
March 3, 2009

1

Vario-scale topological data structures 
suitable for progressive transfer:
the GAP-face tree and GAP-edge forest

Peter van Oosterom

Section GIS Technology



March 3, 2009 2

Contents

1. Introduction
2. GAP-tree historic overview
3. Topological GAP-face tree/GAP-edge forest 
4. Storage structure
5. Client-server progressive refinement
6. Conclusions



March 3, 2009 3

1. Introduction

• Multi-scale databases: often multiple representation
drawbacks: redundancy, fixed levels of detail

• Scaleless data structures: single representation with 
additional structure to access at any level of detail

• Often also spatial organization (clustering/indexing)
• Progressive transfer: keep sending more details

(compare to raster formats: data pyramids, wavelets)



March 3, 2009 4

Contents

1. Introduction
2. GAP-tree historic overview
3. Topological GAP-face tree/GAP-edge forest 
4. Storage structure
5. Client-server progressive refinement
6. Conclusions



March 3, 2009 5

2. GAP-tree historic overview
motivation

• Independent generalization of (boundaries of) two 
neighbor objects will result in small slivers (gaps, 
overlaps)

• The Generalized Area Partitioning (GAP)-tree does 
solve this (vO’93)

• GAP-tree can be used together with BLG-tree and 
Reactive-tree (each taking care of a different aspect of 
generalization: selection, aggregation, simplification,..)

• Several improvements published over time



March 3, 2009 6

2. GAP-tree historic overview
the original concept



March 3, 2009 7

2. GAP-tree historic overview
Constructing 

• Find least important object, minimum value for
Imp(a) = Area(a) * WeightClass(a)

• Find most compatible neighbor, maximum value for
Collapse(a,b) = Length(a,b) * CompatibleClasses(a,b)

• Merge a in b (make link in GAP-tree), recompute Imp(b)
• Repeat steps above until one area left (root of tree)

• Use of tree: start drawing top area, next visit relevant 
nodes (imp and bbox), draw on top (Painters algorithm)



March 3, 2009 8

Example 1: DLMS DFAD, scale change



March 3, 2009 9

Example 1: DLMS DFAD, scale change



March 3, 2009 10

Example 1: DLMS DFAD, scale change



March 3, 2009 11

Example 2: GBKN, scale fixed



March 3, 2009 12

Example 2: GBKN, scale fixed



March 3, 2009 13

Example 2: GBKN, scale fixed



March 3, 2009 14

2. GAP-tree historic overview
topological GAP-tree

• In normal GAP-tree areas are stored as independent 
polygons, drawback (computed) redundancy

• Vermeij et al.’03 proposed topological GAP-tree: edges 
and faces (with importance range, 
consider as height), reduced
redundancy between neighbors

• Still some redundancy left:
coordinates in higher level 
edge also present in lower
(more detailed) level edges



March 3, 2009 15

Contents

1. Introduction
2. GAP-tree historic overview
3. Topological GAP-face tree/GAP-edge forest 
4. Storage structure
5. Client-server progressive refinement
6. Conclusions



March 3, 2009 16

3. Topological GAP-face tree 
(GAP-edge forest) 

• Also coordinate redundancy between edges at 
different aggregation levels is removed

• Throughout remainder of presentation one example is 
used with edges and faces (and nodes) shown

• Creation of the tGAP-tree is shown in pairs of steps
1. removal of least important face (merge face)
2. removal of edges, merge of edges (BLG-tree)



