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Summary 

Today we see a huge increase of the use of geo-information in mobile devices. All current solutions are 
based on static copies that are stored on the mobile device. This makes dynamically adapting the map to 
new information and to the changing circumstances of the user impossible. With the availability of high 
bandwidth wireless connections (such as UMTS) better, more dynamic, solutions are possible: The server 
generates a proper, up-to-date map of the region of interest at the right level of detail for display and 
adjusted to the needs of the user. For a mass market (consumers of mobile maps) the human factors aspect 
is very important. The currently available mobile maps solutions still have insufficient user-interfaces. 
Extremely important is the issue of context as the user gets ‘lost’ very easily on the small mobile displays 
when zooming and panning. Based on a selection of use cases (navigation, tourist support, etc.), User-
Centered Design techniques will be applied to develop small prototypes / simulations and the interaction and 
the quality of the maps in these prototypes / simulations will be evaluated. 
 
The project runs from 2006 to 2008 and is organized in the following Work Packages: 

 WP 1 ‘Preparation’ (month 4-9, 2006); 
 WP 2 ‘Prototype development’ (month 10, 2006-6, 2007); 
 WP 3 ‘Evaluation of first prototypes’ (month 7-12, 2007); 
 WP 4 ‘Improved prototypes’ (month 1-6, 2008); 
 WP 5 ‘Evaluation of improved prototypes’ (month 7-12, 2008). 

 
This report belongs to WP 4 and consists of the following chapters: 
1. Introduction 
2. Mapping a bounding box to an importance value 
3. Polygonize 
4. Retrieval of tGAP 
5. Experiment 
6. Discussion of the results 
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Retrieving tGAP data with a stateless client for
visualization

Martijn Meijers

December 24, 2008

1 Introduction

Currently the topological Generalized Area Partitioning (tGAP) structures are implemented in
an object-relational geo-DBMS (Oracle DBMS and PostgreSQL with PostGIS extension). The
current tGAP implementation is based on topological structured data, stored in a node edge
face (NEF) data structure. With this data structure, each edge is directed (it has a start and an
end node), and the pointers to the faces left and right of each edge are also stored. The tGAP
structures (the face tree and the edge forest) store the result of an aggregation process. Each area
object is represented by a topological face and all faces have a number assigned representing
their relative importance (importancelow). This importance value is used to decide when to
aggregate a face – the value is based on the size of each object and on the feature classification
each object has. The least important face is aggregated with the most compatible neighbour
(compatibility is based on the length of the boundary between two faces being merged and the
feature classification of both faces). The sum of the two importance values will be assigned
to the two old faces as their importance high value (importancehigh). The newly created face
will have this sum value as the importancelow value. This process continues, until only one
face is left: Result of this process is that each face will have an importance range assigned, i.e.
[importancelow, importancehigh〉. Also the edges will have an importance range assigned. For
more details on this aggregation process, see Van Oosterom (2005).

In this report, technical details will be provided for transfer of the data from the topological
data structures at a server to a stateless client. This means that the client requests data after
each user action, does not maintain state of what part of the data is retrieved already and
therefore is relatively simple to implement. Another option can be to use a stateful approach,
in which the client remembers what it has asked previously (and uses this knowledge to query
for information not asked before), but this means that more work and extra data structures at
the client side are needed to implement the client.

The remainder of this technical report is structured as follows. First, as we do not want to
expose the characteristics of the data structures at the server too much to the client – as it only
has ‘knowledge’ about displaying topological structured data, but not about the importance
values stored with all the objects – we describe a way to map a viewport bounding box to an
importance value (section 2). This way, a client only has to report the current viewport extent
to the server and can be sure to receive the right amount of data for a specific level of detail as
the server translates the extent of the viewport to a suitable importance value to query the data
structures. Second, in section 3 we describe an algorithm to reconstruct the face geometry called

1



Polygonize (from the information sent, being faces and edges). Third in section 4, different
options are given to query the face and edge information in the data store. One approach is
described in depth, as this is the best option in terms of minimalistic data transport. We end
the report with some discussion of the obtained result (section 6).

