
 i

Jasmine
Spatial modelling with an object

oriented database system

Master thesis

Patrice Wijnands

Supervisor: Prof.dr.ir. Peter van Oosterom
Instructors: Prof.ir. Henri Aalders

Drs. Wilko Quak

Delft University of Technology
Faculty of Civil Engineering and Geosciences
Department of Geodesy

August 2001

 ii

 iii

Wednesday, September 27th 2000, a small girl
named Yasmina vanished, five years old. October
3rd she was found, but not alive anymore. I did not
know her, but since these days I remembered her
name every time I was working on this thesis.

 iv

 v

Preface
This is a Master thesis on object orientation, its capabilities, advantages and disadvantages when using it to keep
a database holding geo information. The study and research tasks, performed at the Department of Geodesy of
the Faculty of Civil Engineering and Geosciences of the Delft University of Technology, started in September
2000 and were completed in July 2001.

Readers interested in the concepts and ideas of object orientation can get an overview in chapter 3. Readers
interested in the object oriented database system Jasmine will find a description of the system in chapter 4 and a
description of an implemented database in chapter 5. Chapter 6 describes some tests performed and can be
understood without knowledge of object orientation.

I choose to write this thesis in the “we” form. Not because I want to use a kind of Pluralis Majestatis. No, I am
not that important. This form is allowed to for example our queen. The reason I developed during my study, for
which I had to read many books. I always felt it like a sympathetic gesture when authors used the “we” form,
trying to involve the reader into his book.

I’d like to thank Wilko Quak, for always being patient in providing help and documentation; Henri Aalders for
giving always good advice; Peter van Oosterom for his critical remarks and for signing dozens of papers so I
could obtain a key for the building; Theo Tijssen for helping me with the computer facilities; Edward Verbree
for his always critical remarks; Franklin Monteiro for his cooperation and for his help on introducing a new
programming language named Perl; Herman van der Wal for answering all my questions on the Jasmine system;
Mario dePrisco for keeping my computer healthy; Axel Smits for scanning the cover; Wietse Balster for his
patience on waiting for me to come home and prepare dinner and for his good cooking in case it was his turn; my
parents who always welcomed me home and took care of me after some weeks of working and of course Elke
Berger for her love and patience and her never failing ability to make me forget my work which made that I
never lost motivation.

Patrice Wijnands

 vi

 vii

Contents
Preface... v
Contents...vii
Abstract .. ix
Samenvatting .. xi
1 Introduction ... 1
2 Geo information in relational databases .. 3

2.1 Introduction ... 3
2.2 A relational database ... 3
2.3 The LKI system model .. 4
2.4 Advantages of relational databases.. 6
2.5 Disadvantages of relational databases ... 6
2.6 Towards a better LKI... 6
2.6 Summary.. 7

3 Geo information in object oriented databases.. 9
3.1 The concepts of object orientation... 9
3.2 Database capabilities ... 12
3.3 Definition of an object oriented database system .. 13
3.4 The advantages of object orientation ... 13
3.5 The disadvantages of object orientation .. 14
3.6 Summary.. 14

4 The Jasmine object oriented database system.. 15
4.1 Object orientation in Jasmine .. 15
4.2 Database capabilities of Jasmine ... 17
4.3 Is Jasmine an object oriented system? ... 19
4.4 Description of the standard interfaces to the database within Jasmine Studio....................................... 19
4.5 System requirements.. 24
4.6 Summary.. 24

5 Implementation of an object oriented database in Jasmine: the LKI ... 25
5.1 The LKI test database .. 25
5.2 An object oriented data model for the LKI.. 26
5.3 How to handle objects that change .. 36
5.4 Methods on the LKI object oriented database ... 37
5.5 Summary.. 38

6 Comparison ... 39
6.1 The database volume test... 39
6.2 The index test .. 41
6.3 The “find boundaries that have only one next or previous boundary” test .. 42
6.4 The “find boundaries with the same parcel at both sides” test .. 43
6.5 The “find all parcels inside a given rectangle” test.. 44
6.6 Summary.. 47

7 Conclusions and recommendations ... 49
7.1 Conclusions on the use of an object oriented database.. 49
7.2 Conclusions on the use of Jasmine for an implementation of an object oriented database.................... 49
7.3 Recommendations ... 50

8 References ... 53

 viii

Appendix A The data conversion... 55
Appendix B Conversion programs written in Perl ... 59
Appendix C Storing and structuring of data in Jasmine... 153

C.1 Creating the stores ... 153
C.2 Creating the class families ... 153
C.3 The object oriented data model.. 154
C.4 Creating the classes ... 160

Appendix D Methods written in ODQL... 167
D.1 Calculate the area of a given parcel ... 167
D.2 Count the parcels within a rectangle by centroid... 173
D.3 Count the parcels within a rectangle by bounding box.. 173
D.4 Create index... 174
D.5 Find the surrounding boundaries of a parcel.. 175
D.6 Find boundaries that point into other boundaries .. 179
D.7 Find boundaries inside a parcel ... 180
D.8 Find a parcel from a given directPosition (point-in-polygon) ... 181

 ix

Abstract
The database system used by the Dutch Cadastral Office for spatial information, the relational database
management system CA OpenIngres LKI (in this thesis abbreviated to LKI), is an administrational application.
Such applications are typical relational database systems. Relational database systems have great advantages but
suffer from certain disadvantages causing limitations. In this thesis, an object oriented database system called
Jasmine is investigated, to find a solution for these limitations. An object oriented data model for the LKI has
been implemented and tested. The AKR, the counterpart of the LKI holding the information on rights subjects
have on objects for example ownership, is not covered in this thesis.

The database technique is developing towards object orientation, with a trend towards a mixture of relational and
object oriented systems. The abilities of relational systems are very well known, but object oriented systems are
less well explored. Research on their abilities is very important.

One of the disadvantages of relational systems is the missing ability to query recursively, which makes it in the
practise of the LKI impossible to calculate areas of parcels from the topology and geometry of the boundaries
within the database system. Another disadvantage is the limited modelling capacity. This forced the designers of
the LKI to split up the data on parcels and store the information on island parcels within parcels in another table.
Using an object oriented database system, at least in theory can solve such complications.

In this thesis, an experiment is documented on the object oriented database system Jasmine. The main question
is:
Is the object oriented database system Jasmine suitable to store and query spatial data?

A dataset of the Dutch Cadastral Office, describing the geometry and topology of the boundaries and
parcels in and around the Grebbeberg in the municipality of Rhenen in the middle of the Netherlands, is used for
testing purposes.

First, an object oriented data model is designed, based the European standard CEN-ENV 12160 for
storing spatial data. The test dataset is converted to meet this data model, using several Perl scripts. Then an
object oriented database is built up. Its modelling capacities overcome the modelling limitations of relational
database systems. Very quickly additional data structures can be implemented. The built in Object Database
Query Language (ODQL) makes it possible to build not only queries within a short time, but also methods to
perform operations. Implemented are a point in polygon operation and an area calculation operation. Inheritance
of data definitions and methods saves time. The compilation of methods however did not succeed due to
software problems. Errors were reported on methods that were not present anymore when running the same code
in a built in code interpreter. Therefore, no real methods could be implemented. The implemented operations
were run and tested by using the code interpreter.

The original dataset is also loaded into a relational database system -MS-Access- for comparisons with
Jasmine. Performed tests cover storage space and performance. The storage of the data in Jasmine lead to waste
of storage space because of only partly filled pages. The data stored inside Jasmine needed a factor 30 more on
storage space than when stored outside Jasmine in a dump file in a text format. This dump file containing object
oriented structured data need as much storage space as the original relational structured data stored in MS-
Access.

Performed operations on the test data set resulted in long waiting times in Jasmine, up to 30 seconds and
more, where MS-Access needed only a few seconds. This is partly caused by the code interpreter. A compiled
method will always perform faster. Besides, spatial indexing and spatial clustering are not available in Jasmine.

From this thesis can be concluded that Jasmine is an object oriented database system suitable to store and query
spatial data, to build a small GIS-system capable of performing the spatial operations implemented and other
operations that share the same basic arithmetic and database operations. Object orientated systems overcome the
disadvantages of relational systems. Jasmine has however its own limitations to overcome.

 x

 xi

Samenvatting
Het databanksysteem dat door het Nederlandse Kadaster wordt gebruikt voor ruimtelijke informatie, het
relationele database management systeem CA OpenIngres LKI (kortweg LKI genoemd in dit verslag), is een
administratieve applicatie. Zulke applicaties zijn typisch relationele databanksystemen. Relationele
databanksystemen kennen belangrijke voordelen maar hebben te maken met sterk beperkende nadelen. Tijdens
deze afstudeeropdracht is het object georiënteerde databanksysteem Jasmine onderzocht om een oplossing voor
deze beperkingen te vinden en is een object georiënteerd data model toegepast en getest op de LKI. De AKR, dat
de rechten beschrijft die subjecten hebben op objecten (zoals eigendom), valt buiten het kader van dit
afstudeeronderzoek.

De databanktechniek ontwikkelt zich in de richting van object oriëntatie, met een trend naar een combinatie van
relationele en object georiënteerde systemen. De mogelijkheden van relationele systemen zijn goed bekend, maar
object georiënteerde systemen zijn nog minder goed verkend. Onderzoek naar hun mogelijkheden is daarom erg
belangrijk.

Eén van de nadelen van relationele systemen is het ontbreken van de mogelijkheid om recursieve queries uit te
voeren. Dit maakt het voor de praktijk van de LKI onmogelijk om de oppervlakte van percelen uit te rekenen,
onder gebruikmaking van de topologie en de geometrie van de grenzen binnen het databank systeem. Een ander
nadeel is de beperking op de mogelijkheden tot modelleren. Dit dwong de ontwerpers van de LKI tot het
opsplitsen van de gegevens over percelen: de gegevens over eilandvormige percelen binnen andere percelen
moesten gedeeltelijk in een aparte tabel worden opgeslagen. Zulke complicaties kunnen worden opgelost door
gebruik te maken van object georiënteerde systemen. In theorie tenminste.

In dit afstudeerverslag is een experiment gedocumenteerd met het object georiënteerde databanksysteem
Jasmine. The hoofdvraag is:
Is het object georiënteerde databanksysteem Jasmine geschikt om ruimtelijke gegevens op te slaan en te
bevragen?
 Een dataset van het Kadaster is gebruikt om dit te testen. Deze dataset beschrijft de geometrie en
topologie van de percelen op en rond de Grebbeberg in de kadastrale gemeente Rhenen.
 Eerst is een object georiënteerd datamodel ontworpen waarin de LKI-data kunnen worden opgeslagen.
Dit model is gebaseerd op de Europese standaard CEN-ENV 12160, die beschrijft hoe ruimtelijke gegevens
zouden moeten worden opgeslagen. De test dataset is geconverteerd naar dit datamodel met behulp van scripts
geschreven in Perl. Hiermee is een object georiënteerde databank opgebouwd. De modelleercapaciteiten kennen
niet meer de beperkingen hierop van relationele databanksystemen. Aanvullende datastructuren kunnen snel
worden toegevoegd. De ingebouwde Object Database Query Language (ODQL) maakt het niet alleen mogelijk
om binnen korte tijd queries te vormen, maar ook methoden om operaties uit te voeren. Hiermee zijn een “point
in polygon”-operatie geïmplementeerd en een operatie om oppervlaktes van percelen te bereken. Overerving van
datastructuren en methoden kan veel tijd en programmeerwerk sparen. Het compileren van methoden was echter
niet mogelijk ten gevolge van software problemen. De compilatie levert foutmeldingen op voor methoden die
wel uitgevoerd kon worden door een code interpreter. De interpreter is gebruikt om de geïmplementeerde
operaties uit te voeren en te testen.
 De originele test dataset is ook in een relationeel databanksysteem ingeladen: MS-Access. Zo konden
vergelijkingen gemaakt worden met Jasmine. Vergeleken werden de benodigde schijfruimte en de performance.
De opslag van de data in Jasmine verspilde veel schijfruimte omdat pages slechts ten dele werden gevuld. De
data gebruiken 30 keer zoveel schijfruimte binnen Jasmine als opgeslagen in een dump file in een tekstformaat
buiten Jasmine. Deze object georiënteerd georganiseerde data in een dump file gebruiken net zoveel schijfruimte
als de relationele data opgeslagen binnen MS-Access.
 Operaties op de testdata in Jasmine duren erg lang, tot 30 seconden en meer. MS-Access heeft voor
dezelfde operaties slechts enkele seconden nodig. Dit werd ten dele veroorzaakt door de code interpreter. Een
gecompileerde methode zal altijd sneller werken. Daarnaast is in Jasmine geen ruimtelijke indexering en ook
geen ruimtelijke clustering beschikbaar.

Uit dit afstudeeronderzoek kan worden geconcludeerd dat Jasmine een object georiënteerd databanksysteem is,
geschikt voor het opslaan en bevragen van ruimtelijke gegevens, voor het bouwen van een klein GIS-systeem dat
in staat is tot het uitvoeren van de geïmplementeerde ruimtelijke operaties en andere operaties op basis van
dezelfde aritmetische en databankoperaties. Object georiënteerde systemen kennen niet meer de nadelen van
relationele systemen. Jasmine kent echter haar eigen beperkingen.

 xii

Jasmine – Spatial modelling with an object oriented database system

 1

1 Introduction
Relational databases have some disadvantages: limited modelling capacities [Kroha, 1993], no recursive
querying, limited possibilities to hold multi media data and large objects [Khoshafian et al., 1999]. Can an object
oriented database system overcome these? An object oriented database system, what does that mean? Its market
share is only small, compared to that of the relational database systems like Computer Associates Ingres II or
Oracle. The database technique is developing towards object orientation, but without completely leaving the
relational techniques. The trend tends towards object-relational systems like: [Khoshafian et al., 1999] Intelligent
SQL, Oracle 8 or Informix's Illustra. A logical development, because the investments in relational systems were
high and they function still properly. On the other hand, pure object oriented systems do not carry the load of
older systems anymore. Therefore, it is very important to know the possibilities of object orientation. After one
of the first object oriented database systems, Servio Logic’s Gemstone, built on Smalltalk, a wide range of
companies like Object Design, Versant, Ardent, Fujitsu and Computer Associates offer them [Khoshafian et al.,
1999], [Kroha, 1993].

To explore the research field on object oriented databases, a system called Jasmine is tested. Offered by the last
two companies, it is a modern commercial system, developed recently and brought onto the market. Of course
Jasmine in one out of many systems and I will surely recommend to investigate other object oriented database
management systems as well.

In this Master thesis the following question will be answered:
Is the object oriented database system Jasmine suitable to store and query spatial data?

To find an answer, the following research questions are investigated:
1. How is an object oriented database system characterized?
2. Is an object oriented database a better solution for conceptualisation and modelling of the real world

than a relational database?
3. What are the disadvantages of relational databases and can object oriented databases overcome these?
4. Is Jasmine really an object oriented database system?
5. What system requirements are needed to run the database management system?
6. How much storage space does a database in Jasmine need?
7. Can Jasmine be used to store and query a dataset describing the geometry and topology of a model of

the world’s surface?
8. Is it possible to implement a data model following an international standard on geographic information?
9. How does Jasmine perform under spatial operations? Testing of the correct functionality and the

efficiency.
This is not the first time Jasmine is used for spatial modelling. Van Wijngaarden (1997) already investigated

its possibilities to hold spatial data. He implemented another data model following Peng e.a. (1996) but
concluded that Jasmine possibly will become suitable for developing GIS-applications when spatial data types,
spatial indexing and visualisation of spatial data will be realized. Up to now, these are not realized. This limits
this Master thesis.

Chapter 2 of this thesis gives a short overview on relational database techniques, without attempting to be
complete. It lists some of the advantages and disadvantages and discusses the database system maintained by the
Dutch Cadastral Office: the relational database management system CA OpenIngres LKI, in this thesis
abbreviated to LKI.

Chapter 3 introduces object oriented programming and databases, its concepts, advantages and
disadvantages. The system Jasmine is described in chapter 4. The implementation of an object oriented data
model to hold topological and geometrical data and the implementation of an object oriented database is covered
by chapter 5. This database holds the test dataset describing the boundaries and parcels around the Grebbeberg,
municipality of Rhenen. It is a part of the LKI.

Chapter 6 describes tests performed on this object oriented database, benchmarked on a simple
relational database holding the same data but in the original relational data model, in order to make a
comparison. This thesis will not cover the implementation and performance tuning of a relational database.
Hardware configurations will also not been taken into account. The comparison between the two systems will
therefore be limited.

Chapter 7 finally holds the conclusions of this Master thesis.
Appendix A summarizes all the details of the data conversion and how it is performed. The code of the

conversion programs written in Perl is included in appendix B. Appendix C is about the way the data are stored
in Jasmine, it holds the complete definition of the data model. Appendix D contains the code of the methods
written in ODQL.

Jasmine – Spatial modelling with an object oriented database system

 2

Jasmine – Spatial modelling with an object oriented database system

 3

2 Geo information in relational databases

2.1 Introduction
In this chapter we will discuss relational database techniques, without attempting to be complete. Advantages,
disadvantages and problems known in the database system maintained by the Dutch Cadastral Office will be
covered.

Database techniques are developed from the need to collect, store and use information in a structured way. Let’s
take an example on this. Anyone collecting data on objects, which share similar properties, wants to compare
these. He can write down his results on a piece of text, on paper or in a digital file. This raises two
disadvantages:
• he will forget to check for some properties when investigating some objects;
• while reading the collected information, he cannot easily compare the different objects.
One solution is to create a table. The columns give the possibility to hold the properties. This also raises two
disadvantages:
• the number of columns cannot be changed from object to object;
• some values are repeated.
The problem of the columns is awkward, but unsolvable for this moment. We will see in the next chapter how
we can overcome this problem.

The columns of a table are called the attributes.
The rows of a table the tuples. The cells contain attribute
occurrences or values.
A table can hold only information on one kind of object,
called the entity. Of course these objects can be separated
into types, described by its attributes (table 1).

Table 2.1: the naming conventions for tables.

entity attribute attribute
tuple
tuple

value or attribute
occurrence

value or attribute
occurrence

The problem of the repeating properties results into
tuples holding repeating values. This raises two
disadvantages:
• you have to write down the same information a

large number of times;
• you have to change all these entries when you

decide to change the description of a property.
The solution is to divide the data over more tables.
One main table and several sub tables to hold the
repeated property. The property becomes an entity of
its own. A relation keeps the connection between the
two.

2.2 A relational database
Codd developed this model of the structure for a database, published in [Codd, 1970]. I will give a short
explanation of this model.

Figure 2.1: schema of a simple relational database for a cadastral system.

The above schema illustrates a simple relational database model. In the entity “Owners” you can keep a
registration of the people who own a piece of land. You write down their names, but maybe also their addresses.
You can deal with natural persons but also with organisations.

One owner can own one or several pieces of land. These pieces of land are kept in the entity
“OwnerObjects”. The identifier of the owner is one of its attributes. This is the connection between the owner
and its piece of land.

If you would use one single entity, you were forced to write down the name and address of the owner to
every piece of land. This will have to be changed when the owner moves to another town for every tuple
describing a piece of land he owns.

Jasmine – Spatial modelling with an object oriented database system

 4

Every piece of land is modelled by one or several triangular surfaces defined by their three corner
points. These are kept in the entity “Triangles”. The connection is the identifier of the piece of land, which is
kept in the attribute “ObjectID” of the entity “Triangles”.
Every triangle is modelled by three points, of which the coordinates are kept in an entity “Points”. The point
identifiers are used to connect the triangles to their points. This is very important because neighbouring triangles
use the same two points. Now you can avoid registering the coordinates of a point more than one time. However
you cannot avoid that two triangles overlap each other partly when a wrong point id is used.
The process of dividing the data over several entities in order to avoid multiple storage and keeping the data
consistent is called normalisation.

Normalisation
First normal form: remove fields holding repeating groups of data and create relations instead.
Second normal form: remove all fields that do not depend on the key of the table and create relations instead.
Third normal form: remove all fields that are dependent of other fields and create relations instead.
[Worboys, 1995]

It is important to know that other models are also available. Beside the relational, [Worboys, 1995] mentions
also the hierarchical, network, object oriented and deductive database models. The object oriented model will be
described in chapter 3.

2.3 The LKI system model
The schema beneath (figure 2.2) shows also a model of a cadastral system, which is far more sophisticated and
complicated than the schema in figure 2.1. It’s not my intention to explain it in all details. A more extended
description can be found in [Osch, 1997]. This system holds the geometrical and topological data of the real
estate registered by the Dutch Cadastre as in the cadastral maps, divided over the entities:

• boundary
• parcel
• parcelover

• gcpnt
• sympnt
• text

• line
Figure 2.2: schema of the Dutch cadastral system,
Landmeetkundig Kartografisch Informatiesysteem.

Jasmine – Spatial modelling with an object oriented database system

 5

ll_line_id
=last left

one boundary

a next
boundary

fr_line_id
=first right

fl_line_id
=first left

lr_line_id
=last right

begin
(first)

end
(last)

Figure 2.3: the topological relations of the boundaries in the LKI,
following the winged edge structure.

The entity “line” contains
topographic elements from the
GBKN (large scale map of the
Netherlands 1:5,000) and is not used
in this thesis. Therefore it will not be
discussed here.

The entity “boundary” is
the largest one in the number of
attributes and -after “line”- in the
need of storage space. The upper
fields contain identifiers, layer
information and classifications. The
line ids (fl_line_id, .., ll_line_id) refer
to the boundaries that are connected
to one boundary, according to figure
2.3.
The fields “l_obj_id” and “r_obj_id”
refer to the parcel left and the parcel
right of the boundary.

