A storage and transfer efficient data structure for
variable scale vector data

Martijn Meijers, Peter van Oosterom and Wilko Quak

Delft University of Technology
OTB Research Institute for Housing, Urban and Mob&tudies
{b.m.meijers, p.j.m.van.oosterom, c.w.quak}@tudalft

Abstract

This paper deals with efficient data handling ofiatale scale vector data.
Instead of pre-building a collection of data setddferent scales, we cre-
ate an index structure on the base data set (tasgake data) that enables
us to extract a map at exactly the right scalentoenent we need it. We
present both the classic version of the tGAP (togichl Generalized Area
Partitioning) data structure for storing our valéabcale map, as well as an
ameliorated version, both based on topological eptsc We prove that the
classic structure needs in a worst case scei@(@f) edges (withe the
number of edges at largest scale). In practicebsemwed up to a factor 15
more edges in the variable scale data structure.tGAP structure has
been optimized to reduce geometric redundancytheuexplosion of addi-
tional edges is due to the changing topologicaeregfces. Our main
achievement finds its roots in the reduction of nnenber of edge rows to
be stored for the ‘lean’ version (by removing tbpdlogical referential re-
dundancy of the classic tGAP), which is benefitiath for storage and
transfer. We show that storage space for the @atglsis the index, is less
than twice the size of the original data set. Tleari’ tGAP, as the classic
tGAP, offers true variable scale access to the dathhas also improved
performance, mainly due to less data communicdtigtveen server and
client.

2 Martijn Meijers, Peter van Oosterom and Wiuak

1 Introduction

There is a growing tendency to focus data manageofespatial datasets
on the highest level of detail and manage the dthesls of detail as data
that is automatically derived from this base daa(s.g. Bobzien et al.,
2006; Ellsiepen, 2007; Stoter et al., 2008).

Basically there are two methods of managing a sett@n different lev-
els of detail (cf. Cecconi and Galanda, 2002): Theti-scale approach
and the variable scale approach. The multi-scgbecaggh works by creat-
ing several smaller scale versions of the map. \Elrere a map is needed
on a specific scale the most appropriate scale th@pre-defined collec-
tion is chosen and displayed. Instead of pre-bugidi collection of maps
on different scales the variable scale approadiiesean index structure on
the base map that enables you to extract a majaetlyethe right scale the
moment you need it. This means that when you wangp on a specific
scale for a specific region it is constructed fouyon the fly. Advantages
of the variable-scale approach are that only ortasé& needs to be man-
aged and that data can be displayed at any scale.

This paper proposes a new data structure for theageanent of a vari-
able-scale map product and is an improvement onGA® data structure
as described in Van Oosterom, 2005. The idea ofGiAdP data structure
is to run automatic map generalization on the lozda set and instead of
storing the result of the generalization on différscales the whole proc-
ess of the generalization is stored in a tree stracvhere every node of
the tree corresponds to the application of a ceafigc generalization op-
erator. Each generalization operator is performeal specific level of de-
tail (or scale). If a map is needed at a givenllefaletail the generaliza-
tion tree structure is used to get the right datthe right level of detalil.
The implementation of the tGAP structure maintaansalid topological
structure on all levels of detail by tracking whichdes, edges and faces
are visible on each level of detail. The structsi@es the node and face
data very efficiently. However there is a lot ofluedancy in the way the
edges are stored in the model (for details, seBd®e®). It turns out that in
the worst case®(€) edges (withe the number of edges in the largest scale
map; see Section 4.4) have to be stored in the t&AfRture (and in prac-
tice we observed up to a factor 15 of edges totbked; see Section 5).
This paper describes how this redundancy can bevednwithout loss of
functionality. The new data structure resolvedrggundancy for edges so
that every edge is stored only once. Saving stospgee also implies sav-
ing data transfer times as one of the main apjicaireas will be a vari-
able-scale server in a web-based environment.

A storage and transfer efficient data structurevioiable scale vector data 3

The classic tGAP structure is offering non-redurnidgeometric data
storage for arbitrary levels of detail. Technicatlye problem with the data
structure is that too much data storage is neetlealysis shows that this
is due to the high number of changing referencekardata structure caus-
ing new versions of edge representations to bedtaesulting in an un-
reasonable growth of edge data in the scale dimenBor 2D geographic
information the scale dimension is considered taH=ethird dimension
within the tGAP structure. A 3D spatial index ieddo efficiently retrieve
a spatial selection at a specific scale.

In this paper we give an overview of some desigeraatives we con-
sidered to solve the problem of the growing numiiferedundant edges
and present our final solution. The rest of theegpdp structured as fol-
lows: In section 2 we give an overview of previausrk that is done in
this area. In section 3 we describe the struchiewe wish to improve in
more detail and in section 4 we give a few of theraatives for improve-
ment. Experiments done on these alternatives andesulting structure
are described in 5. Finally in 6 we conclude wittliscussion and summa-
rize the most important contributions of this paged present a number of
open problems to be addressed for further impromsne

2 Previous works

Most research on the management of variable sed#sets is done on the
multi-scale approach where a fixed set of layerm@aged. This might
stem from the paper map production process whasevitry expensive to
produce products at different scales. In this digéta it could be possible
to manage vector data at arbitrary levels of ddtaild disseminate this
data via web services). Few solutions are knowrtHiar kind of variable
scale data access.