2 Mapping a bounding box to an importance value

As described in the introduction, all faces in the tGAP structure have an importance range
associated. To visualize data retrieved from the tGAP structures, the client sends the extent of
the current viewport to the server and expects a certain amount of face information in response.
This amount of information must not contain too many objects (otherwise the user will suffer
from information overload). Therefore, a fixed number of objects is set and will be used for
retrieving data in such a way, that the amount of objects, i.e. faces, to be retrieved remains
relatively constant (independent from what level of detail is retrieved).

The number of faces wanted on a screen is set to what will be shown when the user is looking
at the complete extent of the dataset: the extent of the dataset is then equal to the extent of
the viewport (the ratio between the two extents is equal to one). The question to be answered
now, is which importance value satisfies this given number of objects. For this a lookup table is
created: As the aggregation process each time aggregates two faces, and the two old faces get
the sum of the two old faces as their importance high values, one can find how many objects
there are at a certain importance value, by grouping the face table per importance high value
that is present, counting how many faces are having such an importance high value and relating
this to the total number of faces that are present in the original dataset (the original number of
faces minus the cumulative sum of all merges until a given importance value gives the number
of faces for the complete extent at a certain importance value).

Now, if a user zooms in, a new query window, which is smaller than the previous window,
is sent to the server. Assume that the user zooms in to a quarter of the original dataset. The
ratio of the full extent of the dataset and the query window extent is 1/1

4 ≡ 4. Subsequently,
this number is multiplied by the fixed number, and this gives a new number of objects for the
lookup table which leads to a new importance value. With this new importance value the data
structures can be queried. Note that a lower importance value will lead to more objects for the
full extent of the dataset, but because the user zooms in, a smaller spatial extent is used and
the average of the number of objects retrieved remains constant (as was our initial goal).

3 Polygonize

To visualize the faces, the face geometry needs to be reconstructed and therefore all edges
are needed that are related to a face. The process of reconstruction, called Polygonize, is
dependent on the configuration of the edges. Based on the edges, rings are formed that together
describe the geometry of the face.

Polygonize works as follows: In case a face is related to only one edge, one ring is formed
based on this edge. This is the simplest case possible. When more edges are related to a face,
the process of forming rings is more extensive. First, a node to edge lookup table is created,
containing start and end nodes as keys which are pointing to the edges. Second, an edge list
is used in which all edges that are belonging to the face are stored. An edge is taken from the
list, and based on the face that is reconstructed and the side of the edge on which this face lies
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(left or right), a next edge is taken from the list via the lookup table (using the start or end
node identifier of the edge). This process continues until the edge list is empty.

In case more than one ring can be formed out of the edges, islands are present in a face. After
finding all rings, islands rings always have a smaller area than the (largest) outer boundary ring.
Thus when looking at the areas of the rings a decision can be made, which of the formed rings
must be the outer one. A special case when reconstructing islands is the case of an island
touching at the outer boundary ring of a face. Based on the information from the node to
edge lookup table, more edge continuations are possible, i.e. the same node in the lookup table
points to more edges. This ambiguity can be solved, by using the geometry of the edges and
sorting the edges by angle in which they arrive at the node.

4 Retrieval of tGAP data

Faces and edges are stored in two separate database tables and, apart from the attribute values
for the NEF data structure, are extended with an importance range. Four different ways of
querying the two tables, based on an importance value and a spatial extent, are described in
this section. This is followed by an in-depth description of one the four approaches, as this
approach minimizes the number of faces and edges to be retrieved.

