
A storage and transfer efficient data structure for 
variable scale vector data 

Martijn Meijers, Peter van Oosterom and Wilko Quak 

Delft University of Technology 
OTB Research Institute for Housing, Urban and Mobility Studies 
{b.m.meijers, p.j.m.van.oosterom, c.w.quak}@tudelft.nl 

Abstract 

This paper deals with efficient data handling of variable scale vector data. 
Instead of pre-building a collection of data sets on different scales, we cre-
ate an index structure on the base data set (largest scale data) that enables 
us to extract a map at exactly the right scale the moment we need it. We 
present both the classic version of the tGAP (topological Generalized Area 
Partitioning) data structure for storing our variable scale map, as well as an 
ameliorated version, both based on topological concepts. We prove that the 
classic structure needs in a worst case scenario O(e2) edges (with e the 
number of edges at largest scale). In practice we observed up to a factor 15 
more edges in the variable scale data structure. The tGAP structure has 
been optimized to reduce geometric redundancy, but the explosion of addi-
tional edges is due to the changing topological references. Our main 
achievement finds its roots in the reduction of the number of edge rows to 
be stored for the ‘lean’ version (by removing the topological referential re-
dundancy of the classic tGAP), which is beneficial both for storage and 
transfer. We show that storage space for the data set, plus the index, is less 
than twice the size of the original data set. The ‘lean’ tGAP, as the classic 
tGAP, offers true variable scale access to the data and has also improved 
performance, mainly due to less data communication between server and 
client. 



2      Martijn Meijers, Peter van Oosterom and Wilko Quak 

1 Introduction 

There is a growing tendency to focus data management of spatial datasets 
on the highest level of detail and manage the other levels of detail as data 
that is automatically derived from this base data set (e.g. Bobzien et al., 
2006; Ellsiepen, 2007; Stoter et al., 2008). 

Basically there are two methods of managing a data set on different lev-
els of detail (cf. Cecconi and Galanda, 2002): The multi-scale approach 
and the variable scale approach. The multi-scale approach works by creat-
ing several smaller scale versions of the map. Every time a map is needed 
on a specific scale the most appropriate scale from the pre-defined collec-
tion is chosen and displayed. Instead of pre-building a collection of maps 
on different scales the variable scale approach creates an index structure on 
the base map that enables you to extract a map at exactly the right scale the 
moment you need it. This means that when you want a map on a specific 
scale for a specific region it is constructed for you on the fly. Advantages 
of the variable-scale approach are that only one dataset needs to be man-
aged and that data can be displayed at any scale. 

This paper proposes a new data structure for the management of a vari-
able-scale map product and is an improvement on the tGAP data structure 
as described in Van Oosterom, 2005. The idea of the tGAP data structure 
is to run automatic map generalization on the base data set and instead of 
storing the result of the generalization on different scales the whole proc-
ess of the generalization is stored in a tree structure where every node of 
the tree corresponds to the application of a cartographic generalization op-
erator. Each generalization operator is performed at a specific level of de-
tail (or scale). If a map is needed at a given level of detail the generaliza-
tion tree structure is used to get the right data at the right level of detail. 
The implementation of the tGAP structure maintains a valid topological 
structure on all levels of detail by tracking which nodes, edges and faces 
are visible on each level of detail. The structure stores the node and face 
data very efficiently. However there is a lot of redundancy in the way the 
edges are stored in the model (for details, see Section 3). It turns out that in 
the worst cases O(e2) edges (with e the number of edges in the largest scale 
map; see Section 4.4) have to be stored in the tGAP structure (and in prac-
tice we observed up to a factor 15 of edges to be stored; see Section 5). 
This paper describes how this redundancy can be removed without loss of 
functionality. The new data structure resolved the redundancy for edges so 
that every edge is stored only once. Saving storage space also implies sav-
ing data transfer times as one of the main application areas will be a vari-
able-scale server in a web-based environment. 



A storage and transfer efficient data structure for variable scale vector data      3 

The classic tGAP structure is offering non-redundant geometric data 
storage for arbitrary levels of detail. Technically, the problem with the data 
structure is that too much data storage is needed. Analysis shows that this 
is due to the high number of changing references in the data structure caus-
ing new versions of edge representations to be stored, resulting in an un-
reasonable growth of edge data in the scale dimension. For 2D geographic 
information the scale dimension is considered to be the third dimension 
within the tGAP structure. A 3D spatial index is used to efficiently retrieve 
a spatial selection at a specific scale. 

In this paper we give an overview of some design alternatives we con-
sidered to solve the problem of the growing number of redundant edges 
and present our final solution. The rest of the paper is structured as fol-
lows: In section 2 we give an overview of previous work that is done in 
this area. In section 3 we describe the structure that we wish to improve in 
more detail and in section 4 we give a few of the alternatives for improve-
ment. Experiments done on these alternatives and our resulting structure 
are described in 5. Finally in 6 we conclude with a discussion and summa-
rize the most important contributions of this paper and present a number of 
open problems to be addressed for further improvements. 

2 Previous works 

Most research on the management of variable scale datasets is done on the 
multi-scale approach where a fixed set of layers is managed. This might 
stem from the paper map production process where it is very expensive to 
produce products at different scales. In this digital era it could be possible 
to manage vector data at arbitrary levels of detail (and disseminate this 
data via web services). Few solutions are known for this kind of variable 
scale data access. 

