Master's thesis research : results

Implementation and testing of variable scale topological data structures Experiences with the GAP-face tree and GAPedge forest

Martijn Meijers

TU Delft OTB Research Institute Section GIS Technology

Outline

• Introduction to the problem

• Methodology: approach of research

- Relevant theories (background)
- Results

• Preliminary conclusions

- Generalization: 'selection & simplification for appropriate detail and or purpose of maps' [ICA, 1973]
- Change in:
 - scale (paper) or level of detail (digital screen)
- Generalization by conceptual operator, implemented in GIS via algorithms [Galanda, 2003]:
 - Reclassification Exaggeration Simplification
 - Displacement Collapse
 - Aggregation
 - Typification Enlargement
- Collapse Smoothing
- Elimination

Example operator: reclassification

(taken from [Galanda, 2003])

Example operator: displacement (taken from [Galanda, 2003])

- Current approach (problematic, [Stoter, 2005]):
 - Problems with complexity of algorithms:
 not in real time possible to calculate wanted level of detail
 - Multiple scale storage: waterfall like process
 - Problems with managing (updating) data: redundancy
 - Not feasible in Spatial Data Infrastructure:
 - user interaction = real time
 - no pre-defined scale

- New proposed approach [Van Oosterom, 2005 based on Van Oosterom, 1990 & Vermeij, 2003]:
 - Data structures (GAP-face tree & GAP-edge forest) store results of one-time calculation
 - No pre-defined scale: vario-scale
 - Topological data (references): no redundancy

- Problem:
 - Only theory about new data structures
- Research objective:
 - Verification by:
 - literature study
 - Implementation experiment / test bed
 - Not: focus on generalization algorithms
 - But: focus on data structure:
 - storing result of algorithms
 - querying and visualization is possible on several levels of details (vario-scale)

Methodology

- Research framework
 - Literature study
 - Experiment
 - Implementation: test bed
 - Tests
 - Results
 - Objective
 - Test performance (broadest sense) of data structures for generalization

Background

- Topology versus geometry
- Topological face:
 - {edges}
 - {nodes}
 - {references}

Background

- GAP-face tree
 - Generalized Area Partition
 - Tree structure
 - Based on GAP-tree
- Store face information:
 - Which faces at which scale:
 - Selection on importance instead of scale
 - How faces are merged
- Example
 - Pictures taken from [Van Oosterom, 2005]

7 / \ 2 6

 Δ = [imp_low, imp_high)

 $11(\Delta=0.9-1.0)$ 8($\Delta=0.6-0.9$) 10($\Delta=0.7-0.9$) 7(Δ) 9(Δ) 1(Δ) 2(Δ) 6(Δ) 4(Δ) 5(Δ) 3(Δ)

Background

- GAP-edge forest (of trees)
 - Douglas Peucker algorithm [Douglas-Peucker, 1973]
 - BLG-tree data structure for storing result [Van Oosterom, 1990]
 - Binary Line Generalization
 - Tree structure
- Store edge information:
 - Generalized version & Non-generalized version in one tree
 - Merging of edges (with references) : forest

Douglas-Peucker Example

Store D-P result in tree : BLG

- Calculation intensive algorithm
 - Each time calculate all distances to all remaining points
- Store result in tree
 - No need for computation
 - Get wanted level of detail of line from tree

- Binary Line Generalization tree
 - example with previous line

Combine into forest : Union edges

Combine into forest : Union edges

Background

- What are the good things about having these data structures inside the database for generalization?
 - Non-redundant storage
 - Makes it possible to use generalized data, avoiding need of real time computation:
 - Calculate once, store result, query, retrieve & visualize
 - Test bed for other research:
 - Suitable for progressive refinement (first send coarse data, then refine, until given criteria) & interface design [De Vries & Van Oosterom, 2006]

Results

- How can the GAP-face tree and GAP-edge forest be implemented in an object-relational DBMS
 - Spatial data types
 - Programming interface required
 - Extensible database : custom data type
 - Indexing: B-tree (numeric data) & R-tree (spatial data [in 2d and 3d!])

Results

- Implementation:
 - Tables & Indexes
 - Algorithm for filling tables (= building GAP-face tree)
 - Binary Line generalization:
 - Data type for holding BLG-trees + filling algorithm
 - Algorithm for recursively merging BLG-trees
 - Algorithm to get geometry from BLG-tree at certain depth
 - Reconstruction of geometry of topologically stored faces
 - Middle layer: database Google Earth

Results

- What problems occur when implementing the data structures inside the database?
 - Minor changes needed in some algorithms
 - No indexing: no performance, due to huge amounts of data:
 - kadedge table (original): 178,815 entries
 - tgapedge table (GAP edge forest): 3,258,262 entries
 - Mapping 'importance' ↔ 'scale' ↔ 'BLG(ε)' is not linear: unknown relation, differ per dataset?
 - BLG might be self intersection: prohibit with constraints in calculation (known):
 - But, also with merging of BLG's!
- However, it works...

Image © 2006 GeoContent

Image © 2006 TerraMetrics

Pointer 51°48'40.85" N 5°15'16.88" E

Streaming |||||||| 100%

Google

To do

- How can we assess the performance of the implemented structure?
 - First solve how to use the data structure efficiently, especially mapping between:
 - Scale
 - Importance
 - BLG tree: ε
- Write thesis

Conclusions

- What do we learn from an implementation of the GAP-face tree and GAP-edge forest in an object relational management system?
 - Approach is feasible
 - Possible to implement with some minor adjustments to the theory as described in [Van Oosterom, 2005]
 - Calculate once, visualize & query real time
 - No redundancy of geometry

Questions / Discussion Now (or later...)

• Martijn Meijers

- http://www.gdmc.nl/martijn/
- b.m.meijers@student.tudelft.nl
- +31-6-29 25 28 82