4.1 Retrieval methods

For all retrieval methods, it is necessary to first find an importance value to query the tGAP
structures (by mapping the given extent to an importance value, as described in section 2)
and retrieve a ‘slice’ of data that then can be processed by Polygonize so visualization of the
geometry of the faces can take place. In the following, four different approaches are described:

Option I With one query, we select faces and edges. With this query the database first retrieves
the faces based on the overlap of their bounding box with the query window extent.
Second, the edges are retrieved from the datastore with an administrative join based on
left and right face information. Pro: Complete information, ready for visualizing. Con:
Too much information is retrieved (outside the area, but also double edges are retrieved
– per edge a version for the left and for the right face is retrieved), probably performance
penalty for join (although DBMSs are supposed to perform joins well).

Option II With one query we select the faces, based on the overlap of their bounding boxes
with the query window. With a separate query we retrieve all distinct edges based on
the identifiers and the aggregated bounding box of all the faces from the first query.
Pro: Double edge retrieval is prevented while distinct edges are retrieved, Con: too much
information is sent (also edges outside the viewport are retrieved).

Option III We use two separate queries: Faces are selected based on the overlap of bounding
box with query window. Subsequently, we select the edges based on the overlap of their
adjacency box (abox) with the query window. An abox is a bounding box around the join
of the two adjacent faces their bounding boxes. Pro: Complete information is retrieved
for Polygonize (even too much, also edges outside the query window, for faces that are
not in the viewport, might be retrieved. However, each edge is only retrieved once). Con:
To the edge table in the datastore the abox needs to be added plus an extra index for fast
searching.
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Option IV We use two separate queries: We select faces on overlap of bounding box with query
window, then we select the edges based on their own bounding box. Pro: lean (narrowest
selection possible on bounding box), Con: missing edges that are currently outside the
viewport, but which belong to a face that is visible inside the viewport. These missing
edges can be added dynamically, as all the retrieved edges intersect with the edges of the
query window and thus can be clipped.

The last option described is theoretically the leanest in terms of the number of topological
primitives (faces and edges) to be retrieved. However, this option is not straight forward, due
to the missing edges that lay outside the query window. Therefore we developed a method to
be able to reconstruct the geometry (that is to be visualized), which is described in the next
subsection.

4.2 Clipping of edges and modifications to Polygonize

Clipping of edges works as follows: Only these edges are retrieved that overlap with the current
viewport (as described in the last option of the previous subsection). The information retrieved
will be incomplete, i.e. implicit edges at the rim of the query window need to be found. The
relationship that the retrieved edges have with the rim of the query window is used to find this
missing information: After retrieval of the edge data, the edges are processed based on their
bounding box: If an edge is completely inside, it is just added to a list, ready for Polygonize.
Otherwise an edge likely intersects with the rim of the query window that consists of 4 edges,
although an edge still might be completely outside as well having no interaction with the query
window at all. Those edges will be processed with an extended Liang-Barsky algorithm for line
clipping (see e.g. Hearn and Baker, 2003, chapter 6).

This extended clipping algorithm works as follows: All edges that possibly intersect the
query window, are processed segmentwise from start node towards end node. During this
process information is gathered on which parts of the geometry of the edge are inside the
query window. Those segments always are already adjacent in the original edge. For each
part of the geometry that lies inside the query window a completely new edge is created, with
information for the start and end node and the faces that are adjacent to the edge part, plus
the geometric part that is inside the query window. New start and end nodes are recorded if
this is necessary: an identifier is created based on the coordinate where the edge is clipped.
These clipped coordinates are stored in the clipped nodes list, together with the four corners
of the query window, which are also added. This clipped nodes list is sorted on the angle the
nodes have with respect to the viewport centre. The newly created edges are used and added
to the list of edges on the screen and the information of the original edge is abandoned.