The entity “parcel” holds in its two last attributes the identifiers of boundaries. “line_id1” refers to a
boundary of the outer ring (the outer surrounding boundary). “line_id2” refers to one inner ring (an island in the
parcel being a parcel of its own). If a parcel has more than one island, the references to one of their boundaries
are stored in the entity “parcelover”. This means a parcel id can be listed in both the tables “parcel” and
“parcelover”. “parcelover” is only a technical entity, not a logical entity. Here we see very clearly the problem of
the number of a table’s columns that cannot be changed. This leads to modelling limitations.

The entity “gcpnt” contains information on marked points that can be used to reconstruct or visualize
the boundaries in the field. The entity “sympnt” holds the positions of cartographic symbols. The entity text
contains text strings, like house numbers, street names etc.

All entities contain the fields
“tmin” and “tmax”. They hold
time stamps between which the
objects are valid, counted in
seconds database time. This is a
way to implement versioning
(see chapter 3) and keep history
data. Figure 2.4 illustrates this:
until May 1st 1985 the parcel nr 1
exists:

The value registered in his tuple
for the “tmax” attribute is zero,
indicating they are valid for the
current situation. The value
registered in its “tmin” attribute

indicates the time point on which
the parcel’s tuple was created.

Table 2.2 (left) and table 2.3 (right): How the entity “parcel” changes when a parcel is being split.

entity parcel before May 1st 1985 entity parcel after May 1st 1985
object_id tmin tmax object_id tmin tmax

1 <some
number of
seconds>

0 1 <some
number of
seconds>

<seconds
until May 1st

1985>
 2 seconds since

May 1st 1985
0

 3 seconds since
May 1st 1985

0

1

2

3

4

1

3

5

6 7

8

9

boundary nr

parcel nr 1

parcel nr 2

parcel nr 3

before May 1st 1985 on May 1st 1985

Figure 2.4: example of a change in the LKI-database.

Jasmine – Spatial modelling with an object oriented database system

 6

On May 1st the parcel is being split up. Two new parcels are created and five new boundaries. Now the

value registered in the “tmax” attribute of parcel 1 is set to the current database time, indicating that this tuple is
not valid anymore for the current situation. Copies of the tuples of the boundaries 1 and 3 are saved again, but
with references to the new parcels 2 and 3, so in fact seven new tuples describing boundaries are created. The
values registered in the “tmin” attribute of all the new tuples are set to the current system time. The values
registered in the attribute “tmax” of all the new tuples are set to zero, indicating that they are now valid for the
current situation. [Oosterom, 1997]

The “xfio” in front of all the entity names indicates that attribute occurrences with non-zero values registered in
the attribute “tmax” are present. This means the history data are available. The attribute “tmax” is part of the key
of the entity, together with the attributes “ogroup” and “object_id”.
 The abbreviation xfio stands for “X-Fingis OpenIngres”.

The system described is not standing on its own. Attached to it exists the AKR (Automatische Kadastrale
Registratie). This holds the information concerning the natural and juridical persons holding rights on real estate,
like ownership.

2.4 Advantages of relational databases
��Relational databases are the product of the demand for better consistency mechanisms, which they fulfil.

The duplication of data can be avoided.
��The data structure is simple, based on matrix operations, and can easily been understood.
��The underlying mathematical basis is clearly defined.

2.5 Disadvantages of relational databases
Relational databases are according to [Ishikawa, 1993] not very suitable for the generation of generic knowledge.
Apart from the question whether systems are able to generate knowledge, this is a result of the disadvantages of
relational databases:
��The normalisation forces the user to create a large number of tables [Kroha, 1993].
��Not only the investments in time and money are high. Looking up the data requires a large number of JOIN-

operations, on the cost of memory capacity and processor time. Of course this is application dependant.
��Aside to this, recursive querying is not possible. Recursive querying is needed for looking up data by

following the links to other tuples in the same entity. In fact, this is asking the same questions more than one
time. Alternatively formulated, executing the query several times. How often is not known at forehand.

��The limited possibilities to hold multimedia data and large objects [Ishikawa, 1993].
��Kroha (1993) concluded that relational databases limit the modelling capacities.

2.6 Towards a better LKI
The limitations of the relational database management system of the LKI do not restrict the task execution of the
Dutch Cadastral Office at the moment. Applications outside this system take care of the tasks the system is not
capable of, for example topology checks. An object oriented system should be able to complete this within its
system.

The problem of not possible recursive querying becomes evident when the boundaries of a parcel are needed,
sorted in the right order. This is often needed by applications to visualize the parcels on screen or paper, or to
calculate the area. It should be remarked that it is not mathematically necessary to obtain the boundaries in the
right order to calculate the area, following this two-point algorithm:

area of polygon = ½ (x2 – x1) (y1 + y2)

In fact the area of the rectangle underneath two points is calculated, by multiplying the difference between the x-
coordinates with the average of the y-coordinates. Only the points per boundary must be followed clockwise or
anticlockwise, but the boundaries themselves have not be ordered.

To obtain the boundaries, a user looks up the tuple describing the parcel in the entity parcels, in SQL:

SELECT *
FROM Xfio_parcel
WHERE (((Xfio_parcel.object_id)=1));

Jasmine – Spatial modelling with an object oriented database system

 7

The parcel’s attribute “line_id1” delivers the identifier of one tuple in the entity boundaries:

SELECT *
FROM Xfio_parcel INNER JOIN Xfio_boundary ON Xfio_parcel.line_id1 = Xfio_boundary.object_id
WHERE (((Xfio_boundary.object_id)=1));

The four identifiers in the attributes “xx_line_id” point to two candidates that surround the same parcel. Take for
example figure 2.4. The tuple describing boundary number 1 contains the identifiers of the tuples describing the
boundaries number 2, 4 and two other ones (if present). A JOIN-operation available in SQL can find parcel
number 1 and boundary number 1. However, there is no SQL-statement possible that can also look up boundary
2, 3 and 4, unless the query is reformulated and executed again. Only then, the user can find boundary number 2.

Because no information is available on how often the query should be executed, it is not possible to find
the boundaries in the right order. The only solution is to look up all the boundaries that contain the parcel’s
object identifier listed in the field l_obj_id or r_obj_id, but the boundaries will not be found in the right order:

SELECT *
FROM Xfio_boundary
WHERE (((Xfio_boundary.l_obj_id)=1)) OR
(((Xfio_boundary.r_obj_id)=1));

We will see how an object oriented database management system orders the boundaries of a parcel within its
system.

Another example concerns the coordinates of points, which are saved with the entities they belong to. The entity
boundary keeps an attribute called shape, holding the points describing the geometry, with a maximum of 50
points. The start point and end point is shared with other boundaries. The coordinates of these points are stored
multiple times. This disadvantage can be accepted when considering the better performance when storing the
coordinates this way. We will make the experiment in the object oriented data model to store only references to
points with the boundaries and store the coordinates only once.

The problem of the existence of islands within parcels is solved by the entity “parcelover”. Actually the entity
“parcelover” describes the 1:n relationship between parcels and island parcels. The relationship could also have
been described by using an entity “parcel-island_parcel”, consisting of a column holding the object_id of the
parcel and of a column holding the object_id of one island parcel. Each island parcel is related to the parcel by
another tuple in this entity. The solution implemented stems however from considerations to save a large amount
of storage capacity and obtain a better performance.

The existence of the entity “parcelover” is a typical problem of relational databases. The number of
attributes cannot be changed from object to object, and an additional entity is needed. We will see how an object
oriented data model can solve this problem.

2.6 Summary
In this chapter, we recalled our knowledge on relational databases and introduced the LKI database, which
describes the geometry and topology of the cadastral parcels (and topographic elements) in the Netherlands. We
saw some advantages of relational databases, but also the disadvantages, illustrated by examples of the LKI. We
saw the different entities in this database, especially the entity “parcelover”. This entity serves to store islands
within parcels, when more than one island is present. A real problem is the failing ability to query recursively,
which makes it impossible to sort within the database the boundaries of a parcel in the right order.

In the next chapters we will see how we can overcome these disadvantages.

Jasmine – Spatial modelling with an object oriented database system

 8

Jasmine – Spatial modelling with an object oriented database system

 9

3 Geo information in object oriented databases
In an object oriented database all entities or data entries are viewed as objects. Even digits and characters. It is
possible to define collections of objects. A collection of characters can be used to store a word in some language.
A collection of digits can be used to store a number. This is the most fundamental aspect of an object oriented
database.

Paragraph 3.1 introduces the basic ideas and fundamental aspects of object orientation. Paragraph 3.2
discusses the capabilities any database system should support. Paragraph 3.3 gives a definition of an object
oriented database system. The Paragraphs 3.4 and 3.5 finally list the advantages and disadvantages of object
orientation.

3.1 The concepts of object orientation
The words “object” or “object orientation” are often used in a very broad manner and it is not possible to give a
definition of it. We will review the ideas presented in three different texts in this paragraph. First an article by
Peter Batty representing the point of view of Smallworld Systems. Second a book written by three authors, all
employed by Technology Deployment International, Inc: Setrag Khoshafian, Surapol Dasanandra and Norayr
Minassian. [Khoshafian e.a.., 1999]. These will be compared with Michael Worboys’ discussion in [Worboys,
1995].

According to Batty [Batty, year unknown] there are five areas within the GIS context in which the word “object”
is frequently used:
• object based systems;
• object centred systems;
• object oriented user interfaces;
• object oriented programming;
• object oriented databases.
Object based systems avoid splitting up the database into map sheets, on which objects are cut into two pieces
when crossing the map’s border. They keep the description of these objects intact by storing them only once and
keep a seamless geo data set. Batty points out that object based systems do not have anything to do with object
orientation.

Object centred systems [Newell, 1992] describe the world in terms of objects people naturally perceive as
objects like houses, streets and bridges. In contrast, a geometry centred model describes the world in terms of
points, lines, surfaces and cubes. Also an object centred model does not have to be implemented by an object
orientation.

An object oriented interface is often the classification used for a graphical user interface. However, there is by
far no agreement on what an object oriented interface should be. One can point out, that any interface that gives
the user the possibility to first select an object and then choose an action to be carried out gives right to be named
object oriented. However, an object oriented interface doesn’t tell anything about the underlying data structures
or functions.

Object oriented programming is rather clearly defined and accepted, at least after Batty. He points out the basic
ideas:

• object;
• class;
• message;
• method.

Besides that, he lists the concepts of:
• encapsulation;
• polymorphism;
• inheritance;

He sees these as the main characteristics.

[Khoshafian e.a.., 1999] considers three fundamental concepts for object orientation:

• abstract data typing;
• inheritance;

Jasmine – Spatial modelling with an object oriented database system

 10

• object identity.
Khoshafian e.a. add abstract data typing and object identity.

[Worboys, 1995] discusses:

• object identity;
• encapsulation;
• inheritance;
• composition;
• polymorphism.

He mentions composition as a separate topic. We will have a close look on all these ideas and concepts in the
next sections.

The key notion of the object oriented approach is that an object instance always has a current situation (the state)
and that an object is equipped with a certain set of predefined reactions (behaviour) for received requests. The
state is the totality of the data values stored within an object. The behaviour is expressed as a set of operations
that the object can perform. The underlying ideas of the different authors are the same; it’s only the terminology
that differs:

object = state + behaviour [Khoshafian e.a.., 1999]
object = state + functionality [Worboys, 1995]

The level of agreement on object oriented databases is actually really low. Should its implementation be based
on an object oriented programming language? Should its syntax for querying and data handling being
implemented as an object oriented interface? Should its actual data storage and handling use the ideas and
concepts of object oriented programming? Should it be able to store Binary Large Objects (so-called “blobs” like
images, sounds or movies) in a better manner? We will get to an answer in this chapter.

Object oriented programming: object, class, message and method
This paragraph will explain the terms object, class, message and method and the next ones the concepts of
abstract data typing, encapsulation, polymorphism, inheritance, object identity and composition.

An object instance can be seen as a data item like a variable or a constant in a programming language. A class
can be viewed as a data type. It is the description of how a certain category of objects should look like and -very
characteristic for object orientation- how it behaves. A class prescribes what actions can be carried out on its
objects and how the objects will react to this action. An action can be requested by asking for it by means of a
message. The message will trigger some piece of programming code to be executed, stored as if it was a
program, called a method. Examples of very common actions are creation, deletion and printing. The methods
define the behaviour of an object. [Khoshafian e.a.., 1999], [Batty], [INT, 2001]

For example, given a database of persons, you might define a class named person. When meeting a new
person, you might want to keep his or her name, phone number and address. Once home, you give into
your system: person.new()

What you actually did was sending a message to the object’s class “please create a new object in the class
person”. As a result the method called “new” was executed, taking care of the definition of the properties of the
new object and assign a unique identifier.

Above I used the word properties, which I did not mention before. What is a property? A property can be an
attribute or a relationship [Khoshafian e.a.., 1999]. When objects contain other objects this is a relationship. A
name is an attribute.

The name is described in characters. A character is an object. The attribute “name” could contain an
object of the class “character”. But did we not mention before that when objects contain other objects this is a
relationship? Sure, but characters are objects without identity. There is no relationship needed to a class
“character”.

But we cannot describe a person’s name by only one character. Therefore we can store collections of
objects belonging to one class into one property, so we store a collection of characters.

Such a collection of characters is widely used that we can decide to define a class named “string”. Now
we can store an object of the class string into the property name.

Jasmine – Spatial modelling with an object oriented database system

 11

The properties together contain the data values stored in an object. This defines the state of the object
[Worboys, 1995] and makes the object to an object instance.

Object oriented programming: abstract data typing
Abstract data typing is used “to describe a set of objects with the same representation.” [Khoshafian e.a.., 1999,
p. 36]. This refers to the basic idea of object instances belonging to classes. It consists of the representation (the
data structure) and the operations (the algorithms). Abstract data typing separates the implementation (the
internal representation of objects) from the interface to the outside world. This means this author uses the term
abstract data typing to refer to the concept of encapsulation, which we will consider in the next paragraph.

Object oriented programming: encapsulation, polymorphism and
inheritance
Encapsulation means that data within an object can only be accessed or changed by the methods defined on the
object’s class. [Batty] This makes it possible to hide the implementation of an object’s data structure and
algorithms. The reason is to free a user from the need for exact knowledge of that internal data structure and
algorithm(s). This makes the use of the data inside the objects less complicated. [Khoshafian e.a.., 1999]

Inheritance means that subclasses at least get the same data structure (properties) and get the same behaviour
(methods) of its super classes. It is possible to add properties, and make the subclass more specialized. It is also
possible to define new methods in the subclass, even with the same names as methods of the super class. This is
called polymorphism of methods [Khoshafian e.a.., 1999].

 “Polymorphism is the ability to appear in many forms. Polymorphism makes it possible to process objects
differently depending on their data type or class. More specifically, it is the ability to redefine methods for
derived classes.

For example, given a base class shape, polymorphism enables the programmer to define different
circumference methods for any number of derived classes, such as circles, rectangles and triangles. No
matter what shape an object is, applying the circumference method to it will return the correct results.

The type of polymorphism described above is sometimes called parametric polymorphism to distinguish

it from another type of polymorphism called overloading.”
“Overloading allows an object to have different meanings depending on its context. The term is used

most often in reference to operators that can behave differently depending on the data type, or class, of the
operands. For example, x+y can mean different things depending on whether x and y are simple integers or
complex data structures.

Not all programming languages support overloading but it is a feature of most object oriented
languages, including C++ and Java. Overloading is one type of polymorphism.”
(After the Webopedia dictionary [INT, 2001].)

Object oriented programming: object identity
Object identity is according to [Khoshafian e.a.., 1999] extremely important. Every object has a unique system
generated identity. It makes identity checks possible to check whether two objects are the same. This in contrast
to equality checks where the contents of two objects are compared. Object identity alleviates the programmer‘s
task on dynamic memory management, avoids bugs and makes applications more stable and easier to create.

Object oriented programming: composition
[Worboys, 1995] mentions composition as a special feature. Composition allows the modelling of objects with a
complex internal structure. He gives three ways in which objects may be composed:
1. by aggregation: component objects build an aggregated object. For example a house might be composed out

of the walls and the roof.
2. by association: a set of objects of the same type form an associated or grouped object. For example an object

of type “countries” might be an association of individual countries.
3. by ordered association: a set of component object placed in a certain order form an ordered association. For

example an object of type “time sequence” might be structured as a linear ordering of “minute” objects.

Jasmine – Spatial modelling with an object oriented database system

 12

3.2 Database capabilities
[Khoshafian e.a.., 1999] defines the concept of an object oriented database as the sum of fundamental concepts
for object orientation and database capabilities. Any database system should support the database capabilities,
defined in table 3.1.

Table 3.1: the database capabilities.

• persistence; Manipulated data can be transient (“short living”) or
persistent (“long living”).

• transaction; A sequence of statements that is executed entirely or not at all
in case of a problem. Transient data are only valid within a
transaction. Transactions are atomic, consistent, isolated, and
durable, also called the ACID properties:
- “Atomic: a transaction is the smallest unit of recovery.
- Consistent: a transaction takes the database from one

consistent state to another consistent state.
- Isolated: during its execution, a transaction cannot see

any changes made concurrently by other transactions.
- Durable: once a transaction commits, the system will

ensure that its effects persist in the database even if
subsequent failures occur.” (“Jasmine ii Database
Developer’s Reference 2.0.”)

• concurrency control; To keep the database consistent statements should be
executed in a serializable order. A multi-user environment
makes therefore special strategies necessary:
- timestamp ordering (“first requested, first executed”);
- optimistic algorithms (“solve concurrency conflict when

it occurs”);
- pessimistic or locking algorithms (“avoid concurrency

conflicts”).
• recovery; A database management system must protect the persistent

part of the database from transactions that fail because of:
- transaction errors;
- system errors;
- media errors.

• complex object modelling and querying; To select subsets and sub objects.
• versioning; To keep alternative versions of object instances available.
• integrity constraints; Examples of integrity constraints:

- unique primary key constraints;
- existential constraints (“no dead end references”);
- NOT NULL constraints (“data entry mandatory”);
- mechanisms for integrity definition and maintenance like

triggers: they consist of a condition component and an
action component (other authors use the term “daemons”
[Ishikawa, 1993]);

• security; For example user access regulations, like:
- read;
- write;
- erase;
- create;
- modify;
- scan.

• performance issues. Data structures and optimisation techniques like:
- indexes (e.g. B-tree);
- clustering (storage of referenced objects in the same

block);
- query optimisation;
- storage structures (e.g. files on media disk).

Jasmine – Spatial modelling with an object oriented database system

 13

To conclude this, I would like to add availability as an important requirement. Availability expresses the time
during which the system is restricted available or not available at all, due to maintenance or due to its sensibility
for errors caused by:

• bugs in the software of the system itself (causes most of the system errors);
• bugs in the operating system;
• for transaction errors;
• for errors on media;
• for errors in network connections.

For example a system that keeps running and only terminates an operation that fails due to an error can be called
robust. To the user an error message is shown. This minimizes the sensibility for errors and adds to the
availability. Exception handling is provided with modern programming languages following the try-throw-catch
principle [Laan, 1998] and every modern database system should be equipped with it.

3.3 Definition of an object oriented database system
I will assume to this point that an object oriented database should meet the following ideas and concepts of
object oriented programming when looking at the way data are stored, retrieved and queried:

• object;
• object identity;
• class;
• message;
• method;
• encapsulation;
• polymorphism;
• inheritance;
• composition.

Besides, the database capabilities should be supported:
• persistence;
• transactions;
• concurrency control;
• recovery;
• complex object modelling and querying;
• versioning of instances;
• integrity constraints;
• security;
• performance issues;
• availability.

3.4 The advantages of object orientation
��Abstract data typing allows a better conceptualisation and modelling of the real world.
��The semantics of types are explicitly defined by properties and operations.
��Systems become more robust.
��Systems are easier extensible; software components are reusable, easier to create and to maintain.
[Khoshafian e.a.., 1999]

An object oriented approach offers advantages specifically for spatial databases:
��The topology structure can be kept correct under transactions by the database management system itself.
��Special standardized classes for spatial entities.
��Special standardized class for temporal support.
��Explicit support of geometry and topology.
��Spatial indexing.
��Spatial clustering.

Jasmine – Spatial modelling with an object oriented database system

 14

3.5 The disadvantages of object orientation
��Deep inheritance hierarchies are difficult to manage and understand. The dependence of the subclasses from

the super class makes changes in the super class very difficult. [Khoshafian e.a.., 1999]
��The step of leaving a relational database system and convert all the data into an object oriented database

system requires high investments.
��An extra investment risk because no object oriented database system has a serious market share.

3.6 Summary
In this chapter the paradigm of object orientation is discussed. We saw which database capabilities any database
system should support. We defined an object oriented database system and listed the advantages and
disadvantages of object orientation. In the next chapter we will see how the issues discussed in this chapter are
implemented in Jasmine.

Jasmine – Spatial modelling with an object oriented database system

 15

4 The Jasmine object oriented database system
In the preceding chapter we saw which concepts, basic ideas and capabilities an object oriented system should
support. We will now discuss these issues for Jasmine.

Paragraph 4.1 describes the implementation of the basic ideas and fundamental concepts of object
orientation in Jasmine, which were introduced in paragraph 3.1. Paragraph 4.2 discusses the implementation of
the database capabilities, which were introduced in paragraph 3.2.

Paragraph 4.3 covers the question “is Jasmine really an object oriented database system”. Paragraph 4.4
gives an overview of the Jasmine interfaces. Paragraph 4.5 lists the system requirements. Paragraph 4.6 finally
summarizes the last three chapters. Most of the information is taken from the “Jasmine ii Database Developer’s
Reference 2.0” [CA, 2000].

4.1 Object orientation in Jasmine
Objects are the fundament for Jasmine. Objects are stored in classes. Classes are again stored in class families.
The next section will give a description of the system class family, which is defined at installation.

The class “object” in the system class family
The system class family has the following
hierarchy (figure 4.1):

Figure 4.1: the class hierarchy of the system
class family.