Buttenfield and Wolf (2007) have a pyramid structure (called MRVN) 
that is able to represent a data set at a multiple scales while maintaining 
topology. To achieve this, all the topological nodes of the original dataset 
cannot be removed. If the scale range is very big the resulting number of 
nodes can still be very large making this a method that works for a limited 
scale range. Xinlin and Xinyana (2008) presented the Zoom quad-tree is. 
In the Zoom quad-tree all objects of the original dataset are stored in nodes 
of the tree dependent on the size of the object. The initially sparse tree is 
filled with generalized versions of the original features. As described in the 
paper it is not clear whether the structure can maintain a polygonal parti-
tion on the different levels of detail. In the original GAP-tree data structure 



4      Martijn Meijers, Peter van Oosterom and Wilko Quak 

(Van Oosterom, 1995) a scale-less structure was described that could man-
age a polygonal partition. Disadvantage of the structure is that full poly-
gons are stored at various levels of detail making it a very redundant struc-
ture. 

The first attempt at a fully topological hierarchical structure was done 
by Vermeij et al. (2003). The structure worked by extending all tables of a 
standard topological model with two extra attributes (a minimum and 
maximum scale). Now a generalization algorithm is run on the dataset. The 
algorithm works by replacing nodes, edges and faces with other nodes 
edges and faces at a lower level of detail. Instead of deleting the old nodes, 
edges and faces their max-scale is set meaning that the object is not needed 
anymore from that scale. By retrieving all nodes, edges and faces that are 
needed for a specific level of detail a complete topology at that level can 
be reconstructed. The big disadvantage of this structure is that it produces 
a lot of redundant data. An ameliorated version (the tGAP structure) was 
therefore proposed by Van Oosterom (2005), for which the first implemen-
tation results were described by Van Oosterom et al. (2006). This structure 
is described in more detail in the next section. 

3 Classic tGAP structure 

This section first summarizes the classic tGAP structure as it will be the 
basis for the improved version described in the next section. The datasets 
that are currently supported within the tGAP structure have to be modeled 
as a two dimensional polygonal map, i.e. it is a partition of the plane in a 
geometric sense, without gaps and overlaps. The physical storage of the 
data takes place in a database management system (DBMS) in an extended 
topological, node-edge-face data structure. The exact table definitions are 
given in Figure 1. 

Each polygon of the map is represented by a topological face (this is a 
one-to-one relation). The level of detail (LoD) can be regarded as third di-
mension and represented by the concept of ‘importance’. The importance 
of objects is based on their size and feature classification. E.g. a large for-
est area can have lower importance than a small city area. A functional 
spatial index on a 3D bounding box (bbox) is used to efficiently access the 
2D spatial data extended by the third dimension: the importance (or scale) 
range for which a certain representation is valid. 



A storage and transfer efficient data structure for variable scale vector data      5 

3.1 Filling the face table 

As we want to reduce the LoD for display at smaller scales, we have to 
generalize our original data. A generalization process reduces the number 
of polygonal objects, based on the importance. The object that has the least 
importance is removed first. Plain removal of the object is not allowed, be-
cause a gap would exist after this operation. Therefore we let the most 
compatible neighbor take the space of the object to be removed. Based on 
the shared boundary length and the feature class compatibility this 
neighbor is chosen. The merging operation creates a new object. This new 
object then has a new identity and is given the feature class of the most 
compatible neighbor. The importance of this object is recomputed (and 
several different options have been tested for this: e.g. taking the sum of 
the importance of the two merged objects). This process continues until 
only one object is left. 

 
CREATE TABLE tgap_faces 

( 
face_id integer, 

parent_face_id integer, 
imp_low numeric, 
imp_high numeric, 
imp_own numeric, 

feature_class_id integer, 
area numeric, 
bbox geometry 

); 

(a) Face table 

CREATE TABLE tgap_edges  
( 

edge_id integer, 
imp_low numeric, 
imp_high numeric, 

start_node_id integer, 
end_node_id integer, 
left_face_id integer, 
right_face_id integer, 

geometry geometry 
); 

(b) Edge table 

 
CREATE TABLE tgap_nodes  

( 
node_id integer, 
imp_low numeric, 
imp_high numeric, 
geometry geometry 

); 

(c) Node table 

Fig. 1. Table definitions for the classic tGAP structure. 

During this merging process the importance range for all objects is also 
created and stored. This range is intimately related to the importance as-
signed to all faces present at the largest scale. The importance is stored 
with all the faces as the ‘imp own’ attribute that clearly defines the order-
ing of the generalization process. The importance range (stored with an 



6      Martijn Meijers, Peter van Oosterom and Wilko Quak 

‘imp_low’ and an ‘imp_high’ attribute for each face) defines the lifespan 
of objects in the LoD dimension and allows selection of the right objects at 
an arbitrary LoD (using an importance level for selection, ‘imp_sel’). 

