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Abstract

With the increasing availability of small mobile computers there is also an increasing
demand for visualizing spatial data on those devices. Prominent applications are
location based services in general, and car and pedestrian navigation in particular.
In order to be able to offer both detail and overview of a spatial situation, the devices
have to provide flexible zooming in and out in real-time. The same demands arise
from the increasing amounts of data available and accessible by web services through
limited bandwidth channels. The presentation of spatial data sets in different zoom
levels or resolutions is usually achieved using generalization operations. When larger
scale steps have to be overcome, the shape of individual objects typically changes
dramatically; also objects may disappear or merge with others to form new objects.
As theses steps typically are discrete in nature, this leads to visual ‘popping effects‘
when going from one level of detail to the other.

In this paper, we will present an approach to decompose generalization into simple
geometric and topologic operations that allow describing the complete generaliza-
tion chain to generate a multiscale object representation. The goal is to generate
a representation without redundancy and to transmit only that information which
is needed when scale changes occur. This representation scheme ultimately also en-
ables a continuous visualization, where the changes between the representations are
visually indistinguishable. We identify elementary generalization operations and ap-
ply these concepts for polyline simplification, the generalization of building ground
plans and for displacement.
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1 Introduction and Overview

The presentation of spatial data in different levels of detail is a basic require-
ment in order to be able to fully understand spatial processes. In cartography
it has traditionally been accounted for by the series of topographic maps (e.g.
different scales from 1:10.000 to 1:1 Million). For their production, generaliza-
tion operations are being applied that generate coarse representations from a
given detailed data set.

The need for presenting spatial data in different resolutions recently arose
again from a completely new domain: in order to present spatial information
on small mobile displays – typically user location or navigation instructions –
there is a strong need for generalization, because on the small displays only a
reduced information content can be visualized at a time. As the small display
devices typically do not dispose of large capabilities for storing digital data
sets at different resolutions, the need for efficiently transmitting the spatial
information from a remote server is evident. The same is true for large data
sets accessed via the internet.

This problem was the starting point of our research, which aims at develop-
ing a method for incrementally transmitting more and more information in
terms of object details to a small mobile device through a possibly limited
bandwidth channel by incremental streaming. When a user inspects spatial
data using a mobile or internet client, first only the coarsest information is
transferred to give an overall impression. Then, objects in the zooming area
will be incrementally loaded, until – if the user wishes so – the whole scene is
given at the highest level of detail available.

The idea is to pre-compute a sequence of vector representations at different lev-
els of detail. These different representations, in our case, are coded efficiently
in terms of a set of simple operations, describing topologic and geometric
changes. These operations can be generated by an appropriate adaptation
of existing generalization operations. This code is incrementally sent to the
client, where it has to be restored and visualized.

The paper is organized as follows: After a review of related work and an
analysis of demands for progressive information transmission, a brief classifi-
cation of generalization algorithms is given. Then, the elementary operations
to code incremental changes of objects are presented. Different generalization
functions are adapted in order to produce a representation in terms of those
simple operations. A summary and an outlook on future work conclude the
paper.
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2 Related work and demands for progressive information trans-
mission

The basic requirement for progressive data transmission is that the changes
occurring when going from one representation to the next are small enough
in order not to be visually noticed. Thus, the user is not disturbed by coarse
visible changes like object parts popping up or objects suddenly disappearing.

In order to provide such a smooth transition from one scale to the next, incre-
mental object representations with more and more detail have to be visualized.
This would imply that a very dense series of different scale representations is
generated that has to be transmitted to the user while he/she is zooming in
or out. Besides high demands for the storage of that large number of rep-
resentations on the server, this also has high requirements concerning the
transmission of the data, as a large number of potentially large data sets has
to be transmitted. Due to the fact that scale changes of individual objects are
not homogeneously distributed in the whole data set, potentially also highly
redundant data is sent, i.e. an object is sent again, even if it has not changed
from the previous scale. An alternative is to provide only a limited set of
representations at dedicated scale levels comparable to the map series of to-
pographic maps. The project GiMoDig aimed at providing a combination of
on-line generalization and access to pre-generalized data (Sarjakoski et al.
(2002)). Bertolotto and Egenhofer (1999) describe an approach for progres-
sively transmitting vector data by pre-computing a sequence of map represen-
tations at different Levels of Detail (LoDs). Another possibility is to send only
changes or differences in the data set, which already can reduce the amount
of data considerably. Such a mechanism is well known from the progressive
transmission of GIF-images over the internet. Thiemann (2002) proposes to
use this method for the visualization of 3D building data in different levels of
detail. A similar approach is given by Yang et al. (2007) for the point reduc-
tion operation: they present a scheme for an incremental vertex decimation
taking also topological consistency of neighboring objects into account. Be-
tween adjacent scales, interpolations or morphing operations can be applied
in order to provide a visually smooth transition (van Kreveld (2001), Cecconi
et al. (2002), Nöllenburg et al. (2008)).

