
Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Vario-scale data server in a web service context

Peter van Oosterom, Marian de Vries, and Martijn Meijers

Delft University of Technology, OTB, Section GIS-technology,
Jaffalaan 9, 2628 BX Delft, The Netherlands.

Phone: +31 15-2786950, Fax +31 15 2782745.
Email: P.J.M.vanOosterom@tudelft.nl, M.d.Vries@otb.tudelft.nl, and martijn@zw9.nl

KEYWORDS: map generalization, topological structure, planar partition, client/server,
progressive data transfer

1. Introduction
This paper presents the first implementation of a topological vario-scale data structure: the
topological GAP structure (Generalized Area Partitioning), or tGAP structure for short. Purpose of
this structure is to store the data only once, with no redundancy of the geometry, and derive different
representations of this same data on-the-fly according to the level of detail needed. Last year at the
AutoCarto conference and published in CaGIS (van Oosterom, 2005), the theory behind this structure
was presented. In this paper the lessons learnt from the implementation are described, including some
modifications to the earlier described theory and some new ideas (which still need to be investigated
further). The focus is on the implementation of the topological GAP-structure at the server side in an
Oracle Spatial DBMS environment. The second main contribution of this paper is the exploration of
how this vario-scale data server can be put to effective use in a Web service/client environment. This
will be based on the OGC and ISO standards (WFS and GML) and some extensions to these protocols
are proposed. The focus is on two aspects: how the tGAP-structure can support progressive transfer of
vector data from Web service to client, and how adaptive zooming can be realized, preferably in
small steps (‘smooth’ zooming).

1.1 Vario-Scale
Data structures supporting variable scale data sets are still very rare. There are a number of data
structures available for multi-scale databases based on multiple representations (MRDB’s), that is,
data to be used for a fixed number of scale (or resolution) intervals. These multiple representations
data structures try to explicitly relate the objects at the different scale levels, in order to offer
consistency during the use of the data. Drawbacks of the multiple representations data structures are
that they do store redundant data (same coordinates, originating from the same source) and that they
support only a limited number of scale intervals. By far most data structures are intended to be used
during the pan and zoom (in and out) operations of a user, and in that sense multi-scale data structures
are already a serious improvement for interactive use as they do speed-up interaction and give
reasonable representations for a given level of detail (scale).

1.2 Progressive transfer
Another drawback of the multiple representation data structures is that they are not suitable for
progressive data transfer as each scale interval requires its own (independent) graphic representation
to be transferred. Nice examples of progressive data transfer are raster images, which are first
presented relatively fast in a coarse manner and then refined when the user waits a little longer. These
raster structures could be based on simple (raster data pyramid) or more advanced (wavelet
compression) principles. For example, JPEG2000 (wavelet based) allows both compression and
progressive data transfer from the server to the end-user. Also, some of the propriety formats such as
ECW from ER Mapper and MrSID from LizardTech are very efficient raster compression formats
based on wavelets and offering multi-resolution suitable for progressive data transfer. Similar effects

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

are more difficult to obtain with vector data and require more advanced data structures, though
recently a number of attempts are made (Bertolotto and Egenhofer 2001, Buttenfield 2002, Jones et
al., 2000, Zhou et al., 2004).

1.3 Paper overview
In section 2 the most important concepts of the Generalized Area Partitioning theory are shortly
introduced. A first implementation of a vario-scale data server based on these concepts form theory is
given in section 3 together with some adjustments and suggestions for improvements. Section 4 then
puts the vario-scale data server in the context of a web-service/client setting and discusses the
communication protocols needed to support vario-scale and progressive transfer. Finally, the main
conclusions, some additional ideas and future work can be found in Section 5.