At the top the class “object”. A short explanation
will be given here. More details can be found in
the documentation.
A literal is a value such as a string, a decimal or
an integer. Literals can be atomic or structured.
Structured literals are tuples. Tuples serve to
retrieve and process results, for example from
queries.

An entity represents a real world object in the
database. An entity can be user-defined and
belong thus to the class composite. Four types of
collections are defined and three types of
restrictions for them are available (table 4.1):

Table 4.1: the four collection types defined in
the class “collection” of the system class
family. The collection types in the rows, the
defined restrictions on them in the columns.

 fixed number of elements duplicate values not allowed collection is ordered
array x x
list x
set x
bag

The most strict collection type is array.

The “iterator” class serves to loop through a collection. It replaces the well known for or while
statements.

The familyManager contains specific high level operations that act on classes and class families, for
example to select classes or print information on a class family. Locale is used to store parameters that describe
which time zone, date formats, character sets etc. have to be used. Session supplies the environment each time a
Jasmine session is started by an application and provides some methods e.g. Session.clear() to delete all the
collections defined during a session.

• object
o literal

�� atomic
• numeric

o decimal
o integer
o real

• bytes
o string
o byteSequence

• chrono
o timePoint

�� date
• boolean

�� tuple
o entity

�� composite
• user-defined

�� collection
• array
• bag
• list
• set

�� iterator
�� systemManager

• familyManager
• locale
• session
• transaction
• ODQL

• property

Jasmine – Spatial modelling with an object oriented database system

 16

A transaction is contained within one session and is used to control the operations of starting, ending
and rolling back transactions.

The class “ODQL” defines the statements available for the Object Database Query Language. This is
the programming and query language provided with Jasmine. The “property” class serves to store information
about ODQL statements.

Object identity
Object identity is automatically maintained by the system. It is used only for object instances and remains
unchanged through their lifetimes. Literals do not have any object identity.

Class
Jasmine’s own structure is organized in classes, as we saw in the preceding discussion. It is possible to define
new classes and manipulate them.

Message
Jasmine supports the basic idea of messages, as illustrated in the following example:

Bag<parcel> p;
Integer numberOfParcels ;
numberOfParcels = p.count() ;

“Count” is the message sent to the object p.

Method
Methods in Jasmine can be written and compiled using the Method Editor (see figure 4.7 in paragraph 4.4).
Methods can be defined on four different levels:
• instance level methods, for example a method that prints the data of an instance;
• instance collection level methods, for example a method that counts instances;
• class level methods, for example a method that creates a new instance;
• class collection level methods, for example a method that counts classes.
See also figure 4.7. Instances are all objects belonging to a specific class. Instance methods work on single
instances (“objects”) in the class. Class methods work on the class as a whole. Collection methods work on
selected groups of instances or classes.

The message “count” from the previous example invoked an instance collection level method called
“count”.

Encapsulation
Jasmine completely supports the concept of encapsulation.

For example a method “calculateSurface”, which could be defined on the class parcel. This method has
thus access to the data inside the objects of this class. But this method cannot directly access the data inside the
class sympnt describing the symbols on a cadastral map.

Polymorphism
Jasmine completely supports the concept of polymorphism. For example the method “count”, which can be used
to count collections of atomic literals (like integers), collections of tuples, collections of user entities (like
parcels) or collections of classes. This means the method can be used to count integers, but also to count parcels.

Inheritance
Jasmine completely supports the concept of inheritance. For example the method “count” which can be used to
count classes, but also to count the classes’ sub classes for which the method is also defined.

It is also possible to implement multiple inheritance. For example a subclass can inherit properties and
methods from two classes. Special attention has to be paid in case a method has the same name in both classes.

Jasmine – Spatial modelling with an object oriented database system

 17

4.2 Database capabilities of Jasmine
In paragraph 3.2 we discussed which capabilities any database system should support. In the following paragraph
we will discuss per issue -if it is supported- how it is implemented.

Persistence
Jasmine can store data permanently in so-called stores, files on a medium. They contain the complete class
definitions plus all the instances. These data are persistent.

Transactions
During a transaction persistent data can be created or deleted, but transient data will always be deleted (if
defined) at the transaction’s end. Transactions in Jasmine support the ACID properties.

Concurrency control
Jasmine uses locking to control the concurrency. Different levels of locking are possible:

• the whole database can be locked, for example for archiving the database;
• an entire class can be locked, for example when changing a property of instances fulfilling certain

requirements;
• a single instance can be locked.

Locks can escalate from instances to classes.

Recovery
Jasmine supports journaling (“logging”) and provides backup/restore commands. This helps to protect the
database against system and media errors. Transaction errors are avoided by rolling back any failing transaction.

Complex object modelling and querying
The user can define its own classes and hierarchies, and make them almost as complex as wished. Class
hierarchies can be made as deep as needed. Instances can contain thousands of instances of other classes. I did
not reach any restrictions. The computer’s resources restrict the capacity. The querying can be performed ad hoc
using a query editor. ODQL scripts can be written and interpreted using the ODQL Interpreter (see figure 3.10).

Versioning
Jasmine does not support any built-in versioning. The user can however create a versioning system of its own.

Integrity constraints
Jasmine maintains key constraints automatically. Each new entity gets a unique identifier. Existential constraints
are also automatically maintained. When a referenced object is deleted, the reference to this object is changed
into “NIL”. “NOT NULL” constraints can be defined when creating or modifying a class, and will result in the
system refusing to store an object when this constraint is not fulfilled.

Security
Encapsulation results in a certain level of security. Jasmine has however no built-in security measures. The user
can create its own systems.

Performance issues
Jasmine automatically creates an index on the identifiers of all the instances inside any class. The type of index
is a B+ tree. In [Wijngaarden, 1997] it was announced that CA intended to implement a R-tree in Version 2.0 of
Jasmine. A good description of the B+ and R tree structures can be found in [Worboys, 1995] and [Oosterom
1999].

When a class in created, a primary index is created automatically, based on the object identifiers. The
user can define further secondary indices (of the same type) on properties of the instances. When a query is
being executed, it uses at least the primary index.
Clustering is not supported. Query optimisation is not performed by the system.
The physical storage of data is done by creating files on media. These files, so-called stores, have to be created
by the user. He has to provide e.g. the total size.

Jasmine – Spatial modelling with an object oriented database system

 18

Stability
The version of Jasmine I used (Jasmine TND) is still
sensible for system errors causing the unexpected
termination of the application Jasmine Studio. The
reason is unclear. In case when changing a method’s
name into a too long new name, the whole method can
even be lost. Other cases are reported when compiling
methods written in the method editor. See paragraph 4.4
for more details. Error messages can appear whilst
exact the same method was accepted earlier. Often the
error message is not clear.

The application Studio of Jasmine ii was also
tried, but here the whole application Studio did not run.
Therefore, the older version was used instead (Jasmine
TND, Studio version 1.2). The existence of two versions
of Jasmine beside each other can be a reason for system
errors.

In February, Jasmine lost all classes and instances of a user-defined class family including 200 Mb on
data as the result of a system error (figure 4.2). The reason was a bug in the application Jasmine Studio. The
problem occurred when the class browser within this application was started while the database itself was not
running yet. As a result, the data were still present in the store, but could not be found anymore. The class family
could not be deleted anymore, and because of this, its store neither. A re-installation was necessary. Computer
Associates provided a patch for this bug.

No experience has been gained on sensibility on operating system errors.

Jasmine provides sophisticated error handling procedures for transaction errors. For example, errors in methods
result in the termination of only that method, rolling back of the transaction and the displaying of an error
message.

Errors on media or in network connections have not occurred.

Figure 4.2: the database is corrupt due to a
system error.

Jasmine – Spatial modelling with an object oriented database system

 19

4.3 Is Jasmine an object oriented system?
Batty formulated five questions to check whether a system is object oriented:

1. Is the system object based?
2. Is the system object centred?
3. Does the system support encapsulation, polymorphism and inheritance?
4. Does the system provide a set of standard class libraries, which can be extended by the user?
5. Does the system support the previous concepts within a database system?

Jasmine is object based, because no technical data divisions are necessary. An object crossing the border
between two map sheets will be treated as one object. Jasmine is object centred because objects are stored as
objects and not as collections of points, lines, surfaces and cubics. Encapsulation, polymorphism and inheritance
are supported. During installation a set of standard class libraries are created and available to the user. They can
easily be extended. Jasmine does support these concepts within a database system.
For Jasmine the answer to these questions is positive.

4.4 Description of the standard interfaces to the database within
Jasmine Studio
In this paragraph, the figures 4.3 to 4.11 give a quick overview of the interfaces standard available in Jasmine.
This is useful for readers who want to reproduce the test results documented in this thesis, but never worked with
Jasmine before.
 The database can explicitly be started and
stopped. This is mandatory when unloading or loading
data, because the database has to be shut down. (figure
4.3)

Figure 4.3: starting and stopping the database
system.

When the database is running, the application Studio can be used (figure 4.4). This is one way of approaching
the database. Another way is by the ODQL Interpreter (see figure 4.12).

Figure 4.4: starting Jasmine
studio and setting up the
database connection by
choosing a connection (here
only the “local” server is
available). Database
connections can be set up over
a network or only local.

Within Studio (figure 4.5) the Application Manager can be used to view, modify, create or delete applications
built on basis of the data structure and the data. These applications are another way to approach the database.
These applications can be web based.

Jasmine – Spatial modelling with an object oriented database system

 20

Figure 4.5: the Application
Manager.

The data structure and data can be viewed, modified, created or deleted using the Class Browser, a part of Studio
(figure 4.6). Distinction is made between the object instances inside a class, the queries, the methods and the
super class (in the tab “details”). All classes in Jasmine are divided over class families (abbreviated as CF).
Within a class family the class names are unique.

Figure 4.6: the
Class Browser. The
left ellipse indicates
the class family.
The right ellipse
indicates the tabs
holding objects,
queries, methods
and details.

Jasmine – Spatial modelling with an object oriented database system

 21

To write a method, the Method Editor can be used (figure 4.7). This is another part of Studio. A method will be
compiled in the database, and this imposes strict restrictions. It is possible to mix C or C++ with ODQL.
However, the ODQL statements need a “$” sign at the start of every new line.

Figure 4.7: The Method
Editor.

The Method Editor does not function properly. When trying to save a method containing a syntax error, an error
message is displayed (figure 4.8). This error message is not very useful. It refers to the line number on which the
error is found, but the Method Editor does not indicate any line numbers. The message text mentions that the
error is near the character string “$”, but every code line in ODQL begins with the “$” sign. Sometimes this error
message is not displayed anymore and the whole application Jasmine Studio hangs.
 The compilation of methods fails often. This is logical when the code contains an error. But the
compilation fails often on the addition of a simple piece of code (see figure 4.9). In this case only an integer was
declared. The displayed error message is not clear.

Because of these problems it was not possible to compile methods. The codes were written and tested using the
ODQL Interpreter (see figure 4.12).

Figure 4.8: an error message displayed
when trying to save a method
containing a syntax error.

Jasmine – Spatial modelling with an object oriented database system

 22

Figure 4.9: an error
message displayed after
the compilation of a
method failed.

Four different levels can be defined for the methods as described in paragraph 4.1:
(figure 4.10)

• instance level methods;
• instance collection level methods;
• class level methods;
• class collection level methods.

Figure 4.10: inside
the rectangle the
“methods” tab of
the class browser.

A query can ad hoc be made using the query editor (figure 4.11). However, only a single class together with its
related classes can be queried. For example recursive querying is not possible.

Figure 4.11: the Query
Editor.

Jasmine – Spatial modelling with an object oriented database system

 23

In order to query data for questions not possible in the Query Editor, a text file with ODQL statements can be
interpreted using the ODQL Interpreter (figure 4.12). Typing “codqlie” at the DOS-prompt starts the Interpreter.

Figure 4.12:
the ODQL
Interpreter.

This utility can also be used to test and run ODQL code for methods. “$” signs in front of the statements are not
allowed anymore. The advantage over the Method Editor is the lower restriction level of the interpreter.

Because the Method Editor did not function properly, this utility was used to test and run the codes for
the methods. (See also paragraph 4.2 in the section on stability). Unfortunately the ODQL Interpreter does not
support function calls to other ODQL scripts saved as text files. Encapsulation or polymorphism is naturally only
possible for methods inside the database.

It was also tried to use the Interpreter instead of Studio to define methods. Therefore an ODQL script was
prepared, holding the command “addProcedure” and a complete method:

defaultCF 'thematicViewCF';

addProcedure List<parcel> parcel::instance:zoom()
{
 $….(other ODQL statements)
 $List<thematicViewCF::parcel> lp2;
 $…..
 $return(lp2);
};

The code for this method was successful executed by the Interpreter earlier and assumed to be free of errors.
Then this script was interpreted by the ODQL Interpreter resulting in the definition of the method “zoom” and
the storage of the code. See figure 4.13, first two lines.
 Then the command “compileProcedure parcel;” was given into the ODQL Interpreter in order to
compile all the methods of the class “parcel”. This compilation failed, but the error messages are not clear
(figure 4.13).

Figure 4.13: part of the error message displayed as the compilation of a method in the ODQL Interpreter
failed.

Jasmine – Spatial modelling with an object oriented database system

 24

4.5 System requirements
(Taken from “Jasmine ii System Administrator Guide 2.0” [CA, 2000])
When installing Jasmine ii on a Windows platform:
• a Pentium processor;
• 128 Mb RAM (256 Mb recommended);
• the amount of hard disk space can differ, but the applications requires 90 Mb, to function properly much

more; (For Jasmine TND 300 Mb was required and 400 Mb recommended);
• Windows 95, 98, 2000, NT 4.0;

Jasmine TND and Jasmine ii were installed in different directories on a Windows NT 4.0 workstation in single
user modus with 256 Mb RAM.

Jasmine TND (“The New Dimension”): release Jasmine 1.2/9804. Jasmine Studio Version 1.2, Build 1254 is a
part of this.

Jasmine ii: Jasmine ii Base 2.0.

Jasmine ii ODB Option
No release number for any Jasmine application was found in any of the files on the CD-ROMs.

When installing Jasmine ii on a Unix platform:
• a SUN SPARCstation 20 is required, a SUN SPARC Ultra 1 is recommended;
• 128 Mb RAM (256 Mb recommended);
• the amount of hard disk space can differ, but the applications requires 30 Mb, to function properly much

more; (For Jasmine TND 300 Mb was required and 400 Mb recommended);
• Unix 2.5 or higher;
A Unix version was not available for this thesis.

4.6 Summary
In the last two chapters, we introduced the object oriented paradigm, together with its basic ideas and concepts.
We saw which database capabilities are necessary for a database system. These two themes together form our
definition of an object oriented database system.
 We checked the system Jasmine for the basic ideas and concepts of object orientation and for the
database capabilities. We concluded that Jasmine meets our definition of an object oriented database system.

In the next chapter we will see an example of an implementation of an object oriented database in
Jasmine.

Jasmine – Spatial modelling with an object oriented database system

 25

5 Implementation of an object oriented database in
Jasmine: the LKI

5.1 The LKI test database
The LKI (Landmeetkundig Kartografisch Informatiesysteem) holds the geometrical and topological data of the
Dutch cadastral registration, as described in paragraph 2.3.

Parts from the LKI data are available for testing purposes. One of these test data sets describes the
parcels and boundaries around the Grebbeberg, municipality of Rhenen, in the middle of the Netherlands. This
includes 16,574 parcels surrounded by 46,072 boundaries. Besides are 25,858 points for symbols and 9,170
points for text strings available.

Figure 5.1 shows a map of these parcels. The map is produced in ArcView after loading the original
relational data only converted into the ArcView format.

Figure 5.14: plot of all the parcels in the LKI test database of Rhenen. (© Kadaster)

The next paragraph will describe the object oriented data model designed to fit the LKI data. The data of the test
data set of Rhenen were converted and loaded into Jasmine. Most of the time on this thesis was spent on this:
five out of nine months. The conversion programs written in Perl are given in appendix B.

The counterpart AKR (Automatische Kadastrale Registratie), covering the information about the
owners of rights on parcels is not taken into account in this thesis. Although its data structure would be very
suited for modelling in an object oriented way, an object oriented data model could not been designed nor
implemented because the time needed to realise this was not available.

Jasmine – Spatial modelling with an object oriented database system

 26

5.2 An object oriented data model for the LKI
Of major importance is an object oriented data structure that fulfils the following requirements:
• the geometry, topology and thematics of parcels have to be described completely according the rules for the

LKI defined in [Osch, 1997];
• the parcels form a partition: a well defined area has to be covered completely by parcels and the parcels are

not allowed to overlap;
• islands of parcels inside other parcels have to be taken into account;
• the first, second and third normal form (see chapter 2) should be respected.
One of the goals of this thesis was to make and test an implementation of a worldwide accepted standard on
geographic information. Two standards have been considered:
- The “European prestandard CEN-ENV 12160 – Geographic information – Data description – Spatial schema”
published by the Comité Européen de Normalisation (CEN) [CEN, 1997].
- The “CD 19107 Geographic information – Spatial schema” published as draft by the International Standards
Organisation (ISO) [ISO, 2000].

The first one describes a simple, well-defined data model that can be implemented directly, because it
includes all the geometric and topologic entities used in the LKI, but is a prestandard.

The latter describes a far more extended model, but was not yet an official standard thus possible
subject to change. It covers far more entities to describe geometric and topologic features for example
“CubicSpline” or “TriangulatedSurface”. It includes the entities described in the first standard.

Therefore the first one was chosen. ER-diagrams are given in the figures 5.2, 5.3, 5.4 and 5.5.
The data model implemented by van Wijngaarden (1997) is also considered. It includes the geometric

and topologic entities needed, includes even a version mechanism but models the edges’ topology without the
references to next and previous edges. However, it would be a good alternative to the CEN-ENV 12160.

Figure 5.15:
legend for the E-
R-diagrams in
this chapter.

Legenda for the E-R-Diagrams

Curve has interpolation_method

outer_boundary

1 n

inner_boundary

boundary o

parcel

municip

osection

entity

properties

1:n relationship

Geometric
primitive

Point

Curve

Surface

d

overlapping subentities:
entities of “boundary” can be divided over
“outer_boundary” and “inner_boundary”;
an entity of “outer_boundary” can also be an
entity of “inner_boundary”

disjoint subentities:
entities of “Geometric primitve” can be divided
over “Surface”, “Curve” and “Point”;
an entity of “Surface” cannot also be an entity
of “Curve”

has not implemented relationship

Jasmine – Spatial modelling with an object oriented database system

 27

The main feature of this model (figure 5.3) is the distinction between geometric and topological data.
 The name “Spatial View” is not well chosen because a view refers to the representation of data. This is
not the case for the entity “Spatial view”. “Spatial Theme” or “Spatial Layer” would be the better choice. The
words “Topological” and “Geometric” are not consequent. “Topological” and “Geometrical” or “Topologic” and
“Geometric” would be a better choice.

Figure 5.16: the root
of the CEN model.

E-R-Diagram for the representation described
by the CEN-ENV 12160 (1)

Spatial view

has

has

1

1

1
Topological

primitive

1 Geometric
primitive

The geometric primitives (figure 5.4) are surface, curve and point. The coordinates in x, y and z are stored as one
entity, called “direct_position”.

The entity “Point” describes all 0-dimensional geometric primitives.
The entity “Curve” describes all 1-dimensional geometric primitives. It keeps a (defined as ordered) list

of the “direct_positions” it contains. The entity “interpolation_method” indicates whether the curve is a straight
line or an arc. The entity “boundary” describes the collections of curves, which surround each surface. It uses a
list also. No attention is paid to the direction of the curves. There seems to be redundancy present for the
direct_position that connects two curves.
 The entity “Surface” describes all 2-dimensional geometric primitives.

Part of the geometric primitives is a description of a data model for raster data. This part is not used in this thesis
and will not be covered here.
 The use of capitals in the entities’ names is taken from figure 33 in [CEN, 1997]. The actual prestandard
text mentions no capital use anymore.

Figure 5.17: the
geometric part of the
CEN model.

E-R-Diagram for the representation described
by the CEN-ENV 12160 (2)

Geometric
primitive

Point

Curve

Surface

has

has

has

direct_position

has

interpolation_method

outer_boundary

has

1 1

1

1

n

n n

n

1

inner_boundary

1

1

1

has1

has

boundary

n

d

o

Jasmine – Spatial modelling with an object oriented database system

 28

Figure 5.18: the
topologic part of the
CEN model.

E-R-Diagram for the representation described
by the CEN-ENV 12160 (3)

Topological
primitive

Face has

Isolated node

outer_ring

has

1

n

n

n

1

1

inner_ring

1

1
has1

has

Node

Edge

has

Connected node Terminating node

Intermediate node

Ring

ends
1

1

n

begins
1

1

right
bounded

left
bounded

11

n n

is previous
left

1
1

is previous
right

is next
right

is next
left

has

n

n

d

o

d
d

The topologic primitives (figure 5.5) are face, edge and node. They are the topologic “mirror image” of the
geometric primitives. They refer also to the geometric primitives. However, the prestandard does not prescribe
how this reference should be implemented.
 The entity “Node” is decomposed in the entities “ConnectedNode” (connected to each other in an edge)
and “IsolatedNode” (without connected neighbours).

The entity “ConnectedNode” is again decomposed in the entities “TerminatingNode” (at the edges’
end) and “IntermediateNode” (between the edges’ ends).
 The entity “Edge” forms the central topology. It refers to four neighbouring edges (like in figure 2.3), to
the faces left and right of the edge and to the end node and start node.
 The entity “Face” forms no partition without overlapping faces. Therefore it keeps a n:n relationship to
the entity “IsolatedNode”.

