

3.2. Generalisation method for intermediate LoDs
In order to define datasets at intermediate LoDs, we aim to find a gradual

transformation of the most detailed dataset (ShighLoD) into the least detailed
dataset (SlowLoD) generated in the first stage (Sect. 3.1). We first discuss a
prerequisite for our method and how to ensure it (Sect. 3.2.1). In Sect. 3.2.2 we
present an algorithm that defines a sequence of merge operations, in order to
gradually transform ShighLoD into Saggr, that is, the generalisation result before
line simplification. In Sect. 3.2.3 we introduce an improvement of this method
that also allows intermediate levels of line simplification to be found and we
present results that have been obtained with the improved method.

3.2.1. Defining a dataset containing all geometries
Our intention is to define the transformation between ShighLoD and Saggr as

a sequence of basic merge operations. However, if we only allow the areas of
ShighLoD to be merged with each other, we cannot reach Saggr. This is because we
applied a collapse operator in our generalisation work flow: Some polygons were
decomposed into multiple parts, different parts were potentially merged with
different neighbours. Therefore, Saggr contains boundaries that were not present
in ShighLoD. In order to ensure that we can reach Saggr by applying a sequence
of merge operations, we add the additional boundaries of Saggr to ShighLoD. In
other words, we perform a map overlay between both datasets yielding dataset
Soverlay that contains all geometries. Each area of Soverlay corresponds to exactly
one area of Saggr. Figure 4 illustrates this approach. Now we can define a gradual
transformation of Soverlay into Saggr based on merge operations.

For visualisation purposes, we could hide the additional boundaries until
their incident areas become merged with other areas, that is, at high LoDs these
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(a) dataset ShighLoD (b) dataset Saggr (c) dataset Soverlay

Figure 4: Map overlay of most detailed dataset ShighLoD and dataset before line simplification
Saggr. Result Soverlay can be transformed into Saggr using merge operations only.

boundaries are invisible to users. With this approach we can indeed transform
ShighLoD gradually into Saggr.

3.2.2. Defining a sequence of merge operations
We define the gradual transformation of Soverlay into Saggr with a modified

version of the iterative algorithm that we previously used to set up the tGAP
structure (van Oosterom, 1994, 2005). In each iteration of the original algorithm
the least important area is merged with its most compatible neighbour. We also
follow this idea in our new approach. However, we introduce requirements in
order to force the algorithm to terminate with the given dataset Saggr. Before
defining these requirements in detail, we specify our definitions of importance
and compatibility.

We denote the importance by the function I : V ′ → R+
0 and the compatibility

of areas by the function C : V ′×V ′ → R+
0 , where V ′ is the set of input areas V

extended by the areas created from merging subsets of V . These functions are
specified as follows:

• The importance I(v) of area v ∈ V ′ is equal to its size w(v) multiplied with
a class-dependent weight factor η : Γ→ [0, 1], that is, I(v) = w(v)·η(γ(v)).
In our tests we applied a constant weight 1 for all classes.

• The compatibility of area u ∈ V ′ to area v ∈ V ′ is given by C(u, v) =
λ(u, v) · (1 − δ′(γ(u), γ(v))) with λ : V ′ × V ′ → R+

0 being the length of
the common boundary between two areas, and δ′ being the normalised
semantic distance between classes, δ : Γ× Γ→ R+

0 from Sect. 3.1.

In order to formulate the requirements that guarantee to end up with Saggr, we
need to introduce two definitions:

• We say that an area is active, if it still has a neighbour that is contained
in the same composite region.

• For each composite region we define one area of unchanged class as centre.
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The region centres result as a by-product of our optimisation method (Haunert
and Wolff, 2006). Alternatively, we could define the largest area of unchanged
class in each region as centre. With these definitions the requirements can be
defined as follows:

• The merging process must not be terminated, if there still is an active
area.

• An area can only be merged with neighbours in the same composite region,
that is, other neighbours are not taken into consideration when selecting
the most compatible neighbour.