The importance range for the objects is created as follows: The objects 
used as starting point will be assigned an imp_low value of 0. The example 
in figure 2(a) and table 1 shows that the imp_low value of all original faces 
(1-6) is indeed 0. Then, in each generalization step, the lifespan of two ob-
jects will be ended and a new one will be created. In our example, face 1 is 
the least important face, and is merged with its most compatible neighbor 
(face 5); a new object (face 7) is formed. Both ended objects are assigned 
the importance own value of the least important object, named 
‘imp_remove’, as their importance high attribute (face 1 has an imp own of 
150, this is assigned to both face 1 and 5 as imp_high value). The new ob-
ject that is formed in the generalization step will be assigned the sum of 
the own importance of the two old objects and the imp_high as the 
imp_low value. The resultant of this process is that the sum of all own im-
portance of the original objects is equal to the importance high value of the 
last remaining object. This means that the sum of importance for all ob-
jects valid at any given scale (LoD) in the complete map does not change. 
 

 
(a) The map of the initial configuration, with imp_sel = 0 (note that the nodes, edges, and 

faces are labeled with their identity) 



A storage and transfer efficient data structure for variable scale vector data      7 

(b) 150 (c) 325 (d) 395 (e) 505 (f) 610 

Fig. 2. Example map with 6 polygonal regions. Subfigures (b) – (f) show the map 
at the imp_sel value mentioned in their caption. 

3.2 Filling the node and edge tables 

When merging two faces, the life of the edges between the two old faces is 
ended by setting their imp_high value to the imp own value of the face that 
is removed (imp_remove). The remaining edges are now adjacent to the 
newly created object, so also these edge versions are terminated (their im-
portance high value is set to imp_remove) and new, updated versions for 
those edges are created (with imp_remove as their importance low value). 
These updated versions get the same identity as before, but with a different 
left or right face pointer and a new importance low value). In our example 
edge 10 is removed in the first face merge step, when face 1 is merged to 
face 5 (the imp_high value of edge 10 is set to 150, see table 3). Edge 11 is 
an example of an edge that is changed due to the change of the neighbor-
ing face. This edge was adjacent to face 1, but is after the merge adjacent 
to face 7. So, a new version of this edge is created. 

Furthermore, the nodes that are having only a relationship with two 
edges after the merge, are as well ended and the incident edges are 
merged; see the node information from Table 2. A new version for those 
incident edges is created, with merged geometry based on the geometry of 
the two old edges. This is shown in our example for the edges 9 and 12 
(forming a new edge 14) and the edges 3 and 6 (forming the newly created 
edge 15). In the classic tGAP structure the edge geometry is represented by 
a Binary Line Generalization (BLG) tree. For leaf edges this is a directly 
stored version. For non-leaf edges this is a BLG-tree with a new top and 
references to the two BLG-trees of the child-edges. So no redundancy in 
the storage of geometry, but the result can be having to trace a lot of refer-
ences during usage of the structure. An alternative therefore is to create a 
new (redundant) geometric representation of the merged edge (a non-BLG-
tree representation). For this new geometry there are two options: 1. keep 



8      Martijn Meijers, Peter van Oosterom and Wilko Quak 

all original vertices or 2. keep half of the original vertices (after applying 
line simplification). Both solutions introduce (controlled) geometric re-
dundancy, but will be easier to use. 

 
face_id parent_face_id imp_low imp_high imp_own feature_class 
1 7 0 150 150 corn 
5 7 0 150 750 grass 
6 8 0 325 325 grass 
3 9 0 395 395 forest 
2 10 0 505 505 lake 
4 11 0 610 610 town 
7 8 150 325 900 grass 
8 9 325 395 1225 grass 
9 10 395 505 1620 grass 
10 11 505 610 2125 grass 
11 -1 610 2735 2735 grass 

Table 1. The tGAP face table for the sample data set, which is graphically de-
picted in Figure 2(a) (note there is a bbox and an area value stored, but this is not 
shown). 

 
node_id imp_low imp_high 
1 0 2735 
2 0 150 
3 0 395 
4 0 505 
5 0 610 
6 0 150 
7 0 395 
8 0 325 
9 0 325 

Table 2. The tGAP node table. Note that each node has a point geometry, but this 
is not shown. 



A storage and transfer efficient data structure for variable scale vector data      9 

 
edge_id imp_low imp_high left_face right_face start_node end_node 
1 0 325 -1 6 8 9 
2 0 395 3 -1 7 1 
3 0 150 3 5 2 7 
4 0 150 3 1 1 3 
4 150 325 3 7 1 3 
4 325 395 3 8 1 3 
5 0 395 3 2 3 4 
6 0 150 1 3 2 4 
7 0 150 1 2 4 3 
7 150 325 7 2 4 3 
7 325 395 8 2 4 3 
8 0 395 4 3 5 5 
8 395 505 4 9 5 5 
8 505 610 4 10 5 5 
9 0 150 5 -1 6 7 
10 0 150 5 1 2 6 
11 0 150 6 1 8 9 
11 150 325 6 7 8 9 
12 0 150 -1 1 6 8 
13 0 150 -1 1 9 1 
13 150 325 -1 7 9 1 
14 150 325 7 3 7 4 
14 325 395 8 3 7 4 
15 150 325 7 -1 8 7 
16 325 395 -1 8 7 1 
17 395 505 9 -1 1 1 
17 505 610 10 -1 1 1 
17 610 2735 11 -1 1 1 
18 395 505 9 2 4 4 

Table 3. The classic tGAP edge table with the example content (Note: a. the re-
peated versions of edges, due to the left/right reference changes, b. The geometry 
of the edges is stored, but this is again not shown). 