The actual implementation of the CEN-ENV 12160 [CEN, 1997] is adapted to fir the requirements of the LKI.
Inconsequent capital use has been corrected, incorrect terms not.
 First, every topologic primitive will contain a geometric primitive (figure 5.6). The entities “Topologic
primitive” and “Geometric primitive” are described in more detail in the figures 5.7 and 5.8.

Figure 5.19: the root
of the implemented
model. Compare with
figure 5.3.

The new entity
“Thematic View” will
be discussed later.

E-R-Diagram for the representation
implemented in Jasmine (1)

spatialView

has

has
geometric
primitive

1

1

1
topological
primitive

1

face

node

edge

point

curve

surface

has

has

has

1

1

1

1

1

1

thematicView

d

d

Jasmine – Spatial modelling with an object oriented database system

 29

The geometric part is adapted for the curves (figure 5.7). They will no longer contain direct positions, but they
will refer to points. This is according the first normal form (see chapter 2).

Figure 5.20: the
geometric part of the
implemented model.
Compare with figure
5.4.

geometric
Primitive

point

curve

surface

has

has

direct_position

has interpolation_method

outer_boundary

has

1 1

1

n

n

n

n

n

has

1

inner_boundary

1

1

1

has1

has

boundary

n

E-R-Diagram for the representation
implemented in Jasmine (2)

d

o

 The missing direction is not corrected. This information is actually included in the entity “Edge”: in the
properties that describe which face is on the left and which face is on the right and in the properties that describe
the start node and the end node (figure 5.8).
 Not all the properties have been implemented. The reason is that certain relationships can be maintained
by methods instead of attributes. The codes for these methods have been written, but it has not been possible to
implement them as real methods. See paragraph 5.4.

The topologic part is also adapted (figure 5.8). In the original model it is possible to have several faces to one
side of an edge (figure 5.5). This will be restricted to only one face (figure 5.8) because a boundary may only
have one parcel on either side. This is a special implementation of the prestandard CEN-ENV 12160.
[CEN, 1997]

Figure 5.21: the
topologic part of the
implemented model.
Compare with figure
5.5.

topological
Primitive

face has

isolated node

outer_ring

has

1

n

n

n

1

1

inner_ring

1

1
has1

has

node

edge

has

connected node terminating node

intermediate node

ring

ends
1

1

n

begins
1

1

right
bounded

left
bounded

11

1 1

is previous
left

1
1

is previous
right

is next
right

is next
left

has

1

n

E-R-Diagram for the representation
implemented in Jasmine (3)

d

o

d
d

Jasmine – Spatial modelling with an object oriented database system

 30

How is the relation between the faces and the coordinates of its boundaries implemented? In figure 5.6 we can
see that every face has a surface. From figure 5.8 follows that every surface has an outer boundary. An outer
boundary consists of curves. Curves again have references to points. The points finally refer to the coordinates
stored in the entity “direct position”. In the actual situation, no data on boundaries are available. Only the data
model is implemented. The dashed lines visualize this. The connection from faces to points is made by a method,
as we will see further on in this paragraph.
 Another relation between the face and the coordinates of its borders could also be possible. From figure
5.8 follows that every face has an outer ring. Every ring consists of edges. From figure 5.6 follows that every
edge has a curve. Curves again have references to points. The points finally refer to the coordinates stored in the
entity “direct position”. This relation is implemented in the data model, but currently there are no data on rings in
the database.

So far, we have a model for the geometric and topologic data. The entities in the ER-diagram can be identified
with classes in an object oriented approach. For the thematic data holding classifications, layers and time points,
there is no standard available. In the LKI the data are structured as follows (figure 5.9):

Figure 5.22: the
ER-diagram of the
LKI. (Compare
with figure 2.1.)

E-R-Diagram for the representation
implemented in the LKI

parcel

gcpnt

text

sympnt

municip

osection

boundary
1

1

right
bounded

left
bounded

1

is next
left

is previous
left

1 1
11

is previous
right

1

1 is next
right

1

1

coordinates

coordinates

coordinates

coordinates

1

parcelover

has has

1 1

1 ?

has

1

n

has1 1

municip

coordinate

Figure 5.10 shows a possible object oriented data model for the LKI. Instead of a primitive, an entity
“landRegistration” is chosen. We could have chosen as well an entity “thematic primitives”, that could contain
entities like “landRegistration”, “topographical”, “trafficSignalisation”, “electricCable” etc.

The entity “landRegistration“ contains the primitives needed to model a cadastral situation: parcels and
boundaries. The latter are called “propertyDividingBoundaries” in order to avoid confusion with the boundaries
in the geometric primitives. In Jasmine this would not lead to confusion, because the entities “boundary” and
“propertyDividingBoundaries” belong to different class families as we will see further on. In Jasmine class
names are only unique within a class family. The combination of the class families’ name and the class’ name
makes the class globally unique.

The names for the entities “gcpnt” (base points for measurements), “textInParcel” (in the LKI “text”)
and “sympnt” (symbolpoint) stem from the LKI and are maintained in this object oriented model.

A main feature is the hierarchical structure up from the country. The country has cadastral
municipalities (in the LKI “municips”, in Jasmine called “kadMunicips”). These are again divided into sections
(in the LKI “osections”). The sections are finally divided into parcels.

Note that the entities “country”, “kadMunicipality”, “osection” and “parcel” have a face. The entity
“propertyDividingBoundaries” has an edge. TerminatingNodes are provided for the bounding boxes of the
“parcel” and “edge” entities. IsolatedNodes are available for the entities “gcpnt”, “textInParcel” and “sympnt”.

Jasmine – Spatial modelling with an object oriented database system

 31

Figure 5.23: ER-
diagram for an
object oriented data
model for the
thematic information
in the LKI.

E-R-Diagram for the representation
implemented in Jasmine (4)

thematicViewCF

has

1

landRegistration
has country

has kadMunicipality

has osection

has parcel

has propertyDividingBoundary

has gcpnt

has textInParcel

has sympnt

1 1

n

n

n

n

n

n

n

n

has

has

has

1

1

1

n

n

n

has

bbox

has

has

has

has

has

has

Face

1

1

1

1

1

1

1

1

Terminating node

Isolated node

has

bbox

has Edge

bbox

bbox

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figures 5.11 and 5.12 summarise the implementation of the prestandard CEN-ENV 12160 [CEN, 1997]. A full
description of the data structure can be found in appendix C.

Figure 5.24: the
spatialView class
family (left). This
class family can be
used to describe
any geometry or
topology.
To the right the
representation of
the directPosition
objects. They hold
all the coordinates
in the database.

The terms spatialView, geometricPrimitive, directPosition and all the other class names stem from the
prestandard CEN-ENV 12160 [CEN, 1997].

classes oids of
object
instances

Jasmine – Spatial modelling with an object oriented database system

 32

The classes are defined in a hierarchic way in order to use inheritance:
• The geometricPrimitive class holds no instances of objects itself. It is an abstract class. It contains all the

classes that describe geometric objects:
o The directPosition class holds all the coordinates in the database in x, y and z.
o The point class holds all zero dimensional geometric objects; they keep each one directPosition

object.
o The interpolationMethod class can hold objects that define the possible interpolation methods, like

shortestWay (line) and circularArc (curved line). Only shortestWay is implemented.
o The curve class holds all one-dimensional geometric objects, they keep each a collection of Points.

Every curve object has also an interpolationMethod object.
o The boundary class holds collections of curves that surround a surface (see later on). The name of

this class is confusing, because in the LKI the boundaries are the line strings that separate two
parcels. In the object oriented version of LKI the boundaries are replaced by the curves (and by the
edges, which we will see later on).

o The surface class holds all two-dimensional geometric objects. They keep each one boundary
object as their outer boundary. Possibly, they keep also a collection of boundary objects for their
inner boundaries. In this way, islands are modelled geometrically.

• The topologicPrimitive class holds no instances of objects itself and is again an abstract class. It contains all

the classes that describe topologic objects:
o The node class holds also no instances of objects itself. But every node object keeps a point object

to describe its geometry. It contains all the classes that describe zero dimensional topologic objects:
�� The connectedNode class holds also no instances of objects itself. It contains two classes

that describe zero dimensional topologic objects which are part of edges (see later on):
− The terminatingNode class holds zero dimensional topologic objects at the end of

edges.
− The intermediateNode class holds zero dimensional topologic objects between the

ends of edges.
�� The isolatedNode class holds zero dimensional topologic objects, which are no part of any

edges.
o The edge class holds all one-dimensional topologic objects. They keep each a curve object to

describe its geometry. Every edge holds two terminatingNode objects: startsAt and EndsAt; two
face objects (see later on): hasOnItsLeft and hasOnItsRight; four neighbouring edges: nextLeft,
nextRight, previousLeft and previousRight.

o The ring class holds collections of edges that surround a face.
o The face class holds all two-dimensional topologic objects. They keep each a surface object to

describe its geometry. They keep each one ring object as their outer ring. Possibly, they keep also a
collection of ring objects for their inner rings. In this way, islands are modelled topologically.

IsolatedNodes are not allowed on edges. When an isolatedNode appears to be on an edge, it should become an
intermediateNode.

The model according CEN-ENV 12160 [CEN, 1997] was adapted on the following points:
• the curves contain points instead of directPositions, to avoid double storage of directPositions at the curve’s

ends.
• an edge has only one face to its left and only one face to its right, instead of sets of faces to its left and to its

right. Of course actually more faces are present to either side, but they belong to another partition. The
osection’s face, the kadMunicipalities’ face and the countries’ face (see figure 5.10). But it’s more important
to force the system to avoid possible overlappings of parcels, then to have easier ways of selecting the edges
of the face of an osection.

Sometimes a method can combine data from the database instead of storing extra data. Certain relationships can
be maintained by methods instead of attributes. The codes for these methods have been written, but it has not
been possible to implement them as real methods. See paragraph 5.4.
Such methods are foreseen in the following cases:
• in the surface class to find the boundary objects;
• in the boundary class to collect the curve objects for the boundary objects;
• in the intermediateNode class to find the edge object the intermediateNode object belongs to;
• in the isolatedNode class to find the face object the isolatedNode object belongs to;
• in the face class to find the ring objects;
• in the ring class to collect the edge objects for the ring objects.

Jasmine – Spatial modelling with an object oriented database system

 33

Figure 5.25: the
thematicView class
family (left). This
class family
describes the
thematics of the
Dutch cadastral
registration.

To the right the
representation of a
country object. The
country holds all
the cadastral
municipalities.

The term thematicView does not belong to any standard anymore. This is the thematic counterpart of the spatial
information in the database.

The classes within the thematicView class family are defined as follows:
• The landRegistration class holds no instances of objects itself. It contains all the classes that describe objects

containing thematic information on spatial objects:
o The country class describes countries of which land registration data are available. Every object

keeps a face object describing the whole country topologically in the property “topologicObject”
(figure 5.13).

o The country object “Nederland” (figures 5.13 and 5.14) is divided into cadastral municipalities.
Therefore, a class kadMunicipality (figure 5.12) holds all the objects describing them. Every object
keeps a face object describing the whole municipality topologically.

Figure 5.26: the object
“Nederland”.

Figure 5.27: the object
“Nederland” divided into
kadMunicipality objects.

face

face

Jasmine – Spatial modelling with an object oriented database system

 34

o The kadMunicipality-objects (figure 5.15) are divided into sections (figure 5.16). In the LKI the
term “osection” is used. Therefore a class osection (figure 5.12) holds all the objects describing
them. Every object keeps a face object describing the whole osection topologically.

Figure 5.28: a
kadMunicipality object.

Figure 5.29: kadMunicipality
objects contain osection
objects.

o The osections (figure 5.17) are divided into parcels (figure 5.18). Therefore a class parcel (figures

5.12 and 5.19) holds all the objects describing them.

Figure 5.30: an osection
object.

Figure 5.31: section objects
contain parcel objects.

Figure 5.32: a parcel object. Every parcel object
keeps a face object describing the whole parcel
topologically in the property “topologicObjecct”.
Further, a bounding box is available described
by two terminatingNode objects and a centroid
described by an isolatedNode object.

face

face

isolated
Node

two
terminating
Nodes in a
list

parcels

Jasmine – Spatial modelling with an object oriented database system

 35

o Every parcel object is surrounded by propertyDividing-Boundaries (figures 5.20, 5.21 and 5.22).

Figure 5.33:
propertyDividingBoundary
objects.

Figure 5.34: a
propertyDividingBoundary object.
Every object keeps an edge object
describing the
propertyDividingBoundary
topologically (upper rectangle).
Further a bounding box is
available described by two
terminatingNode objects (lower
rectangle).

Figure 5.35: the hierarchy of
objects: a
propertyDividingBoundary
(object id 1547::3225)
contains an edge :
object id 2121::3225.
This edge contains a
terminatingNode in the property
“startsAt”:
object id 2118::1033.
This terminatingNode contains a
point to describe its geometry:
object id 2110::1034.
This point contains a
directPosition:
object id 2109::1034.
This directPosition has coordinates
in x, y and z.

edge

terminatingNodes

faces

next/previous
edges

point

directPosition

Jasmine – Spatial modelling with an object oriented database system

 36

o The class gcpnt describes base points for surveying measurements. Every object keeps an
isolatedNode object describing the position of the gcpnt topologically.

o The class textInParcel describes text strings. Every object keeps an isolatedNode object describing
the position of the textInParcel topologically.

o The class sympnt describes symbols. Every object keeps an isolatedNode object describing the
position of the sympnt topologically.

Not all methods of the classes have been implemented yet:
• in the surface class to find the boundaries;
• in the boundary class to find the curves;
• in the intermediateNode class to find the corresponding edge which any intermediateNode is part of;
• in the isolatedNode class to find the face surrounding any isolatedNode.

Not all the data are available yet:
• the surfaces for the country, kadMunicipality and osection classes have no surrounding curves;
• the list of gcpnt objects in the kadMunicipality objects is not present.

The model implemented contains also an error:
• an isolatedNode can only be within one single face, instead of a set of faces. But it can be within a parcel’s

face, within an osection’s face, within an kadMunicipalities’ face and of course within a countries’ face.
The missing information in the direction of edges causes complications, as we will see in paragraph 5.5. These
complications can be a reason to change the data model.

5.3 How to handle objects that change
Owners of rights can change the topological situation of parcels. For example a parcel can be split up. A new
parcel emerges together with some new boundaries. How are these changes recorded in the database?

In the relational LKI system a new tuple is created in the table xfio_parcel each time something changes
in the situation of a parcel. The property “tmax” is set to zero and the property “tmax” of the older tuple is set to
the current database time.

How are these changes recorded in an object oriented database?
• In the Parcel class a new object is created.
• The old object describing the parcel gets a value > 0 for the property “tmax”.
Also new objects are created to describe new boundaries in the Boundaries class of the thematicView class
family, in the edge and curve classes and in the boundary class of the spatialView class family.

In the classes of the spatialView class family no property “tmax” is available. This is logical, because
this class family describes only geometry and topology, no time or thematics. The CEN-ENV 12160 [CEN,
1997] describes no data models for temporal data.

But what happens to the face and surface classes?
Two alternatives:
1. We can simply create two new objects in each of these classes.
2. We can create just one new object in each of these classes and keep the old one unchanged.

The first possibility seems to be according to the policy practised in the LKI. The second possibility not.
The old parcel changes, its geometry and topology changes. The face and surface objects change also, because
their outer ring and outer boundary change.

Less storage space is an advantage of the second possibility. The data model becomes however less
logical. Historical situations are not reconstructable anymore; this means versioning is not possible.
Therefore the first alternative is the better one.
 The best solution would be to create a generic temporal class from which the temporal information is
derived. An object oriented system would be very suited for this. Van Wijngaarden (1997) implemented this
already. However, this is outside the scope of this thesis.

During the conversion of the LKI data the historical data are also converted. This means there are faces and
surfaces available for valid parcels, but also for the invalid (historical) parcels.

Jasmine – Spatial modelling with an object oriented database system

 37

5.4 Methods on the LKI object oriented database
This paragraph introduces some operations implemented for the LKI test database. The implementations are not
complete but serve to test the capabilities of Jasmine to handle spatial operations. Because of the compilation
problems (see paragraphs 4.2 and 4.4) these operations are not implemented as real methods. The operations are
therefore written as ODQL scripts, tested and performed using the ODQL Interpreter (paragraph 4.4). This
means the operations will perform slower. Unfortunately the ODQL Interpreter accepts no parameters, allows no
function calls and returns no objects. To change the scripts into methods for future applications, the following
adaptations have to be made:
• replacement of the built in default value for the parameter by a value given by the system or the user;
• replacement of pieces of code by messages to invoke another method;
• replacement of the output to the screen by a return statement.

We will cover in this paragraph the implementations of the “point in polygon” operation and the
“calculate area” operation. First, the “find boundaries from parcel” operation is presented. The code of the
methods covers several pages and is included in appendix D.

The “find boundaries from parcel” operation
The method “findBoundariesFromParcel” serves to find the edges surrounding any parcel in the right order. In
fact the method tries to reconstruct an outer ring. This makes the storage of ring objects avoidable, and thus the
storage of extra data. Of course, it is always possible to change this situation. The data structures for storing
rings is available. The method is not able to handle inner rings.

Currently the method contains a value taken from the LKI attribute “object_id” to replace the
parameter. Naturally the method should accept an object instance of class parcel as parameter. The method
outputs to the screen a list containing the parcel’s edges sorted in the right order. This should be changed into a
return statement.

The method “findBoundariesFromParcel” needs 10 seconds to find a parcel and its surrounding edges and
reconstruct the correct order of the edges from the edge’s topology.

The method’s code is included in appendix D.5.

The “point in polygon” operation
The method was written using the algorithm developed by Prof. Alfred Schmitt [Kreylos, 2000]. This algorithm
uses a horizontal line starting at the given point. The amount of crossings with the surrounding polygon is
counted. If this amount is odd, the point is inside the polygon. In this way the method can handle holes (island
parcels).

The method written uses a directPosition as point and a parcel as polygon. First all bounding boxes of
the parcels are checked and only parcels whose bounding box contains the given directPosition are selected. This
group of parcels is checked following Schmitt’s algorithm.

The method should use any description of a 2D-point as parameter. Currently this is a new
directPosition, but this can be changed into a node, a point or simply two integers. The method outputs an object
instance of the class “parcel” to the screen. This should become the return value.

The method “findParcelFromDirectPosition” needs approximately 1 minute and 45 seconds to complete its task.
Most of the time (1 minute and 15 seconds) is needed to check the bounding boxes of the 16,574 parcels in the
test data, because no spatial indexing is used on them.

The method’s code is included in appendix D.8

The “calculate area” operation
Inside the LKI database it is not possible to calculate the area of a parcel. The reason is that SQL cannot
recursively run the same query to find the next boundary from the last one found. The amount of boundaries is
unknown at forehand.
 The method uses the code of the method “findBoundariesFromParcel”. This should be replaced by a
message to invoke this method. Not that this method cannot handle islands. This method is not needed for the
actual area calculation, because a two-point algorithm is used (see paragraph 2.6). This method is only needed to
find out what direction the edges have.

Jasmine – Spatial modelling with an object oriented database system

 38

 The data model implemented offers no explicit information on the direction of the edges: clockwise or
anti clockwise. The method compares therefore the current edge’s terminatingNode in the property “EndsAt”
with the next edge’s terminatingNode in the property “startsAt”. If these are the same, the next edge has the
same direction as the current edge. The points of the edge’s underlying curve are used from start to end. If these
are not the same, the points of the edge’s curve are used in the opposite direction. Remains the problem that the
direction of the first edge is unknown. This is solved by checking the sign of the area at the end of the
calculation. This inelegant solution can be a reason to change the data model.
 Currently the method contains a value taken from the LKI attribute “object_id” to replace the parameter.
Naturally the method should accept an object instance of class parcel as parameter. The method outputs to the
screen the calculated area. This should be changed into a return value.

The code of the method “calculateAreaOfParcel” implemented in ODQL delivers a result after 45 seconds the
first time. A second run delivered the same result after again 45 seconds. We will see in the next chapter that
repeated runs could differ in needed time.

The method pays no attention to the “interpolationMethod” object. Arcs are thus treated as lines. This should be
changed.

The method’s code is included in appendix D.1.

5.5 Summary
In this chapter the object oriented data model for the LKI test database is described and we discussed its current
state of implementation. We discussed how parcels and boundaries are modelled using a hierarchy: a parcel has a
face describing its topology, a face has a surface describing its geometry, a surface is surrounded by a boundary,
a boundary is composed of curves, curves contain points and points finally have directPositions holding the
coordinates. We discussed also the hierarchic structure from parcels, sections, and cadastral municipalities up to
the country, which is a better conceptualisation than storing references to these entities with every parcel or
boundary. However, this data model is not optimal.

We also covered the implemented operations. The “point in polygon” operation shows us that Jasmine
is capable of handling spatial operations. Of major importance is the developed “calculate area” operation,
because area calculations are not possible within the relational data model of the LKI. The implemented object
oriented model makes area calculations possible. This is a great advantage of an object oriented database system.

Jasmine – Spatial modelling with an object oriented database system

 39

6 Comparison
In this chapter the tests are documented that were performed to compare the object oriented database in Jasmine
with a relational database holding the same data. This is a relational database of type MS-Access version 2000.

The used SQL scripts to perform the tests in MS-Access are given in their original form. The scripts
were run using the query editor inside MS-Access.

The used ODQL scripts to perform the tests in Jasmine are given in a shortened version. The complete
scripts can be found in appendix D. The scripts were run using the ODQL Interpreter. Again the ODQL code has
to be interpreted, but the SQL code also.
 The tests are performed on a WindowsNT 4.0 machine with 256 RAM in single user modus. Every test
consists of minimal two executions to take hot/cold effects into account. Hot/cold effects refer here to the
possibility that the second execution takes less time because the system “remembered” information from the first
execution. Tests are repeated at least on two different days to check the results.
 The processes that started automatically during start up were not stopped. Their consumption of
memory and processor time kept stable and it is assumed they did not influence the test results.