Buttenfield and Wolf (2007) have a pyramid struetgcalled MRVN)
that is able to represent a data set at a mulsigddes while maintaining
topology. To achieve this, all the topological neaé the original dataset
cannot be removed. If the scale range is very tégrésulting number of
nodes can still be very large making this a metiad works for a limited
scale range. Xinlin and Xinyana (2008) presentedZbom quad-tree is.
In the Zoom quad-tree all objects of the originatiaget are stored in nodes
of the tree dependent on the size of the object. imtially sparse tree is
filled with generalized versions of the originahferes. As described in the
paper it is not clear whether the structure cammai a polygonal parti-
tion on the different levels of detail. In the dngl GAP-tree data structure

4 Martijn Meijers, Peter van Oosterom and Wiuak

(Van Oosterom, 1995) a scale-less structure wagitles that could man-
age a polygonal partition. Disadvantage of thecstme is that full poly-
gons are stored at various levels of detail makiagvery redundant struc-
ture.

The first attempt at a fully topological hierardhistructure was done
by Vermeij et al. (2003). The structure worked Byeeding all tables of a
standard topological model with two extra attrilsui@ minimum and
maximum scale). Now a generalization algorithnmuis on the dataset. The
algorithm works by replacing nodes, edges and fag#s other nodes
edges and faces at a lower level of detail. Instéatleting the old nodes,
edges and faces their max-scale is set meaninghehabject is not needed
anymore from that scale. By retrieving all nodedges and faces that are
needed for a specific level of detail a complefgotogy at that level can
be reconstructed. The big disadvantage of thictstre is that it produces
a lot of redundant data. An ameliorated versioe ((BAP structure) was
therefore proposed by Van Oosterom (2005), for vkte first implemen-
tation results were described by Van Oosterom.€R28D6). This structure
is described in more detail in the next section.

3 Classic tGAP structure

This section first summarizes the classic tGAPcttme as it will be the

basis for the improved version described in the sextion. The datasets
that are currently supported within the tGAP stoethave to be modeled
as a two dimensional polygonal map, i.e. it is gifian of the plane in a

geometric sense, without gaps and overlaps. Thsigddystorage of the

data takes place in a database management sys@&MS)On an extended

topological, node-edge-face data structure. Theteedle definitions are

given in Figure 1.

Each polygon of the map is represented by a tojzdbéace (this is a
one-to-one relation). The level of detail (LoD) daa regarded as third di-
mension and represented by the concept of ‘impoetaifhe importance
of objects is based on their size and feature ifileesson. E.g. a large for-
est area can have lower importance than a smgllacga. A functional
spatial index on a 3D bounding box (bbox) is usedfficiently access the
2D spatial data extended by the third dimensioa:itfportance (or scale)
range for which a certain representation is valid.

A storage and transfer efficient data structurevioiable scale vector data 5

3.1 Filling the face table

As we want to reduce the LoD for display at smafleales, we have to
generalize our original data. A generalization psscreduces the number
of polygonal objects, based on the importance. difject that has the least
importance is removed first. Plain removal of tigeot is not allowed, be-
cause a gap would exist after this operation. Thezewe let the most
compatible neighbor take the space of the objebetoeemoved. Based on
the shared boundary length and the feature classpatibility this
neighbor is chosen. The merging operation createsaaobject. This new
object then has a new identity and is given theufeaclass of the most
compatible neighbor. The importance of this objectecomputed (and
several different options have been tested for. thig. taking the sum of
the importance of the two merged objects). Thiscgss continues until
only one object is left.

CREATE TABLE tgap_faces CREATE TABLE t gap_edges
face_id integer, edge_id integer
parent _face_id integer, imp_l ow nuneric
i mp_l ow nuneric, i mp_hi gh nuneric,
i mp_hi gh nureri c, start_node_id integer,
i mp_own nuneric, end_node_i d i nteger
feature_class_id integer, left _face_id integer
area nuneric, right _face_id integer,
bbox geonetry geonetry geonetry
(a) Face table (b) Edge table

CREATE TABLE t gap_nodes

node_i d integer,

i mp_l ow nuneric,

i mp_hi gh nuneric,

geonetry geonetry
)i

(c) Node table

Fig. 1. Table definitions for the classic tGAP structure.

During this merging process the importance rangelicobjects is also
created and stored. This range is intimately rdlatethe importance as-
signed to all faces present at the largest scdle. ifportance is stored
with all the faces as the ‘imp own’ attribute tlctgarly defines the order-
ing of the generalization process. The importaragge (stored with an

6 Martijn Meijers, Peter van Oosterom and Wi uak

‘imp_low’ and an ‘imp_high’ attribute for each fgcdefines the lifespan
of objects in the LoD dimension and allows selettd the right objects at
an arbitrary LoD (using an importance level foresébn, ‘imp_sel’).