• A new area resulting from a merge of a centre with another area receives
the class of the centre; it becomes the new centre of the region.

These requirements suffice to guarantee that the iterative algorithm terminates
with Saggr when applied to Soverlay. Algorithm 1 specifies the approach. In
Line 2 the least important active area of the dataset is selected. Line 4 selects
its most compatible neighbour from the same composite region. Lines 6 and
9 define the merge operations for the cases that a centre is involved or not,
respectively.

Algorithm 1 Generation of intermediate LoDs

1: while there is an active area do
2: a← active area with minimum importance I
3: N ← neighbours of a in the same composite region
4: b← b′ ∈ N with highest compatibility C(a, b′)
5: if a or b is a centre then
6: merge a and b, new area receives class of centre
7: define new area as region centre
8: else
9: merge a and b, new area receives class of b
10: end if
11: end while

Figure 5 illustrates the input that we require for Algorithm 1: Each region in
the generalised dataset can be obtained by merging a set of areas in the detailed
dataset. Furthermore, each region contains a centre. Note that, according to
our definition of an active area, the area with ID 5 is the only one that is initially
not active: There is no other area contained in the same composite region.

Figure 6 illustrates the stepwise generalisation between the datasets shown
in Fig. 5. Each step is labelled with the number of iterations of Algorithm 1
that have been performed. For each step, a red arrow is drawn from the least
important area to its most compatible neighbour. In the next iteration, both
areas become merged. The process continues until all areas are merged into the
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Figure 5: Samples from two datasets that together can be used as input for Algorithm 1:
detailed dataset (a) can be transformed into generalised dataset (b) applying merge operations
only. Areas of detailed dataset are labelled with their Ids, region centres are shown by red
labels.

composite regions (Step 8). Note that the result is the same as the dataset in
Fig. 5(b).

3.2.3. Defining intermediate levels of line simplification
It remains to define intermediate degrees of simplification for lines. We

denote a line in dataset Soverlay by l1, its vertices by V1, and the simplified line
in dataset SlowLoD by l2 with vertices V2 ⊆ V1. To define intermediate LoDs
we split l1 into multiple lines, each corresponding to a single line segment of l2.
Simplifying these lines with parameters for the intermediate scale, we obtain a
set of vertices V such that V1 ⊇ V ⊇ V2, thus an intermediate representation
that allows for a refinement by adding vertices when zooming from lowest to
highest LoD.

Using Algorithm 1 and the explained procedure for intermediate line simpli-
fication levels, we obtain intermediate representations as shown in Fig. 7. The
sequence only implies small changes in each step and terminates with the well-
generalised dataset obtained from our optimisation method. The constrained
tGAP structure is used to record the sequence of changes performed by the
iterative generalisation algorithm. The next section presents the components of
this structure, how it is set up with the generalisation algorithm, and how it is
used for progressive transfer.

4. Constrained tGAP structure and progressive transfer

The generalisation process is performed off-line, its results are stored in the
constrained tGAP structure on the server side, which makes it available to
clients via an application. For a request sent by a client, the application reads
the structure, compiles the response in an ordered manner, and sends data
to the client employing the order. Sections 4.1 and 4.2 provide the concepts
of our constrained tGAP structure, its components, how it is filled from the
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Figure 6: Steps of iterative generalisation with Algorithm 1 for datasets of Fig. 5. Areas are
labelled with their Ids, Ids of boundary lines are given for Step 0.

13



Figure 7: Two examples processed with Algorithm 1. From left to right: most detailed
dataset with additional boundaries Soverlay, found intermediate representations, and dataset
generalised by optimisation SlowLoD.

generalisation process, and how to reconstruct an LoD representation from the
structure. Section 4.3 provides the Oracle tables that store the constrained
tGAP information. Finally, Sect. 4.4 discusses how to process requests of clients,
that is, how to collect data from the Oracle tables and to progressively transfer
them.