These tests have been performed using different sizes for the workStore (default 20480 Kb), for the
transactionStore (default 10240 Kb) (together called the workSize parameter) specified in the client environment
file, stored in the env-directory inside the Jasmine directory. “A store is a physical container for stored objects.
Each store is implemented using files that are managed by Jasmine.[..] The work store is used to store temporary
objects that outlive a transaction. The transaction store is used to store collections that exist within a transaction.”
(“Database Developer’s Reference”)

These tests have been performed also using different sizes for the bufferSize parameter (default 1024
Kb). “The bufferSize client environment parameter specifies the size of the page cache for the work store and
transaction store within the server process. This buffer holds a local cache of pages transferred between the
server process and the disk storage where the work and transaction stores reside in the course of a transaction.
The parameter is specified in the client environment file used when starting a session.” (“Database Developer’s
Reference”)

6.1 The database volume test
The amount of storage space needed to store the object oriented structured data are dependent of the used data
model and the used database management system.

Comparing relational to object oriented structured data: dumped text files
The LKI dump data, structured in a relational way, stored as text files need a volume of 82 Mb. They contain
enormous amounts of spaces.

When the data of the object oriented LKI test database in Jasmine are dumped into a text file, its volume is 59
Mb.

The amount of spaces in the LKI dump data is so high, that the amount of storage space needed is higher than the
amount of storage space needed to store the object oriented structured data. Although the object oriented data
contain by far more object instances than there are tuples in the relational data.

The Jasmine database stores its data in stores, which are divided into pages, see figure 6.1.

Comparing relational to object oriented structured data: inside Jasmine
In the two stores LKIStore1 and LKIStore2 the original relational LKI data are stored only converted into a
format that can be loaded into Jasmine. 7449 and 7429 pages are used. The chosen page size is 8 Kb, which
makes 116 Mb.

In the stores DCStore1 and DCStore2 the object oriented LKI test database is stored. 218,181 and 7,788 pages
are used. The chosen page size is again 8 Kb, which makes 1,765 Mb.

Comparing relational to object oriented structured data: MS-Access against Jasmine
The original relational structured data loaded into MS-Access need a storage space of 56 Mb.

The object oriented LKI test database needs 1,765 Mb.

Jasmine – Spatial modelling with an object oriented database system

 40

It is clear that Jasmine really needs a lot of storage room, a factor 30 in comparison to MS-Access or its own
dump data. It is especially the spatialViewCF that needs the most storage space. This is caused by the classes
“directPosition” and “point”.

The only difference between the dumped data in the text files and the data inside Jasmine is the
maintenance of the relationships. But these cannot make a difference that large.
 The file containing the store DCStore1 was zipped using WinZip 7.0 to estimate the real information
content. WinZip compressed the store to 214,864 Kb, which is still a large file.

When the contents of the stores were visualized, the large amount of zeros was striking. Most of the
pages are only partially used. Possibly the default page size of 8 kB is not optimal.

Figure 6.1: the result of the “listStore” system command showing the data stores, which class families are
contained in them, its page size (in byte), how many pages are available and how many used.

Jasmine – Spatial modelling with an object oriented database system

 41

6.2 The index test
Jasmine uses B+ trees for indexing, see paragraph 4.2.

Comparing a query with and without index: MS-Access against Jasmine
One of the most simple queries is: find the parcel with object id XXX.

In MS-Access the parcel is found immediately. The use of an index makes no difference.

The same query implemented in ODQL delivers the parcel after 5 seconds. A second run repeats the result after
4 seconds.
When using an index on the property “object_id”, the answer comes immediately. A second run makes no
difference.

This result shows clearly the effect of an index, is however not surprising.
To create the index on the parcel’s attribute “object_id”, the following ODQL-script was run:

defaultCF 'thematicViewCF';

Bag<Composite class> CCS;
Composite class CC;
CC = parcel.getClass();
CCS = parcel.getSubClasses(TRUE);
CCS = CCS.add(CC);
scan(CCS, CC)
{

CC.createIndex("object_id","object_id");
};

undefVar CCS;
undefVar CC;

Jasmine – Spatial modelling with an object oriented database system

 42

6.3 The “find boundaries that have only one next or previous
boundary” test

In the LKI every boundary has four attributes that tell to which other four boundaries it is connected: two at the
start point, two at the end point. In a certain number of cases the identifiers of the two boundaries at one side are
equal. It seems that the topology is incorrect. However, the reason is the limitation of 50 points that can be stored
with each boundary in the LKI. When more than 50 points are needed, a next boundary is used, and the attributes
at the end point refer both to that next boundary.

Find boundaries that have only one next boundary or only one previous boundary
The test data in MS-Access were queried in SQL for this feature. After 10 seconds, a set of 4,718 records was
presented. When the same query was run again, the result was displayed almost immediately.

The same question was implemented in ODQL and queried in the test data in Jasmine. After 45 seconds, 4,798
records were counted. The difference in number is explained by records of boundaries at the border of the test
area. These records point to boundaries outside the test area, and during the conversion these occurrences were
set to “NIL”.

When the same query was run again, the execution time dropped to 27 seconds. A third run did not change the
results anymore.

These tests were run using a size of 20480 Kb for the workStore, 10,240 Kb for the transactionStore and a size of
1,024 Kb for the bufferSize parameter.

In order to obtain better performance results these tests were repeated using the maximum values for the three
specified parameters. The size of the workStore became 2,097,152 Kb, the size of the transactionStore became
also 2,097,152 Kb and the bufferSize became 131,072 Kb.

The query was run again, after restarting of Jasmine. After 28 seconds, the result was displayed. The immediate
repetition of the query delivered the result after 25 seconds.

The difference in syntax between SQL and ODQL is of course not surprising. But the difference in length is
remarkable. In SQL this query can be formulated like this:

SELECT object_id, fl_line_id, fr_line_id, ll_line_id, lr_line_id
FROM Xfio_boundary
WHERE ((fl_line_id = fr_line_id) OR (ll_line_id = lr_line_id));

In Jasmine it was not possible to use the query editor for this question, because this editor did not allow the
comparison of two attributes from the same class. To solve this problem, a small program was written and
interpreted by the ODQL Interpreter:

/* ## declarations */
defaultCF 'thematicViewCF';
List <propertyDividingBoundary> b;
/* ### find boundaries */

b = propertyDividingBoundary
from propertyDividingBoundary
where (propertyDividingBoundary.topologicObject.nextLeft ==

propertyDividingBoundary.topologicObject.nextRight)
or (propertyDividingBoundary.topologicObject.previousLeft ==

propertyDividingBoundary.topologicObject.previousRight);

Integer numberOfBoundaries;
numberOfBoundaries = b.count();
numberOfBoundaries.print();

/* ################################### clear memory from variables */

undefVar b;
undefVar numberOfBoundaries;

/* ## end of program */

Jasmine – Spatial modelling with an object oriented database system

 43

In this program a list is defined to store the results from the query. The number of objects in this list is explicitly
counted. In MS-Access this is done automatically. This explains the difference in code length.

The long waiting time is of more importance. The database size can be a reason for this, but also the use of
interpreted code instead of compiled code.

We can conclude that enlarging the bufferSize and workSize parameters results in a better performance
by speeding up the process. However, the larger sizes result in a longer waiting time before the ODQL
Interpreter is ready: 10 seconds instead of only 1 second. The same happens when the application Studio is
started. The larger values are especially useful when performing more than one operation. For the following, we
use only the maximum settings of these parameters.

6.4 The “find boundaries with the same parcel at both sides” test
In the LKI every boundary “knows” which parcel is at his left and which at his right side. For the whole
Netherlands there are some erroneous boundaries stored that have the same parcel at both sides.

Find boundaries with the same parcel at both sides: MS-Access against Jasmine
The test data in MS-Access were queried in SQL for this error. After 7 seconds the result was displayed: no
records found. A second run delivered the result almost immediately.

The same question was implemented in ODQL and queried in the test data in Jasmine. After 35 seconds 768
boundaries were found. But this were boundaries with the entry NIL for both the parcels due to its position at the
border of the test area. The same result was displayed after the second run taking 25 seconds.

After enlarging the BufferSize and WorkSize parameters these two runtimes remained both on 25 seconds.

In SQL the query was formulated as follows:

SELECT object_id
FROM Xfio_boundary
WHERE (l_obj_id = r_obj_id);

In ODQL the same result was obtained with:

/* ## declarations */
defaultCF 'thematicViewCF';
List <propertyDividingBoundary> b1;

/* ### find boundaries */
b1 = propertyDividingBoundary
from propertyDividingBoundary
where propertyDividingBoundary.topologicObject.hasOnItsRight ==

propertyDividingBoundary.topologicObject.hasOnItsLeft;

String s2;
s2 = "boundary";
s2.print();

b2.count().print();

/* ################################### clear memory from variables */
undefVar b1;
undefVar s2;

After these two tests we can conclude that Jasmine clearly shows some difference between “cold” and “hot”
results due to caching of data in the transactionStore. MS-Access shows also such differences, probably due to
caching.

Jasmine – Spatial modelling with an object oriented database system

 44

6.5 The “find all parcels inside a given rectangle” test
Every GIS-system needs a visualisation tool. One operation often used in visualisation tools is zooming. In
figure 6.2 a possible zoom operation is illustrated. We have the map showing all the parcels in the LKI test
database. Now we want to
zoom in on Rhenen. To
perform a zoom operation on
a cadastral map, a set of
parcels has to be selected in
order to show them on the
screen.

Figure 6.2: inside the
rectangle the parcels that
were selected.
(© Kadaster)

The selection can
be done on basis of a
centroid, a bounding box or
the boundaries of the
parcels. The last option
results in a waste of
processor time, and will be
left out here. We will show
how Jasmine performs when
selecting parcels on basis of
centroids and bounding
boxes.
In the LKI a centroid
(“location”) is available for every parcel, implemented by a point stored in one field. In the relational LKI test
database inside MS-Access the x- and y-coordinates of the point are stored in separate fields. In the object
oriented LKI test database inside Jasmine, this centroid is implemented as an isolatedNode.

Select parcels in a rectangle by centroid: MS-Access against Jasmine
The test data in MS-Access were queried in SQL for a rectangle of 2 by 2 km using the centroid. Only valid
parcels (tmax = 0) are selected. After two seconds, 2,117 records were found and displayed. A second run
delivered the same result after one second.

The question implemented in ODQL and queried delivered also a result of 2,117 parcels but after 32 seconds the
first time. A second run delivered the same result after 20 seconds.

In SQL the query was formulated as follows:

SELECT object_id, centroid_x, centroid_y
FROM Parcel_formatted
WHERE (tmax=0)
AND (((centroid_x > 166000000) AND (centroid_y > 440000000)) AND

((centroid_x < 168000000) AND (centroid_y < 442000000)));

In ODQL the same result was obtained with:

defaultCF 'thematicViewCF';
List<parcel> lp;
lp = parcel from parcel
where (parcel.location.geometricObject.hasPosition.x > 166000000
and parcel.location.geometricObject.hasPosition.y > 440000000
and parcel.location.geometricObject.hasPosition.x < 168000000
and parcel.location.geometricObject.hasPosition.y < 442000000)
and parcel.tmax == 0);
lp.count().print();
undefVar lp;

Jasmine – Spatial modelling with an object oriented database system

 45

When using centroids to obtain all parcels within a certain rectangle not all parcels will be found, because
centroids from parcels partly within the rectangle are not taken into account (figure 6.3).

the
rectangle

a parcel
that will be
included in
the query

a parcel that
will be left

out from the
query

a centroid

Figure 6.3: not all parcels will be found when using centroids to select parcels.

Therefore we will repeat the test, now using the bounding box of every parcel. In the LKI this bounding box is
implemented as two points stored in one field. One on the lower left corner, one on the upper right corner. If
only one of the two points is inside the rectangle, we will select the parcel. In the relational LKI test database
inside MS-Access the two x-coordinates and the two y-coordinates of the points are stored in separate fields. In
the object oriented LKI test database inside Jasmine, the bounding box is implemented as a list of two
terminatingNodes stored in one attribute.

Select parcels in a rectangle by bounding box: MS-Access against Jasmine
The test data in MS-Access were queried in SQL for a rectangle of 2 by 2 km. Only valid parcels (tmax = 0) are
selected. After three seconds 2,185 records were found and displayed. A second run delivered the same result
after two seconds.

The question implemented in ODQL and queried delivered a result of 2,185 parcels but after 1 minute and 45
seconds the first time. A second run delivered the same result after 2 minutes 15 seconds.
Note that the second time the query is performed in Jasmine even more time is needed than for the first time.

In SQL the query was formulated as follows:

SELECT object_id, bbox_ll_x, bbox_ll_y, bbox_ur_x, bbox_ur_y
FROM Parcel_formatted
WHERE
(tmax = 0
AND

(((bbox_x2 >= 168000000
AND bbox_x1 <= 168000000
)

OR
(168000000 >= bbox_x2
AND 166000000 <= bbox_x2
)

)
AND

((bbox_y2 >= 442000000
AND bbox_x1 <= 442000000
)

OR
(442000000 >= bbox_x2
AND 440000000 <= bbox_x2
)

)
)

);

Jasmine – Spatial modelling with an object oriented database system

 46

In ODQL the same result was obtained with:

defaultCF 'spatialViewCF';
List<thematicViewCF::parcel> lp;
Integer llx;
Integer lly;
/* ## define the rectangle */
/* ############################# ll = lower left, ur = upper right */
Integer urx;
Integer ury;
llx = 166000000;
lly = 440000000;
urx = 168000000;
ury = 442000000;
/* ## find all valid parcels */
lp = thematicViewCF::parcel from thematicViewCF::parcel
where (thematicViewCF::parcel.tmax == 0);
Integer i;
Integer numberOfParcels;
i = 0;
numberOfParcels = lp.count();
thematicViewCF::parcel p;
List<terminatingNode> lon;
terminatingNode tn1;
terminatingNode tn2;
List<thematicViewCF::parcel> lp2;
while (i < numberOfParcels)
{

p = lp.getElementAt(i);
lon = p.bbox;
tn1 = lon.getElementAt(0);
tn2 = lon.getElementAt(1);

/* if the sides of the bbox overlap with the sides of the rectangle */
if((((tn2.geometricObject.hasPosition.x >= urx

and tn1.geometricObject.hasPosition.x <= urx
)

or (urx >= tn2.geometricObject.hasPosition.x
and llx <= tn2.geometricObject.hasPosition.x

)
)

and ((tn2.geometricObject.hasPosition.y >= ury
and tn1.geometricObject.hasPosition.y <= ury

)
or (ury >= tn2.geometricObject.hasPosition.y

and lly <= tn2.geometricObject.hasPosition.y
)

)
)

)
{

/* ############################### then add the parcel to the list */
/* ############################ put the first parcel into the list */

if (lp2.count() == NIL)
{

lp2 = List{ p };
}

/* ##################################### and then the other parcels */
else
{

lp2.directAdd(p);
};

};
i = i + 1;

};
lp2.count().print();
/* ### undefine variable */
undefVar llx;
undefVar lly;
undefVar lp;
undefVar i;
undefVar numberOfParcels;
undefVar p;
undefVar lon;
undefVar tn1;
undefVar tn2;
undefVar lp2;
undefVar urx;
undefVar ury;
/* ## end of program */

Jasmine – Spatial modelling with an object oriented database system

 47

Note that this is a different operation. The valid (tmax == 0) parcels are put into a list and from this list the
parcels are taken one by one. The terminatingNodes forming the bounding box, stored in the property “bbox”,
are kept in a list. They have to be taken out of that list and stored in a temporary list, called “lon” (“list of
nodes”). Then the terminatingNodes are checked for overlap with the rectangle.

The long time needed by Jasmine to perform this operation is clearly not acceptable, when keeping in
mind that this operation is part of a zooming operation.

6.6 Summary
From the performed tests, we can say that Jasmine needs much more storage room than relational database
systems to store its data. One reason is that the pages are only partly filled. Of course, the default page size of the
stores can be questioned. Another reason can be the object oriented data model. The data model contains a very
deep hierarchy, thus forcing the system to maintain an enormous amount of relations.
 The waiting times when performing operations on the LKI test database are unacceptable long. A reason
can be that the code is being interpreted, which takes time. A compiled method would perform better. Another
reason might be the lack of spatial indexing and spatial clustering. However, MS-Access performs much better
without compiled methods and without any efforts to create spatial indexes.
 When an operation is performed the second time, the waiting time is mostly shorter by some seconds
caused by hot/cold effects. A third time makes no difference anymore. In one case (the last test) the waiting time
became longer when performing the operation the second time.
 Larger sizes of the bufferSize and workSize minimize the hot/cold effects and the waiting times. This is
however a trade off, because these larger sizes result in longer waiting times when starting the Jasmine
environment.
 The code lengths to implement a query in ODQL are often much longer than in SQL, because the
declarations and countings have to be stated explicitly.

Jasmine – Spatial modelling with an object oriented database system

 48

Jasmine – Spatial modelling with an object oriented database system

 49

7 Conclusions and recommendations
The conclusions can be divided into two parts: conclusions on the use of an object oriented database
(paragraph 7.1) for spatial data, and conclusions on the use of Jasmine for an implementation of an object
oriented database (paragraph 7.2). A conclusion gives an answer to a question listed in chapter 1. The
recommendations are presented in paragraph 7.3.

7.1 Conclusions on the use of an object oriented database
1. How is an object oriented database system characterized? In chapter 3 we saw that any object oriented

system should support the basic ideas of object, class, message and method. Any object oriented system
should also support the concepts of encapsulation, polymorphism, inheritance and object identity.
 Besides, any database system should be capable of holding persistent data, performing transactions,
supporting concurrency control, recovery, complex object modelling and querying, supporting versioning,
integrity constraints, security and handling performance issues.

2. Is an object oriented database a better solution for conceptualisation and modelling of the real world than a

relational database? We can say this is true. Object oriented database systems are a more natural way of
describing the real world. Chapter 5 shows how the object oriented data model for the Dutch cadastral
system LKI partly resulted in a better conceptualisation and modelling of the geometry and topology of
parcels.

3. Can object oriented databases overcome the disadvantages of relational databases? Object oriented

databases can overcome some of the disadvantages of relational databases but not all of them. According to
the disadvantages listed in paragraph 2.5, the number of tables in the LKI is not very high, but it is replaced
by a large number of classes, as we see in chapter 5. This results in still high investments in time and money
to create or convert the data (see Appendix A). This is due to the implemented data model and not to the
concept of object orientation. Large numbers of JOIN-operations on the cost of memory capacity and
processor time are not necessary anymore. It was expected that the inner relations of hierarchical structured
objects would result in a better performance. This could not be confirmed: the tests performed and
documented in chapter 6 show long reaction times. Recursive querying is very well possible, for example
the area calculation operation in paragraph 5.4. The possibilities to hold multimedia data and large objects
are not tested in this thesis. The modelling capacities are clearly better according to the former conclusion.
 Besides, object orientation offers strong advantages, especially for spatial databases (paragraph 3.4): the
topology structure can be kept correct under transactions by the database management system itself. It is
able to perform complex operations, which in the context of relational database management systems are
performed by exterior applications. Systems become more powerful and robust. Systems are easier to extend
and to maintain than relational systems. This leads to economical advantages.
 However, the investments needed to make it possible to leave a relational system and convert all the
data into an object oriented database system depend highly on the size and complexity of the data and can
back out the advantages. An extra threat is that no object oriented database system has a serious market
share

7.2 Conclusions on the use of Jasmine for an implementation of
an object oriented database
4. Is Jasmine really an object oriented database system? Chapter 4 gives an overview of the basic ideas and

concepts implemented and supported by Jasmine. These comprise all the basic ideas and concepts any object
oriented system should support according to chapter 3.
 Besides, Jasmine supports also the database capabilities listed in paragraph 3.2. From this point we can
say Jasmine is an object oriented database system.

5. What system requirements are needed? The system requirements listed in paragraph 4.5 are high, demand a

modern desktop computer equipped with a 256 Mb RAM. The system requirements for Jasmine are much
more higher than for relational database systems.

Jasmine – Spatial modelling with an object oriented database system

 50

6. How much storage space does a database in Jasmine need? Jasmine demands a very large amount of storage
space to store a database. The LKI test database in an object oriented data structure, dumped 59 Mb,
requires 1765 Mb inside the Jasmine environment (paragraph 6.1). These data are not efficiently stored
because storage space is wasted. Jasmine needs much more storage space for its databases than relational
systems.

7. Can Jasmine be used to store and query a dataset describing the geometry and topology of a model of the

world’s surface? The LKI test database describes a model of the geometry and topology of a part of the
Dutch parcels. For this small part of the world’s surface the model’s data are stored in an object oriented
structure. The implemented data model following the CEN-ENV 12160 standard is however not optimal.
The terminology needs reconsideration, the amount of classes is high and temporal aspects are not included.
 During this thesis no queries proved to be impossible. The query language ODQL proved to be very
powerful, easy to use and meets the basic ideas of object orientation. Advantage is taken from the basic idea
of inheritance of data definitions and methods to save time. ODQL cannot only be used to create queries.
ODQL proved to be a complete programming language and can easily be used to implement methods. The
compilation caused however serious problems, as unclear errors were reported that are not present anymore
when the same code is run using the ODQL Interpreter. As a result of this, no methods have been
implemented.

8. How does Jasmine perform under spatial operations? Jasmine is able to perform the spatial operations

implemented and tested in paragraph 5.4 and chapter 6. But the waiting time is higher than acceptable.
Performed operations on the test data set resulted in long waiting times in Jasmine, up to 30 seconds and
more, where MS-Access needed only a few seconds. Even for simple queries. This is partly caused by the
interpreted code, which takes more time to perform than for compiled code. The implemented data model
also weakened the performance. Besides, it is expected that spatial indexing and spatial clustering will result
in a much better performance. The operations chosen to implement (point in polygon, area calculations) will
never give a complete overview of the capabilities of Jasmine performing spatial operations.