For the representation of different levels of detail of vector geometry hierar-
chical schemes can be used. One example is the GAP-tree for the coding of
area partitions in different levels of detail (van Oosterom (1995)). This data
structure also allows for a progressive data transfer (van Oosterom (2005)).
The BLG (binary line generalization) tree hierarchically decomposes a line
using e.g. the Douglas-Peucker algorithm (Douglas and Peucker (1973)). Ai
et al. (2004) describe a hierarchical decomposition of objects using a series of
convex hulls.
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A further option is not to send the changes as such, but a set of operations
that describe the object and the changes. This requires that on the client side
these instructions can be interpreted in order to correctly restore the object.

In our approach a set of elementary operations is defined that allow for de-
scribing geometric and topologic changes in vector data sets. Generalization
operations can be decomposed into a sequence of elementary operations lead-
ing to a sequential reduction and increase of detail when zooming out or in,
respectively. Thus, data coded in a vocabulary of so called Simple Operations
(SOs) can be sent to the client, where it is restored again in order to be visual-
ized. Due to the multi-scale property of this coding scheme, only that amount
of detail has to be sent which is required by the user. The user can stop the
transmission as soon as enough information for the current purpose has been
obtained. The system consists of three parts: an off-line pre-processing step
that generates the multi-scale code using generalization functions, the trans-
mission of the code to the client, and a process that is able to recover all the
intermediate generalization levels in the client. The basic principle of the cod-
ing scheme was described in an earlier paper (Brenner and Sester (2005)). In
this presentation it is applied to new generalization functions and the coding
efficiency is discussed.

3 Generalization operations

In recent years, advancements in the automation of generalization operations
can be observed. For a comprehensive overview on automatic generalization
see Mackaness et al. (2007). Generalization operations can be characterized
by changes occurring to objects which are either discrete or continuous. These
changes can affect individual objects and groups of objects, respectively. They
result in changes in topology and/or in geometry. In the following, examples
for these types of changes are given.

3.1 Discrete changes of individual objects

This situation is characterized by the fact that the topology and the geometry
of the object changes. Examples for this class of changes are point reduction
operations like the simplification of building ground plans or simplification of
lines using e.g. Douglas-Peucker filtering. Another example is symbolization,
where an object is replaced by a new geometry or a symbol. Finally, also the
collapse operation can be classified into this category, as the original geometry
is replaced by a completely new geometry, e.g. a polygon is replaced by a line
or a point.
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3.2 Discrete changes of groups of objects

This type of change typically occurs when larger scale ranges have to be tra-
versed and thus the abstraction level and often the type of object changes.
An example is typification, where a group of objects is represented by a new
group consisting of fewer objects (Müller and Wang (1992); Regnauld (1996);
Sester (2007)). Another example is the amalgamation where nearby objects
are merged to a new object.

3.3 Continuous changes of individual objects

Continuous changes of objects occur when the topology remains the same,
however geometry changes by moving either the whole object or individual
points of the object. Displacement is a typical representative for such a change.
Algorithms based on continuous optimization have been developed (Højholt
(1998); Harrie (2001); Sester (2005)). Also in the case of the enlargement oper-
ation only the positions of object vertices change, not affecting the topological
structure of the objects. The same is true for continuous simplification of ob-
jects, e.g. Gaussian smoothing of lines, where the original object points are
relocated.

3.4 Classification of operations

Table 1 gives a classification of generalization operations into these different
categories according to the typology presented by Regnauld and McMaster
(2007). Based on this analysis, examples for the implementation of operations
are described in more detail in Section 5, namely for the operations highlighted
in bold.