2. Background Generalized Area Partitioning
It will not be attempted to describe the tGAP (topological Generalized Area Partitioning) structure in
sufficient detail to completely understand it. For this, the reader is referred to the publication in
CaGIS (van Oosterom, 2005). In this section the most important components of the tGAP structure
will be shortly introduced: the GAP-face tree, the GAP-edge forest, the BLG-tree, and the Reactive-
tree (or the 3D R-tree as Pseudo Reactive-tree). The first proposal of a tree data structure for a
generalized area partitioning (GAP-tree) was by van Oosterom (1993). The idea was based on first
drawing the larger and more important polygons (area objects), which then corresponds to a
generalized representation. However, one can continue by refining the scene through the additional
drawing of the smaller and less important polygons on top of the existing polygons (based on the
Painters algorithm). This drawing order fits in the concept of progressive transfer: a first rough image
is created, which is then refined further and further. If one keeps track of which polygon refines
which other polygon, then the result is a tree structure as a refining polygon completely falls within
one parent polygon and there is one single root polygon (covering the whole domain). The tree
structure is built by thinking the other way around: starting with the most detailed representation, find
the least important object (child) and assign this to the most compatible neighbour (parent). This
process is then repeated until only one single polygon remains, the root; see Figure 1 (top).
Drawbacks of this original GAP-tree are: 1. redundancy as boundaries between neighbour polygons
are stored twice at a given scale (and redundancy of the boundaries shared between scales) and 2.
boundaries are always drawn at the highest detail level (all points are used, even if it would not be
meaningful for a given scale). Therefore, the tGAP structure was developed: a topological structure
based on faces and edges but using the same principle of the original GAP-tree to cope with the vario-
scale requirements: rough area descriptions are refined by more detailed ones. The parent-child
relationships between the faces again form a tree structure with a single root: the GAP-face tree. Also
the parent-child relationships between edges at the different scale (detail) level form tree structures,
but now with multiple roots; therefore this is called the GAP-edge forest. In order to take care of the
line simplification, the edges are not stored as simple polylines, but as Binary Line Generalization
trees; BLG-trees (van Oosterom, 1990). When two edges are combined to form one edge at a smaller
scale (more important), then their BLG-trees are linked (but no redundant geometry is stored).
Finally, the entries of the GAP-face tree and GAP-edge forest are stored as records (tuples) in DBMS
tables. In order to efficiently select the requested faces and edges for a given region (rectangle) and
scale (importance) a specific index structure is proposed: the Reactive-tree (van Oosterom, 1992). As
this type of index is not available in most systems, an alternative is to use a 3D R-tree to index the
data: the first two dimensions are used for the spatial domain and the third dimension is used for the
scale (or more precisely for the importance level as this is called in the context of the GAP structure).
Together, the GAP-face tree, the GAP-edge forest, the BLG-trees and the Reactive-tree, are called the
tGAP structure. The tGAP structure can be used in two different ways (see Figure 1): 1. to produce a
representation at an arbitrary scale (a single map) or 2. to produce a range of representations from
rough to detailed representation. Both ways of using the tGAP structure are useful, but it will be clear
that in the context of progressive transfer (and smooth zooming) the second way must be applied.

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Figure 1. Top: set of area features (A, B, C, D, E) and their series of merges, which finally results in

one root area feature (I) and the whole process is reflected in the GAP-face tree.
Bottom: Importance levels schematically represented by the third dimension (at the most detailed

level, bottom, there are several objects while at the most coarse level, top, there is only one object);
The hatched plane represents a requested level of detail and the intersection with the symbolic ‘3D

volumes’ then gives the faces. Taken from (Vermeij et al., 2003).
3. First implementation
The server side of the implementation platform consists of the Oracle spatial DBMS and uses
facilities such as the extensibility to add new data types (BLG-tree as new type), PL/SQL to develop
own functions within the DBMS (e.g. return_polygon of face), and the spatial data types and indices.
Figure 2 shows the UML class diagram of the implemented tGAP structure. Remember that the BLG
table can contain both lowest level edges (with true BLG-tree with points), but also merged edges
(with references to two sub BLG-trees and a associated tolerance value for the new root). The main
changes in implementation (Meijers, 2006) compared to the theory of the tGAP structure (van
Oosterom, 2005) are:
1. Besides a face and edge table, also a node table was introduced, so there is no redundancy in end

points of edges; this also fits well to the BLG-tree structure (which stores the intermediate points
in the tree).

2. Only the left/right edge-face references are stored and not the winged-edge (edge-edge)
references, because this takes less storage space (less references per edge to store, but also less
versions of a single edge), is easier to build and does not slow down performance during use.