The importance range for the objects is createfblasvs: The objects
used as starting point will be assigned an imp_\lalue of 0. The example
in figure 2(a) and table 1 shows that the imp_I@lue of all original faces
(1-6) is indeed 0. Then, in each generalizatiop,dtee lifespan of two ob-
jects will be ended and a new one will be credtedur example, face 1 is
the least important face, and is merged with itstncompatible neighbor
(face 5); a new object (face 7) is formed. Bothezhdbjects are assigned
the importance own value of the least important echj named
‘imp_remove’, as their importance high attributacg 1 has an imp own of
150, this is assigned to both face 1 and 5 as iigh_\Value). The new ob-
ject that is formed in the generalization step Wil assigned the sum of
the own importance of the two old objects and thmp ihigh as the
imp_low value. The resultant of this process i¢ tha sum of all own im-
portance of the original objects is equal to thpantance high value of the
last remaining object. This means that the surmydoirtance for all ob-
jects valid at any given scale (LoD) in the completap does not change.

(a) The map of the initial configuration, with imgel= 0 (note that the nodes, edges,
faces are labeled with their identity)

A storage and transfer efficient data structurevioiable scale vector data 7

IR

(b) 150 (c) 325 (d) 395 (e) 505 f) 610

Fig. 2. Example map with 6 polygonal regions. Subfigutgs~ (f) show the map
at the imp_sel value mentioned in their caption.

3.2 Filling the node and edge tables

When merging two faces, the life of the edges betwte two old faces is
ended by setting their imp_high value to the immaslue of the face that
is removed (imp_remove). The remaining edges are adjacent to the
newly created object, so also these edge versienteaminated (their im-
portance high value is set to imp_remove) and ngwlated versions for
those edges are created (with imp_remove as tin@iortance low value).
These updated versions get the same identity asehdfut with a different
left or right face pointer and a new importance Malue). In our example
edge 10 is removed in the first face merge stegrwihce 1 is merged to
face 5 (the imp_high value of edge 10 is set tg $66 table 3). Edge 11 is
an example of an edge that is changed due to @wegehof the neighbor-
ing face. This edge was adjacent to face 1, baftées the merge adjacent
to face 7. So, a new version of this edge is cteate
Furthermore, the nodes that are having only aiosiship with two

edges after the merge, are as well ended and tideit edges are
merged; see the node information from Table 2. W mersion for those
incident edges is created, with merged geometrgdas the geometry of
the two old edges. This is shown in our exampletlier edges 9 and 12
(forming a new edge 14) and the edges 3 and 6 {figrthe newly created
edge 15). In the classic tGAP structure the edgenggry is represented by
a Binary Line Generalization (BLG) tree. For ledies this is a directly
stored version. For non-leaf edges this is a Blgg-twith a new top and
references to the two BLG-trees of the child-ed@s.no redundancy in
the storage of geometry, but the result can benigata trace a lot of refer-
ences during usage of the structure. An alterndkieeefore is to create a
new (redundant) geometric representation of thegyeteedge (a non-BLG-
tree representation). For this new geometry thezevao options: 1. keep

8 Martijn Meijers, Peter van Oosterom and Wiuak

all original vertices or 2. keep half of the origirvertices (after applying
line simplification). Both solutions introduce (dowviled) geometric re-
dundancy, but will be easier to use.

face_id parent_face_id imp_low imp_high imp_owntéea class

1 7 0 150 150 corn
5 7 0 150 750 grass
6 8 0 325 325 grass
3 9 0 395 395 forest
2 10 0 505 505 lake
4 11 0 610 610 town
7 8 150 325 900 grass
8 9 325 395 1225 grass
9 10 395 505 1620 grass
10 11 505 610 2125 grass
11 -1 610 2735 2735 grass

Table 1. The tGAP face table for the sample data set, wiscgraphically de-

picted in Figure 2(a) (note there is a bbox andwaa value stored, but this is not
shown).

node _id imp_low imp_high

0 2735
2 0 150
3 0 395
4 0 505
5 0 610
6 0 150
7 0 395
8 0 325
9 0 325

Table 2. The tGAP node table. Note that each node hasra gebmetry, but this
is not shown.

A storage and transfer efficient data structurevioiable scale vector data 9

edge_id imp_low imp_high left face right face stadde end_node

1 0 325 -1 6 8 9
2 0 395 3 -1 7 1
3 0 150 3 5 2 7
4 0 150 3 1 1 3
4 150 325 3 7 1 3
4 325 395 3 8 1 3
5 0 395 3 2 3 4
6 0 150 1 3 2 4
7 0 150 1 2 4 3
7 150 325 7 2 4 3
7 325 395 8 2 4 3
8 0 395 4 3 5 5
8 395 505 4 9 5 5
8 505 610 4 10 5 5
9 0 150 5 -1 6 7
10 0 150 5 1 2 6
11 0 150 6 1 8 9
11 150 325 6 7 8 9
12 0 150 -1 1 6 8
13 0 150 -1 1 9 1
13 150 325 -1 7 9 1
14 150 325 7 3 7 4
14 325 395 8 3 7 4
15 150 325 7 -1 8 7
16 325 395 -1 8 7 1
17 395 505 9 -1 1 1
17 505 610 10 -1 1 1
17 610 2735 11 -1 1 1
18 395 505 9 2 4 4

Table 3. The classic tGAP edge table with the example carfdote: a. the re-
peated versions of edges, due to the left/rigldregfce changes, b. The geometry
of the edges is stored, but this is again not shown