4 Decomposition of generalization operations into elementary op-
erations

A coding scheme has been developed for the generalization of polygons, espe-
cially building ground plans. As it is able to describe topologic and geometric
changes it is generally applicable to all the above described generalization
operations.
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Operation Discrete
individual
(Section
3.1)

Discrete,
group (Sec-
tion 3.2)

Continuous
(Section
3.3)

Smoothing (e.g. Gaussian smoothing) X

Simplification: Point reduction X

Simplification: Building generalization X

Aggregation X X

Amalgamation X X

Collapse X X

Refinement / Symbolization X

Exaggeration (e.g. enlargement) X

Displacement X

Typification X
Table 1
Typology of generalization operations (after Regnauld and McMaster (2007)).
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4.1 The Generalization Chain

Similar to the ideas introduced by Hoppe (1996) for triangulated meshes, we
define for a polygon P consisting of n vertices a minimal representation Pm,
with m ≤ n vertices, and a maximal representation P n ≡ P , consisting of all
original vertices. The minimal representation is the one which is still sensible
from a cartographic viewpoint. In the case of a building this can be a rectangle,
with m = 4, or the empty polygon, with m = 0. Map generalization starts from
polygon P n, successively simplifying its representation using generalization
operations (as described in Section 5) and finally yielding polygon Pm. Assume
that k generalization steps are involved (each leading to one or more removed
polygon vertices), and the number of polygon vertices are numbered i0 =
n, i1, . . . , ik = m, then a sequence of generalized polygons

P ≡ P n ≡ P i0−−−−→g0 P i1−−−−→g1 . . .−−−−−−→gk−1 P ik ≡ Pm (1)

is obtained, where gj denotes the j-th generalization operation. Every gener-
alization step gj is tied to a certain value of a control parameter εj, which
relates to the display scale and can be – as discussed later – for example the
length of the shortest edge in the polygon. Since generalization proceeds using
increasing edge lengths, the sequence of εj is monotonically increasing. As a
first consequence of this, one can pre-compute and record all operations gj, in
order to derive quickly any desired generalization level ε by the execution of
all generalization operations g0, . . . , gj, where ε0, . . . , εj ≤ ε and εj+1 > ε.

However, for an incremental refinement of data, the inverse operations g−1
j are

more interesting, producing a more detailed polygon from a generalized one.
Thus, we have the sequence

P ≡ Pm ≡ P ik
−−−−−−→

g−1
k−1 P i

k1

−−−−−−→
g−1

k−2 . . .
−−−−−→

g−1
0 P i0 ≡ P n (2)

where again one can decide up to which point the polygon modification should
be carried out, characterized by the corresponding parameter ε. This way,
the inverse generalization chain can be used for progressively transmitting
information over a limited bandwidth channel by first sending the minimal
representation Pm followed by a sufficient number of inverse generalization
operations.

4.2 Encoding elementary generalization operations in a basic vocabulary

We call the generalization operations gj(εj) which we introduced above El-
ementary Generalization Operations (EGOs), because every generalization
chain will be made up of a combination of EGOs. Each EGO in turn con-
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sists of one or more Simple Operations (SOs) modifying the polygon. Thus,
we can think of the SOs to be the basic building blocks, whereas EGOs can be
seen as being application specific macro instructions. For example, generating
an extrusion of a building by adding and moving a set of points would be an
EGO, while moving an individual point would be a SO. It is obvious from the
discussion in Section 3 that both operations which modify the topology of a
polygon and operations which affect only the geometry are required: topology
related operations insert and remove vertices, whereas geometric operations
modify the geometry by altering coordinates. Table 2 shows a list of Simple
Operations. This list is not minimal, since e.g. a DV i operation is equiva-
lent to IV i 0. However, for convenience and for achieving a most compact
encoding, the operations may be defined redundantly. Knowing the param-
eters of a simple operation allows to immediately give the inverse operation
except for the ”remove vertex” operation for which the inverse would require
an additional parameter to specify the location of the vertex to be inserted.

SO Description Parameters Inverse Operation

IV Insert Vertex IV [edge id] [rel. position] RV [edge id + 1]

DV Duplicate Vertex DV [vertex id] RV [vertex id +1]

MV Move Vertex MV [vertex id] [dx] [dy] MV [vertex id] [-dx] [-dy]

RV Remove Vertex RV [vertex id] –
Table 2
Set of simple generalization operations (SOs).