3. As it is convenient to know the direction of the parts in a merged edge (join of BLG-tree) the
references to the BLG sub-trees are signed (‘-‘ when direction has to be reversed as member of
the merged edge).

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Figure 2. UML class diagram showing the GAP face tree and GAP edge forest

Appendix B1 contains the SQL table descriptions of the tGAP structure tables. Loading some real
data sets and building the tGAP structure, it was possible to investigate the storage requirements (for
test data sets from a few hundred to a few hundred thousand faces). These turned out to be about 5
times more than a single-scale topological structure (table descriptions in Appendix B2). Note that in
itself our topology structure is mean and lean: just a node, edge and face table. Our structure is
different from the standard topology structure in Oracle, which requires more storage space; as is the
case for LaserScan Radius topology. This is due to the fact that there is no separation between
geometry, topology and feature tables, which cause quite a bit of additional storage in Oracle
topology and LaserScan Radius topology. For example, the Oracle topology table structure requires
about 3 times more storages space compared to just storing plain polygons (Penninga, 2004). Our
basic topology structure requires 107 Mb, while plain polygon storage (just one table with id and one
sdo_geometry for the polygons) requires 82 Mb. So, just a factor 1,3 (instead of a factor 3).

structure #face/Mb #edge/Mb #blg/Mb #node/Mb Total Mb

Basic topology 170.368/2 418.530/94 -/0 281.216/11 107
tGAP structure 340.735/56 7.113.680/291 658.219/133 281.216/11 491

Table 1. Number of rows and size in Mb in tGAP strucure (compared to basic topology)

Nevertheless, 5 times more storage (and not yet considering indices) than the single-scale basic
topology tables is a lot, and therefore further analysis is needed; see Table 1. The number of faces in
the tGAP structure is exactly 2 times the number of faces in the basic topology minus 1 (due to the
property of the binary GAP-face tree). The number of BLG records is about 1.5 times the number of
edges (at basic topology), which is reasonable if one considers that the BLG records represent all
levels of details. The number of nodes in both structures is equal (as can be expected). Below a
number of suggestion to the reduction of storage space:
1. the tgap_face table could have less attributes: area and mbr may be computed when needed (and

parent_id may not really be necessary);
2. the tgap_edge table has an explosion in the number of rows (17 times more than edge table in

basic topology structure), the majority of these additional rows are due to edge versions with only
different left or right faces. Further, the imp_low of one version is equal to the imp_high of its
predecessor. Instead of storing separate rows for every version it is proposed to store one row for
every every and use varray’s to store the varying attributes (left, right, and imp_high);

3. (a) the tgap_blg table size may be reduced by a more lean implementation of the BLG-tree data
type (as used in the attribute tree_source in the BLG table). Currently, every node has explicit
left/right references, but this could be replaced by an implicit tree structure (which is more

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

compact). (b) More storage space can be saved by not having a BLG-tree at the bottom level: just
store polylines and compute generalization when needed. At the higher level the BLG-tree
concept is still present (after merging two edges);

4. the tgap_blg table does contain both leaf BLG records (with attributes blg_id and tree_source
filled and other attributes empty) and non-leaf BLG records (with attributes blg_id, child1_id,
child2_id and top_tolerance filled and other attributes empty). All these empty attributes do waist
some storage space and therefore an alternative with two types of BLG tables and a view
(tgap_blg_orininal for leafs, tgap_blg_joined for non-leafs, and tgap_blg view for their union)
implementation is more efficient;

5. the tgap_blg table does not have to store start_node_id and end_node_id as these can be obtained
from the corresponding edge table records (less distinct id’s 614.707 edges versus 658.219
blgs)’and top_node is added to tgap_blg to refer to new top of joined BLG-trees.

Appendix B.3 shows the proposed new SQL tables in the tGAP structure. It is expected that these
improvements will result in a tGAP structure size only 2 or 3 times the size of the basic topology
structure. This seams very reasonable if one considers that the tGAP structure does support all
possible scales (importance levels). Future work related to this implementation might be to compare
the storage requirements of the tGAP structure in some realistic MRDB scenarios. A Pseudo Reactive
tree was used (3D R-tree). As no new physical attributes (such as mbr) should be added to the tables,
a functional index in Oracle was used. For this purpose it was needed to compute the 3D bbox (with a
function) to merge the 2D bbox and the 1D importance range as the functional index expects one
parameter (3D bbox in this case).