4.1. Filling the structure with generalisation results
The constrained tGAP structure builds up on the tGAP structure of van

Oosterom (2005): it contains additional information related to constraints, that
is the composite regions. It uses a topological model for storing data, which
guarantees non-redundant geometry and topological consistency for any LoD.
The employed topological model consists of faces (that is areas), edges, and
nodes. Each edge holds references to its left and right face, as well as to its start
and end node. Geometry is stored for edges and nodes, whereas the geometry of
a face is constructed by a topology builder algorithm that collects edges referring
to it as left or right face.

The constrained tGAP structure stores the results of the generalisation al-
gorithm (Sect. 3.2) in a face hierarchy and an edge hierarchy. Figure 8 shows
the face hierarchy created for the sample in Fig. 6; iteration steps are shown to
the right. A node in the hierarchy represents an original area (from Soverlay) or
an area created during generalisation. Leaf nodes are the original areas; they
are valid starting from step 0. In every step two areas are merged into a new
area: the step ends the validity of the two merged areas; the new area starts
being valid from this step. Constraints are at the top of the hierarchy; they
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Figure 8: Face hierarchy for generalisation process of Figure 6. Each node corresponds to an
area; labels show area Ids and validity ranges (below). Arrows depict merging of two areas
into parent area.

continue to be valid after the last step. Each area is associated with its validity
range in Fig. 8.

The edge hierarchy holds information about changes happening to edges as
the result of area merging. Figure 9 shows the edge hierarchy for the sample
in Fig. 6. An edge disappears if it is part of the common boundary of the two
merged areas, for example, edge 3 in step 1. These edges are drawn in yellow
colour in Fig. 9. The other edges from the boundary of the two merged areas
continue existing, but the reference to the left or right face changes, for example,
edges 1, 2, 4, 5, 6, 7, 8, 9, and 27 in step 1. Vertical arrows connecting consecutive
versions of an edge represent the range in which an edge is unchanged, i.e., its
(references to the) left and right face have not changed.

The constrained tGAP structure stores geometry only for edges and nodes
at the highest LoD, Soverlay. Areas are constructed following edge references
stored in the edge hierarchy. The tGAP generalisation (van Oosterom, 2005;
Meijers, 2006) performs edge merging after an area merge, for example, after
merging areas 6 and 8 in step 2, edge 12 is merged with edge 19, and edge 10 is
merged with 32. For simplicity we skipped the edge merging in our algorithm.
The tGAP structure uses BLG (Binary Line Generalisation) trees; for each edge
one tree that stores the result of the Douglas-Peucker algorithm (Douglas and
Peucker, 1973) for line simplification. Here we chose for on-line simplification
and use an optimisation algorithm from de Berg et al. (1998).

4.2. Constructing an LoD representation
We use the term LoD equivalently with map scale. To construct an LoD

representation, we first define a correspondence between a map scale and an
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Figure 9: Edge hierarchy for generalisation process of Figure 6.

iteration step in the constrained tGAP. The iterative merging of tGAP allows us
to build a relation between iteration steps and number of valid areas in each step.
In every step two areas are merged to create a new area; two areas are removed
and one is added to the valid areas, thus the number of valid areas decreases by
one in each step. This implies the relation no area(i) = no area(0) − i, where
no area(i) is the number of areas in step i. The relation between scale and the
number of map objects often follows certain rules, for example, equation 3 of
Töpfer and Pillewizer (1966) states that the ratio between the number of map
objects is equal to the ratio between scales. Put differently, this principle states
that the ratio between the number of map objects and the scale is constant
(assuming the same map extent). We cannot apply the equation directly, as we
are given two datasets, Soverlay and SlowLoD, of scales 1:50 000 and 1:250 000, and
known number of map objects, no areaSoverlay and no areaSlowLoD , respectively.
Though we obtained similar ratios for our datasets, they are not exactly the
same. Instead, we consider the ratio between map objects to be proportional
with the ratio between scales, which is translated to a linear relation between
iteration step i and scale:

i =
(scaleSoverlay − scale) · (no areaSoverlay − no areaSlowLoD)

scaleSoverlay − scaleSlowLoD

(2)