Besides the simple operations given in Table 2 there are additional opera-
tions for specifying the scale level at which a change occurs (EPS value) and
the creation of a new polygon, starting with a single vertex at position x/y:
NPR x y.

A client-server architecture and a communication scheme to stream the ge-
ometries in terms of SOs and to interpret and reconstruct them on the client
has been developed, which is described in detail in Brenner and Sester (2005).
1 . In this implementation the aggregation in terms of EGOs has not yet been
realized, thus the code is based on SOs only. In the following section 5 we do,
however, describe how EGOs could be described as compositions of individual
SOs.

1 A demonstration program of the streaming generalization approach
can be downloaded from the website of the authors (http://www.ikg.uni-
hannover.de/forschung/vw stiftung/projekte/software.html)
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5 Realization of generalization operations and examples

In the following, we will demonstrate how generalization operations can be
adapted to produce a sequence of simple operations that generate a general-
ization chain which can incrementally be sent to a client.

5.1 Polyline simplification based on point reduction

Simplifying lines or polygon outlines can be accomplished using filtering tech-
niques or point reduction methods. For point reduction, different algorithms
have been developed that either locally, regionally or globally inspect a line
and decide upon which point can be omitted. The most popular algorithm
is the globally operating algorithm by Douglas and Peucker. In order to de-
compose the point reduction process into a sequence of reversible elementary
generalization operations, a Binary Line Generalization (BLG) tree – a scale
dependent decomposition of a line – is generated by recursively extending the
levels of detail and describing it in a tree structure (see Figure 1). The root
of the tree represents the most coarse line consisting of start and endpoint
only; the inner nodes stand for intermediate generalization levels specifying
line sectors with an associated generalization level, and the leaf nodes, finally,
contain the original line elements – their associated generalization level is ob-
viously 0. The generalization level or scale in this case is directly related to
the distance of that point from the corresponding base line. For example in
line sector AF at scale level c a split of the line into the two sectors AC and
CF will occur. In order to present the line in a certain level of detail, the tree
has to be traversed down to the node with the given scale level.

AF,c

CF,eAC,b

CE,d EF, 0AB, 0 BC,0

CD, 0 DE, 0

AF,c

CF,eAC,b

CE,d EF, 0AB, 0 BC,0

CD, 0 DE, 0

A

B

C
D F

E

c

A

B

C
D F

E

c e

Fig. 1. Original line ABCDEF in grey with first two levels of Douglas-Peucker-de-
composition in red (left) and corresponding BLG-tree (right): nodes represent line
segments and corresponding scale level at which child nodes are expanded.

The full BLG-tree has to be generated in order to allow for the full zooming
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from coarse to fine. The transformation into the SOs is straightforward (cf.
Table 3): Starting point is a new line AF which appears at a certain scale level
EPS, corresponding to its length length(AF ). The line is generated by creat-
ing vertex v0 at position A (NPR xA yA), duplicating this vertex (DV 0), thus
generating vertex v1 and moving the duplicated vertex to the position F by in-
crements ∆xAF = xF −xa, ∆yAF = yF −yA (MV 1 delta_x_AF delta_y_AF).
At scale level c (EPS c) a new vertex is inserted: this is accomplished by dupli-
cating vertex A (i.e. vertex v0 in the internal numbering scheme) and moving
it to position of point C by increments ∆xAC , ∆yAC . Alternatively, a vertex
v1 could be inserted on edge AF at the position of the projection of point
C onto line AF using the IV-operation. It can be observed from the table
that the numbering of the nodes and lines is continuously adjusted in order
to preserve the correct sequence. All required information can be immediately
derived from the BLG-tree. The only issue is an appropriate sequencing of
the insertion of the points, taking the respective scale levels of the nodes into
account.

The necessary simple operations are duplicating (or inserting) and moving
vertices, i.e. DV, (IV), MV. These operations could be combined to an ‘insert-
point´-EGO, taking the edge and the position of the new point as input.

Figure 2 presents some screenshots of the successive refinement of polygons
using the SO-coding. The iterative refinement is clearly visible; the user can
control the level of detail with a slider. Moving the slider to the right leads to
a refinement, i.e. a further traversal of the tree, moving it to the left leads to
a coarsening of the representation. Furthermore, the transmission is organized
in a way that only data in the current extent will be loaded and refined (for
details see Brenner and Sester (2005)).