10 Martijn Meijers, Peter van Oosterom andR&/iQuak

edge_id imp_low imp_high left face right face stadde end_node

1 0 325 -1 6 8 9
2 0 395 3 -1 7 1
3 0 150 3 5 2 7
4 0 395 3 1 1 3
5 0 395 3 2 3 4
6 0 150 1 3 2 4
7 0 395 1 2 4 3
8 0 610 4 3 5 5
9 0 150 5 -1 6 7
10 0 150 5 1 2 6
11 0 325 6 1 8 9
12 0 150 -1 1 6 8
13 0 325 -1 1 9 1
14 150 395 7 3 7 4
15 150 325 7 -1 8 7
16 325 395 -1 8 7 1
17 395 2735 9 -1 1 1
18 395 505 9 2 4 4

Table 4. The lean tGAP edge table with the example confeote the geome-
try/line is not displayed but present in the stuue}.

3.3 Using the structure dynamically

The structure is used dynamically by providing atsp extent (for the

view port) and an importance value (for the LoDheTimportance value
can be derived from a given extent: A smaller exteeans more detail to
show and finally a lower importance value for quegythe data structures
with (imagine a user zooming in, more detail carsthewn for all objects).

Contrary, if a larger extent needs to be shown,tdweuser zooming out, a
higher importance value needs to be used for $elptdss objects. The
mapping between importance and spatial extentrigietly done in such a
way that it honors the rule of ‘a fixed number djerts’ to be retrieved

and shown on the screen. For this mapping the Ratiwv could have

been applied, by which the best number of objemtsafcertain scale can
be calculated (cf. Topfer and Pillewizer, 1966).

Note that the topological data structures used gigee degrees of free-
dom for modeling what information to store and thllsw us to take more
different design decisions than when we would hased plain geometry
(e.g. simple feature polygons). It must be noted this paper focuses on

A storage and transfer efficient data structurevioiable scale vector data 11

saving storage space. For large data sets thisrajdees saving time as a
more compact storage structure requires less digkpto be read and less
communication between server and client (assunfiag the structure it-
self still supports the most important actions)e3é considerations are the
subject of the next section.

4 Design alternatives for a lean tGAP structure

During the design of a more data storage (andfegnsfficient version of
the tGAP structure a number of different alterrediwere explored, they
were labeled with the following symbolic names: Inpabox, use_tree. In
Van Oosterom (2005) it was already mentioned tbss$ kcolumns in the
table structure directly implies less storage (mrmom less to store), but
also indirectly implies less storage — if scalendes are reflected only in a
column that is removed then there is no need foeva row with the new
value. This was explained by showing how the tGAgeetable which has
four edge-to-edge references could be reducedzi lsy removing two
edge-to-edge references and only keeping two edfggences (edge_lIr
and edge_fl). In the example data sets this rabutteboth less columns
and less rows. In the implementation reported ian(\Dosterom et al.,
2006) all edge-to-edge references were removede\mrt in that case the
tGAP edge table for a realistic data set still kiédve up to 15 times more
rows than the original edge table (and the theonetirst case is even
O(€) with e the number of edges at the largest scale). Thismainly due
to the changing references to the left and rigbedaafter merging two
neighbor faces (and not so much due to mergingistieg edges into one
new edge). One of the approaches followed wastigglithe edge table
into two parts: one part with attributes that dd obanges in the tGAP
structure (e.g. geometry, and references to stattemd node, if stored)
and attributes that do change for different scedggirtance values (e.qg.
left and right face references). However, for tharming part of the edges
the number of rows is still the same factor higlaty the fixed part is not
repeated, saving some storage space. So the #infuigher reduce the re-
quired storage, but without loosing performancerduthe most relevant
operations. The most important operation is selgaind visualizing a part
of the data set at a certain scale. Another impbegeration is selecting
refinement differences between two scales (forvargipart of the map).
Further, in the future update operations shoulduggported (at the most
detailed level and then propagated upwards, bstittoutside the scope of
the current paper).

12 Martijn Meijers, Peter van Oosterom andR&/iQuak

The selection and visualization of a part of thgpmaa a certain scale,
called imp_sel, functions as follows: select atlefs and edges that overlap
the selection rectangle and that have their imp-itop_high range con-
taining imp_sel. Note that these are efficient ggefassuming proper 3D
spatial clustering and indexing) and this is a8l thteraction needed with
the database server. Then at the client side sopwogy processing is
done: for every face the relevant edges are selébtesed on the left/right
face references they contain) and rings are cre@ed if needed inner-
rings are properly included in the outer ring). Do¢he fact that the edges
are selected based on their bbox overlap, notdgk® needed to complete
the rings of faces partly included in the seardtamgle may be present.
This is solved by first clipping the selected edggainst the selection rec-
tangle (and also splitting the selection rectaragl¢he intersection points
and creating temporary edges). Together, the digolges and the tempo-
rary edges created from the selection rectanglesuaifecient for forming
closed loops, which together cover the whole seteerea. For sure every
ring contains at least a part of an original edgee left/right information
of such an edge provides a reference to the fatehvelan then be colored
according to its classification. This is the sejtiof the use of the tGAP
structure and it is clear that the left/right infation is needed (for classi-
fying and coloring the faces) despite the fact iha storage expensive;
the ‘row explosion of edges’. Now we are going tscdss our three alter-
natives, no_Ir, abox and use_tree, to make thetsteimore storage effi-
cient.