For a given map scale, we calculate the corresponding iteration step i, and
search in the constrained tGAP for the valid areas at iteration i. These are
the areas that include i in their validity range. Figure 10 illustrates the valid
areas of our sample dataset (Fig. 6) at scale 1:125 000, which corresponds to
iteration step 6, as calculated from equation 2. The valid areas are the leaf
nodes after cutting the face hierarchy at level 6. Following the hierarchy, from
the top SlowLoD that is a planar partition, it can be seen that leaf nodes after a
cutting form again a planar partition.
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Figure 10: Reconstructing a representation of certain LoD by selection in face hierarchy:
(a) selecting areas in face hierarchy for scale 1:125 000, corresponding to iteration 6; (b) valid
areas at iteration 6. These are leaf nodes after cutting face hierarchy at level 6.

The set of valid edge versions is found similarly from the edge hierarchy.
They are the versions which include the calculated iteration i in their range. In
the edge hierarchy they are the leaves that remain after a cut at level i. These
edges form the boundary of valid faces at iteration i.

4.3. Oracle Spatial tables storing constrained tGAP information
The information of the constrained tGAP structure is stored in Oracle Spa-

tial 10g. Oracle tables and their relationships are shown in Fig. 11. Arrows
associating tables show foreign key relationships; cardinalities are shown when
different from 1. Primary keys and foreign keys are shown by symbols PK, FK,
and pfK for a foreign key that is part of a primary key.

Table Face holds information about areas: an identifier, the class to which it
belongs, the composite region to which it is constrained, an attribute with value
1 or 0 that defines whether the area is a centre, the area size, and the validity
range as [imp low, imp high). Table ClassInfo stores information about classes:
code as referred in Face table, name and description, as well as class weight.
Table ClassCompatibility stores the compatibility values as cost of changing
from the from class to the to class. Information about edges is split in two
tables: EdgeGeo that stores an identifier, the geometry, its length, and refer-
ences to start and end node; EdgeLOD that stores references to left, and right
area as they change during the generalisation (while the geometry remains the
same), and the corresponding validity range [imp low, imp high); the combina-
tion edge id, imp low is unique and it is the primary key of the table. The Node
table stores an identifier and the geometry for each node.

The constrained tGAP algorithm reads and writes data from Oracle tables.
The algorithm starts with the dataset Soverlay, which is stored in the Oracle ta-
bles in advance. At each iteration it works with the set of active areas. Changes
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Figure 11: UML diagram of tables and relationships that store constrained tGAP information
in Oracle Spatial. PK shows a primary key, FK shows a foreign key, and pfK shows a foreign
key that is part of a primary key.

in the face and edge hierarchy performed at each iteration are stored in Face
and EdgeLOD tables.

4.4. Progressive transfer in a client-server environment
On a client request for a certain map scale, the server collects information

for the corresponding iteration from the constrained tGAP tables. In order to
reduce the amount of information transmitted over the network, the server sends
only edge geometry and topology information, together with class information
for areas. This information is processed by the client prior to visualisation:
line simplification is performed; geometry of areas is built from the topology
information; areas can then be visualised with their class information. A client
application can be simple (stateless), i.e., for any change in scale it requests new
data from the server. A more sophisticated client is aware of the tGAP structure.
It starts displaying the most coarse representation once the top of the tGAP
structure has been received. This initial display is gradually refined as long as
more detailed data are received, until the highest LoD data have been received.
This client builds its own (partial) copy of the tGAP structure, which can be
used afterwards for displaying maps at different scales (supporting local smooth
zooming). The next two sections present the server-client communication for
these two types of clients.