Fig. 2. Visualization of different stages of generalization triggered by different scale
values by moving a slider.

5.2 Building simplification

Building simplification is a special case of a point reduction method, where
the specific properties of buildings are taken into account. Here, the point
reduction is more a structure reduction, as properties like parallelism and
rectangularity have to be respected by the algorithm. We used a method that
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code explanation visualization

POLY create new object

EPS length(AF) scale level EPS corre-
sponds to distance be-
tween points A and F

NPR xA yA create vertex v0 with co-
ordinates xA and yA

v0

A

FC

DV 0 Duplicate vertex v0 →
create vertex v1

v0,v1

A

F

MV 1 delta_x_AF delta_y_AF Move vertex v1 by ∆xAF

and ∆yAF → move it to
point F

v0

v1

A

F
C

EPS c New scale level is at value
EPS=c

v0

v1

A

F
C

c

DV 0 Duplicate vertex v0 →
create new vertex v1

v0,v1

v2

A

F
C

MV 1 delta_x_AC delta_y_AC Move this new vertex v1

by by ∆xAC and ∆yAC

to point C

v0

v1
v2

A

F
C

. . . . . .
Table 3
Coding Douglas-Peucker line simplification using the vocabulary of SOs leading to
an incremental refinement of the geometry (in red) (see also Figure 1).
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analyzes the shape of the building locally and defines appropriate methods to
eliminate too small parts of the ground plan, i.e. too short façade elements (see
Sester (2000)). Three different kinds of structures can be identified, for which
appropriate reduction methods are defined: extrusion or intrusion, offset, and
corner.

The description of the generalization of these three structures in terms of SOs
is straightforward. The generalization of an offset is visualized in Figure 3:
An offset consisting of four nodes v1, . . . , v4 is replaced by a straight line. The

v1

e1

v1

IV 1 0.33

v2

DV 2

v1

v2, v3

MV 1, 0.0, –1.2

MV 2, 0.0, –1.2

v1

v3

v2
s2

s3

s0

s1

s4

sv1

v2

v4
v3

Fig. 3. Sequence of operations to generate an offset: detailed situation (left); inverse
generalization operations (four following figures).

generalization process eliminates the edge s2 that is too short to be represented
in the target scale. In order to do so, the longest edge adjacent to the short
edge s2, in this case it is edge s3, is extended. A new point is created at the
intersection of the extended edge and the predecessors predecessor edge (in
this case between edges s3 and s0). In order to code the inverse process in
terms of SOs, we start from the end situation with an edge e1, then insert a
vertex on this edge at 33% of the line length, thus creating vertex v2. Then this
vertex is duplicated, which generates vertex v3 at the same position. Moving
vertices v1 and v2 to their final position ends the process. In summary, an
EGO for an offset can be defined by combining the four SOs in Figure 3.
In a similar way, the generalization operations for the other two scale events
extrusion and corner can be coded in terms of EGOs and SOs. In Figure 4,
the generalization of four buildings is shown: the snapshots visualize how –
at certain stages of the parameter EPS that describes the discernable minimal
distance s2 in an object – more and more buildings as well as building details
appear.

Fig. 4. Simplification of four buildings: Screenshots visualizing increasing refinement
(from left to right).
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5.3 Typification

Typification involves a group of objects that is replaced by a new group with
fewer objects. This means that considerable changes occur between the dif-
ferent scales as objects are eliminated and replaced by new ones. Coding this
process in terms of EGOs is simple: a set of objects collapses and new objects
emerge. The collapse-EGO is described by a set of MV-operations, where the
boundary points of the object move to the center point and thus lead to a
disappearance of the object. Creating a new geometry is the inverse process:
the center point is created by a NPR-command, then this vertex is duplicated
n − 1 times to create the n boundary points, which are then moved to their
correct position using the MV-command (see Brenner and Sester (2005) for
more details).

5.4 Displacement

The coding of the displacement operation in terms of SOs is very simple, as
it only consists of move-operations (MV) of the original points to their new
displaced positions. We use a least squares adjustment based approach for cal-
culating the displacement between all objects in a scene (Sester (2005)). Figure
5 shows an example for a spatial situation before and after displacement. The
algorithm leads to an optimal solution of all spatial conflicts between all ob-
jects. The displacement is coded by MV-operations of the individual vertices.
These node-displacements are visualized with little red arrows in Figure 5,
right. They also clearly show that objects are only shifted in areas where
spatial conflicts occur and no object changes are needed elsewhere.