March 3, 2009 17

1 0.3
3 0.4

2 0.4

6 0.2 4 0.5

5 0.35

a

b

c

d

e

f

g i j

l

k
h

edges



March 3, 2009 18

1 0.3
3 0.4

2 0.4

6 0.2 4 0.5

5 0.35

a

b

c

d

e

f

g i j

l

k
h

Step 0



March 3, 2009 19

1 0.3
3 0.4

7 0.5 4 0.5

5 0.35

a

b

c

d

e

f

g i j

l

h

Step 1



March 3, 2009 20

1 0.3
3 0.4

4 0.5

5 0.35

a

b

c

d

e

f

g i j

l

h7 0.5

Step 1 blg



March 3, 2009 21

3 0.4

8 0.6

4 0.5

5 0.35

m

b

c

f

g i j

l

h

Step 2



March 3, 2009 22

3 0.4

4 0.5

5 0.35

b

c

f

g i j

l

h

8 0.6

m
Step 2 blg



March 3, 2009 23

3 0.4

8 0.6

9 0.6

m

b

c

f

n

h

Step 3



March 3, 2009 24

b

c

f

h

8 0.6

m

9 0.6

3 0.4

n

Step 3 blg



March 3, 2009 25

8 0.6 10 0.7

m

o

p

Step 4



March 3, 2009 26

8 0.6

m

10 0.7

p

o

Step 4 blg



March 3, 2009 27

11 0.9

q

Step 5



March 3, 2009 28

q
11 0.9

Step 5 blg



March 3, 2009 29

4 (U)

2 (Y)

6 (W)

3 (Z)

1 (X)

5 (V)

Original GAP-tree

5 (V) 4 (U)

3 (Z) 9 (U)

10 (U)

6 (W) 2 (Y)

1 (X) 7 (Y)

8 (Y)

11 (U)

2

2 4

4

4

Rewritten face GAP-tree



March 3, 2009 30

j
0-0.35

Edge GAP-forest

k
0-0.2

a
0-0.3

d
0-0.3

b
0-0.3

c
0-0.3

e
0-0.3

f
0-0.3

h
0-0.3

l
0-0.35

g
0-0.35

i
0-0.35

m
0.3-0.7

b
0.3-0.35

c
0.3-0.35

f
0.3-0.35

h
0.3-0.35

b
0.35-0.4

c
0.35-0.4

f
0.35-0.4

h
0.35-0.4

o
0.4-0.7

p
0.4-0.7

q
0.7-

n
0.34-0.4



March 3, 2009 31

g i j

4
5

3

6

2

6

2
5

7
4

7

4 (.7)

3 (.4) 6 (.3)

2 (.4) 5 (.2) 7 (.5)

3 (.6)

2 (.1) 4 (.5)

5 (.6)

5 (.9)

2 (.5) 6 (.3)

7 (.1)4 (.3)

3 (.2)

3

0.6

2

4
0.1

0.5

5

0.6



March 3, 2009 32

i
j

0.5

ij

b_i
e_j

3 (.6)

2 (.1) 4 (.5)

5 (.6)

5 (.9)

2 (.5) 6 (.3)

7 (.1)4 (.3)

3 (.2)

ij (1.4)

Join BLG-tree’s 
of edges i and j

err_ij=dist(point(ij), line(b_i,e_j))
+ max(err_i, err_j)=

0.5+0.9=1.4

BLG-tree j

BLG-tree i



March 3, 2009 33

g
ij

4 (.7)

3 (.4) 6 (.3)

2 (.4) 5 (.2) 7 (.5)

0.4

gij

3 (.6)

2 (.1) 4 (.5)

5 (.6)

5 (.9)

2 (.5) 6 (.3)

7 (.1)4 (.3)

3 (.2)

ij (1.4)

b_g

e_ij

gij (1.8)
err_gij=dist(point,line)
+max(err_g,err_ij) = 

0.4+1.4=1.8

BLG-tree g

BLG-tree j

BLG-tree i

BLG-tree ij



March 3, 2009 34

Contents

1. Introduction
2. GAP-tree historic overview
3. Topological GAP-face tree/GAP-edge forest 
4. Storage structure
5. Client-server progressive refinement
6. Conclusions



March 3, 2009 35

4. Storage structure

• Object-relational model
• Spatial data types available (incl. BLG-tree polyline)
• Tables for tgap_face, tgap_edge, and tgap_blg
• Heavy use of views (and spatial functions)
• Also functional indices used



March 3, 2009 36

4. Storage structure: tgap_face (1)
step face imp     imp      imp   first  class pid bbox

id low     high     orig edges                          .       