4.4.1. Simple client
The client sends a request to the server for a map scale defined by a user.

The requested scale is transformed on the server side into the corresponding
iteration step in the constrained tGAP structure. Data for the valid areas at
this step are collected and sent to the client following an importance order.
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(a) (b) (c) (d) (e)

Figure 12: Visualising sample data at scale 1:125 000 (iteration 6) on importance order:
(a) valid edges of imp high > 8; (b) valid edges of imp high > 6; (c)–(e) valid areas of
imp high greater than 8–6, respectively. Edges are drawn first in the importance order; when
all edges are received areas are built and visualised based on class information.

Queries that collect data from the Oracle tables for a requested scale, e.g.,
scale 1:125 000, corresponding to iteration step 6 in our example, are:

select g.edge id, g.start node, g.end node, g.geometry,
t.left face, t.right face

from EdgeLoD t join EdgeGeo g on t.edge id = g.edge id
where t.imp low <= 6 and t.imp high > 6
order by t.imp high desc;

select face id, class
from Face
where imp low <= 6 and imp high > 6
order by imp high desc;

The first query collects edge information, the second collects area informa-
tion. The where condition assures the selection of edges and areas that should
appear at the requested scale, i.e., valid edges and areas at the corresponding
iteration. Ordering by imp high allows the server to send edges according to
their importance, that is, edges that are visible at smaller scales are sent first.
Once the full set of edges is received, the client builds the geometry of areas,
and colours them based on class information.

Not considered in our examples, but important in practice, is that queries
should also consider the spatial extent.

Figure 12 illustrates the order of visualising our sample data (Fig. 5(a))
at scale 1:125 000, which corresponds to iteration 6 in the constrained tGAP.
First, valid edges at iteration 6 are shown in order of importance; most im-
portant edges reside higher in the hierarchy (Fig. 9). Figures 12(a) and 12(b)
illustrate the order. Once all valid edges are received (Fig. 12(b)), the client
builds the geometry of valid areas for iteration 6, areas 5, 7, 10, 15, 17, and
18 (Fig. 10(b)). More important areas are placed higher in the face hierarchy
(Fig. 8 and Fig. 10(a)). Figures 12(c), 12(d), and 12(e) visualise areas following
their importance, that is the imp high value.
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4.4.2. Smarter client
A smarter (and heavier) client can use the data sent from the server to

build its own copy of the tGAP structure. For a client request at a given
scale, the server sends the data from the most coarse scale (lowest LoD) up to
the requested scale. These data then allow for progressive transfer from server
to client and smooth zooming on the client side. For this, the hierarchies are
traversed in the opposite order of their creation. For example, on a client request
for a map scale up to 1:125 000 of our sample, the server collects data for areas
at the lowest LoD (top of the hierarchy of Fig. 8), and follows with data for
every split going down in the face hierarchy, until iteration 6 (that corresponds
to scale 1:125 000) is reached.

We create a view that records the full validity range for an edge geometry
table, and use this view for easier selection in the subsequent queries:

create view EdgeLoD range(edge id, imp low, imp high) as
select edge id, min(imp low), max(imp high)
from EdgeLoD
group by edge id;

Three separate queries run on the server side, collecting geometry infor-
mation of edges, topology information for edges, and area information, all in
increasing level of detail. The SQL queries collecting data for our sample dataset
from the top of the hierarchy to iteration 6 (used by the illustration of Fig. 13)
are given below:

select g.edge id, geometry, start node, end node, imp high
from EdgeGeo g join EdgeLoD range l on g.edge id = l.edge id
where imp high > 6
order by imp high desc, edge id;

select edge id, left face, right face, imp low, imp high
from EdgeLoD
where imp high > 6
order by imp high desc, edge id;

select face id, class, imp low, imp high
from Face
where imp high > 6
order by imp high desc;

Once a specific scale has been received, a client can make a refinement request
for a larger scale. The open range condition in the where clause of the above
SQL queries is replaced with a closed range condition; for example, for the scale
range 1:125 000 – 1:62 500, which corresponds to the iterations range 6–2, the
condition is modified to imp high <= 6 and imp high > 2.