4.1 Alternative I: no_Ir

We started out with a very lean topology data $tmec no left/right refer-
ences (as these caused most of the storage ovirbebdedge geometry
and a point inside a face region ('spaghetti wiatballs’-approach); Ta-
bles: Nodes (id, location, imp_low, imp_high), Edgéd, geometry,
imp_low, imp_high), Faces (id, mbr, point_on_suefacimp_low,
imp_high). The rings are formed based on topologyc@ssing without
left/right information. There are three steps: reating rings, 2. assigning
island rings to their parent and 3. associatiothefright identifier with the
area (outer ring). Step 1: The procedure starts wiit arbitrary edge and
then starts forming rings by finding all edges dwsit with the end (node)
coordinates (using the geometry of edges), soglhigicident edges based
on angle and then takes the first edge left (famter-clockwise orienta-
tion), this process is repeated until the starieeédgeached again and the
ring is closed. This procedure is then repeateti thie next unused edge

A storage and transfer efficient data structurevioiable scale vector data 13

and a new ring is formed. The ring production teaes when all edges
are used twice (once in forward and once in bacHvdirection). Step 2:
some of the rings do not have the expected cowhdekwise orientation,
and these correspond to islands in the face. Thenpauter-ring can be
found by a point-in-polygon test (use arbitrarymdrom inner-ring and
finding the smallest outer ring that contains thasnt). Step 3: Now all
faces with holes are created and have to be assmmédentifier. This is
done again with a point-in-polygon test (the paiotv being the point on
surface from the Faces table). For both step 23ahé use of an R-tree (or
other type of spatial index) will speed up the pampolygon test, build-
ing the R-tree once takéd(nlogn) time and then the repeated searches

take O(logn) time.

Fig. 3. The ‘spaghetti with meatballs’ approach. The ested edges (overlapping
with the selection rectangle in dashed lines) arergwith the thickest lines. After

clipping, 3 rings are formed, but the two ringgta top of the selection rectangle
cannot be labeled with the correct face informati@nthe point on surface for
these faces is outside the formed ring.

This approach does work for having a complete éxdémarea partition
within the view port while visualizing. It does nwbrk well when clipping
the data: areas cannot be reconstructed any mafeuy having a com-
plete set of edges. An option is to clip the seleotdges again (as de-
scribed above). The result is that now areas camdsged covering the se-
lection rectangle. However, faces crossing the bdaonmight have their
point on surface outside the rectangle (and thezeloe area can not be

14 Martijn Meijers, Peter van Oosterom andR&/iQuak

identified. There might be some solution to go baxkhe database server
for each unidentified area, but this is both a tonal query and time ex-
pensive as it has to be repeated for every unitkuhtrea.

4.2 Alternative IlI: abox

In an attempt to solve the identification of thippkd areas, the adjacency
box (Van Oosterom and Vijlbrief, 1994), or abox &brort, instead of the
bbox of edges was proposed for selection. The abar edge is the union
of the bbox of the faces left and right of the edfee result is that more
edges are selected based on the abox, but fortlsese are enough to
completely reconstruct all faces in the selectetaregle. However, in or-
der to have the aboxes available in the edge thlel have to be main-
tained (stored). Due to merging of faces in the RGgtructure also the
aboxes have to be updated. Actually this is thexcthx the same increase
in rows as what would be obtained by maintaining lgft and right face
references. So, no real storage reduction, ratiepposite as the abox
will take more storage space that the left andtrigference. The advan-
tage of the abox solution is that it allows easgmonstruction of faces at
the client side resulting in full unclipped arebstheory the explicit stor-
age of aboxes might be avoided by introducing tiremview (which uses
a function to compute the abox). But again thisds-trivial without the
left and right references. Therefore we concludied this was also not the
ideal solution and continued investigating anotakeernative with fewer

drawbacks.
””” bbox E12 ©°°°°° bbox F1

abox E12 - = = bbox F2

DO T T ==

Fig. 4. Adjacency box (abox).

A storage and transfer efficient data structurevioiable scale vector data 15

4.3 Alternative lll: use_tree

Looking at edges that are changing due to chamgéeileft and right side
information (and not in the edge geometry); we aered merging the
rows related to the same edge in one row. Thidtsesuno change for the
geometry, start and end nodes, and id attributése imp_low and
imp_high attributes contain the union of all impgas of the edge (which
are per definition adjacent ranges). The next quess what to do with
the differences in left and right references? Stbeeleft/right reference
corresponding to the lowest imp range or to thédmg imp range? Take
for example edge 4 in Table 3 and 4: storing thbtriace reference corre-
sponding to the lowest imp range [0 - 150) woulg@lyra reference to face
1, and storing it related to the highest imp raj8#5 - 395) would result
in a reference to face 8. It was decided to stoeddft and right face refer-
ences related to the lowest imp-range, for reasiosuswill be explained
below when assigning the proper identity to theateé areas. Anyhow,
just storing only rows for edges that are reallywribecause these edges
are merged) safes a lot of storage (rows) as wiltXplained in section 4.4
(the number of rows is for sure always below ada@ as edges are
merged pair wise). The left/right information are tGAP face-tree can
then be exploited to properly identify the areasaatertain importance
level (scale). With this solution we have combibedh the requirement to
be storage efficient (as the factor 15 of recondshé edge table is solved),
while still having an efficient solution for the iarelevant operation.