Though the main focus was on the server side development, it is also nice to see some resulting
maps. Therefore at the client side Google Earth was used as platform, because of its user-friendly
interface. The middleware to connect the server and client consists of the Apache web server, the
Python programming language and the Geospatial Data Abstraction Library (GDAL with bindings for
Python). Apache, the web server software, takes care of processing the requests from Google Earth
(made over the HyperText Transfer Protocol, HTTP) and the answers are sent back in KML (short for
Keyhole Markup Language, an XML language). Figure 3 shows the tGAP data visualized in Google
Earth, at 4 different zoom levels. Appendix A shows 6 different levels zoom levels, but now also with
the result of BLG-tree on the right side. Depending on the amount of zooming, a specific (but
arbitrary) scale (importance value) is requested from the server and all polygons are sent to client.
The server returns complete polygons from the tGAP structure. The function 'return_polygon' needs
an additional parameter, besides face_id, i.e. the BLG-tree tolerance in order to produce the right
level of detail. Note that there is no topology structure and no progressive transfer in these Google
Earth tests. For that purpose we need another type of Web client/service set-up (see section 4).

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Figure 3. The tGAP data structure in action: more detail when zooming in (Google Earth client)

(white lines indicate boundaries of the area features from the data server).

4. Server-client set-up and progressive refinement
Progressive refinement of data being received by a client could be implemented in the following way.
The server starts by sending the most important nodes in tGAP-structure (including top levels of
associated edge BLG-trees) in a certain search rectangle. The client builds a partial copy of tGAP-
structure, which can then be used to display the coarse impression of the data. Every (x) second(s)
this structure is displayed and the polygons are shown at the then available resolution on the screen.
The server keeps on sending more data and the tGAP-structure at the client side is growing (and the
next time it is displayed with more detail). Several stop criteria can be imagined: a. 1000 objects
(meaningful information density), b. required importance level is reached (with associated error
tolerance value), or c. the user interrupts the client.

tGAP data

WFS
client

HTTP Get/Post

jdbc: sql query

Progressive rendering

Web server

GML stream

OGC Web Feature Service (WFS)

Display

Google Earth (client)

HTTP Get

Multi-scale rendering

Web server

Display

Python/GDAL application

oci: sql result set
(polygons)oci: sql query

Oracle Spatial

KML slice

jdbc: sql result set
(polygons/faces, BLG-trees
and nodes)

tGAP data

WFS
client

HTTP Get/Post

jdbc: sql query

Progressive rendering

Web server

GML stream

OGC Web Feature Service (WFS)

Display

Google Earth (client)

HTTP Get

Multi-scale rendering

Web server

Display

Python/GDAL application

oci: sql result set
(polygons)oci: sql query

Oracle Spatial

KML slice

jdbc: sql result set
(polygons/faces, BLG-trees
and nodes)

Figure 4. The two Web service/client implementations

In this section we will look in some detail how the tGAP-structure can be used in a Web service/client
setting for progressive transfer and for refinement during zooming. In addition to this, we wanted to
use more standardized interfaces, such as Web Feature Service (WFS) and Geography Markup
Language (GML) instead of the Google Earth specific solutions. As shown in Figure 4 (right side),

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

the WFS service acts as middle layer between Web client and geo-database. So we have to establish
two things: 1. what queries are necessary from WFS to database to retrieve the vario-scale data,
enabling progressive transfer and smooth zooming later on (section 4.1) and 2. what does this mean
for the requests and responses between Web client and WFS service (section 4.2). We will start with
these two questions. In the last paragraph of this section (4.3) we will shortly discuss the requirements
of progressive transfer and refinement for the software used for geo-database, WFS server and WFS
client.
4.1 Queries to the database
In this section again, the transfer of complete polygons from client to server is discussed (that is, no
topology at the client side). From a functional perspective there are two situations in the Web
service/client interaction: 1. the initial request to the WFS to get features for the first time during the
session; and 2. additional requests when zooming in. When the Web client requests the data at one
specific importance level (e.g. 101) the query to the database would be something like this:
select face_id as id, '101' as impLevel, RETURN_POLYGON(face_id, 101) as geom
from tgap_face
where imp_low <= 101 and 101 < imp_high;