0 1     0.00    0.30     0.30   +a      X   8     (xl,yl,xh,yh)

0 2     0.00    0.20     0.40   +b,-k   Y   7     (xl,yl,xh,yh)

0 3     0.00    0.40     0.40   +c      Z   10    (xl,yl,xh,yh)

0 4     0.00    0.35     0.50   +d      U   9     (xl,yl,xh,yh)

0 5     0.00    0.35     0.35   +i      V   9     (xl,yl,xh,yh)

0 6     0.00    0.20     0.20   +k      W   7     (xl,yl,xh,yh)

1 7     0.20    0.30     0.50   +d      Y   8     (xl,yl,xh,yh)

2 8     0.30    0.40     0.60   +m      Y   10    (xl,yl,xh,yh)

3 9     0.35    0.60     0.60   +c      U   11    (xl,yl,xh,yh)

4 10     0.40    0.60     0.70   +o      U   11    (xl,yl,xh,yh)

5 11     0.60    - 0.90   +q      U   - (xl,yl,xh,yh)



March 3, 2009 37

4. Storage structure: tgap_face (2)

• face_id is primary key
• step and bbox (is view) are not stored
• imp_low - imp_high is used importance range 

imp_orig is original importance when face created
• first_edges is variable length array (for islands)
• edge references are singed (clockwise outer boundary)
• polygons can be computed via chain of edge 

references (winged edge structure)
• GAP-face tree: connect child to parent via pid



March 3, 2009 38

4. Storage structure: tgap_face (3)

create view tgap_face_v1 as

select f.face_id, f.imp_low, f.imp_high, f.imp_orig, 

f.first_edges, f.class, f.pid,

return_polygon(f.face_id) shape

from tgap_face f;

create view tgap_face_v2 as

select f.face_id, f.imp_low, f.imp_high, f.imp_orig, 

f.first_edges,f.class,f.pid,f.shape, get_bbox(f.shape) bbox,

get_area(f.shape) area, get_perimeter(f.shape) perimeter

from tgap_face_v1 f; 



4. Storage structure: 
topology model winged edge

r_obj_id

l_obj_id

fr_line_id

lr_line_id
ll_line_id

fl_line_id



March 3, 2009 40

4. Storage structure: tgap_edge (1)
step edge imp imp     face         edge       pid abox BLG-tree

.      id  low high left right fl  fr ll lr (blg_id)

0 a  0.00  0.30   0   1    -d  -e  +b  -f    m Union(l,r) tree+xy..

0 b  0.00  0.30   0   3    -a  -f  +c  -j    b  Union(l,r)  tree+xy..

0 c  0.00  0.30   0   4    -b  -j  +d  -h    c  Union(l,r) tree+xy..

0 d  0.00  0.20   0   2    -c  -h  +a  -e    d  Union(l,r) tree+xy..

...

. 0 l  0.00  0.35   4   5    +j  -i  -g  +i    - Union(l,r) tree+xy..

1 d  0.20  0.30   0   7 -c  -h  +a  -e    m old         old

1 e  0.20  0.30   7 1    +h  +f  -d  +a    - old        old

1 h  0.20  0.30   4  7 +g  +e  -c  +d    h  old        old     .

2 m 0.30  0.40   0   8    -c  -h  +b  -f m  Union(l,r) BLG a+d

2 b  0.30  0.35   0   3    -m -f  +c  -j    b  old      old

...                                                             .

5 q 0.60  - 0  11    -q  -q  +q  +q - Union(l,r) BLG m+o



March 3, 2009 41

4. Storage structure: tgap_edge (2)

• edge_id, imp_low are primary key
• Step not stored
• reference changes to previous version in red
• Winged edge: face (left/right) edge (fl,fr,ll,lr)
• GAP-edge forest: connect child to parent via pid

(interesting parents, unequal to prev, in red),
note the multiple roots

• abox (union left/right bbox) is function/view (needed 
for efficient selection)

• blg-tree stored in separate table (avoid redundancy)



March 3, 2009 42

4. Storage structure: tgap_edge (3)

• Less edge references are possible (‘fr’ or ‘ll’ not used), 
this would save rows in table; 

• It is even possible to drop all edge references, 
avoiding more rows (e.g. b, 0.30), but more searching

• View to compute abox:

create view tgap_edge_v1 as

select e.edge_id, e.imp_low,.. , union(l.bbox, r.bbox) abox

from tgap_edge e, tgap_face_v2 l, tgap_face_v2 r

where e.face_left=l.face_id and e.face_right=r.face_id;



March 3, 2009 43

4. Storage structure: tgap_blg (1)

• blg_id is primary key
• 2 types of rows:

1. Leafs: contain blg-tree/polyline source (in Postgres
by Schenkelaars/vO’95 and in Oracle by Vermeij’03

2. Non-leafs: contain 2 references to childeren

blg_id BLG_tree_source    top_tolerance   child1     child2       

1          tree+xy..          -1              - -

2          tree+xy..          –1              - -

..