10      Martijn Meijers, Peter van Oosterom and Wilko Quak 

 
edge_id imp_low imp_high left_face right_face start_node end_node 
1 0 325 -1 6 8 9 
2 0 395 3 -1 7 1 
3 0 150 3 5 2 7 
4 0 395 3 1 1 3 
5 0 395 3 2 3 4 
6 0 150 1 3 2 4 
7 0 395 1 2 4 3 
8 0 610 4 3 5 5 
9 0 150 5 -1 6 7 
10 0 150 5 1 2 6 
11 0 325 6 1 8 9 
12 0 150 -1 1 6 8 
13 0 325 -1 1 9 1 
14 150 395 7 3 7 4 
15 150 325 7 -1 8 7 
16 325 395 -1 8 7 1 
17 395 2735 9 -1 1 1 
18 395 505 9 2 4 4 

Table 4. The lean tGAP edge table with the example content (note the geome-
try/line is not displayed but present in the structure). 

3.3 Using the structure dynamically 

The structure is used dynamically by providing a spatial extent (for the 
view port) and an importance value (for the LoD). The importance value 
can be derived from a given extent: A smaller extent means more detail to 
show and finally a lower importance value for querying the data structures 
with (imagine a user zooming in, more detail can be shown for all objects). 
Contrary, if a larger extent needs to be shown, due to a user zooming out, a 
higher importance value needs to be used for selecting less objects. The 
mapping between importance and spatial extent is currently done in such a 
way that it honors the rule of ‘a fixed number of objects’ to be retrieved 
and shown on the screen. For this mapping the Radical law could have 
been applied, by which the best number of objects for a certain scale can 
be calculated (cf. Töpfer and Pillewizer, 1966). 

Note that the topological data structures used give more degrees of free-
dom for modeling what information to store and thus allow us to take more 
different design decisions than when we would have used plain geometry 
(e.g. simple feature polygons). It must be noted that this paper focuses on 



A storage and transfer efficient data structure for variable scale vector data      11 

saving storage space. For large data sets this also implies saving time as a 
more compact storage structure requires less disk pages to be read and less 
communication between server and client (assuming that the structure it-
self still supports the most important actions). These considerations are the 
subject of the next section. 

4 Design alternatives for a lean tGAP structure 

During the design of a more data storage (and transfer) efficient version of 
the tGAP structure a number of different alternatives were explored, they 
were labeled with the following symbolic names: no_lr, abox, use_tree. In 
Van Oosterom (2005) it was already mentioned that less columns in the 
table structure directly implies less storage (a column less to store), but 
also indirectly implies less storage – if scale changes are reflected only in a 
column that is removed then there is no need for a new row with the new 
value. This was explained by showing how the tGAP edge table which has 
four edge-to-edge references could be reduced in size by removing two 
edge-to-edge references and only keeping two edge references (edge_lr 
and edge_fl). In the example data sets this resulted in both less columns 
and less rows. In the implementation reported in (Van Oosterom et al., 
2006) all edge-to-edge references were removed, but even in that case the 
tGAP edge table for a realistic data set still did have up to 15 times more 
rows than the original edge table (and the theoretic worst case is even 
O(e2) with e the number of edges at the largest scale). This was mainly due 
to the changing references to the left and right faces after merging two 
neighbor faces (and not so much due to merging to existing edges into one 
new edge). One of the approaches followed was splitting the edge table 
into two parts: one part with attributes that do not changes in the tGAP 
structure (e.g. geometry, and references to start and end node, if stored) 
and attributes that do change for different scales/importance values (e.g. 
left and right face references). However, for the changing part of the edges 
the number of rows is still the same factor higher, only the fixed part is not 
repeated, saving some storage space. So the aim is to further reduce the re-
quired storage, but without loosing performance during the most relevant 
operations. The most important operation is selecting and visualizing a part 
of the data set at a certain scale. Another important operation is selecting 
refinement differences between two scales (for a given part of the map). 
Further, in the future update operations should be supported (at the most 
detailed level and then propagated upwards, but this is outside the scope of 
the current paper). 



12      Martijn Meijers, Peter van Oosterom and Wilko Quak 

The selection and visualization of a part of the map at a certain scale, 
called imp_sel, functions as follows: select all faces and edges that overlap 
the selection rectangle and that have their imp_low-imp_high range con-
taining imp_sel. Note that these are efficient queries (assuming proper 3D 
spatial clustering and indexing) and this is all the interaction needed with 
the database server. Then at the client side some topology processing is 
done: for every face the relevant edges are selected (based on the left/right 
face references they contain) and rings are created (and if needed inner-
rings are properly included in the outer ring). Due to the fact that the edges 
are selected based on their bbox overlap, not all edges needed to complete 
the rings of faces partly included in the search rectangle may be present. 
This is solved by first clipping the selected edges against the selection rec-
tangle (and also splitting the selection rectangle at the intersection points 
and creating temporary edges). Together, the clipped edges and the tempo-
rary edges created from the selection rectangle are sufficient for forming 
closed loops, which together cover the whole selected area. For sure every 
ring contains at least a part of an original edge. The left/right information 
of such an edge provides a reference to the face which can then be colored 
according to its classification. This is the setting of the use of the tGAP 
structure and it is clear that the left/right information is needed (for classi-
fying and coloring the faces) despite the fact that it is storage expensive; 
the ‘row explosion of edges’. Now we are going to discuss our three alter-
natives, no_lr, abox and use_tree, to make the structure more storage effi-
cient. 