This query will retrieve polygons from the database (constructed dynamically by the
RETURN_POLYGON function). The result is one ‘slice’ of the data set at a specific importance
level. The disadvantage is that all objects have to be visualized at once (to get a complete map
without holes), progressive transfer is not possible and the GAP-tree structure is not ‘rebuilt’ at the
client for smooth zooming later on. The next query will also retrieve polygons from the database, but
now not one slice, but a range of objects from the most important level until a certain importance
level (e.g. 90), sorted in order of importance (descending from high to low):
select face_id as id, imp_high-1 as impLevel,
 imp_low, imp_high, RETURN_POLYGON(face_id,imp_high-1) as geom
from tgap_face
where imp_high > 90
order by imp_high desc;

Note no upper boundary of the required importance is specified, only a lower boundary of ‘90’. This
means that everything starting above 90 and up to the root importance will be selected. When the
WFS service receives the results from the data layer the data is already in the right importance order
(from high importance to low importance) and can be passed to the client (as GML) in that same
order. When the client receives the GML there are three possibilities that differ with respect to the
moment that the data is visualized as map:

a. rendering in small steps. The client software already starts visualizing parts of the incoming
GML data before the whole data stream is received. Here we have an example of ‘true’
progressive transfer. The objects are received and visualized in sets of two objects which
replace one parent at a time (see section 3, binary GAP-face tree). The map is progressively
rendered in small steps. The visualization is very smooth: the user first sees the contours and
then slowly the details are filled in.

b. visualize the incoming GML in two or more larger steps, refreshing the complete spatial
extent that is displayed in the map after a certain time interval (of 2 seconds for example). In
this case the client will at given times visualize the level of the latest objects it has received.
Here also the data is in the right importance order so that progressive refinement/
generalization in the later stages is possible, only the refresh is done for the whole area.

c. no progressive transfer and rendering (the common situation with current WFS client
software): the client waits until the complete data stream is received and then visualizes the
data at the appropriate level all at once. The data is still vario-scale and in order of
importance, so the basis for smooth zooming during user interaction is also there.

Not using the topology (at client side) in the above scenarios is a limiting factor. When the client
receives server-side constructed polygons and there is no line simplification, the Painters algorithm