10         - 1.4             1          2



March 3, 2009 44

4. Storage structure: tgap_blg (2)

View to hide differences between leafs and non-leafs

create view tgap_blg_v1 as (

select b.blg_id, 

b.BLG_tree_source BLG_tree

from tgap_blg b

where b.top_tolerance = -1)

union all (

select b.blg_id, 

merge_BLG(b.top_tolerance,b.child1,b.child2) BLG_tree

from tgap_blg b

where b.top_tolerance <> -1);



March 3, 2009 45

4. Storage structure: tgap_blg (3)

View definition to combine the edge and its BLG-tree 

create view tgap_edge_v2 as

select e.edge_id, e.imp_low, e.imp_high,   

e.face_left, e.face_right, 

e.edge_fl, e.edge_fr, e.edge_ll, 

e.edge_lr, e.pid, e.abox, 

b.BLG_tree

from tgap_edge_v1 e, tgap_blg_v1 b

where e.blg_id=b.blg_id;



March 3, 2009 46

4. Storage structure: Reactive-tree

• Instead of real Reactive-tree an pseudo Reactive-tree is 
used: 3D R-tree with 3rd dimension importance range

• Note that this is a functional index on the 3D blocks 
(xl,yl,imp_low,xh,yh,imp_high)

• Several views (and tables) are used to compute this
• Besides indexing also spatial/imp clustering needed

create index tgap_face_idx on

tgap_face(compute_3D_block(get_bbox(return_polygon(face_id)),

get_imp_range(imp_low, imp_high)))

indextype is 3D_rtree;



March 3, 2009 47

Contents

1. Introduction
2. GAP-tree historic overview
3. Topological GAP-face tree/GAP-edge forest 
4. Storage structure
5. Client-server progressive refinement
6. Conclusions



March 3, 2009 48

5. Client-server progressive 
refinement: concept
• Server starts sending most important nodes in GAP 

face-tree/edge-forest (in selected search rectangle)
• Client builds partial copy of GAP/BLG-structure

can be used to display coarse impression 
every (x) seconds this structure is redisplayed

• Server keeps on sending more data and GAP/BLG-
structure at client is growing (with more details)

• Possible stop criteria:
1. 1000 objects (meaningful info density on screen)
2. Required imp level is reached (with tolerance value)
3. User interrupts the client



March 3, 2009 49

5. Client-server progressive 
refinement: in practice

• MSc-thesis student working on server side (Oracle)

• Proposal for extending Web Feature Service with 
notion of importance (GetFeature with importannce
and delta-importance)

• Real testing will start in context new 3 year project 
‘Usable, well-scaled mobile maps’ (with TNO Human 
factors, ANWB, ITC, ESRI, LaserScan)



March 3, 2009 50

Contents

1. Introduction
2. GAP-tree historic overview
3. Topological GAP-face tree/GAP-edge forest 
4. Storage structure
5. Client-server progressive refinement
6. Conclusions



March 3, 2009 51

6. Conclusions, main results

• First time ever non-redundant geometry scaleless data 
structure has been presented (based on topology)

• tGAP is well suited for web-environment:
1. No geometric processing at client side
2. Supports progressive refinement

• The class importance values and classes compatibility 
matrix are crucial for quality of the structure

• Views can be used for ‘stupid’ clients (non-tGAP-aware)



March 3, 2009 52

6. Conclusions, tuning

• Implementation and practical test (millions of rows) 
are needed for tuning the structure

• Benchmark have to be performed with alternatives 
(multiple-representation approaches and redundant 
scaleless approaches)

• Two important test client environments:
1. Desktop GIS
2. Distributed Web-GIS

• What is the price of non-redundancy, that is, the 
many references? (storage and speed)



March 3, 2009 53

6. Conclusions, further enhancements

• Data editing (at most detailed level), local 
propagation to higher levels, dynamic structures

• Support for non-area objects (Reactive-tree for 
index): 
1. Points: own table with importance range 
2. Lines: same but now with reference to BLG-repr.
3. Maybe also combine 2 less important lines in 1

• Change from area to line (or point) representation at 
certain moment. Similar to normal GAP-face tree 
when face is removed, but now at same time it is 
introduced in point or line table (with link).


