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Preface  
 
 
This is a report describing a research into the performance of the PostgreSQL open source 
database management system when handling spatial data. The data used, is data from the 
spatial part of the dataset of the Dutch cadastre, LKI. Support for spatial data types is still not 
fully evolved in many DBMS’s and this is therefore an interesting field for research.  
 
The research was performed during the course Geo-DBMS casestudy (ge4631), as part of my 
study in Geodesy at the department of Geodesy of the  Delft University of Technology. 
Besides the results of the research, it was also important to gain some hands on experience on 
the field of spatial databases.  
 
During the research I was helped by a number of people and I would hereby like to thank: drs 
C.W. Quak for his help with Unix, Perl and all kinds of practical problems I encountered 
during the research, drs T.P.M.Tijssen for his actions as system administer (like moving data, 
to prevent the loading of the database to fail, on a Sunday) and prof.dr.ir. P.J.M. van 
Oosterom for the overall guidance of the research. I also would like to thank the developers of 
PostGIS for quickly and usefully answering the questions I posted on the PostGIS mailing 
list.  
 
Delft, February 2002, 
 
Maarten Vermeij 
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Summary 
 
This report describes the performance testing of the Open Source DBMS PostgreSQL when 
handling spatial cadastral data. The data used in testing was the spatial part of the cadastral 
database of 3 cadastre offices, Arnhem, Rotterdam and Zoetermeer. All tables in the database 
contain spatial attributes. During testing it was established that PostgreSQL alone didn’t 
provide all the necessary support for spatial attributes. This lack in functionality was 
overcome by the use of the PostGIS extension to PostgreSQL. Using this extension all 
attributes and indices defined in the database definition could be created and used, and all 
required testing queries could be performed. The use of the extension caused the loading 
process to become more complicated and slower. The extension did allow queries to be 
performed using the indices, which wasn’t the case when using only PostgreSQL.  
 
The query performance of PostgreSQL/PostGIS isn’t near as good as Oracle or Ingres on 
most parts, since the queries used had to use functions that couldn’t use indices. Queries that 
only used index scans provided a performance similar to that of Oracle. This is the case when 
using only bounding boxes. This type of query can be also be handled by PostgreSQL only 
and that results in query times that are better then Oracle or Ingres. It must be noted that the 
Informix 8.11 DBMS outperforms all these DBMS when it comes to querying. Query times 
using this DBMS are fraction of those from the other DBMS’s. 
Since developments of PostgreSQL and especially PostGIS are planned, which should 
enhance the performance of the combination, future testing can be interesting. Also, since 
both PostgreSQL and PostGIS are open source software, the missing functionality could be 
created by writing the necessary routines yourself, if the required knowledge and time are 
available. 
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1 Introduction 
 
This report describes a research into the performance of the open source database PostgreSQL 
when used to handle a cadastral dataset. During the research it was determined that the 
geometric support offered by PostgreSQL didn’t offer all the necessary functionality for 
indexing and querying of spatial data, since several required data types and operators weren’t 
available and indexing on some types wasn’t directly supported. A short investigation on the 
internet led to the PostGIS extension for PostgreSQL. This package, offers some additional 
geometric functionality for PostgreSQL. The PostGIS extension was used to handle all the 
geometric attributes of the database. 
The objective of the research was to give a comparison of the performance of the PostgreSQL 
DBMS with regards to the previously tested systems Oracle 8i spatial and Ingres and also 
Informix, although less information on the last one was available. The main comparison will 
be in the field of the performance (speed) of the loading and querying of geometric cadastral 
data. The question to be answered therefore is: 
 

How does the PostgreSQL DBMS perform in the loading and querying of 
geometrical spatial cadastral data in comparison with other DBMS’s such as 
Oracle spatial, Ingres and Informix? 

 
The cadastral database is split into two parts, an administrative part, called AKR and a 
geometric part, called LKI. Due to limitations in time only tests with LKI where performed. 
This also limits the number of queries to be performed since some of the queries use a 
combination of both datasets. The queries used in this research are the same as the ones used 
in the ‘Spatial DBMS testing with data from the Cadastre and TNO NITG [7] report. The 
comparisons to the other DBMS’s are based upon the results presented in that report. Readers 
interested in the results presented here are therefore advised to also read the that report. The 
hardware and OS used for this research are the same as the once used for the research 
presented in that report. 
 
This report has more ore less the same structure as the research that was performed. First there 
is a description of the data, which was used in the research, which in this case is data from the 
Cadastre of the Netherlands. Secondly the DBMS PostgreSQL used in the research will be 
discussed in chapter 3. Since PostgreSQL didn’t provide al the functionality needed on spatial 
data types an extension to the system, PostGIS was used. Chapter 4 gives a description of the 
PostGIS extension. After all the software that is used is described, a description of the process 
of loading and indexing the data is given in chapter 5, together with the problems encountered 
in these actions. Now that the data is ready to be used the queries can be performed. A 
description of the querying of the data is given in chapter 6. The results of the test are 
presented in chapter 6. Finally in chapter 7 conclusions will be drawn, based on the findings 
of the research described in the previous chapters. 
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2 Dutch Cadastral Dataset 
 
The database of the Dutch cadastre is split into two parts. This is the result of its historical 
development. The administrative data is stored in a database called AKR, whereas the 
geometric part has later been added into a database called LKI. Links between the two are 
made using a number of attributes in the two databases. Due to limitations in time only the 
geometrical database LKI was tested in this research.  
 
