

Master's thesis research : results

Implementation and testing of variable scale
topological data structures

Experiences with the GAP-face tree and GAP-
edge forest

Martijn Meijers

TU Delft
OTB Research Institute
Section GIS Technology

Outline

● Introduction to the problem

● Methodology: approach of research

● Relevant theories (background)
● Results

● Preliminary conclusions

Introduction
● Generalization: 'selection & simplification for

appropriate detail and or purpose of maps'
[ICA, 1973]

● Change in:
– scale (paper) or level of detail (digital screen)

● Generalization by conceptual operator,
implemented in GIS via algorithms [Galanda,
2003]:
– Reclassification – Exaggeration – Simplification
– Displacement – Collapse – Smoothing
– Aggregation – Elimination
– Typification – Enlargement

Example operator: reclassification
(taken from [Galanda, 2003])

Example operator: displacement
(taken from [Galanda, 2003])

Introduction
● Current approach (problematic, [Stoter, 2005]):

– Problems with complexity of algorithms:
not in real time possible to calculate wanted level of
detail

– Multiple scale storage: waterfall like process
– Problems with managing (updating) data:

redundancy
– Not feasible in Spatial Data Infrastructure:

● user interaction = real time
● no pre-defined scale

Introduction

● New proposed approach [Van Oosterom, 2005
based on Van Oosterom, 1990 & Vermeij,
2003]:
– Data structures (GAP-face tree & GAP-edge forest)

store results of one-time calculation
– No pre-defined scale: vario-scale
– Topological data (references): no redundancy

Introduction
● Problem:

– Only theory about new data structures
● Research objective:

– Verification by:
● literature study
● Implementation experiment / test bed

Not: focus on generalization algorithms

But: focus on data structure:
– storing result of algorithms
– querying and visualization is possible on several

levels of details (vario-scale)

Methodology

● Research framework
– Literature study
– Experiment

● Implementation: test
bed

● Tests

– Results
– Objective

● Test performance
(broadest sense)
of data structures
for generalization

Background

● Topology versus
geometry

● Topological face:
– {edges}
– {nodes}
– {references}

Background

● GAP-face tree
– Generalized Area Partition
– Tree structure
– Based on GAP-tree

● Store face information:
– Which faces at which scale:

● Selection on importance instead of scale

– How faces are merged
● Example

– Pictures taken from [Van Oosterom, 2005]

 2 6

7

1 2 6

 7

8

 1 2 6 4 5

 7

8

 9

1 2 6 4 5 3

 7

8

 9

10

 1 2 6 4 5 3

 7

8

 9

10

11

 7(Δ)

8(Δ=0.6-0.9)

9(Δ)

10(Δ=0.7-0.9)

11(Δ=0.9-1.0)

1(Δ) 2(Δ) 6(Δ) 4(Δ) 5(Δ) 3(Δ)

Δ = [imp_low, imp_high)

Background

● GAP-edge forest (of trees)
– Douglas Peucker algorithm [Douglas-Peucker,

1973]
– BLG-tree data structure for storing result [Van

Oosterom, 1990]
● Binary Line Generalization
● Tree structure

● Store edge information:
– Generalized version & Non-generalized version in

one tree
– Merging of edges (with references) : forest

Douglas-Peucker Example

Store D-P result in tree : BLG

● Calculation intensive algorithm
– Each time calculate all distances to all remaining

points

● Store result in tree
– No need for computation
– Get wanted level of detail of line from tree

● Binary Line Generalization tree
– example with previous line

Combine into forest : Union edges

Combine into forest : Union edges

Background

● What are the good things about having these
data structures inside the database for
generalization?
– Non-redundant storage
– Makes it possible to use generalized data, avoiding

need of real time computation:
● Calculate once, store result, query, retrieve & visualize

– Test bed for other research:
● Suitable for progressive refinement (first send coarse

data, then refine, until given criteria) & interface design
[De Vries & Van Oosterom, 2006]

Results

● How can the GAP-face tree and GAP-edge
forest be implemented in an object-relational
DBMS
– Spatial data types
– Programming interface required
– Extensible database : custom data type
– Indexing: B-tree (numeric data) & R-tree (spatial

data [in 2d and 3d!])

Results
● Implementation:

– Tables & Indexes

– Algorithm for filling tables (= building GAP-face tree)

– Binary Line generalization:
● Data type for holding BLG-trees + filling algorithm
● Algorithm for recursively merging BLG-trees
● Algorithm to get geometry from BLG-tree at certain depth

– Reconstruction of geometry of topologically stored
faces

– Middle layer: database – Google Earth

Results
● What problems occur when implementing the

data structures inside the database?
– Minor changes needed in some algorithms
– No indexing: no performance, due to huge amounts

of data:
● kadedge table (original): 178,815 entries
● tgapedge table (GAP edge forest): 3,258,262 entries

– Mapping 'importance' ↔ 'scale' ↔ 'BLG(ε)' is not
linear: unknown relation, differ per dataset?

– BLG might be self intersection: prohibit with
constraints in calculation (known):

● But, also with merging of BLG's!

● However, it works...

To do

● How can we assess the performance of the
implemented structure?
– First solve how to use the data structure efficiently,

especially mapping between:
● Scale
● Importance
● BLG tree: ε

● Write thesis

Conclusions

● What do we learn from an implementation of
the GAP-face tree and GAP-edge forest in an
object relational management system?

– Approach is feasible
– Possible to implement – with some minor

adjustments to the theory as described in [Van
Oosterom, 2005]

– Calculate once, visualize & query real time
– No redundancy of geometry

Questions / Discussion
Now (or later...)

● Martijn Meijers

● http://www.gdmc.nl/martijn/
● b.m.meijers@student.tudelft.nl
● +31-6-29 25 28 82