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

works fine: it takes care of hiding the coarser objects when the more detailed objects are received.
However, in the case of line generalization the Painters algorithm does not suffice because with line
simplification the shape of the derived polygons will change, so the more detailed lines will not
always ‘hide’ the coarser lines. This means that in case of line simplification the approach will only
work when the topology-to-polygon reconstruction is carried out in the Web client and not in the
database. The GAP-edges (and blg’s and nodes) with their geometry will now be streamed to the
client; the polylines can already be visualized during retrieval, so there is progressive transfer, but
instead of the Painters algorithm other methods are needed to hide the previously received, coarser
lines.
In case of a WFS service (providing vector data) zooming and panning by the user can often be
handled in the client itself, without having to send new GetFeature requests to the server. But when
only a part of the objects for that spatial extent is already in the client, new requests might be
necessary: for example when zooming in, more detailed data could be needed. With panning beyond
the original spatial extent the situation is a bit more complicated because it depends on the
characteristics of the new spatial extent (the density of objects there) what needs to happen.
When an additional GetFeature request is not necessary, zooming in will mean hiding coarser objects
and making visible more detailed ones. In the case of zooming out this process is the opposite: now
the more detailed objects have to be ‘switched’ off, and the coarser objects will be made visible.
Important is that all of this is handled in the client. Depending on the type of client this
hiding/displaying could be based on event handling. When the GML data is visualized using SVG
(Scalable Vector Graphics) for example, the ‘onzoom’ event of the SVG DOM can be used.
An important issue for further research is, how to calculate the right importance range for the ‘new’
set of objects to be displayed. The algorithm will have to be a function of the size of the map window
(in pixels), the zooming factor for that particular zoom action, and some kind of optimal number of
objects for that map size (Töpfer and Pillewizer 1966). When a new GetFeature request is necessary,
the scenario is partly the same as in the previous case: first the right importance range for the new
objects has to be calculated. The second step is then to request the new objects (only the ones that are
not yet already in the client). Finding out whether or not a new request is necessary implies that the
client software should not only keep track of the spatial extent of the already received data, but also of
the importance range(s) of these objects.
4.2 Extensions to OGC/ISO standards?
Are extensions of the existing OGC WFS protocol necessary for the progressive transfer and
refinement scenarios described in the previous paragraph? The first option is to use the existing
GetFeature request and specify the importance range (imp_low, imp_high) as selection criteria in the
Filter part of the request. And using the ogc:SortBy clause that is available since WFS version 1.1 the
client can instruct the WFS service to return the objects in order of importance.
Still this is not an ideal solution. Somehow the Web service has to communicate to the client that it
supports progressive transfer and refinement. The self-describing nature of the OGC WFS
GetCapabilities response is an important part of creating interoperable service/client solutions. For the
WFS protocol this means that somewhere in the GetCapabilities document it must be stated that this
particular WFS server can send the objects sorted in order of importance. Another addition to the
WFS Capabilities content is reporting the available importance range (imp_low – imp_high) of each
feature type should be given, comparable to the way the maximum spatial extent (in lat/long) of each
feature type is given in the GetCapabilities response. For this reason (to supply solid service metadata
that clearly state the capabilities of the service) it is better to add a new request type to the WFS
protocol, for example with the name GetFeatureByImportance. Just like there is besides the Basic
WFS also a WFS-T (Transactional WFS) with extra requests for editing via a Web service, we would
then have a WFS-R (Progressive Refinement WFS) with an extra GetFeatureByImportance request
and two parameters minImp and maxImp to specify the importance range of the features to be
selected. When no value is specified for these parameters, all features are requested, but still in order
of importance from high to low. And when minImp = maxImp exactly that importance level is

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

requested, as a ‘slice’ of the data set (first query in section 4.1). The HTTP Post request would then
look like this (the ‘D’ in the ogc:SortBy is for ‘descending’):
<wfs:GetFeatureByImportance service="WFS" version="1.0.0" outputFormat="GML2" ...>
<wfs:Query typeName='gdmc:tgap_face' minImp='50' maxImp='150'>
 <ogc:Filter>
 <ogc:BBOX>
 <ogc:PropertyName>geom</ogc:PropertyName>
 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#28992">
 <gml:coordinates>136931,416574 139382,418904</gml:coordinates>
 </gml:Box>
 </ogc:BBOX>
 </ogc:Filter>
 <ogc:SortBy>gdmc:imp_high D</ogc:SortBy
</wfs:Query>
</wfs:GetFeatureByImportance>
4.3 Implications for server and client software
In order to accomplish the progressive refinement when the geo-data is retrieved from the WFS-R
service an 'order by' expression (or functional equivalent) has to be included in the WFS query to the
data source. Necessary requirement for the data storage system is therefore that the WFS service can
retrieve the geo-objects from the data source in a sorted way. A 'Progressive Refinement' WFS-R
service, that serves data in order of importance and in a certain importance range, does not need large
extensions to WFS software. What is extra in the WFS layer is: 1. adding a 'order by' to the queries
sent to the data source and 2. adding a importance selection to the Filter conditions (either spatial or
non-spatial) that the user already has specified in the request to the WFS.
5. Conclusion
Main results: This is the first time that the implementation of a non-redundant (with respect to
geometry) variable scale data structure has been presented. The previous versions of the GAP-tree all
did have some geometry redundancy (between the polygons at a given scale and/or between the
scales). The key to this solution was applying a full topological structure. Though this is (far) more
complicated than topological structures designed for the traditional single-scale data sets, this
implementation proved that the structure is realizable and does perform well in practice. The tGAP
structure is very well suited for a Web environment: the client requirements are relatively low (almost
no geometric processing of the data at the client side) and progressive refinement of polygon data is
supported (allowing quick feedback to the user and smooth zooming). This paper did also illustrate
the functioning of a vario-scale structure in a Web service context. The support of progressive
transfer is very important (and quite unique for vector data). Existing OGC standards are proposed to
be extended in order to support retrieval and visualization of vario-scale geo-data.