4.1 Alternative I: no_lr 

We started out with a very lean topology data structure: no left/right refer-
ences (as these caused most of the storage overhead), only edge geometry 
and a point inside a face region (’spaghetti with meatballs’-approach); Ta-
bles: Nodes (id, location, imp_low, imp_high), Edges (id, geometry, 
imp_low, imp_high), Faces (id, mbr, point_on_surface, imp_low, 
imp_high). The rings are formed based on topology processing without 
left/right information. There are three steps: 1. creating rings, 2. assigning 
island rings to their parent and 3. association of the right identifier with the 
area (outer ring). Step 1: The procedure starts with an arbitrary edge and 
then starts forming rings by finding all edges incident with the end (node) 
coordinates (using the geometry of edges), sorting all incident edges based 
on angle and then takes the first edge left (for counter-clockwise orienta-
tion), this process is repeated until the start edge is reached again and the 
ring is closed. This procedure is then repeated with the next unused edge 



A storage and transfer efficient data structure for variable scale vector data      13 

and a new ring is formed. The ring production terminates when all edges 
are used twice (once in forward and once in backward direction). Step 2: 
some of the rings do not have the expected counter-clockwise orientation, 
and these correspond to islands in the face. The parent outer-ring can be 
found by a point-in-polygon test (use arbitrary point from inner-ring and 
finding the smallest outer ring that contains this point). Step 3: Now all 
faces with holes are created and have to be assigned an identifier. This is 
done again with a point-in-polygon test (the point now being the point on 
surface from the Faces table). For both step 2 and 3 the use of an R-tree (or 
other type of spatial index) will speed up the point-in-polygon test, build-
ing the R-tree once takes )log( nnO  time and then the repeated searches 

take )(lognO  time. 

 
Fig. 3. The ‘spaghetti with meatballs’ approach. The retrieved edges (overlapping 
with the selection rectangle in dashed lines) are given with the thickest lines. After 
clipping, 3 rings are formed, but the two rings at the top of the selection rectangle 
cannot be labeled with the correct face information as the point on surface for 
these faces is outside the formed ring. 

This approach does work for having a complete extent of area partition 
within the view port while visualizing. It does not work well when clipping 
the data: areas cannot be reconstructed any more, without having a com-
plete set of edges. An option is to clip the selected edges again (as de-
scribed above). The result is that now areas can be created covering the se-
lection rectangle. However, faces crossing the boundary might have their 
point on surface outside the rectangle (and therefore the area can not be 



14      Martijn Meijers, Peter van Oosterom and Wilko Quak 

identified. There might be some solution to go back to the database server 
for each unidentified area, but this is both a non-trivial query and time ex-
pensive as it has to be repeated for every unidentified area. 

4.2 Alternative II: abox 

In an attempt to solve the identification of the clipped areas, the adjacency 
box (Van Oosterom and Vijlbrief, 1994), or abox for short, instead of the 
bbox of edges was proposed for selection. The abox of an edge is the union 
of the bbox of the faces left and right of the edge. The result is that more 
edges are selected based on the abox, but for sure these are enough to 
completely reconstruct all faces in the selected rectangle. However, in or-
der to have the aboxes available in the edge table they have to be main-
tained (stored). Due to merging of faces in the tGAP structure also the 
aboxes have to be updated. Actually this is then exactly the same increase 
in rows as what would be obtained by maintaining the left and right face 
references. So, no real storage reduction, rather the opposite as the abox 
will take more storage space that the left and right reference. The advan-
tage of the abox solution is that it allows easier reconstruction of faces at 
the client side resulting in full unclipped areas. In theory the explicit stor-
age of aboxes might be avoided by introducing them in a view (which uses 
a function to compute the abox). But again this is non-trivial without the 
left and right references. Therefore we concluded that this was also not the 
ideal solution and continued investigating another alternative with fewer 
drawbacks. 

 

Fig. 4. Adjacency box (abox). 



A storage and transfer efficient data structure for variable scale vector data      15 

4.3 Alternative III: use_tree 

Looking at edges that are changing due to changes in the left and right side 
information (and not in the edge geometry); we considered merging the 
rows related to the same edge in one row. This results in no change for the 
geometry, start and end nodes, and id attributes. The imp_low and 
imp_high attributes contain the union of all imp ranges of the edge (which 
are per definition adjacent ranges). The next question is what to do with 
the differences in left and right references? Store the left/right reference 
corresponding to the lowest imp range or to the highest imp range? Take 
for example edge 4 in Table 3 and 4: storing the right face reference corre-
sponding to the lowest imp range [0 - 150) would imply a reference to face 
1, and storing it related to the highest imp range [325 - 395) would result 
in a reference to face 8. It was decided to store the left and right face refer-
ences related to the lowest imp-range, for reasons that will be explained 
below when assigning the proper identity to the created areas. Anyhow, 
just storing only rows for edges that are really new (because these edges 
are merged) safes a lot of storage (rows) as will be explained in section 4.4 
(the number of rows is for sure always below a factor 2 as edges are 
merged pair wise). The left/right information and the tGAP face-tree can 
then be exploited to properly identify the areas at a certain importance 
level (scale). With this solution we have combined both the requirement to 
be storage efficient (as the factor 15 of records in the edge table is solved), 
while still having an efficient solution for the most relevant operation. 