In both situations, an initial and a refinement request, the server collects
with three separate ‘parallel’ queries the geometry information of edges, their

20
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Figure 13: Visualising data from lowest LoD to a requested LoD, adding refinement following
opposite order of iterative generalisation (Fig. 6): (a) edges of lowest LoD; (b) areas of lowest
LoD; (c) refined by first split (iteration 8); (c) further refined by second split (iteration 7).

topology information, and the area information. Three cursors in a program on
the server side iterate over the output of these SQL queries in Oracle tables.
The ordering on imp high allows for grouping of three different record types
related to one iteration step (representing the next refinement). One package
contains the used edges and the areas involved in a step of the tGAP structure
creation: two areas are merged and at least one edge is removed. The group of
records related to one step, is ‘packaged’ together and written to an XML (or
GML) document for immediate data transfer to the client. As soon as the first
package is complete and received on the client side, the client can use these data
for the most coarse representation. The server continues writing and sending the
document until the last package has been compiled and sent. The Transmission
Control Protocol/Internet Protocol (TCP/IP) guarantees that the document is
correctly received. The result is a data stream from server to client. The client
keeps on receiving data in the right order and can refine the representation
package by package. The received information is stored in a local partial copy
of the tGAP structure on the client side.

Figure 13 illustrates a client visualisation from this progressive transmission
of data: Fig. 13(a) shows valid edges after the last iteration, step 8; Fig. 13(b)
shows valid areas after iteration step 8, areas 5, 18, 19, and 20; Fig. 13(c) replaces
area 20 that was merged at step 8 with its children, 17 and 10; Fig. 13(c) follows
by replacing the area 19 that was merged at step 7 with its children, 7 and 15.
The information displayed on the client side is refined after reception of each
package, until the required level of detail is reached.

5. Conclusion and future work

5.1. Future work
Our method is based on the assumption that the aggregation is the dominat-

ing relationship between areas of two given datasets. Additional lines resulting
from the collapse operation are simply included in the original dataset (resulting
in Soverlay). Using the proposed skeleton operator, the overhead is limited, but,
if we applied more generalisation operators like displacement, exaggeration, and
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typification, this will result in more additional lines and areas. Instead of hav-
ing the collapse operation (and other operations) only available as preprocessing
operation, it might also be fully integrated in the (constrained) tGAP structure.
The effect of including the area-to-line collapse function is that the tGAP face
hierarchy (now tree for tGAP, and acyclic graph for the constrained tGAP) will
become a tGAP face-DAG (directed acyclic graph) as the collapsed area will
be partitioned and assigned to multiple parents (Ai and van Oosterom, 2002).
However, this will happen at most once for every area and does fit well in the
proposed table structure. The area-to-line collapse may be especially useful for
infrastructure at large scale, such as road and water networks, which are often
represented at the medium scales by line objects. Care has to be taken that the
(road or water) network topology is maintained and the line representations are
connected to each other.

Until now we do not have empirical results concerning the inclusion of addi-
tional operators. For the future, we plan to perform tests on a dataset of realistic
size. We also plan to test our method with two different settings for the line
simplification. In our current implementation edges are never merged, but as
described in earlier papers it is possible to join BLG-trees of two edges (without
geometric redundancy). Alternatively, it is possible to compute geometry for a
merged edge representation and store the result in the tGAP structure. This
would introduce some geometric redundancy but would have less overhead or ref-
erences as in the situation of the joined BLG-tree solution. In the case of joined
BLG-trees, sending edges to the client would be done by progressively sending
the (stored and merged) BLG-trees to the client. In case of the new geometric
edges, this is send to the client (more geometry but less structure/references)
and if needed the client could also apply further line simplification on-the-fly.