Future work: Crucial for the quality of the GAP-tree generalization remains the importance value of
the involved feature classes (and importance function) and the compatibility values between two
different feature classes (and compatibility function). For sure more research is needed in this area to
automatically obtain good generalization results for real world data. Related to this aspect is finding
the relationship between the importance value and the actual scale.

One could argue that generalization should be application driven and does depend on the task of
the user and a given tGAP structure does only represent one type of use. However, with modest
adjustment it should be possible to build more than one tGAP structure on top of a single data set. So
different types of generalization are supported without redundant geometry between the scales or
different applications. One could compare this to a single table in the database with multiple indices
defined: e.g. one b-tree index on the id and on r-tree index on the spatial attribute.

In the current implementation the different edges of narrow features may cross after line
generalization (see 4th and 5th figure on the right side in Appendix A). During the construction of the
tGAP strucure more attention has to be paid to avoid these situations.

Instead of receiving polygons at the client side, also tests should be done with clients receiving a
streamed tGAP structure (mix of ordered face, edge, blg and node records).

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

The current tGAP structure has only been applied to static data (both in theory and practice). In
reality the data is dynamic and the tGAP structure should adjust itself when the source data is
changing (comparable to the manner an index changes when the source data is changed in the table).
A difficulty is the ‘defining condition’ that the least important object must be removed (and merged
with the most compatible neighbor). Such a global criterion could in theory influence the whole tGAP
structure when a small edit is made; e.g. an even less important object (than the current minimum) is
created. This global criterion of the least important object is not useful, and an alternative criterion
should be defined (allowing local updates of the tGAP structure).

Acknowledgements
This publication is the result of the research program 'Sustainable Urban Areas' (SUA) carried out by
Delft University of Technology. This specific research is part of the Dutch Space for Geo-information
project RGI-233 ‘Usable and well scaled mobile maps’. Special thanks to Wilko Quak for discussing
the various tGAP structure aspects (both theory and practice) and for being the supervisor of Martijn
Meijers during his MSc thesis project.

References
Bertolotto, M. and Egenhofer, M.J. (2001), Progressive Transmission of Vector Map Data over the

World Wide Web. GeoInformatica 5 (4): 345-373.
Buttenfield, B.P. (2002), Transmitting Vector Geospatial Data across the Internet. In Proceedings

GIScience 2002, Egenhofer, M.J. and Mark, D.M (eds.). Berlin: Springer Verlag, Lecture
Notes in Computer Science 2478: pages 51-64.

Jones, C. B., Abdelmoty, A.I., Lonergan, M.E., Van Der Poorten, P.M. and Zhou, S. (2000),
Multi-Scale Spatial Database Design for Online Generalisation. In Proceedings, 9th
International Symposium on Spatial Data Handling, sec. 7b, 34-44.

Meijers, B.M. (2006), Implementation and testing of variable scale topological data structures -
Experiences with the GAP-face tree and GAP-edge forest. TU Delft, MSc Geomatics thesis,
June 2006

van Oosterom, P. (1990), Reactive Data Structures for Geographic Information Systems. PhD-thesis
Department of Computer Science, Leiden University.

van Oosterom, P. (1992), A Storage Structure for a Multi-Scale Database: The Reactive-tree.
International Journal, Computers, Environment and Urban Systems, 16(3): 239-247.

van Oosterom, P. (1993), The GAP-tree, an approach to “On-the- Fly” Map Generalization of an
Area Partitioning. GISDATA Specialist Meeting on Generalization, Compienge, France, 15-
19 December 1993. Chapter 9 in: GIS and Generalization, Methodology and Practice. Editors
J.C. Müller, J.P. Lagrange and R. Weibel. Taylor & Francis, London, pages 120-132.

van Oosterom, P. (2005), Variable-scale Topological Data Structures Suitable for Progressive Data
Transfer: The GAP-face Tree and GAP-edge Forest, Cartography and Geographic
Information Science, 32 (4): 331-346.