!

!

Fig. 5. Displacement: situation before (left) and after displacement (right): the spa-
tial conflicts between all objects, especially rivers and streets, are resolved. Displace-
ment vectors visualize MV-operations.
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6 Coding efficiency

In order to compare the storage requirements of the coding in terms of SOs
with the full presentation of several generalized instances of the object, the
following estimation can be made. It is done in detail for the case of point
reduction, but can be extended to the other operations mentioned here as
well.

In the course of simplification a line consisting of n points is reduced to 1
point and then vanishes (or vice versa, for progressive transmission, it comes
into existence with 1 point and then iteratively is refined by including new
points until its detailed structure is reached). This line is stored with n double
values (for x and y coordinate) in the original representation. An incremental
generalization of this line is creating additional n−1 different representations,
each of which consists of one point less than the previous representation.
Transmitting all the possible n representations would require

n + (n− 1) + · · ·+ 3 + 2 + 1 =
1

2
n(n + 1)

points (or twice the number of double values in terms of coordinates). Thus,
the amount of data to be transmitted is in the order of O(n2).

Storing this information in terms of SOs requires two operations for each in-
termediate point (DV <int>, MV <float> <float>), which in turn requires
n points or 2∗n coordinate differences. As the coordinate differences are typi-
cally small, float values can be used or even a coding scheme based on integers.
In addition to the points, also the operation codes (DV, MV) together with in-
teger values describing the point identificators have to be coded. Alltogether,
this is in the order of n, which basically means that all representations of an
object can be transmitted for the cost of transmitting the most detailed one.

Coding displacement is more demanding concerning the data volume, as it
requires the movement of potentially all n points. However, firstly, the shift-
values are small, as the movements of the points are typically very small
compared to the large coordinate values, and thus again can be coded using
float values or integers. Secondly, only changes are encoded, thus not the whole
data set has to be transferred in all scale-steps (see also displacement vectors
in Figure 5 that are not homogenously distributed in the scene, as they occur
only in areas of conflicting objects). Finally, a complex EGO can be defined
that encodes the movement of an object as a whole. This does, however, require
that there are no object deformations, which cannot always be assumed.

During typification the objects are replaced by new objects, i.e. completely
new objects are created. Thus, no incremental change from the old situation
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to the new one can be done, which has the consequence that the full object
representation has to be created when scales change, and hardly a reduction
in data volume can be achieved.

7 Discussion

7.1 The role of EGOs

As mentioned earlier, the coding in terms of EGOs allows grouping several SOs
to higher level standard operators. In the current implementation this has not
yet been done, and only the SOs were used. EGOs promise to be beneficial
e.g. for describing the displacement of whole objects and also the typifica-
tion of object groups efficiently. EGOs allow for a more abstract and compact
representation of higher level operations. This would also possibly reduce the
volume of the code to be transmitted. Its implementation allows to code arbi-
trary abstract geometry and topology modifications. In this way generalization
operations like ‘extrude-building-part´, ‘insert-rectangle´ or ´displace-object´
can be realized and implemented. Similarly, for typification, a command can
take a group of objects and replace it by another group with fewer objects. A
prerequisite is, that the definition of the EGOs in terms of SOs is transmit-
ted to the client prior to sending any data. In this presentation we focused
on a proof-of-concept for which an implementation based on the elementary
geometric and topologic commands was sufficient.

7.2 Determination of scale values

In the case of point reduction and building simplification, the object geometry
itself defines discrete generalization levels. E.g. a line with 5 points creates 4
scale levels at which intermediate points are inserted. Similarly, a building
generalization is determined by the discrete set of the facade points. In this
way, all intermediate representations of an object are generated and the mul-
tiscale coding scheme represents all the natural, inherent scales of an object.
Thus, in the case of discrete generalization operations, only discrete steps in
the continuum of the scale space need to be explicitly represented, as between
them, no further changes can occur.