16      Martijn Meijers, Peter van Oosterom and Wilko Quak 

 

 

Fig. 5. Rewriting of face-id’s with the use_tree variant. Edges are retrieved, at 
imp_sel = 330, based on their bounding box and the selection rectangle (dashed). 
After clipping, only the thickest lines are used for forming rings. The most-left 
ring is formed based on edge 4, 7 and temporary edges stemming from the selec-
tion rectangle. Both edges 4 and 7 do not point to the correct neighboring face and 
rewriting has to take place (face 1 is rewritten using the tGAP face tree as face 8). 

The identification of areas in a given search rectangle of a specified im-
portance level imp_sel proceeds as follows. All edges are retrieved a. 
based on a selection rectangle and b. having an imp range that includes 
imp_sel. The faces are also selected based on these two criteria. Then the 
clipping is applied to the edges and rings are created as described above 
and inner-rings are again assigned to outer-rings. During the creation of 
rings the left/right information is used to find the identity of the face. As 
the edges carry the left/right information of the lowest imp-range (which 
may be below the requested imp_sel) not all edges directly have a pointer 
to the correct face (that is at the requested imp_sel level). In many cases 
however there will be at least one edge with the proper (w.r.t. imp_sel) 
left/right information and this is then indeed the identity of the area. In 
some cases this information is not present (1. when this edge is outside the 
selection rectangle, 2. when an island is not yet merged with its parent). In 
these cases the referred face (and the corresponding edge) with the highest 
imp_low level is used as start in the tGAP face-tree and the tree is trav-
ersed upwards until the face identifier at the right imp level is found. The 
final layout of data structure is (again) based on topology and has the fol-
lowing tables: Nodes (id, geometry, imp_low, imp_high), Edges (id, start 
node, end node, left face, right face, geometry, imp_low, imp_high), Faces 



A storage and transfer efficient data structure for variable scale vector data      17 

(id, parent face id, feature class, bounding box, imp_low, imp_high, imp 
own); see Table 1, 2 and 4 for the sample data set in Figure 2(a), the sam-
ple map, and Figure 6, a visual representation of the tGAP face-tree. 

The drawback of using the tGAP face-tree is that this tree is not present 
at the client side (after the two face and edge selection queries). An effi-
cient solution is to send one third query to the server requesting the ‘re-
writing’ of the face-id’s which correspond to a too low imp level and get 
back face-id’s that correspond with imp_sel. An easier solution is not to 
draw these faces at all: the drawback is of course that white spots will oc-
cur on the map (most often near the boundaries of the selection rectangle). 

 

Fig. 6. The tGAP face-tree, corresponding to the data set of Figure 2(a). 

4.4 Theoretical numbers for faces and edges 

In the previous section we sketched a more optimal solution for storing 
data in the edge table. Here, we continue our investigations by finding the 
theoretical upper bounds after filling the data structures for both the classic 
and the lean variant. These bounds are expressed in numbers of edges (e) 
and faces1 ( f ) present in the original dataset. 

Lemma 4.1. The number of total faces stored in the tGAP structure is, af-
ter the generalization process, equal to: 

12 −⋅ f  

                                                      
1 Numbers for faces here do not include the concept of a universal face 



18      Martijn Meijers, Peter van Oosterom and Wilko Quak 

Proof. The generalization process starts with f  original faces. Merging 
can be executed until we have only one face left. This means we can merge 
u  times, with 1−= fu . Each time we merge two faces, we add 1 new 

face to f. In total we add u  times a face to f . The total number of faces 

will thus be fu + , or, expressed differently: 

12 −⋅ f  

Lemma 4.2. The total number of edges in the classic tGAP structure, that 
is, filled with the original method (generating all intermediate edge ver-
sions), is at most: 

∑
−

=

−
1

0

)(
f

i

ie  

Proof. Faces are merged in 1−f  steps. Faces that are neighbors are adja-
cent in, at least, one edge (due to the planar map criterion). With each 
merge step thus at least one edge will disappear. The worst case is that in 
every generalization step all remaining edges will be duplicated due to new 
left/right references. These observations lead to Lemma 4.2. 

Corollary 4.3. The total number of edges in the classic tGAP structure, 
that is, filled with the original method (generating all intermediate edge 
versions), can be quadratic: 

)( 2eO  

Proof. Assume a configuration (similar to the one shown in Figure 7) with 
one big face (described by one big edge) containing many small islands 
(small faces, each one described by one edge). Then in the summation of 
Lemma 4.2 it is clear that ef =  and this results in a total of 

)(2/)1( 2eOee =+⋅  edges. 

 

Fig. 7. A worst case initial configuration. 