16 Martijn Meijers, Peter van Oosterom andR&/iQuak

Fig. 5. Rewriting of face-id's with the use_tree variaBdges are retrieved, at
imp_sel = 330, based on their bounding box ands#élection rectangle (dashed).
After clipping, only the thickest lines are used forming rings. The most-left

ring is formed based on edge 4, 7 and temporargedtgmming from the selec-
tion rectangle. Both edges 4 and 7 do not poitii¢éocorrect neighboring face and
rewriting has to take place (face 1 is rewritteimgghe tGAP face tree as face 8).

The identification of areas in a given search mgla of a specified im-
portance level imp_sel proceeds as follows. All ed@re retrieved a.
based on a selection rectangle and b. having anramge that includes
imp_sel. The faces are also selected based on theseriteria. Then the
clipping is applied to the edges and rings areteteas described above
and inner-rings are again assigned to outer-riBgsing the creation of
rings the left/right information is used to findetlidentity of the face. As
the edges carry the left/right information of tlsvést imp-range (which
may be below the requested imp_sel) not all edgestty have a pointer
to the correct face (that is at the requested iglplesel). In many cases
however there will be at least one edge with theper (w.r.t. imp_sel)
left/right information and this is then indeed tidentity of the area. In
some cases this information is not present (1. vthisnedge is outside the
selection rectangle, 2. when an island is not yertged with its parent). In
these cases the referred face (and the corresgpadge) with the highest
imp_low level is used as start in the tGAP face-taed the tree is trav-
ersed upwards until the face identifier at the trighp level is found. The
final layout of data structure is (again) basedapology and has the fol-
lowing tables: Nodes (id, geometry, imp_low, immHh)i Edges (id, start
node, end node, left face, right face, geometry, ilow, imp_high), Faces

A storage and transfer efficient data structurevéoiable scale vector data 17

(id, parent face id, feature class, bounding box ilow, imp_high, imp
own); see Table 1, 2 and 4 for the sample datandeigure 2(a), the sam-
ple map, and Figure 6, a visual representatioh@t@AP face-tree.

The drawback of using the tGAP face-tree is thiat titee is not present
at the client side (after the two face and edgectiein queries). An effi-
cient solution is to send one third query to thevererequesting the ‘re-
writing’ of the face-id’s which correspond to a tlmv imp level and get
back face-id’s that correspond with imp_sel. Anieasolution is not to
draw these faces at all: the drawback is of cotiraewhite spots will oc-
cur on the map (most often near the boundarielsen$élection rectangle).

2, 0-505 (505)

Fig. 6. The tGAP face-tree, corresponding to the datafsEigure 2(a).

4.4 Theoretical numbers for faces and edges

In the previous section we sketched a more optspéaltion for storing
data in the edge table. Here, we continue our tigegsons by finding the
theoretical upper bounds after filling the datactures for both the classic
and the lean variant. These bounds are expressaghbers of edgese()

and faces(f) present in the original dataset.

Lemma 4.1. The number of total faces stored in the tGAP stmects, af-
ter the generalization process, equal to:

20f -1

t Numbers for faces here dotinclude the concept of a universal face

18 Martijn Meijers, Peter van Oosterom andR&/iQuak

Proof. The generalization process starts with original faces. Merging
can be executed until we have only one face Idfis Theans we can merge
u times, withu= f —1. Each time we merge two faces, we add 1 new

face tof. In total we addu times a face tof . The total number of faces
will thus beu + f , or, expressed differently:

20f -1

Lemma 4.2. The total number of edges in the classic tGAP #ire¢ that
is, filled with the original method (generating afitermediate edge ver-
sions), is at most:

¥ (e-)

Proof. Faces are merged ifi —1 steps. Faces that are neighbors are adja-

cent in, at least, one edge (due to the planar oniégrion). With each
merge step thus at least one edge will disappéder.worst case is that in
every generalization step all remaining edgeslvéltiuplicated due to new
left/right references. These observations leadetmina 4.2.

Corollary 4.3. The total number of edges in the classic tGAP #irec
that is, filled with the original method (generaimall intermediate edge
versions), can be quadratic:

0O(€)

Proof. Assume a configuration (similar to the one showfigure 7) with

one big face (described by one big edge) containiagy small islands
(small faces, each one described by one edge). ifhre summation of
Lemma 4.2 it is clear thatf =e and this results in a total of

e{e+1)/2=0(€%) edges.

O 0Ood
O 0Ood

Fig. 7. A worst case initial configuration.