The continuous generalization operations do not have this nice property: there,
in theory, each infinite intermediate scale value could also be relevant. Consider
e.g. the enlargement of an object: every scale value leads to a corresponding
different size of the object. The same holds for the displacement: every scale
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value leads to a dedicated representation of the objects in the scene. So, in the
continuous case, intermediate target scales have to be pre-defined, based on
which subsequently the generalization is calculated and the multiscale repre-
sentation is generated. The selection of these scales is dependent on the scale
changes that the user is willing to tolerate and the resolution of the display
device.

7.3 Integration of multiple generalization operations

Applying the concept of SOs and EGOs for the integration of different opera-
tions is straightforward: the coding sequences for the individual objects can be
just concatenated. The system reads the SOs and evaluates them depending
on the corresponding EPS values. As a matter of fact, it has to be assumed
that the generalization processes do not influence each other, e.g. the simpli-
fication of roads and the simplification of buildings do not affect each other.
This assumption is justified at least in large scale representations. Otherwise,
integrated generalization processes have to be devised that generate the SOs
and the EGOs.

8 Continuous Visualization

When a map representation is switched due to generalization, this usually leads
to a visible ’popping’ effect. Compared to switching between different, fixed
levels of detail, the use of SOs and EGOs is already an improvement, since it
gradually modifies the polygon rather than just replacing it as a whole. How-
ever, one can still improve on this. Intermediate states can be defined which
continuously change the object in response to an operation. For example, the
of a building part (see Figure 6) would be interpreted as ‘move extrusion in
small steps until full extent is reached´. We term this approach continuous
visualization as it effectively allows to morph the object continuously from its
coarsest to its finest representation. It is realized by decomposing the move-
ment into a number of intermediate steps that give the impression of smooth
changes.

In the current implementation the changes are visualized one after the other.
With the animation of geometric changes, a smooth transition from one rep-
resentation to the next is possible. However, for operations like typification,
where the changes between two representations can be dramatic, other visu-
alization schemes might be more appropriate. van Kreveld (2001) proposes to
blend previous and subsequent representation for a short time, before the old
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Fig. 6. Animation of discrete geometric change: without animation: popping effect
(top), interpolating a series of intermediate positions (bottom).
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one is faded out. This can easily be achieved with the setting of the EPS-
parameters which control the appearance and disappearance of the objects.

With typification e.g. 16 buildings can be replaced by four and subsequently
by a single building, before it finally disappears in the smallest scale. This can
be realized in terms of SOs as described in the previous section.

In order to realize a visual blending of these discrete changes when zooming
in, the more detailed objects are created before the coarser objects disappear.
Figure 7 shows how the transitions between the discrete steps a), c) and e) are
visually enhanced by blending both representations for a small scale range. In
this way, e.g. the coarse and intermediate representations a) and c) are both
visible in the scale range between EPS=10 and EPS=8 as shown in b). This
visual blending could even be enhanced by also smoothly fading the color.

a) EPS = 15 b) EPS=10 c) EPS=8 d) EPS=5 e) EPS=4

Fig. 7. Blending of different generalization levels.

9 Summary and outlook

An approach was presented to decompose changes in object geometry into a
small set of simple operations. These operations express the creation of objects
as well as the iterative refinement of their shapes. This coding scheme was used
to represent different generalization levels of objects efficiently. It was shown
how this representation can be generated by different generalization opera-
tions. As compared to the naive approach of storage and transmission of n
different geometric representations, requiring O(n2) transmission space, cod-
ing of the differences needs only O(n) for the case of point reduction. For
other generalization operations the coding efficiency depends on the degree of
changes occurring in the different scale steps. Besides incrementally present-
ing the changes in the geometry, it was also shown that the changes can be
animated, leading to nearly invisible changes between the different represen-
tations when going from one scale to the next.

In the current approach the generation of the SOs is an off-line pre-processing
step. It is possible to generate the code on-the-fly upon request by the client.
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Then, however, the response time on the client will be additionally delayed
by the time needed by the generalization process. Thus, the trade-off between
additional storage of the code and processing time has to be balanced.

Aggregating SOs to higher level EGOs promises to be beneficial for some
kinds of generalization operations, e.g. the creation, removal or movement of
whole objects (e.g. typification, displacement) or the structured modification
of object shapes (e.g. inserting or removing offsets of buildings). However, for
the proof of concept presented in this paper, it was sufficient to show the
functionality and flexibilty of the SOs.

Future work will investigate possible extensions of the approach to three di-
mensions, especially the definition of the required elementary operations.
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