Our new, lean approach performs significantly better in this respect: 



A storage and transfer efficient data structure for variable scale vector data      19 

Lemma 4.4. The total number of edges stored in the tGAP structure, filled 
with the new ‘use_tree’ method, is dependent on the number of original 
edges and faces and is at most: 

fe−⋅2  

Proof. All original edges will be present once in the output. The merging 
of edges is what brings new edge versions. Suppose this edge merging is 
performed with all start edges as input, as follows: two edges will be 
merged at a time, until 1 edge is left. The resultant of this process is then 
one large polyline with self-intersections. The total number of edges in the 
output will then be at most two times the original number of edges minus 1 
(cf. Lemma 4.1). However, in each generalization step, to merge two faces, 
at least one edge has to be removed, i.e. the number of edges to be re-
moved is the number of faces minus 1 (as that is the amount of merges that 
will take place). Taking both steps into account, results in a number of 
edges that is equal to: 

fefe −⋅=−−−⋅ 2)1()12(  

This is a worst case estimate, as in each merge step more than one edge 
might be removed. 

5 Experiment and results 

To judge whether our theoretical investigations described above would 
yield valid results in practice, we implemented both variants (classic and 
lean) of filling the tGAP structures using PostgreSQL2 extended with 
PostGIS3 (for the geometrical attributes) as DBMS. For filling the tGAP 
structures in the DBMS with our generalization procedure of merging 
faces and for retrieving and visualizing the data from the DBMS, we wrote 
some scripts using the Python4 programming language. Table 5 highlights 
the number of faces and edges for the original data, the amount of data af-
ter using the classic variant and for the lean variant of filling the structures. 

To verify the lemmas from section 4.4, we started by creating two artifi-
cial test data sets (1 and 2). It is clear that the number of faces follows 
Lemma 4.1 in all cases, independently from which filling variant is used. 
Further, it is also clear that our concerns with respect to the duplication of 

                                                      
2 www.postgresql.org 
3 www.postgis.org 
4 www.python.org 



20      Martijn Meijers, Peter van Oosterom and Wilko Quak 

edge rows are valid: To see whether the upper bound for the number of 
edges could exist in practice, we created a data set (set 2) consisting of one 
polygon containing 2500 islands polygons. Each polygon was described 
with one line, resulting in 2501 faces and 2501 edges. In practice, this data 
set can occur when an archipelago is mapped and in which all islands are 
merged to the surrounding ocean. The factor for the classic variant of fill-
ing is an abominable result (on average each edge is duplicated 1251 

times, that is indeed )( 2eO ), especially compared to the lean version (in 
which only the original edge versions are present once). 

Besides artificial data sets we also used some data sets containing real 
world data. That the factors are higher for the sets 5 and 6 compared to the 
factors for 3 and 4, is explainable by the fact that the last two sets do not 
contain any island polygons, while set 5 and 6 do contain some polygons 
with a few hundred islands. Filling the structures in the classic way leads 
then to even more duplicated edge rows. Although the theoretical upper 
bounds are, by far, not met by these data sets, the factors of the classic fill-
ing variant are still high (and we suspect that this will even be worse for 
larger data sets), while our new variant significantly performs better. 

 
Data set Original Faces tGAP faces Original 

Edges 
Edges Classic  
(increase factor) 

Edges Lean 
(increase fac-
tor)  

Set 1 6 11 13 29 (2.2) 18 (1.4) 
Set 2 2501 5001 2501 3128751 (1251) 2501 (1.0) 
      
Set 3 525 1049 1984 11091 (5.6) 2975 (1.5) 
Set 4 5537 11073 16592 77585 (4.7) 26787 (1.6) 
Set 5 50238 100475 178815 2663338 (15) 264950 (1.5) 
Set 6 173187 346373 426917 3544232 (8.3) 630944 (1.5) 

Table 5. Number of faces and edges for the different test data sets. Numbers are 
shown for the original data, the data after using the classic variant of filling (i.e. 
edge version duplication) and for the lean variant (only each first edge version is 
stored). Both data set 1 and 2 were created artificially. The data sets 3 – 6 contain 
real world data. Data set 3 and 4 both contain land cover data. Set 5 contains ca-
dastral parcels and data set 6 contains topographical data. 

 



A storage and transfer efficient data structure for variable scale vector data      21 

  
(a) (b) 

  

(c) (d) 

Fig. 8. Data set 3, visualized with different imp_sel values. 

6 Conclusion and Discussion 

With our design and implementation exercise, we learnt the following les-
sons: First, our ‘use_tree’ alternative performs a lot better when looking at 
the storage part, compared to our initial solution, not only in theory, but 
certainly also in practice. Reducing storage is not the only achievement 
here; The reduction in the number of edge rows will be very beneficial for 
the case when the tGAP structure will be used in a web service environ-
ment and data is sent (progressively, using increments) to a client. Second, 
we designed a structure that now has a better trade off between storage and 
calculation-when-needed than before (much less data is to be stored and 
transferred, but with our lean alternative sometimes it is necessary to per-



22      Martijn Meijers, Peter van Oosterom and Wilko Quak 

form a lookup operation of the correct neighboring face). Third, we sup-
port – with less than twice the original dataset size – all intermediate scales 
for visualization at an arbitrary scale. 