The conclusion of this thesis is that Jasmine is an object oriented database system equipped with the necessary
standard database capabilities. It is suitable to store and query spatial data, to build a small GIS-system capable
of performing the spatial operations implemented and other operations that share the same basic arithmetic and
database operations. Object orientated systems overcome the disadvantages of relational systems. Jasmine has
however its own limitations to overcome.

7.3 Recommendations

Recommendations for the TU-Delft
The recommendations for the TU-Delft comprise further research themes:
• on a mixture of relational and object oriented techniques, in order to combine the technical advantages of the

two and to reduce the investments;
• on other object oriented database systems;
• on the implementation of a better object oriented data model for the LKI;
• on the implementation of an object oriented data model for the AKR;
• on the implementation and testing of methods in Jasmine performing spatial operations e.g. to split a parcel

or to combine two parcels;
• on the implementation of integrity rules to check topology;
• on the implementation of a generic time class;
• on the implementation of a viewer to make the spatial data in Jasmine visible. This can culminate in

performing the spatial operations in this viewer.

Jasmine – Spatial modelling with an object oriented database system

 51

Recommendations for CA
The recommendations for Computer Associates Inc. comprise extensions to Jasmine to make this object oriented
database system more suitable to develop GIS-applications:
• implementation of spatial data types, spatial clustering and spatial indexing based on standards or

specifications accepted by the CEN, ISO or the OpenGis Consortium;
• implementation of a visualisation tool for spatial data;
• check the standard page size of the stores of 8 kB to find out whether it is really optimal;

Van Wijngaarden (1997) announced that CA worked on spatial data types.

Recommendations for the Dutch Cadastre
The recommendations for the Dutch Cadastre comprise:
• continue the research on object oriented database systems;
• research in cooperation with the TU-Delft;
• do not implement systems based on Jasmine as long as spatial data types, spatial clustering and spatial

indexing are not available.

Recommendations for the CEN
The recommendations for the CEN comprise adaptations on the CEN-ENV 12160 prestandard:
• the entity name “Spatial View” should be reconsidered. Proposals: “Spatial Theme” or “Spatial Layer”;
• development of implementation standards for geographic information.

Jasmine – Spatial modelling with an object oriented database system

 52

Jasmine – Spatial modelling with an object oriented database system

 53

8 References
[Batty, year unknown] Batty, P., ”Smallworld GIS: Object-orientation – some objectivity please!” In:

Smallworld technical paper number 7. Available at:
http://www.smallworld.co.uk/english/products/whitepapers/OOobjectivity.pdf
Year of publication unknown. Last time visited: May 25th 2001.

[Booch e.a., 1999] Booch, G.; Rumbaugh, J.; Jacobson, I., The unified modelling language user guide.

Boston: Addison Wesley Longman, Inc., 1999.

[Codd, 1970] Codd, E, “A relational model for large shared data banks.” In: Communications of the

Association of Computing Machinery. 1970

[CEN, 1997] Comité Européen de Normalisation (CEN), “European prestandard ENV 12160 –

Geographic information – Data description – Spatial schema”. In: Voornorm NVN-ENV
12160 Geografische informatie – Gegevensbeschrijving – Ruimtelijk schema. Delft:
Nederlands Normalisatie Instituut, 1997.

[CA, 1999] Computer Associates International, Inc.; FUJITSU LIMITED,

“Jasmine TND Database Developer’s Reference 2.0.”
“Jasmine TND Database Administrator’s Guide 2.0.”
“Jasmine TND System Administrator’s Guide 2.0.”
In: Jasmine. Developer’s edition (Installation CD-ROM) 1996-1999.

[CA, 2000] “Jasmine ODB Database Developer’s Reference 2.0.”

“Jasmine ODB Database Administrator’s Guide 2.0.”
“Jasmine ODB System Administrator’s Guide 2.0.”
In: Jasmine ii The eBusiness Platform. (Installation CD-ROM) 1996-2000.

[Fowler e.a., 2000] Fowler, M.; Scott, K., UML distilled: a brief guide to the standard object modelling

language.
Second edition. Boston: Addison Wesley Longman, Inc., 2000.

[INT, 2001] INT Media Group, Inc., Webopedia. Available at:

http://webopedia.internet.com/
Last time visited: July 11th 2001.

[ISO, 2000] International Standards Organisation (ISO), “Final text of CD 19107 Geographic

information – Spatial schema.” In: ISO/TC 211 Geographic information/Geomatics.
Majorstua, Norway: ISO/TC 211, 2000.

[Ishikawa e.a., 1993] Ishikawa, H., Object-Oriented Database System. Tokyo: Springer-Verlag, 1993.

[Kreylos, 2000] Kreylos, O., When is a Point Inside a Polygon? Available at:

http://graphics.cs.ucdavis.edu/~okreylos/TAship/Spring2000/PointInPolygon.html
Last time visited: July 11th 2001.

[Kroha, 1993] Kroha, P., “Object and databases.” The McGraw-Hill International Series in Software

Engineering. Berkshire: McGraw-Hill Book Company Europe, 1993.

[Koshafian e.a., 1999] Khoshafian, S.; Dasananda, S.; Minassian, N., The Jasmine Object Database.

Multimedia Applications for the Web. San Francisco: Morgan Kaufmann Publishers,
Inc, 1999.

[Laan, 1998] Laan, G., Aan de slag met C++. Schoonhoven, the Netherlands: Academic Service,

1998.

[Newell, 1992] Newell, R. G., “Practical experiences of using object-orientation to implement a GIS.”

In: Proceedings of GIS/LIS 1992. Volume 2, p 624-629.

Jasmine – Spatial modelling with an object oriented database system

 54

[Molenaar, 1989] Molenaar, M, “Een formele gegevensstructuur voor enkelvoudige vectorkaarten.”

In: NGT Geodesia, 1989, pages 392-401.

[Oosterom, 1997] Oosterom, P. van, “Maintaining Consistent Topology including Historical Data in a

Large Spatial Database”.
Auto-Carto 13, April 1997, pages 327-336.

[Oosterom, 1999] Oosterom, P. van, “Spatial access methods.”

In: Longley, P.; Goodchild, M.; Maguire, D.; Rhind, D.,
Geographical information systems. Volume 1, second edition.
New York: John Wiley & Sons, Inc. 1999. pages 385-400.

[Osch, 1997] Osch, B. van, Fysiek Data Model KVS-Informatie-database. Apeldoorn: Kadaster,

1997.

[Peng e.a., 1996] Peng, W.; Tempfli, K., “An Object-oriented design for automated database

generalisation.”
In: Kraak, M.J.; Molenaar, M. (eds), Proceedings of the 7th international symposium
on spatial data handling. Delft: 1996, pages 4B.15-4B.29.

[Wijngaarden, 1997] Wijngaarden, F.A. van, Ontwerp en Implementatie van een Kaartintegrator.

Verwerking van GBKN-mutaties in de TOP10Vector. Master thesis.
Apeldoorn: Universiteit Twente, 1997.

[Worboys, 1995] Worboys, M. F., GIS A Computing Perspective. London: Taylor & Francis, 1995.

Jasmine – Spatial modelling with an object oriented database system

 55

Appendix A The data conversion
The cadastral data that were used to build up an object oriented database in Jasmine stem from the Dutch
Cadastral Office. The data comprehend the cadastral community of Rhenen, a town in the middle of the
Netherlands, and were handed to the TU-Delft for testing purposes.

The relevant data for this thesis held by the Dutch Cadastral Office are separated into two systems:

• Automatische Kadastrale Registratie (AKR) holding data on subjects, having rights on objects, e.g.
ownership.

• Landmeetkundig Kartografisch Informatiesysteem (LKI) holding the data on geometry and topology.

These data are organized in a relational structure and divided over several tables.
From the LKI the following tables are used to build up the object oriented database:

• xfio_parcel.dat
• xfio_boundary.dat
• xfio_gcpnt.dat
• xfio_text.dat
• xfio_sympnt.dat

For a description of these tables, see section 1.3.

These datasets are converted by use of perl scripts running under a UNIX operating system. Perl (Practical
Extraction and Report Language) is very suitable for handling large volumes of data that have to be reformatted.
The following list of perl scripts were written, listed with their respective in- and output files:

Jasmine – Spatial modelling with an object oriented database system

 56

inputfile perlscript outputfile

xfio_boundary.dat 1 boundary_shape_kad2jas.pl boundary_formatted_step1.txt
xfio_parcel.dat 2 osection_kad2jas.pl osection_step1.txt
osection_step1.txt 3 createOsectionsFile2.pl municips.txt

osections.txt
faces_osection.txt
surfaces_osection.txt

xfio_gcpnt.dat 4 gcpnts_kad8jas.pl gcpnt_formatted.txt
directPositions.txt

xfio_text.dat 5 text_kad8jas.pl text_formatted.txt
directPositions.txt directPositions.txt
xfio_sympnt.dat 6 sympnt_kad8jas.pl sympnt_formatted.txt
directPositions.txt directPositions.txt
xfio_parcel.dat 7 parcel_kad8jas.pl parcel_formatted.txt
directPositions.txt directPositions.txt
xfio_boundary.dat 8 boundary_bbox_kad8jas.pl boundary_formatted.txt
directPositions.txt directPositions.txt

parcel_formatted.txt 9 findNodes_parcel.pl terminatingNodes.txt
points.txt points.txt

isolatedNodes.txt
boundary_formatted.txt 10 findNodes_boundary.pl terminatingNodes.txt
points.txt points.txt
gcpnt_formatted.txt 11 findNodes_gcpnt.pl isolatedNodes.txt
points.txt points.txt
text_formatted.txt 12 findNodes_text.pl isolatedNodes.txt
points.txt points.txt
sympnt_formatted.txt 13 findNodes_sympnt.pl isolatedNodes.txt
points.txt points.txt

directPositions.txt 14 createEdgeTopology6step1.pl directPositions.txt
points.txt
intermediateNodes_shape_bou.txt

terminatingNodes.txt terminatingNodes.txt
boundary_formatted_step1.txt curves.txt

edges_step1.txt
parcel_formatted.txt 15 createFaceTopology1step1.pl faces_step1.txt

surfaces_parcels.txt
edges_step1.txt
faces_step1.txt 16 createEdgeTopology3step2.pl edges.txt
faces_step1.txt 17 createFaceTopology1step2.pl faces_parcels.txt

faces_parcels.txt
faces_osection.txt 18 createFacesFile.pl faces.txt
surfaces_parcels.txt
surfaces_osection.txt 19 createSurfacesFile.pl surfaces.txt
directPositions.txt
points.txt
curves.txt
surfaces.txt
terminatingNodes.txt
intermediateNodes_shape_bou.txt
isolatedNodes.txt
edges.txt
faces.txt
parcel_formatted.txt
boundary_formatted.txt
gcpnt_formatted.txt
text_formatted.txt
sympnt_formatted.txt 20 createJasmineUnloadFile.pl lkiodb12.txt
lkiodb09.txt 21 createTemplateJasmineUnloadFile.plkiodb10.txt

Jasmine – Spatial modelling with an object oriented database system

 57

The numbers in front of the perl scripts refer to their corresponding paragraph in appendix B where the source
code can be found.

 perlscript purpose shared characteristics

1 boundary_shape_kad2jas.pl Partly converting the entity xfio_boundaries from the
LKI format into the Jasmine format concerning the
coordinates of the attribute “shape”.

2 osection_kad2jas.pl Partly converting the entity xfio_parcel from the LKI
format into the Jasmine format: only the information on
cadastral municipalities, sections and parcel numbers.

3 createOsectionsFile2.pl Creation of the hierarchy of the parcels, sections and
cadastral municipalities up to the country.
Creation of the surfaces and faces for these entities but
not for the entity “parcel”.

4 gcpnts_kad8jas.pl Converting the entity xfio_gcpnts from the LKI format
into the Jasmine format.

5 text_kad8jas.pl Converting the entity xfio_text from the LKI format into
the Jasmine format.

6 sympnt_kad8jas.pl Converting the entity xfio_sympnt from the LKI format
into the Jasmine format.

7 parcel_kad8jas.pl Converting the entity xfio_parcel from the LKI format
into the Jasmine format.

8 boundary_bbox_kad8jas.pl Converting the entity xfio_boundary from the LKI
format into the Jasmine format.

Removing the coordinates and
storing them into a separate file.
This files contains the data for the
class directPosition (see Appendix
C). The object identifiers of the
directPositions are left in the
converted data set. One type of
coordinates is only removed and not
stored into a separate file. These
concern the coordinates of the
attribute “shape” in the entity
xfio_boundary.dat.
All the converted objects get a
Jasmine object id

9 findNodes_parcel.pl Create the Nodes and Points for the entity “parcel”.

10 findNodes_boundary.pl Create the Nodes and Points for the entity
“propertyDividingBoundaryl”.

11 findNodes_gcpnt.pl Create the Nodes and Points for the entity “gcpnt”.

12 findNodes_text.pl Create the Nodes and Points for the entity “text”.

13 findNodes_sympnt.pl Create the Nodes and Points for the entity “sympnt”.

From the object identifiers of the
directPositions, create the data for
the classes point, terminatingNodes
and IsolatedNodes.

14 createEdgeTopology6step1.pl Removing the coordinates of the attribute “shape” from
the entity xfio_boundary.dat and storing them into a
separate file. This file contains the data for the class
directPosition (see Appendix C). The object identifiers
of the directPositions are left in the converted data set.
Creation of the curves and the edges. The edges keep
the LKI identifiers for the faces.

15 createFaceTopology1step1.pl Creation of the surfaces and faces for the entity
“parcel”. The faces keep also the LKI identifier.

16 createEdgeTopology3step2.pl Completing the edges: replacement of the LKI
identifiers for the faces by the new Jasmine object
identifiers.

17 createFaceTopology1step2.pl Completing the faces : removal of the LKI identifier.

18 createFacesFile.pl Combining the faces from the entities “parcel”,
“osection”, “KadMunicipalitiy” and “country”.

19 createSurfacesFile.pl Combining the surfaces from the entities “parcel”,
“osection”, “KadMunicipalitiy” and “country”.

20 createJasmineUnloadFile.pl Combine all the files into one “unload file” (dump file)
that can be loaded into Jasmine.

21 createTemplateJasmineUnload
File.pl

Creation of a template for the perl script
“createJasmineUnloadFile.pl”. Has to be used only
when the class definitions are changed.

Jasmine – Spatial modelling with an object oriented database system

 58

These perl scripts are available in appendix B. These perl scripts are accessible over the program
perlConversionUtility<version>.pl for easier use (see appendix B.22):

Syntax to run this program:

perl perlConversionUtility4.pl

Make sure all the files and scripts are available in the same directory.

It is important to note that the object ids for Jasmine are given by these programs. These ids should be unique for
each class (Jasmine makes them unique to the whole database). Check therefore the following when using these
programs on a new dataset:
-the ids for the directPositions per ***kad#jas.pl;
-createEdgeTopology#step1.pl;
-the ids for the faces in createOsectionsFile#.pl;

The last program delivers the unload file that can be imported into a windows version of Jasmine. Therefore, the
file has to be copied from UNIX to a windows environment. The different storage system concerning line
endings proved not to be any problem for Jasmine. When the stores and class families have been defined, the
unload file can be loaded into Jasmine using the command “load” (see appendix C).

Jasmine – Spatial modelling with an object oriented database system

 59

Appendix B Conversion programs written in Perl
The perl scripts included in this appendix are listed with their page numbers:
The purposes, input and outputfiles are explained in appendix A.

B.1 boundary_shape_kad2jas.pl……………………………………………………………………………..61
B.2 osection_kad2jas.pl……………………………………………………………………………………...65
B.3 createOsectionsFile2.pl………………………………………………………………………………….69
B.4 gcpnt_kad8jas.pl…………………………………………………………………………………………74
B.5 text_kad8jas.pl…………………………………………………………………………………………..80
B.6 sympnt_kad8jas.pl……………………………………………………………………………………….86
B.7 parcel_kad8jas.pl………………………………………………………………………………………...92
B.8 boundary_bbox_kad8jas.pl……………………………………………………………………………...99
B.9 findNodes_parcel2.pl…………………………………………………………………………………..106
B.10 findNodes_boundary2.pl……………………………………………………………………………….108
B.11 findNodes_gcpnt2.pl…………………………………………………………………………………...110
B.12 findNodes_text2.pl……………………………………………………………………………………..112
B.13 findNodes_sympnt2.pl…………………………………………………………………………………114
B.14 createEdgeTopology6step1.pl………………………………………………………………………….116
B.15 createFaceTopology1step1.pl………………………………………………………………………….123
B.16 createEdgeTopology3step2.pl………………………………………………………………………….125
B.17 createFaceTopology1step2.pl…………………………………………………………………………..129
B.18 createFacesFile.pl………………………………………………………………………………………131
B.19 createSurfacesFile.pl…………………………………………………………………………………...132
B.20 createJasmineUnloadFile.pl……………………………………………………………………………133
B.21 createTemplateJasmineUnloadFile.pl………………………………………………………………….145
B.22 perlConversionUtility4.pl………………………………………………………………………………147

Jasmine – Spatial modelling with an object oriented database system

 60

Jasmine – Spatial modelling with an object oriented database system

 153

Appendix C Storing and structuring of data in Jasmine
After a successful installation of Jasmine the following steps have been taken:

1. creating physical files on a disk, called stores where the class families, the classes, the methods and the
data will be stored (section C.1);

2. creating the class families that will hold an unique set of classes and subclasses with their methods
(section C.2);

3. design of the data structure (section C.3);
4. creating the classes and subclasses (section C.4);
5. loading the data into these classes (using the command load <input file>);
6. defining the methods (appendix D).

When an unload file is available the steps 1, 2 and 5 are necessary to build up a database.

C.1 Creating the stores
The listed commands can be typed at the DOS prompt or can be copied into a batchfile, for example called
c:\jas.bat and run from there. To create a store the following syntax has to be used:

createStore system command
createStore [-h] [-dbName database] [-userName user]
[-passwd password] [-envFile envFile]
[-numberOfPages pages] [-pageSize pageSize]
[-wait] storeName {fileName}...

Source: “Jasmine ODB Database Developer’s Reference 2.0”.
Remark: a 8 Kb page size is the optimal choice “for most of the cases”.
Source: “Jasmine ODB Database Administrator’s Guide 2.0”.

The following commands were applied, copied and run one by one from jas.bat:

createStore -numberOfPages 32000 LKIStore1 D:\Jasmineii\Jasmine\data\LKIStore1
createStore -numberOfPages 32000 LKIStore2 D:\Jasmineii\Jasmine\data\LKIStore2
createStore -numberOfPages 32000 DCStore1 D:\Jasmineii\Jasmine\data\DCStore1
createStore -numberOfPages 32000 DCStore2 D:\Jasmineii\Jasmine\data\DCStore2
createStore -numberOfPages 32000 DCStore3 D:\Jasmineii\Jasmine\data\DCStore3

The first two stores were created for testing purposes after the first conversion step of the LKI data (see
Appendix A). The three last stores are created to hold the new object oriented database.

C.2 Creating the class families
The listed commands can be typed at the dosprompt or can be copied into a batchfile, for example called
c:\jas.bat and run from there. To create a class family the following syntax has to be used:

createcf system command
createcf [-h] [-dbName database] [-userName user]
[-passwd password] [-envFile envFile]
[-CFAlias aliasName] CFName storeName

Source: “Jasmine ODB Database Developer’s Reference 2.0”.
The following commands were applied, copied and run one by one from jas.bat:

createcf lkiCF LKIStore1
createcf lkiCF_2 LKIStore2
createcf spatialViewCF DCStore1
createcf thematicViewCF DCStore2

After the above operation the command “listStore” typed at the DOS prompt gives an overview of the stores and
class families (see figure 6.1).

Jasmine – Spatial modelling with an object oriented database system

 154

C.3 The object oriented data model
The data model designed to hold the LKI test database in an object oriented structure is given in the UML class
diagrams on the next pages. [Booch e.a., 1999], [Fowler e.a., 2000]

Legend:

 Class name class

 property: type

 property: object

 operation: return type

(After [Fowler e.a., 2000] only attributes should be listed
instead of properties. In the diagrams on the next pages also
relationships are listed next to the attributes to improve
readability. Relationships and attributes are both properties.
[Khoshafian e.a., 1999])

 Class A

 association

 Class B

 Super type

 discriminator

Subtype 1 Subtype 2

 Class

 composition

In grey text the parts that have not been implemented.