Our new, lean approach performs significantly iéttehis respect:

A storage and transfer efficient data structurevioiable scale vector data 19

Lemma 4.4. The total number of edges stored in the tGAP atrecffilled
with the new ‘use_tree’ method, is dependent onntimaber of original
edges and faces and is at most:

2le—-f

Proof. All original edges will be present once in thepuit The merging

of edges is what brings new edge versions. Suptisedge merging is
performed with all start edges as input, as followgo edges will be

merged at a time, until 1 edge is left. The resultd this process is then
one large polyline with self-intersections. Theatatumber of edges in the
output will then be at most two times the originamber of edges minus 1
(cf. Lemma 4.1). However, in each generalizati@psto merge two faces,
at least one edge has to be removed, i.e. the nuaibedges to be re-
moved is the number of faces minus 1 (as thateisthount of merges that
will take place). Taking both steps into accouesults in a number of
edges that is equal to:

Qle-1)-(f - =2le-f

This is a worst case estimate, as in each mergamsdee than one edge
might be removed.

5 Experiment and results

To judge whether our theoretical investigationscdbsd above would
yield valid results in practice, we implementedtbgariants (classic and
lean) of filing the tGAP structures using Postdpe3 extended with
PostGIS (for the geometrical attributes) as DBMS. Foritiij the tGAP
structures in the DBMS with our generalization maare of merging
faces and for retrieving and visualizing the datefthe DBMS, we wrote
some scripts using the Pytlgerogramming language. Table 5 highlights
the number of faces and edges for the original, datgaamount of data af-
ter using the classic variant and for the leanardrof filling the structures.
To verify the lemmas from section 4.4, we startgdteating two artifi-
cial test data sets (1 and 2). It is clear thatrthember of faces follows
Lemma 4.1 in all cases, independently from whidim§ variant is used.
Further, it is also clear that our concerns witspeet to the duplication of

2 www.postgresgl.org
3 www.postgis.org
4 www.python.org

20 Martijn Meijers, Peter van Oosterom andiiQuak

edge rows are valid: To see whether the upper béonthe number of
edges could exist in practice, we created a datgese2) consisting of one
polygon containing 2500 islands polygons. Each gatywas described
with one line, resulting in 2501 faces and 2501esddn practice, this data
set can occur when an archipelago is mapped awdhich all islands are
merged to the surrounding ocean. The factor forcthssic variant of fill-
ing is an abominable result (on average each eslgduplicated 1251

times, that is indeed(€?)), especially compared to the lean version (in

which only the original edge versions are preseced

Besides artificial data sets we also used some siatacontaining real
world data. That the factors are higher for the Seand 6 compared to the
factors for 3 and 4, is explainable by the fact tha last two sets do not
contain any island polygons, while set 5 and 6 dlat@n some polygons
with a few hundred islands. Filling the structuneshe classic way leads
then to even more duplicated edge rows. Althoughtkieoretical upper
bounds are, by far, not met by these data set$atiers of the classic fill-
ing variant are still high (and we suspect thas thill even be worse for
larger data sets), while our new variant signiftbaperforms better.

Data set Original FactSAP faces Original Edges Classic Edges Lean
Edges (increase factor) (increase fac-
tor)

Setl 6 11 13 29 (2.2) 18 (1.4)

Set2 2501 5001 2501 3128751 (1251) 2501 (1.0)
Set3 525 1049 1984 11091 (5.6) 2975 (1.5)
Set4 5537 11073 16592 77585 (4.7) 26787 (1.6)
Set5 50238 100475 178815 2663338 (15) 264950 (1.5)
Set6 173187 346373 426917 3544232 (8.3) 63098 (1.

Table 5. Number of faces and edges for the different tesa dets. Numbers are
shown for the original data, the data after usimg ¢lassic variant of filling (i.e.
edge version duplication) and for the lean var{@mly each first edge version is
stored). Both data set 1 and 2 were created gatlfic The data sets 3 — 6 contain
real world data. Data set 3 and 4 both contain lzowr data. Set 5 contains ca-
dastral parcels and data set 6 contains topogralpteta.

A storage and transfer efficient data structurevioiable scale vector data 21

Fig. 8. Data set 3, visualized with different imp_sel \du

6 Conclusion and Discussion

With our design and implementation exercise, wenlethe following les-

sons: First, our ‘use_tree’ alternative perfornistabetter when looking at
the storage part, compared to our initial solutioot only in theory, but

certainly also in practice. Reducing storage is thet only achievement
here; The reduction in the number of edge rows véllvery beneficial for

the case when the tGAP structure will be used weh service environ-
ment and data is sent (progressively, using incnésh¢o a client. Second,
we designed a structure that now has a better tffidetween storage and
calculation-when-needed than before (much less idata be stored and
transferred, but with our lean alternative somesintés necessary to per-

22 Martijn Meijers, Peter van Oosterom andi/iQuak

form a lookup operation of the correct neighborfage). Third, we sup-

port — with less than twice the original dataseé st all intermediate scales

for visualization at an arbitrary scale.