Irrespective of these accomplishments, we also realize that our main 
contribution is currently based on one generalization operation (the merg-
ing of objects) and based on the heuristics this operation brings (geometry 
is always removed and gradually becomes less). The field of map generali-
zation however offers more operations, like line simplification, col-
lapse/splitting of area objects, displacement and typification of groups of 
objects, to name a few. Some of these operations, by definition, introduce 
new geometry (e.g. splitting of objects will introduce new boundaries). An 
optimal solution for a data structure, in terms of data storage, has thus to 
take into account the heuristics of these generalization operations. There-
fore our investigations will continue and topics we would like to focus on 
in the (near) future include: 
• Topologically correct line simplification (taking into account the neigh-

borhood, while performing line simplification and preventing (self)-
intersections that cause a change in topology, similar to what is descri-
bed in Saalfeld (1999) and Bertolotto and Zhou (2007)). Creating and 
using data structures for variable scale access to this geometry (e.g. fin-
ding an alternative algorithm for filling the BLG-tree structure, currently 
Douglas-Peucker is used) is another topic that deserves attention. 

• More operations for the (currently simplified) generalization process; As 
a first step, we would like to, instead of merging, allow splitting, pro-
bably based on a triangulation (cf. Bader and Weibel, 1997), and expe-
riment what happens when using such a split operator with weights for 
all neighbors, until no further splitting is possible. 

• Inclusion of more and different semantics in order to take better decisi-
ons which generalization operator to choose (instead of the current ‘one 
fits all’ approach); e.g. apply a different generalization operator for 
infrastructure type of objects than for other terrain objects. 

• Making the structure dynamic: perform updates at the largest scale (and 
propagate these upwards in the tGAP structure). 

References 

Bader, M. and Weibel, R. (1997). Detecting and Resolving Size and Proximity 
Conflicts in the Generalization of Polygonal Maps. In Proceedings of the 18th 
International Cartographic Conference., pages 1525–1532, Stockholm. 



A storage and transfer efficient data structure for variable scale vector data      23 

Bertolotto, M. and Zhou, M. (2007). Efficient and consistent line simplification 
for web mapping. International Journal of Web Engineering and Technology, 
3(2):139–156. 

Bobzien, M., Burghardt, D., Petzold, I., Neun, M., and Weibel, R. (2006). Multi-
Representation Databases with Explicitly Modelled Intra-Resolution, Inter-
Resolution and Update Relations. In Proceedings Auto-Carto 2006, Vancou-
ver. 

Buttenfield, B. and Wolf, E. (2007). “The road and the river should cross at the 
bridge” problem: Establishing internal and relative topology in an MRDB. In 
Proceedings of the 10th ICA Workshop on Generalization and Multiple Rep-
resentation 2-3 August 2007, Moscow, Russia. 

Cecconi, A. and Galanda, M. (2002). Adaptive Zooming inWeb Cartography. In 
Computer Graphics Forum, volume 21, pages 787–799. Blackwell Synergy. 

Ellsiepen, M. (2007). Partial regeneralization and its requirements on data struc-
ture and generalization functions. In Kremers, H., editor, Proceedings 2nd 
ISGI 2007: International CODATA symposium on Generalization of Informa-
tion, Lecture Notes in Information Sciences, pages 72 – 84, Germany. 
CODATA. 

Saalfeld, A. (1999). Topologically Consistent Line Simplification with the Doug-
las-Peucker Algorithm. Cartography and Geographic Information Science, 
26(1):7–18. 

Stoter, J., Morales, J., Lemmens, R., Meijers, M., Van Oosterom, P., Quak, W., 
Uitermark, H., and van den Brink, L. (2008). A data model for multi-scale to-
pographical data. In Headway in Spatial Data Handling 13th International 
Symposium on Spatial Data Handling, pages 233–254. 

Töpfer, F. and Pillewizer, W. (1966). The principles of selection, a means of car-
tographic generalization. Cartographic Journal, 3(1):10–16. 

Van Oosterom, P. (1995). The gap-tree, an approach to “on-the-fly” map generali-
zation of an area partitioning. In Müller, J., Lagrange, J., andWeibel, R., edi-
tors, GIS and Generalization, Methodology and Practice, page 120–132. Tay-
lor & Francis. 

Van Oosterom, P. (2005). Scaleless topological data structures suitable for pro-
gressive transfer: the gap-face tree and gap-edge forest. In Proceedings Auto-
Carto 2005, Las Vegas, Nevada. Cartography and Geographic Information 
Society (CaGIS). 

Van Oosterom, P., de Vries, M., and Meijers, M. (2006). Vario-scale data server 
in a web service context. In Ruas, A. and Mackaness, W., editors, Proceedings 
of the ICA Commission on Map Generalisation and Multiple Representation, 
pages 1–14, Paris, France. ICA Commission on Map Generalisation and Mul-
tiple Representation. 

Van Oosterom, P. and Vijlbrief, T. (1994). Integrating complex spatial analysis 
functions in an extensible gis. In Proceedings of the 6th International Sympo-
sium on Spatial Data Handling, pages 277–296, Edinburgh, Scotland. 

Vermeij, M., Van Oosterom, P., Quak, W., and Tijssen, T. (2003). Storing and us-
ing scale-less topological data efficiently in a client-server dbms environment. 
In 7th International Conference on GeoComputation, Southampton. 



24      Martijn Meijers, Peter van Oosterom and Wilko Quak 

Xinlin, Q. and Xinyana, Z. (2008). Multi-representation geographic data organiza-
tion method dedicated for vector-based webgis. In Proceedings of the XXXVI 
congress of ISPRS, volume Part B4 ommision IV, pages 815–819. 