Based on the list of edges and the clipped nodes list Polygonize can do its work, albeit
a modified version needs to be used: A modified version of Polygonize processes all edges
related to one face, retrieved from the list created by the clipping process together with the
sorted, clipped nodes list. Rings are formed (similar to what is described in section 3). A
difference with the ‘normal’ operation (when all information per face is available) is that when
the reconstruction process ends up at a node where no further edge connection is found (via the
lookup table of the start and end nodes of the edges), the sorted clipped node list is consulted
for finding what the next node is on the rim of the query window (in the correct direction).
From this clipped node the reconstruction is then continued, if an edge incident with this rim
node is found, the reconstruction continues at this edge. If there is no edge found, because the
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node is one of the corners of the query window, a next node from the sorted list is retrieved,
until a node with an incident edge is found.

5 Experiment

We conducted an experiment to see how the options we described would perform in practice.
In this experiment we used the Python1 scripting language to connect to a PostGIS2 database
that has the tGAP tables stored. We retrieved tGAP data for 8 different areas. Figures 8 and 9
(p. 11 and 13 respectively) show the faces after retrieval. The orange rectangle is the query
window that is used to query the data structures (the viewport).

The queries we used were based on three of the four options described in section 4.1 (option
I, II and IV were used). Figures 1, 2 and 3 show the queries used (see pp. 6–8). The queries
of the 8 areas were executed after each other, simulating a user zooming in at the center of the
dataset. This zoom-in simulation was repeated 10 times for each option tested. The overall
best performing set of queries (the ones with the lowest time for all queries together) were used
for further analysis.

As can be seen in table 1, we obtained measurements with respect to (a) the number of
edges retrieved and (b) the number of coordinates to be transferred. Figure 4 and 5 provide
a normalized version of the values, all against option IV (when clipping is enabled). It can be
seen that option I is most expensive (as most boundaries are transferred twice) and on average
2.5 times more data is transferred compared to option 4. E.g. if we take a look at the first
area, 64,159 are transferred more when comparing option I with option IV. In our experiment
geometry is encoded in the Well-Known Binary WKB format, thus this means around 1,000 kB
extra data transfer (as each coordinate takes up 16 bytes in this standardized format). Note that
Figure 8 shows clearly that (unneeded) information is retrieved that is outside of the viewport
to be visualized. Contrary to what is shown in Figure 9, option IV also retrieves edges that are
partly outside the viewport, but these are clipped and only the result of this clipping process is
shown.

We also obtained timing measurements (see table 2). Query times vary with the area retrieved.
Figure 6 provides better insights in the measurements (normalized against option IV). As can be
seen in this figure, ption IV is not necessarily always the fastest. However, overall performance
is best (it has the lowest sum). This also holds when taking also the execution of Polygonize
into account (Figure 7). Observe, that the time Polygonize needs, goes up linearly with the
amount of coordinates to be processed. This explains why there is no difference between the
options when data is retrieved in case of area 1: The amount of coordinates to be processed by
Polygonize are exactly the same as the viewport extent is equal to the dataset extent.

6 Discussion of the results

We presented different methods for retrieval of data from the tGAP structures. In addition,
we explored a way of clipping edges. We showed that the clipping approach out-performed the
other approaches tested. This is mainly due to the advantages for data transport (the number of
objects to be retrieved is smaller) and that this method is rather cheap to perform in real-time
(as not a huge number of edges have to be clipped).

1www.python.org
2www.postgis.org
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We conclude this report by saying that if a stateful architecture is considered in which the
client knows more about the structure (thus also has an understanding of the importance val-
ues used at the server side for instance) the requirements for data retrieval are likely different.
Although this is the case, parts of this report may be helpful, while developing such an archi-
tecture.
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Appendix – Queries, Measurements and Visualizations

Integrated Face and Edge Query:

SELECT
f.face_id,
f.feature_class,
el.edge_id,
el.start_node_id,
el.end_node_id,
el.left_face_id,
el.right_face_id,
el.imp_low,
el.imp_high,
AsBinary(el.geometry) as geometry