Jasmine – Spatial modelling with an object oriented database system

 155

 spatialViewCF

geometricPrimitive topologicalPrimitive

 geometricPrimitive

 directPosition

 x: integer

 y: integer

 z: integer

 point

 hasPosition: directPosition

 curve

 hasPoints: listOfPoints

 interpolation: interpolationMethod

 surface

 hasOutherBoundary: boundary

 hasInnerBoundary: setOfBoundary

 boundary

 isComposedOf: listOfUniqueCurve

 interpolationMethod

 enumeratedItem: shortestWay

 circularArc

 BSpline

 clothoid

Jasmine – Spatial modelling with an object oriented database system

 156

 topologicalPrimitive

 node

 geometricObject: point

 connectedNode

 terminatingNode

 intermediateNode

 isCoincidentWith: setOfEdge

 isolatedNode

 isWithin: face

 edge

 startsAt: terminatingNode

 endsAt: terminatingNode

 hasOnItsLeft: face

 hasOnItsRight: face

 nextRight: edge

 nextLeft: edge

 previousRight: edge

 previousLeft: edge

 geometricObject: curve

 face

 geometricObject: surface

 hasOutherRing: ring

 hasInnerRing: setOfRing

 ring

 isComposedOf: listOfUniqueEdge

 geometricObject: boundary

Jasmine – Spatial modelling with an object oriented database system

 157

 thematicViewCF

 landRegistration

 country
 name: string
 topologicObject: face
 isComposedOfKadMunicipality: listOfKadMunicipalities

 kadMunicipality
 name: string
 topologicObject: face
 isComposedOfOsections: listOfOsections
 containsGcpnts: listOfGcpnts

 osection
 name: string
 topologicObject: face
 isComposedOfParcels : listOfUniqueParcels

 parcel
 topologicObject : face
 ogroup: integer
 object_id: integer
 slc: integer
 classif : integer
 location : isolatedNode
 d_location_x : integer
 d_location_y : integer
 rotangle: integer
 accu_cd: integer
 oarea: real
 bbox: 2 terminatingNodes
 object_dt: integer
 tmin: integer
 tmax: integer
 sel_cd: string
 source: string
 quality: string
 vis_cd: integer
 akr_area: real
 sheet: integer
 parcel: integer
 pp_i_ltr: string
 pp_i_nr: integer

Jasmine – Spatial modelling with an object oriented database system

 158

 landRegistration

 propertyDividingBoundary
 topologicObject: edge
 ogroup: integer
 object_id: integer
 slc: integer
 classif: integer
 node_cd: integer
 status_cd: integer
 bbox: 2 terminatingNodes
 linelen: integer
 object_dt: integer
 tmin: integer
 tmax: integer
 sel_cd: string
 source: string
 quality: string
 vis_cd: integer

 gcpnt
 ogroup: integer
 object_id: integer
 slc: integer
 classif: integer
 location: isolatedNode
 accu_cd: integer
 gcpnum: string
 d_location_x: integer
 d_location_y: integer
 rotation_x: integer
 rotation_y: integer
 object_dt: integer
 tmin: integer
 tmax: integer
 sel_cd: string
 source: string
 quality: string
 vis_cd: integer
 mark_cd: string
 terr_loca_x: integer
 terr_loca_y: integer
 terr_qual: string
 attr_text: string

Jasmine – Spatial modelling with an object oriented database system

 159

 landRegistration

 textInParcel
 ogroup: integer
 object_id: integer
 slc: integer
 classif: integer
 location : isolatedNode
 d_location_x : integer
 d_location_y : integer
 rotangle: integer
 accu_cd: integer
 textlen: integer
 otext: string
 object_dt: integer
 tmin: integer
 tmax: integer
 sel_cd: string
 source: string
 quality: string
 vis_cd: integer

 sympnt
 ogroup: integer
 object_id: integer
 slc : integer
 classif : integer
 location : isolatedNode
 accu_cd : integer
 rotation_x : integer
 rotation_y : integer
 object_dt : integer
 tmin : integer
 tmax : integer
 sel_cd : string
 source: string
 quality: string
 vis_cd: integer

Jasmine – Spatial modelling with an object oriented database system

 160

C.4 Creating the classes
Before classes can be created, make sure the stores and class families are created (see appendix C.1 and C.2).
The classes are created using the ODQL script cc.txt. This scipt is run under the ODQL Interpreter. This
interpreter is started from the DOS prompt by typing:

codqlie

This interpreter is then given the statement:

execFile cc.txt

The contents of cc.txt are given below:

**

defaultCF spatialViewCF;

/* Define a new class */
defineClass spatialViewCF::geometricPrimitive
description: "root class of the geometrical classes"
{
};
buildClass geometricPrimitive;

/* Define a new class */
defineClass spatialViewCF::directPosition
description: "class for storing coordinates, geometrical model for 0D-
objects"
super: spatialViewCF::geometricPrimitive
{

instance:
systemCF::Integer x ;
systemCF::Integer y ;
systemCF::Integer z ;

};
buildClass directPosition;

/* Define a new class */
defineClass spatialViewCF::point
description: "class for storing references to directPositions"
super: spatialViewCF::geometricPrimitive

{
instance:

spatialViewCF::directPosition hasPosition ;
};
buildClass point;

/* Define a new class */
defineClass spatialViewCF::interpolationMethod
description: "class for storing the descriptions of the interpolation
methods"
super: spatialViewCF::geometricPrimitive
{

instance:
systemCF::String[20] enumeratedItem ;

};
buildClass interpolationMethod;

Jasmine – Spatial modelling with an object oriented database system

 161

/* Define a new class */
defineClass spatialViewCF::curve
description: "class for storing curves, geometrical model for 1D-
objects, a curve with interpolationMethod = “lijnketen” becomes a line
string"
super: spatialViewCF::geometricPrimitive
{

instance:
List<spatialViewCF::point> hasPoints ;
spatialViewCF::interpolationMethod interpolation;

};
buildClass curve;

/* Define a new class */
defineClass spatialViewCF::boundary
description: "class for storing objects holding the curves around a
surface forming a closed polygon"
super: spatialViewCF::geometricPrimitive
{

instance:
List<spatialViewCF::curve> isComposedOf ;

};
buildClass boundary;

/* Define a new class */
defineClass spatialViewCF::surface
description: "class for surfaces, geometric description for 2D-object"
super: spatialViewCF::geometricPrimitive
{

instance:
spatialViewCF::boundary hasOutherBoundary ;
Set<spatialViewCF::boundary> hasInnerBoundary ;

};
buildClass surface;

Jasmine – Spatial modelling with an object oriented database system

 162

defaultCF spatialViewCF;

/* Define a new class */
defineClass spatialViewCF::topologicalPrimitive
description: "root class of the topological classes"
{
};

/* Define a new class */
defineClass spatialViewCF::node
description: "class for nodes, topological model for 0D-objects"
super: spatialViewCF::topologicalPrimitive
{

instance:
spatialViewCF::point geometricObject ;

};

/* Define a new class */
defineClass spatialViewCF::connectedNode
description: "class for nodes connected to other nodes"
super: spatialViewCF::node
{
};

/* Define a new class */
defineClass spatialViewCF::terminatingNode
description: "class for nodes at the edge’s endings"
super: spatialViewCF::connectedNode
{
};

/* Define a new class */
defineClass spatialViewCF::intermediateNode
description: "class for nodes between the edge’s endings"
super: spatialViewCF::connectedNode
{

instance:
Set<spatialViewCF::edge> isCoincidentWith ;

};

/* Define a new class */
defineClass spatialViewCF::isolatedNode
description: "class for nodes without neighbouring nodes"
super: spatialViewCF::node
{

instance:
spatialViewCF::face isWithin ;

};

/* Define a new class */
/* This class refers to other classes */
/* that have not been defined yet */
/* This is solved by building classes at the end */
defineClass spatialViewCF::edge
description: "class for topological 1D-objects"
super: spatialViewCF::topologicalPrimitive
{

instance:
spatialViewCF::terminatingNode startsAt ;
spatialViewCF::terminatingNode endsAt ;
spatialViewCF::face hasOnItsLeft ;
spatialViewCF::face hasOnItsRight ;
spatialViewCF::edge nextRight ;
spatialViewCF::edge nextLeft ;
spatialViewCF::edge previousRight ;
spatialViewCF::edge previousLeft ;
spatialViewCF::curve geometricObject ;

};

Jasmine – Spatial modelling with an object oriented database system

 163

/* Define a new class */
defineClass spatialViewCF::face
description: "class for topological 2D-objects"
super: spatialViewCF::topologicalPrimitive
{

instance:
spatialViewCF::ring hasOutherRing ;
Set<spatialViewCF::ring> hasInnerRing ;
spatialViewCF::surface geometricObject ;

};

/* Define a new class */
defineClass spatialViewCF::ring
description: "class for objects holding all the edges forming a closed
ring around a face"
super: spatialViewCF::topologicalPrimitive
{

instance:
List<spatialViewCF::edge> isComposedOf ;
spatialViewCF::boundary geometricObject ;

};

/* Built the new classes. */
/* This is only possible at the end, because they point to each other */

buildClass ring;
buildClass node;
buildClass connectedNode;
buildClass terminatingNode;
buildClass intermediateNode;
buildClass isolatedNode;
buildClass edge;
buildClass face;
buildClass topologicalPrimitive;

/* Define a new class */
defineClass thematicViewCF::landRegistration
description: "root class for all the classes needed to hold the thematic
data on spatial objects modelling a cadastral situation"
{
};
buildClass landRegistration;

/* Define a new class */
defineClass thematicViewCF::country
description: "class to hold the information concerning countries of
which cadastral information is included"
super: thematicViewCF::landRegistration
{

instance:
systemCF::String[20] name ;
spatialViewCF::face topologicObject ;
List<thematicViewCF::kadMunicipality>

isComposedOfKadMunicipalities ;
};

/* Define a new class */
defineClass thematicViewCF::kadMunicipality
description: "class for cadastral municpalities"
super: thematicViewCF::landRegistration
{

instance:
systemCF::String[10] name ;
spatialViewCF::face topologicObject ;
List<thematicViewCF::osection>

isComposedOfOsections ;
List<thematicViewCF::gcpnt> containsGcpnts ;

};

Jasmine – Spatial modelling with an object oriented database system

 164

/* Define a new class */
defineClass thematicViewCF::osection
description: "class for sections"
super: thematicViewCF::landRegistration
{

maxInstanceSize: 256;
instance:

systemCF::String[5] name ;
spatialViewCF::face topologicObject ;
List<thematicViewCF::parcel> isComposedOfParcels;

};

defineClass thematicViewCF::parcel
description: "class for parcels"
super: thematicViewCF::landRegistration
{

instance:
spatialViewCF::face topologicObject;
systemCF::Integer ogroup ;
systemCF::Integer object_id ;
systemCF::Integer slc ;
systemCF::Integer classif ;
spatialViewCF::isolatedNode location ;
systemCF::Integer d_location_x ;
systemCF::Integer d_location_y ;
systemCF::Integer rotangle ;
systemCF::Real oarea ;
List<spatialViewCF::terminatingNode> box ;
systemCF::Integer object_dt ;
systemCF::Integer tmin ;
systemCF::Integer tmax ;
systemCF::String[3] sel_cd ;
systemCF::String[6] source ;
systemCF::String[3] quality ;
systemCF::Integer vis_cd ;
systemCF::Real akr_area ;
systemCF::Integer sheet ;
systemCF::Integer parcel ;
systemCF::String[2] pp_i_ltr ;
systemCF::Integer pp_i_nr ;

};
buildClass parcel;

/* Built a class that points to above class */
buildClass osection;

/* Define a new class */
defineClass thematicViewCF::propertyDividingBoundary
description: "class for boundaries between parcels"
super: thematicViewCF::landRegistration
{

instance:
spatialViewCF::edge topologicObject;
systemCF::Integer ogroup ;
systemCF::Integer object_id ;
systemCF::Integer slc ;
systemCF::Integer classif ;
systemCF::Integer node_cd ;
systemCF::Integer status_cd ;
List<spatialViewCF:: terminatingNode> bbox ;
systemCF::Integer linelen ;
systemCF::Integer object_dt ;
systemCF::Integer tmin ;
systemCF::Integer tmax ;
systemCF::String[3] sel_cd ;
systemCF::String[6] source ;
systemCF::String[3] quality ;
systemCF::Integer vis_cd ;

};
buildClass propertyDividingBoundary;

Jasmine – Spatial modelling with an object oriented database system

 165

/* Define a new class */
defineClass thematicViewCF::gcpnt
description: "class for geodetical points"
super: thematicViewCF::landRegistration
{

instance:
systemCF::Integer ogroup ;
systemCF::Integer object_id ;
systemCF::Integer slc ;
systemCF::Integer classif ;
spatialViewCF:: isolatedNode location ;
systemCF::Integer accu_cd ;
systemCF::String[6] gcpnum ;
systemCF::Integer d_location_x ;
systemCF::Integer d_location_y ;
systemCF::Integer rotangle ;
systemCF::Integer object_dt ;
systemCF::Integer tmin ;
systemCF::Integer tmax ;
systemCF::String[3] sel_cd ;
systemCF::String[6] source ;
systemCF::String[3] quality ;
systemCF::Integer vis_cd ;
systemCF::String[2] mark_cd ;
systemCF::Integer terr_loca_x ;
systemCF::Integer terr_loca_y ;
systemCF::String[2] terr_qual ;
systemCF::String[20] attr_text ;

};
buildClass gcpnt;

/* Define a new class */
defineClass thematicViewCF::textInParcel
description: "class for text strings on the cadastral map"
super: thematicViewCF::landRegistration
{

instance:
systemCF::Integer ogroup ;
systemCF::Integer object_id ;
systemCF::Integer slc ;
systemCF::Integer classif ;
spatialViewCF:: isolatedNode location ;
systemCF::Integer d_location_x ;
systemCF::Integer d_location_y ;
systemCF::Integer rotangle ;
systemCF::Integer accu_cd ;
systemCF::Integer textlen ;
systemCF::String[80] otext ;
systemCF::Integer object_dt ;
systemCF::Integer tmin ;
systemCF::Integer tmax ;
systemCF::String[3] sel_cd ;
systemCF::String[6] source ;
systemCF::String[3] quality ;
systemCF::Integer vis_cd ;

};
buildClass textInParcel;

Jasmine – Spatial modelling with an object oriented database system

 166

/* Define a new class */
defineClass thematicViewCF::sympnt
description: "class for symbol point on the cadastral map"
super: thematicViewCF::landRegistration
{

instance:
systemCF::Integer ogroup ;
systemCF::Integer object_id ;
systemCF::Integer slc ;
systemCF::Integer classif ;
spatialViewCF:: isolatedNode location ;
systemCF::Integer accu_cd ;
systemCF::Integer rotation ;
systemCF::Integer object_dt ;
systemCF::Integer tmin ;
systemCF::Integer tmax ;
systemCF::String[3] sel_cd ;
systemCF::String[6] source ;
systemCF::String[3] quality ;
systemCF::Integer vis_cd ;

};
buildClass sympnt;

/* Built new classes that point to other classes */

buildClass kadMunicipality;
buildClass Nederland;

Jasmine – Spatial modelling with an object oriented database system

 167

Appendix D Methods written in ODQL
In this appendix the following methods are included:
D.1 Calculate the area of a given parcel (see paragraph 5.4)
D.2 Count the parcels within a rectangle by centroid (see paragraph 6.5)
D.3 Count the parcels within a rectangle by bounding box (see paragraph 6.5)
D.4 Create index (see paragraph 6.2)
D.5 Find the surrounding boundaries of a parcel (see paragraph 5.4)
D.6 Find boundaries that point into other boundaries (see paragraph 6.3)
D.7 Find boundaries inside a parcel (see paragraph 6.4)
D.8 Find a parcel from a given directPosition (point-in-polygon) (see paragraph 5.4)

D.1 Calculate the area of a given parcel
/*---*/
/* Program to calculate the area of a given parcel */
/* */
/* */
/* file : calculateAreaOfParcel4.txt */
/* Author : Patrice Wijnands */
/* Date : July 10th 2001 */
/* Language: ODQL */
/* */
/*---*/

/* ## declarations */

defaultCF 'spatialViewCF';

Real area;
Real areaPart;
terminatingNode comparingNode;
edge e;
Integer i;
Integer it2;
List<terminatingNode> ltn;
Integer m;
Integer numberOfPoints;
point pnt1;
point pnt2;
point pnt3;
List<point> pntList;
Real roughArea;
terminatingNode tn1;
terminatingNode tn2;

edge e1;
edge e2;
List<edge> edgeList;
Integer ibp;
Integer j;
Integer k;
Integer l;
Integer numberOfEdges;
List<edge> sortedEdgeList;

String s1;
s1 = "object:";
String s2;
s2 = "parcel:";
String s3;
s3 = "First edge:";
String s4;
s4 = "Number of";
String s5;
s5 = "edges:";
String s6;
s6 = "This is the next one:";
String s7;
s7 = "No edge found.";
String s8;

Jasmine – Spatial modelling with an object oriented database system

 168

s8 = "Parcel's edges, sorted following topology:";
String s9;
s9 = "Parcel's boundaries, checking topology...";
String s10;
s10 = "j =";
String s11;
s11 = "i =";
String s19;
s19 = "Skipping parcel, topology incorrect.";
String s20;
s20 = "Area is [m2]:";
String s21;
s21 = "Calculating area...";
String s22;
s22 = "Rough estimation of the area [m2]:";
String s23;
s23 = "Attention, the result might be erroneous, there are inner rings present!";
String s24;
s24 = "Area stored in the attribute akr_area:";
String s25;
s25 = "Area stored in the attribute oarea:";

/* ## find parcel */

List<thematicViewCF::parcel> lp;
thematicViewCF::parcel p;

lp = thematicViewCF::parcel from thematicViewCF::parcel
where (thematicViewCF::parcel.object_id == 200145889
and thematicViewCF::parcel.tmax == 0);

Integer numberOfParcels;

numberOfParcels = lp.count();
s2.print();
numberOfParcels.print();

if (numberOfParcels != NIL and numberOfParcels != 0)
{

p = lp.getElementAt(0);
p.object_id.print();

/* ################### estimate the area from the bounding box */

ltn = p.bbox;

tn1 = ltn.getElementAt(0);
tn2 = ltn.getElementAt(1);

tn1.geometricObject.hasPosition.print();
tn2.geometricObject.hasPosition.print();

roughArea = (tn2.geometricObject.hasPosition.x/1000 –
tn1.geometricObject.hasPosition.x/1000)

* (tn2.geometricObject.hasPosition.y/1000 -
tn1.geometricObject.hasPosition.y/1000);

s22.print();
roughArea.print();
s24.print();
p.akr_area.print();
s25.print();
p.oarea.print();

/* ################################ findBoundariesFromParcel2.txt */
/* ####################### find all edges surrounding that parcel */

edgeList = edge from edge
where (edge.hasOnItsLeft == p.topologicObject
or edge.hasOnItsRight == p.topologicObject);

s5.print();
edgeList.print();

/* ### count the edges */

numberOfEdges = edgeList.count();

Jasmine – Spatial modelling with an object oriented database system

 169

s4.print();
s5.print();
numberOfEdges.print();

/* ################## get the first edge in the list and remove it */

if (numberOfEdges != NIL and numberOfEdges != 0)
{

e1 = edgeList.getElementAt(0);

sortedEdgeList = List{ e1 };

sortedEdgeList.print();

edgeList.removeElementAt(0);

/* ### count the edges */

numberOfEdges = edgeList.count();
s4.print();
s5.print();
numberOfEdges.print();

/* ######################## find from the first edge the next one */
/* ##################################### until the ring is rounded */

j = 0;
k = numberOfEdges;

while (j < k)
{

ibp = 0;
while (ibp<numberOfEdges) {
e2 = edgeList.getElementAt(ibp);
e1 = sortedEdgeList.getElementAt(j);

/* ##################### comparing with the parcel at the left side */

if ((e2 == e1.nextLeft) and (p.topologicObject == e2.hasOnItsLeft)) {
s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {
if ((e2 == e1.nextRight) and (p.topologicObject == e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {
if ((e2 == e1.previousLeft) and (p.topologicObject == e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {
if ((e2 == e1.previousRight) and (p.topologicObject == e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
/* ################### comparing with the parcel at the right side */

else {
if ((e2 == e1.nextLeft) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {
if ((e2 == e1.nextRight) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();

Jasmine – Spatial modelling with an object oriented database system

 170

sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {
if ((e2 == e1.previousLeft) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {
if ((e2 == e1.previousRight) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

s19.print();
l = 0;
ibp = numberOfEdges;
j = k;

};};};};};};};};

ibp = ibp + 1;
};

edgeList.removeElementAt(l);

numberOfEdges = numberOfEdges - 1;
s4.print();
s5.print();

numberOfEdges.print();

j = j + 1;
};

/* ### count the edges */

numberOfEdges = edgeList.count();

s8.print();
sortedEdgeList.print();

}; /*if numberOfEdges != NIL */
}; /*if numberOfParcel != NIL */

/* ######## if the list still contains edges, there are more rings */
/* ####### not only a outer ring but also one or more inner rings */

if (numberOfEdges != 0) {

s4.print();
s5.print();

numberOfEdges.print();
s23.print();

};

/* ### end of subprogram */

it2 = 0;
numberOfEdges = sortedEdgeList.count();

s4.print();
s5.print();
numberOfEdges.print();

s21.print();

area = 0;

if (numberOfEdges != NIL)
{

e = sortedEdgeList.getElementAt(0);

Jasmine – Spatial modelling with an object oriented database system

 171

e.print();
e.geometricObject.print();

pntList = e.geometricObject.hasPoints;
numberOfPoints = pntList.count();
i = 0;
while (i < numberOfPoints-1)
{

pnt1 = pntList.getElementAt(i);
pnt2 = pntList.getElementAt(i+1);
areaPart = (pnt2.hasPosition.x/1000 - pnt1.hasPosition.x/1000)

* (pnt2.hasPosition.y/1000 + pnt1.hasPosition.y/1000);
area = areaPart;
i = i + 1;

};
comparingNode = e.endsAt;
m = 1;
while (m < numberOfEdges)
{

e = sortedEdgeList.getElementAt(m);
pntList = e.geometricObject.hasPoints;
if (comparingNode == e.startsAt)
{

numberOfPoints = pntList.count();
i = 0;
while (i < numberOfPoints-1)
{

pnt1 = pntList.getElementAt(i);
pnt2 = pntList.getElementAt(i+1);
areaPart = (pnt2.hasPosition.x/1000 - pnt1.hasPosition.x/1000)

* (pnt2.hasPosition.y/1000 + pnt1.hasPosition.y/1000);
area = areaPart;
i = i + 1;

};
comparingNode = e.endsAt;

}
else
{

numberOfPoints = pntList.count();
i = numberOfPoints - 1;
while (i > 0)
{

pnt1 = pntList.getElementAt(i);
pnt2 = pntList.getElementAt(i-1);
areaPart = (pnt2.hasPosition.x/1000 - pnt1.hasPosition.x/1000)