Penninga, F. (2004), Oracle 10g Topology; Testing Oracle 10g Topology using cadastral data, GISt
Report No. 26, Delft, 2004, 48 p.

Töpfer, F. and Pillewizer, W. (1966) The Principles of Selection. Cartographic Journal, 3: 10-16.
Vermeij, M., van Oosterom, P., Quak, W., and Tijssen, T. (2003), Storing and using scale-less

topological data efficiently in a client-server DBMS environment, In the proceedings of the
7th International Conference on GeoComputation, University of Southampton, Southampton,
UK 8-10 September 2003.

Zhou, X., Prasher, S., Sun, S. and Xu, K. (2004), Multiresolution Spatial Databases: Making Web-
based Spatial Applications Faster. In proceedings The Sixth Asia Pacific Web Conference
(APWeb’04), 14-17 April, 2004, Hangzhou, China, Lecture Notes in Computer Science 3007,
Editors: Jeffrey Xu Yu, Xuemin Lin, Hongjun Lu, et al., pp. 36-47.

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Appendix A: tGAP structure

(left: without BLG, right with exaggerated BLG)

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

Appendix B: Table definitions

B.1 tGAP structure

sql> desc tgap_face;
 name null? type
 --- -------- ---------------------
 face_id number
 mbr_geometry mdsys.sdo_geometry
 area number
 imp_low number
 imp_high number
 parent_id number

sql> desc tgap_edge;
 name null? type
 --- -------- ---------------------
 edge_id number
 left_face_id number
 right_face_id number
 imp_low number
 imp_high number
 blg_id number

sql> desc tgap_blg;
 name null? type
 --- -------- ---------------------
 blg_id not null number(11)
 start_node_id number(11)
 end_node_id number(11)
 child1_id number(11)
 child2_id number(11)
 tree_source blgtree
 top_tolerance float(126)

sql> desc tgap_node
 name null? type
 --- -------- ---------------------
 node_id number
 geometry mdsys.sdo_geometry

B.2 topology structure

sql> desc face;
 name null? type
 --- -------- ---------------------
 face_id not null number

sql> desc edge;
 name null? type
 --- -------- ---------------------
 edge_id not null number
 left_face_id number
 right_face_id number
 start_node_id number
 end_node_id number
 geometry mdsys.sdo_geometry

sql> desc node;
 name null? type
 --- -------- ---------------------
 node_id not null number
 geometry mdsys.sdo_geometry

Workshop of the ICA Commission on Map Generalisation and Multiple Representation – June 25th 2006

B.3 Improved tGAP structure proposal

sql> desc tgap_face;
 name null? type
 --- -------- ---------------------
 face_id number
 imp_low number
 imp_high number

sql> desc tgap_edge; /* note: all versions of edge in single record */
 name null? type
 --- -------- ---------------------
 edge_id number
 imp_low number
 imp_highs varray(number)
 start_node_id number
 end_node_id number
 left_face_ids varray(number)
 right_face_ids varray(number)
 blg_id number

sql> desc tgap_blg_original;
 name null? type
 --- -------- ---------------------
 blg_id not null number(11)
 tree_source blgtree

sql> desc tgap_blg_joided;
 name null? type
 --- -------- ---------------------
 blg_id not null number(11)
 child1_id number(11)
 child2_id number(11)
 top_node number(11)
 top_tolerance float(126)

sql> desc tgap_node;
 name null? type
 --- --------
 node_id number
 geometry mdsys.sdo_geometry

sql> create view tgap_blg as (select
 blg_id,
 tree_source,
 null as child1_id,
 null as child2_id,
 null as top_node,
 null as top_tolerance
 from tgap_blg_original)
 union all (select
 blg_id,
 null as tree_source,
 child1_id,
 child2_id,
 top_node
 top_tolerance
 from tgap_blg_joined);

	B.1 tGAP structure
	B.2 topology structure

	B.3 Improved tGAP structure proposal