FROM
:dataset:_tgap_face f

JOIN
:dataset:_tgap_edge_lod el

ON
el.imp_low <= :importance: and el.imp_high > :importance:

AND
(f.face_id = el.left_face_id OR f.face_id = el.right_face_id)

WHERE
f.mbr_geometry && GeomFromEWKT(’:query_window:’)

AND
f.imp_low <= :importance: and f.imp_high > :importance:

Figure 1: Integrated Face and Edge query – Option I
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Option
Area I II IV

1 1750 921 921
2 2832 1530 1268
3 4339 2388 1882
4 4032 2228 1736
5 3564 1992 1507
6 2832 1602 1182
7 900 570 291
8 339 241 80
Σ 20588 11472 8867

(a) Number of edges

Option
Area I II IV

1 130381 66222 66222
2 110201 60009 44831
3 64645 36111 25459
4 32017 17864 12537
5 20568 11691 7913
6 12610 7219 4884
7 3992 2514 1055
8 1398 975 285
Σ 375812 202605 163186

(b) Number of coordinates

Table 1: Volume of data retrieved

Option
Area I II IV

1 628 338 333
2 604 364 280
3 505 1115 293
4 403 549 836
5 516 398 752
6 211 372 275
7 67 61 153
8 26 26 13
Σ 2960 3223 2935

(a) Time (milliseconds) needed for
querying and data retrieval from data
store

Option
Area I II IV

1 1937 1890 1814
2 1367 1332 1051
3 864 832 639
4 521 485 373
5 358 350 262
6 243 240 188
7 78 75 46
8 28 30 15
Σ 5396 5234 4388

(b) Time (milliseconds) needed for
transformation from topological
model to simple feature geometry
(Polygonize)

Table 2: Time needed for retrieving and processing request
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Face query:

SELECT
f.face_id,
f.feature_class,
AsBinary(f.mbr_geometry)

FROM
:dataset:_tgap_face f

WHERE
f.mbr_geometry && GeomFromEWKT(’:query_window:’)

AND
f.imp_low <= :importance: and f.imp_high > :importance:

Edge query:

SELECT
el.edge_id,
el.start_node_id,
el.end_node_id,
el.left_face_id,
el.right_face_id,
el.imp_low,
el.imp_high,
AsBinary(el.geometry) as geometry

FROM
:dataset:_tgap_edge_lod el

WHERE
el.imp_low <= :importance:

AND
el.imp_high > :importance:

AND
(el.right_face_id IN (:face_ids:) OR el.left_face_id IN (:face_ids:))

AND
el.geometry && GeomFromEWKT(’:aggregated_face_window:’)

Figure 2: Face and Edge query – Option II
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Face query:

SELECT
f.face_id,
f.feature_class,
AsBinary(f.mbr_geometry)

FROM
:dataset:_tgap_face f

WHERE
f.mbr_geometry && GeomFromEWKT(’:query_window:’)

AND
f.imp_low <= :importance: AND f.imp_low > :importance:

Edge query:

SELECT
el.edge_id,
el.start_node_id,
el.end_node_id,
el.left_face_id,
el.right_face_i,
el.imp_low,
el.imp_high,
AsBinary(el.geometry) as geometry

FROM
:dataset:_tgap_edge_lod el

WHERE
el.imp_low <= :importance:

AND
el.imp_high > :importance:

AND
el.geometry && GeomFromEWKT(’:query_window:’)

Figure 3: Face and Edge query – Option IV
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Figure 5: Number of coordinates retrieved normalized against option IV
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Figure 8: Visualization of Areas. Option I or II used for data retrieval
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(e) (f)

(g) (h)

Figure 8: Visualization of Areas. Option I or II used for data retrieval (cont.)
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(a) (b)

(c) (d)

Figure 9: Visualization of Areas. Option IV used for data retrieval
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(e) (f)

(g) (h)

Figure 9: Visualization of Areas. Option IV used for data retrieval (cont.)
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