* (pnt2.hasPosition.y/1000 + pnt1.hasPosition.y/1000);
area = areaPart;
i = i - 1;

};
comparingNode = e.endsAt;

};
m = m + 1;

};

if (area < 0)
{

area = area * -1/2;
}
else
{

area = area * 1/2;
};

s20.print();
area.print();

};

/* ################################### clear memory from variables */

undefVar m;
undefVar comparingNode;
undefVar ltn;
undefVar tn1;
undefVar tn2;
undefVar roughArea;

undefVar e;

Jasmine – Spatial modelling with an object oriented database system

 172

undefVar e1;
undefVar e2;
undefVar edgeList;
undefVar ibp;
undefVar it2;
undefVar i;
undefVar j;
undefVar k;
undefVar l;
undefVar lp;
undefVar numberOfEdges;
undefVar numberOfPoints;
undefVar numberOfParcels;
undefVar p;
undefVar pnt1;
undefVar pnt2;
undefVar pnt3;
undefVar pntList;
undefVar sortedEdgeList;
undefVar area;
undefVar areaPart;
undefVar s1;
undefVar s2;
undefVar s3;
undefVar s4;
undefVar s5;
undefVar s6;
undefVar s7;
undefVar s8;
undefVar s9;
undefVar s10;
undefVar s11;
undefVar s19;
undefVar s20;
undefVar s21;
undefVar s22;
undefVar s23;
undefVar s24;
undefVar s25;

/* ## end of program */

Jasmine – Spatial modelling with an object oriented database system

 173

 D.2 Count the parcels within a rectangle by centroid
/*---*/
/* Program to find all parcels inside a given rectangle */
/* */
/* file : findParcelsInRectangle.txt */
/* Author: Patrice Wijnands */
/* Date : June 28th 2001 */
/* Language: ODQL */
/* */
/*---*/
defaultCF 'thematicViewCF';
List<parcel> lp;
lp = parcel from parcel
where (parcel.location.geometricObject.hasPosition.x > 166000000
and parcel.location.geometricObject.hasPosition.y > 440000000
and parcel.location.geometricObject.hasPosition.x < 168000000
and parcel.location.geometricObject.hasPosition.y < 442000000
and parcel.tmax == 0);
lp.count().print();

undefVar lp;
/* ## end of program */

D.3 Count the parcels within a rectangle by bounding box
/*---*/
/* Program to find all parcels inside a given rectangle */
/* */
/* file : findParcelsInRectangleByBbox.txt */
/* Author: Patrice Wijnands */
/* Date : July 12th 2001 */
/* Language: ODQL */
/* */
/*---*/

/* ## declarations */

defaultCF 'spatialViewCF';

List<thematicViewCF::parcel> lp;

Integer llx;
Integer lly;

/* ## define the rectangle */
/* ############################# ll = lower left, ur = upper right */

Integer urx;
Integer ury;

llx = 166000000;
lly = 440000000;
urx = 168000000;
ury = 442000000;

/* ## find all valid parcels */

lp = thematicViewCF::parcel from thematicViewCF::parcel
where (thematicViewCF::parcel.tmax == 0);

Integer i;
Integer numberOfParcels;

i = 0;
numberOfParcels = lp.count();

thematicViewCF::parcel p;
List<terminatingNode> lon;
terminatingNode tn1;
terminatingNode tn2;
List<thematicViewCF::parcel> lp2;

while (i < numberOfParcels)
{

Jasmine – Spatial modelling with an object oriented database system

 174

p = lp.getElementAt(i);
lon = p.bbox;
tn1 = lon.getElementAt(0);
tn2 = lon.getElementAt(1);

/* if the sides of the bbox overlap with the sides of the rectangle */

if((((tn2.geometricObject.hasPosition.x >= urx
and tn1.geometricObject.hasPosition.x <= urx

)
or (urx >= tn2.geometricObject.hasPosition.x

and llx <= tn2.geometricObject.hasPosition.x
)

)
and ((tn2.geometricObject.hasPosition.y >= ury

and tn1.geometricObject.hasPosition.y <= ury
)

or (ury >= tn2.geometricObject.hasPosition.y
and lly <= tn2.geometricObject.hasPosition.y

)
)

)
)
{

/* ############################### then add the parcel to the list */
/* ############################ put the first parcel into the list */

if (lp2.count() == NIL)
{

lp2 = List{ p };
}

/* ##################################### and then the other parcels */

else
{

lp2.directAdd(p);
};

};
i = i + 1;

};

lp2.count().print();

/* ### undefine variable */
undefVar llx;
undefVar lly;
undefVar lp;
undefVar i;
undefVar numberOfParcels;
undefVar p;
undefVar lon;
undefVar tn1;
undefVar tn2;
undefVar lp2;
undefVar urx;
undefVar ury;
/* ## end of program */

D.4 Create index
defaultCF 'thematicViewCF';

Bag<Composite class> CCS;
Composite class CC;
CC = parcel.getClass();
CCS = parcel.getSubClasses(TRUE);
CCS = CCS.add(CC);
scan(CCS, CC)
{

CC.createIndex("object_id","object_id");
};

undefVar CCS;
undefVar CC;

Jasmine – Spatial modelling with an object oriented database system

 175

D.5 Find the surrounding boundaries of a parcel
/*---*/
/* Program to find a parcel, its surrounding boundaries and ring */
/* It returns a list of sorted edges */
/* */
/* _________boundary___________ */
/* | | */
/* | | */
/* | | */
/* | parcel | */
/* | | */
/* boundary| |boundary */
/* | | */
/* |____________________________| */
/* boundary */
/* */
/* */
/* Ring: */
/* all boundaries together, */
/* clockwise or anticlockwise */
/* file : findBoundariesFromParcel2.txt */
/* Author : Patrice Wijnands */
/* Date : May 21th 2001 */
/* Language: ODQL */
/* */
/* This program cannot handle islands and treats arcs as lines. */
/* */
/* */
/* */
/* */
/* */
/*---*/

/* ## declarations */

defaultCF 'spatialViewCF';
String s1;
s1 = "object";
String s2;
s2 = "parcel";
String s3;
s3 = "first edge";
String s4;
s4 = "number of";
String s5;
s5 = "edges";
String s6;
s6 = "this is the next one";
String s7;
s7 = "no edge found";
String s8;
s8 = "parcel's edges, sorted following topology";
String s9;
s9 = "parcel's boundaries, checking topology...";
String s10;
s10 = "j =";
String s11;
s11 = "i =";

/* ## find parcel */

List<thematicViewCF::parcel> lp;
thematicViewCF::parcel p;

lp = thematicViewCF::parcel from thematicViewCF::parcel
where (thematicViewCF::parcel.object_id == 200099688
and thematicViewCF::parcel.tmax == 0);

Integer numberOfParcels;

numberOfParcels = lp.count();
s2.print();
numberOfParcels.print();

Jasmine – Spatial modelling with an object oriented database system

 176

p = lp.getElementAt(0);
p.object_id.print();

/* ######################## find all edges surrounding that parcel */

List<edge> edgeList;
edgeList = edge from edge
where (edge.hasOnItsLeft == p.topologicObject
or edge.hasOnItsRight == p.topologicObject);

s5.print();
edgeList.print();

/* ### count the edges */

Integer numberOfEdges;
numberOfEdges = edgeList.count();
s4.print();
s5.print();
numberOfEdges.print();

/* ################## get the first edge in the list and remove it */

edge e1;
e1 = edgeList.getElementAt(0);
List<edge> sortedEdgeList;

sortedEdgeList = List{ e1 };

sortedEdgeList.print();

edgeList.removeElementAt(0);

/* ### count the edges */

numberOfEdges = edgeList.count();
s4.print();
s5.print();
numberOfEdges.print();

/* ######################## find from the first edge the next one */
/* ##################################### until the ring is rounded */

Integer i;
Integer j;
Integer k;
Integer l;
edge e2;
s10.print();
j = 0;
k = numberOfEdges;

while (j < k) {
i = 0;
while (i<numberOfEdges) {

e2 = edgeList.getElementAt(i);
e1 = sortedEdgeList.getElementAt(j);

/* ##################### comparing with the parcel at the left side */

if ((e2 == e1.nextLeft) and (p.topologicObject == e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
else {

if ((e2 == e1.nextRight) and (p.topologicObject ==
e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
else {

if ((e2 == e1.previousLeft) and (p.topologicObject ==

Jasmine – Spatial modelling with an object oriented database system

 177

e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
else {

if ((e2 == e1.previousRight) and (p.topologicObject ==
e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
/* ################### comparing with the parcel at the right side */

else {
if ((e2 == e1.nextLeft) and (p.topologicObject ==
e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
else {

if ((e2 == e1.nextRight) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
else {

if ((e2 == e1.previousLeft) and (p.topologicObject ==
e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

}
else {

if ((e2 == e1.previousRight) and (p.topologicObject ==
e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = i;
i = numberOfEdges;

};
};};};};};};};

i = i + 1;
};

edgeList.removeElementAt(l);

numberOfEdges = numberOfEdges - 1;
s4.print();
s5.print();

numberOfEdges.print();

j = j + 1;
};

/* ### count the edges */

numberOfEdges = edgeList.count();

s8.print();
sortedEdgeList.print();

/* ######## if the list still contains edges, there are more rings */

Jasmine – Spatial modelling with an object oriented database system

 178

/* ####### not only a outer ring but also one or more inner rings */

if (numberOfEdges != 0) {

numberOfEdges.print();
};

/* ################################### clear memory from variables */

undefVar e1;
undefVar e2;
undefVar edgeList;
undefVar i;
undefVar j;
undefVar k;
undefVar l;
undefVar lp;
undefVar numberOfEdges;
undefVar numberOfParcels;
undefVar p;
undefVar s1;
undefVar s2;
undefVar s3;
undefVar s4;
undefVar s5;
undefVar s6;
undefVar s7;
undefVar s8;
undefVar s9;
undefVar s10;
undefVar s11;
undefVar sortedEdgeList;

/* ## end of program */

Jasmine – Spatial modelling with an object oriented database system

 179

D.6 Find boundaries that point into other boundaries
/*---*/
/* Program to find a boundary with the same boundary to its left */
/* and to its right */
/* both for its starting node and to its ending node */
/* */
/* file : findBoundariesPointingIntoOtherBoundaries.txt */
/* Author: Patrice Wijnands */
/* Date : May 18th 2001 */
/* Language: ODQL */
/* */
/* boundary a boundary b */
/* ____________ _______________ */
/* | */
/* | */
/* | */
/* central boundary */
/* | */
/* | */
/* | */
/* _____________|_______________ */
/* */
/* boundary c boundary d */
/* */
/* find central boundary where a=b and c=d */
/* */
/* */
/* */
/*---*/

/* ## declarations */

defaultCF 'thematicViewCF';
List <propertyDividingBoundary> b;

/* ### find boundaries */

b = propertyDividingBoundary
from propertyDividingBoundary
where (propertyDividingBoundary.topologicObject.nextLeft ==

propertyDividingBoundary.topologicObject.nextRight)
or (propertyDividingBoundary.topologicObject.previousLeft ==

propertyDividingBoundary.topologicObject.previousRight);

Integer numberOfBoundaries;
numberOfBoundaries = b.count();
numberOfBoundaries.print();

/* ################################### clear memory from variables */

undefVar b;
undefVar numberOfBoundaries;
/* ## end of program */

Jasmine – Spatial modelling with an object oriented database system

 180

D.7 Find boundaries inside a parcel
/*---*/
/* Program to find a boundary with the same parcel to its left */
/* and to its right */
/* */
/* file : findBoundaryInParcel2.txt */
/* Author: Patrice Wijnands */
/* Date : May 22th 2001 */
/* Language: ODQL */
/* */
/* ____________________________ */
/* | | | */
/* | |<-boundary | */
/* | | | */
/* | parcel a | parcel a | */
/* | | | */
/* | | | */
/* | | | */
/* |_____________|______________| */
/* */
/*---*/

/* ## declarations */
defaultCF 'thematicViewCF';
List <propertyDividingBoundary> b1;

/* ### find boundaries */
b1 = propertyDividingBoundary
from propertyDividingBoundary
where propertyDividingBoundary.topologicObject.hasOnItsRight ==

propertyDividingBoundary.topologicObject.hasOnItsLeft;

String s2;
s2 = "boundary";
s2.print();

b1.count().print();

/* ################################### clear memory from variables */
undefVar b1;
undefVar s2;

Jasmine – Spatial modelling with an object oriented database system

 181

D.8 Find a parcel from a given directPosition (point-in-polygon)
/*---*/
/* Program to find a parcel */
/* from a given set coordinates */
/* */
/* */
/* file : findParcelFromDirectPosition */
/* Author : Patrice Wijnands */
/* Date : May 24th 2001 */
/* Language: ODQL */
/* */
/*---*/

/* ## declarations */

defaultCF 'spatialViewCF';

terminatingNode bottomLeft;
edge e;
Integer i;
Integer intersectionx;
Integer intersectionCount;
Integer it2;
Integer numberOfPoints;
Integer oddCheck;
thematicViewCF::parcel p;
Integer part;
point pnt1;
point pnt2;
List<point> pntList;
List<terminatingNode> tN;
terminatingNode topRight;

edge e1;
edge e2;
List<edge> edgeList;
Integer ibp;
Integer j;
Integer k;
Integer l;
Integer numberOfEdges;
List<edge> sortedEdgeList;

String s1;
s1 = "object";
String s2;
s2 = "parcel";
String s3;
s3 = "first edge";
String s4;
s4 = "number of";
String s5;
s5 = "edges";
String s6;
s6 = "this is the next one";
String s7;
s7 = "no edge found";
String s8;
s8 = "parcel's edges, sorted following topology";
String s9;
s9 = "parcel's boundaries, checking topology...";
String s10;
s10 = "j =";
String s11;
s11 = "i =";
String s12;
s12 = "Point is inside parcel:";
String s13;
s13 = "Point is not inside any parcel.";
String s14;
s14 = "Looking for parcel surrounding this point:";
String s15;
s15 = "Checking candidate parcel:";
String s16;

Jasmine – Spatial modelling with an object oriented database system

 182

s16 = "Collecting candidate parcels...";
String s17;
s17 = "Finished.";
String s18;
s18 = "Number of candidate parcels:";
String s19;
s19 = "Skipping parcel, topology incorrect.";

/* ###################################### find this directPosition */

directPosition dP;
dP = directPosition.new(x := 162250270, y := 445286590, z := 0);
s14.print();
dP.print();

/* ############################### list all still existing parcels */

List<thematicViewCF::parcel> lp;
lp = thematicViewCF::parcel from thematicViewCF::parcel
where thematicViewCF::parcel.tmax == 0;

/* ########### find in this list all parcels owning a bounding box */
/* ############################ containing the given directPosition */

List<thematicViewCF::parcel> candidateParcelList;

Integer it;
Integer numberOfParcels;
numberOfParcels = lp.count();

s16.print();

it = 0;
while (it < numberOfParcels)
{

p = lp.getElementAt(it);
tN = p.bbox;
tN.head();
bottomLeft = tN.getElement();
tN.next();
topRight = tN.getElement();
if (bottomLeft.geometricObject.hasPosition.x <= dP.x)
{

if (bottomLeft.geometricObject.hasPosition.y <= dP.y)
{

if (topRight.geometricObject.hasPosition.x >= dP.x)
{

if(topRight.geometricObject.hasPosition.y >= dP.y)
{

if (candidateParcelList.count() == NIL)
{

candidateParcelList = List{ p };
}
else
{

candidateParcelList.directAdd(p);
};

candidateParcelList.count().print();
};

};
};

};
it = it + 1;

};

s17.print();

/* ############### if such parcels are found, calculate from their */
/* ######### curves which parcel contains the given directPosition */

Integer numberOfCandidateParcels;
numberOfCandidateParcels = candidateParcelList.count();

s18.print();

Jasmine – Spatial modelling with an object oriented database system

 183

numberOfCandidateParcels.print();

if (numberOfCandidateParcels != NIL)
{

Integer it;
it = 0;

while (it < numberOfCandidateParcels)
{

p = candidateParcelList.getElementAt(it);
s15.print();
p.object_id.print();

/* ################################ findBoundariesFromParcel2.txt */
/* ######################## find all edges surrounding that parcel */

edgeList = edge from edge
where (edge.hasOnItsLeft == p.topologicObject
or edge.hasOnItsRight == p.topologicObject);

s5.print();
edgeList.print();

/* ### count the edges */

numberOfEdges = edgeList.count();
s4.print();
s5.print();
numberOfEdges.print();

/* ################## get the first edge in the list and remove it */

if (numberOfEdges != NIL and numberOfEdges != 0)
{

e1 = edgeList.getElementAt(0);
sortedEdgeList = List{ e1 };
sortedEdgeList.print();
edgeList.removeElementAt(0);

/* ### count the edges */

numberOfEdges = edgeList.count();
s4.print();
s5.print();
numberOfEdges.print();

/* ######################## find from the first edge the next one */
/* ##################################### until the ring is rounded */

s10.print();
j = 0;
k = numberOfEdges;

while (j < k)
{

ibp = 0;
while (ibp<numberOfEdges)

{
e2 = edgeList.getElementAt(ibp);
e1 = sortedEdgeList.getElementAt(j);

/* ##################### comparing with the parcel at the left side */

if ((e2 == e1.nextLeft) and (p.topologicObject == e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

if ((e2 == e1.nextRight) and (p.topologicObject == e2.hasOnItsLeft)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;

Jasmine – Spatial modelling with an object oriented database system

 184

ibp = numberOfEdges;
}
else {

if ((e2 == e1.previousLeft) and (p.topologicObject == e2.hasOnItsLeft))
{

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

if ((e2 == e1.previousRight) and (p.topologicObject == e2.hasOnItsLeft))
{

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
/* ################### comparing with the parcel at the right side */

else {
if ((e2 == e1.nextLeft) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

if ((e2 == e1.nextRight) and (p.topologicObject == e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

if ((e2 == e1.previousLeft) and (p.topologicObject == e2.hasOnItsRight))
{

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

if ((e2 == e1.previousRight) and (p.topologicObject ==
e2.hasOnItsRight)) {

s6.print();
sortedEdgeList.insertElementAt(e2, j+1);
l = ibp;
ibp = numberOfEdges;

}
else {

s19.print();
l = 0;

ibp = numberOfEdges;
j = k;

};};};};};};};};

ibp = ibp + 1;
};

edgeList.removeElementAt(l);

numberOfEdges = numberOfEdges - 1;
s4.print();
s5.print();

numberOfEdges.print();

j = j + 1;
};

Jasmine – Spatial modelling with an object oriented database system

 185

/* ### count the edges */

numberOfEdges = edgeList.count();

s8.print();
sortedEdgeList.print();

}; /*if numberOfEdges != NIL */

/* ######## if the list still contains edges, there are more rings */
/* ####### not only a outer ring but also one or more inner rings */

if (numberOfEdges != 0) {

s4.print();
s5.print();
numberOfEdges.print();

};

/* ### end of subprogram */

it2 = 0;
numberOfEdges = sortedEdgeList.count();

if (numberOfEdges != NIL)
{

intersectionCount = 0;

while (it2 < numberOfEdges)
{

e = sortedEdgeList.getElementAt(it2);
pntList = e.geometricObject.hasPoints;

numberOfPoints = pntList.count();
i = 0;

while (i < numberOfPoints - 1)
{

pnt1 = pntList.getElementAt(i);
pnt2 = pntList.getElementAt(i+1);

/* ######################## central part of pointInPolygon algoritm */
/* ##################################### after Prof. Alfred Schmitt */

if ((pnt1.hasPosition.y < dP.y)

and (pnt2.hasPosition.y < dP.y))
{
}
else
{

if ((pnt1.hasPosition.y >= dP.y)

and (pnt2.hasPosition.y >= dP.y))
{
}
else
{

intersectionx = (dP.y - pnt1.hasPosition.y)
* ((pnt2.hasPosition.x - pnt1.hasPosition.x)
/ (pnt2.hasPosition.y - pnt1.hasPosition.y))
+ pnt1.hasPosition.x;

if (intersectionx >= dP.x)
{

intersectionCount = intersectionCount + 1;
};

};
};

i = i + 1;
};

/* ################################ end of pointInPolygon algoritm */
/* ### get next edge */

sortedEdgeList.next();
it2 = it2 + 1;

};

Jasmine – Spatial modelling with an object oriented database system

 186

};

part = intersectionCount / 2;
oddCheck = intersectionCount - 2*part;

if (oddCheck > 0)
{

it = numberOfCandidateParcels;
s12.print();
p.print();

}
else
{

s13.print();
};
it = it + 1;

};
};
/* ################################### clear memory from variables */
undefVar bottomLeft;
undefVar candidateParcelList;
undefVar dP;
undefVar e;
undefVar i;
undefVar intersectionx;
undefVar intersectionCount;
undefVar it;
undefVar it2;
undefVar lp;
undefVar numberOfCandidateParcels;
undefVar numberOfParcels;;
undefVar numberOfPoints;
undefVar oddCheck;
undefVar pntList;
undefVar p;
undefVar part;
undefVar pnt1;
undefVar pnt2;
undefVar sortedEdgeList;
undefVar tN;
undefVar topRight;
undefVar e1;
undefVar e2;
undefVar edgeList;
undefVar ibp;
undefVar j;
undefVar k;
undefVar l;
undefVar numberOfEdges;
undefVar s1;
undefVar s2;
undefVar s3;
undefVar s4;
undefVar s5;
undefVar s6;
undefVar s7;
undefVar s8;
undefVar s9;
undefVar s10;
undefVar s11;
undefVar s12;
undefVar s13;
undefVar s14;
undefVar s15;
undefVar s16;
undefVar s17;
undefVar s18;
undefVar s19;

/* ## end of program */