Irrespective of these accomplishments, we alsazeedhat our main
contribution is currently based on one generaliratperation (the merg-
ing of objects) and based on the heuristics thesaion brings (geometry
is always removed and gradually becomes less)fi€lteof map generali-
zation however offers more operations, like linengification, col-
lapse/splitting of area objects, displacement gpification of groups of
objects, to name a few. Some of these operatigndebnition, introduce
new geometry (e.g. splitting of objects will inttagt new boundaries). An
optimal solution for a data structure, in termsdafa storage, has thus to
take into account the heuristics of these genetidiz operations. There-
fore our investigations will continue and topics weuld like to focus on
in the (near) future include:

« Topologically correct line simplification (takingtio account the neigh-
borhood, while performing line simplification andepenting (self)-
intersections that cause a change in topology lairto what is descri-
bed in Saalfeld (1999) and Bertolotto and Zhou @@R0Creating and
using data structures for variable scale acceiiggeometry (e.g. fin-
ding an alternative algorithm for filling the BLG®ek structure, currently
Douglas-Peucker is used) is another topic thatrdesettention.

« More operations for the (currently simplified) gesdezation process; As
a first step, we would like to, instead of mergiatjpw splitting, pro-
bably based on a triangulation (cf. Bader and Weit@97), and expe-
riment what happens when using such a split opeveatb weights for
all neighbors, until no further splitting is podsib

* Inclusion of more and different semantics in ortdetake better decisi-
ons which generalization operator to choose (inlstéahe current ‘one
fits all' approach); e.g. apply a different geneation operator for
infrastructure type of objects than for other ter@bjects.

« Making the structure dynamic: perform updates atléingest scale (and
propagate these upwards in the tGAP structure).

References

Bader, M. and Weibel, R. (1997). Detecting and Ra&sg Size and Proximity
Conflicts in the Generalization of Polygonal MajpsProceedings of the 18th
International Cartographic Conference., pages 15252, Stockholm.

A storage and transfer efficient data structurevioiable scale vector data 23

Bertolotto, M. and Zhou, M. (2007). Efficient andnsistent line simplification
for web mapping. International Journal of Web Eegiting and Technology,
3(2):139-156.

Bobzien, M., Burghardt, D., Petzold, I., Neun, nd Weibel, R. (2006). Multi-
Representation Databases with Explicitly Modelledrd-Resolution, Inter-
Resolution and Update Relations. In Proceeding®-A&rto 2006, Vancou-
ver.

Buttenfield, B. and Wolf, E. (2007). “The road att river should cross at the
bridge” problem: Establishing internal and relattepology in an MRDB. In
Proceedings of the 10th ICA Workshop on Generatinaand Multiple Rep-
resentation 2-3 August 2007, Moscow, Russia.

Cecconi, A. and Galanda, M. (2002). Adaptive ZoaminWeb Cartography. In
Computer Graphics Forum, volume 21, pages 787-Bl@@kwell Synergy.
Ellsiepen, M. (2007). Partial regeneralization ésdrequirements on data struc-
ture and generalization functions. In Kremers, étjtor, Proceedings 2nd
ISGI 2007: International CODATA symposium on Getieedion of Informa-
tion, Lecture Notes in Information Sciences, pad@s — 84, Germany.

CODATA.

Saalfeld, A. (1999). Topologically Consistent LiSenplification with the Doug-
las-Peucker Algorithm. Cartography and Geographiorination Science,
26(1):7-18.

Stoter, J., Morales, J., Lemmens, R., Meijers, Wan Oosterom, P., Quak, W.,
Uitermark, H., and van den Brink, L. (2008). A datadel for multi-scale to-
pographical data. In Headway in Spatial Data Hawgdll3th International
Symposium on Spatial Data Handling, pages 233-254.

Topfer, F. and Pillewizer, W. (1966). The principlef selection, a means of car-
tographic generalization. Cartographic Journal):2Q-16.

Van Oosterom, P. (1995). The gap-tree, an apprtzatdn-the-fly” map generali-
zation of an area partitioning. In Muller, J., Lagge, J., andWeibel, R., edi-
tors, GIS and Generalization, Methodology and Rrecpage 120-132. Tay-
lor & Francis.

Van Oosterom, P. (2005). Scaleless topological datzctures suitable for pro-
gressive transfer: the gap-face tree and gap-eatgstf In Proceedings Auto-
Carto 2005, Las Vegas, Nevada. Cartography and i@pbig Information
Society (CaGlIS).

Van Oosterom, P., de Vries, M., and Meijers, M.0@0 Vario-scale data server
in a web service context. In Ruas, A. and Mackanésseditors, Proceedings
of the ICA Commission on Map Generalisation and thdlé Representation,
pages 1-14, Paris, France. ICA Commission on Magetdisation and Mul-
tiple Representation.

Van Oosterom, P. and Vijlbrief, T. (1994). Integngt complex spatial analysis
functions in an extensible gis. In Proceedingshef éth International Sympo-
sium on Spatial Data Handling, pages 277—-296, Edgth Scotland.

Vermeij, M., Van Oosterom, P., Quak, W., and TifgsE. (2003). Storing and us-
ing scale-less topological data efficiently in ewt-server dbms environment.
In 7th International Conference on GeoComputat8mythampton.

24 Martijn Meijers, Peter van Oosterom andiiQuak

Xinlin, Q. and Xinyana, Z. (2008). Multi-represetitgéa geographic data organiza-
tion method dedicated for vector-based webgis.raté&edings of the XXXVI
congress of ISPRS, volume Part B4 ommision IV, pa&&f5—819.