The list of future work further contains a collection of old and new ideas,
yet to be included into the structure in order to further refine the quality and
performance of the (constrained) tGAP structure:

• In our current prototype we did not fine-tune the class weights and the
class compatibility matrix. However this does influence the tGAP creation
as described in earlier publications; (van Putten and van Oosterom, 1998,
e.g.,).

• Only the importance was included in the current selection conditions when
using the tGAP structure. However, also the spatial extend should be in-
cluded. In case of the simple client this is straightforward as just one
slice of importance at a certain location is needed. In case of the smarter
client (smooth zoom) it is more complicated. Assume that the user wants
to zoom in, the spatial extend rectangle would become smaller while the
scale becomes larger (i.e., importance gets lower). Because also every-
thing between the current larger area (at small scale) and the new smaller
area (at larger scale) is needed, this is a kind of truncated pyramid selec-
tion (in 3D with xy being the spatial extend and z being the importance
dimension).
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• As a user may pan and zoom in and zoom out, the client receives more and
more data, which can be maintained in a local copy of the tGAP-structure.
This reduces the amount of data to be requested from the server for the
subsequent queries. However, this cache management is non trivial due
to the truncated pyramid shapes of the selections. Therefore alternative
solutions are being investigated which use more regular blocks of selected
data. These allow for easier administration of the cache content and easier
formulation of queries.

• When line and point features are to be included in the tGAP structure,
either as input data or created during the processing (area-to-line or area-
to-point collapse) then also support is needed for these objects; for example
also edges can now get an object classification code (similar to the current
faces/areas). Also links between the different representations of the same
object should be maintained; e.g., between an area and line representation
of the same road.

• Instead of first computing an optimised generalised representation and
then computing the tGAP structure to gradually change from the original
large scale data to the generalised representation, it would also be pos-
sible to use an external generalised representation (of another source) as
target. In this case more matching problems occur and have to be solved
when linking the large objects to the smaller scale regions on another
independent source (Hofman et al., 2008).

• Due to changes in left and right references there are many more instances
of EdgeLoD than there are instances of EdgeGeo. If the left and right
references are omitted, then EdgeLoD and EdgeGeo can be replaced with
one Edge table (more compact storage and less data to be transferred to
the client). After forming the areas on the client side, the client has to
match the Face information with the formed areas; one option for this is to
add a centroid to the Face table. This requires more topology processing
by the client, but less data is stored and transferred, so it is expected that
the overall performance will be improved.

• It is nice to have a data structure that supports progressive transfer and
smooth zoom principles, but without a good client it is very difficult to
fully exploit this. Therefore future research will also include the design
and development of a client supporting smooth zoom.

5.2. Conclusion
We have presented a new approach to set up a data structure for the pro-

gressive submission of vector maps. Our idea is to first generalise the large scale
map to a much smaller scale (of optimised high quality) and, in a second step, to
find a sequence of basic merge operations that enables a gradual transformation
between both representations. Though we used a simple iterative algorithm for
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the second task, our approach ensures a well-generalised map at small scale; this
is often needed for navigation tasks, e.g., to pan to the user’s area of interest.

We have shown how to cope with aggregation and line simplification and
suggested a simple way to also consider area-to-line (or point) collapse. Gen-
erally, we do not restrict to any certain generalisation method in the first pre-
processing step. The main contribution of the paper is that it demonstrates an
approach to have a variable-scale structure of high quality. The unconstrained
tGAP structure may result in medium and small-scale representations of less
quality. Using constraints, either computed (see Section 3.1) or from another
medium/small-scale source, will guarantee that the quality at the constrained
scale is obtained (and that the quality at the intermediate scales is improved
based on the conducted visual inspection). Besides the improved quality, there
are two important additional characteristics for the constrained tGAP structure:

• it does not contain any geometric redundancy (and only minimal multiple
representations of a feature; e.g., at most once for an area-to-line collapse)

• it does support progressive transfer of vector data to be used in smooth
zoom functionality on the client side.
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