The LKI database consists of 7 different tables. During the research the data of three cadastre 
offices was used, Arnhem, Rotterdam and Zoetermeer which results in the following total 
number of records per table in the final database. 
 

Table No. of records 
xfio_boundary  10,044,511 
xfio_gcpnt 60,986 
xfio_line 3,502,313 
xfio_parcel 3,820,699 
xfio_parcelover 42,852 
xfio_sympnt 2,054,463 
xfio_text 1,640,122 
Totals 21,165,946 

Table 2.1: Number of records per table in the test set. 
 
No explicit use of the content of the records has been made during this research, except to 
obtain counting results in the querying. 
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3 PostgreSQL  
 
This chapter gives a brief description of the PostgreSQL DBMS that was used in this 
research. Since this research is primarily aimed at the spatial functionality and performance 
these will be described separately in paragraph 3.2 
 

3.1 The DBMS 
 
The DataBase Management System used in the research is called PostgreSQL. This piece of 
software originates from the University of California at Berkeley, which also produced the 
first versions of the Ingres DBMS [4]. PostgreSQL is Open Source software, which means 
that the source code of the software is (in this case freely) available to everyone interested. 
This potentially means that everyone interested can make adjustment, enhancements and 
extensions to the software. But there still is a central group of developers which maintains the 
‘official’ version of the software, with help of many interested and able programmers who 
offer their views, ideas and skills. This is necessary in order to maintain a consistent product, 
which is the result of the work of so many individuals. This is especially important since a 
DBMS is a very complicated piece of software, which should be able to be trusted to handle 
important data. That is also a reason why many companies stick with commercial software, 
since then it is often possible to buy guaranteed support, whereas with free software you have 
to rely on the goodwill of the developers. This is why some open source developers offer paid 
support contracts. The software itself remains free but you pay for the support. 
 
PostgreSQL has been designed to run on UNIX and UNIX-like platforms. During this 
research it was located on SUN Enterprise E3500 server with Sun Solaris 7 (for precise 
specifications see Appendix A.1). PostgreSQL is also distributed in some Linux distributions. 
It ran perfectly on my own computer using Suse Linux 7.2 (appendix A.3). Although this was 
only tested with a very limited amount of data, the results of that test provided some 
interesting results. With this limited set the loading and indexing of the data was performed at 
least twice as fast as on the SUN machine. However no tests were preformed with larger 
datasets or with querying. The cause of the difference has not been thoroughly investigated, 
but using the UNIX top command showed that PostgreSQL used only one of the two available 
processors of the SUN machine, which with 400 MHz is approximately half as fast as the 900 
MHz Athlon processor. Furthermore the SUN machine is used by multiple users, although at 
the time of the loading little other activity than the PostgreSQL process was shown. Also 
differences in the PostgreSQL setup are possible since the package provided with Suse 7.2 
was already pre-configured and this configuration was not altered or checked. Nevertheless, 
this is an indication that the loading process was limited by CPU power rather than disk 
access speed. 
 
Since PostgreSQL is distributed as Open Source software it is normally made available as 
source code compressed in a single archive file. The first thing that therefore had to be done 
was to extract the source code files from the archive and compile them using a locally 
available compiler. The actual compilation is dependent on some configuration options, which 
are made using a script that is provided with the source code. During this configuration 
several options can be set, such as the directory where de DBMS itself is to be installed, what 
default directory will be used for the data and what clients are to be installed.  

 3



 
The PostgreSQL DBMS uses a client-server architecture. The actual data handling and most 
file access is performed by the server part. This has some implications on the necessary 
computer access rights. It is preferable that the database server is run under a user account, 
which has been specifically arranged for this purpose. This way the security of the database 
and the computer can be maximised and unwanted computer access by the DBMS or database 
users can be avoided. For example only the server has to be able to access the directories 
where the data in the database is stored. It is not necessary for database users to have this 
capability since all database handling is performed through the client applications which in 
turn access the server. In fact in most situations it is undesirable that users can access these 
files directly, since this can potentially lead to a corrupt database. 
 
When starting the database server several options can be given to this program, such as a 
different location of the data files, or an option to allow network access to the server. This last 
option is important when accessing the database using other than the standard clients.  
 
PostgreSQL maintains its own list of users with individual and group wise right management. 
This way the rights of users can be limited to avoid unwanted access to the data, being it 
either intentionally or unintentionally. The user management has much in common with that 
of operating systems such as UNIX. The user account with all rights is called the super-user.  
This account can be used to create new users. New users can have a range of authorities, 
ranging from only reading a database to being a super-user with all possible authorities. Again 
as with operating system users, it is advisable to limit the users’ rights to what they need to be 
able to do, to avoid unwanted operations on databases.  
 
As mentioned before, access to the server is performed by clients. Clients provide the user 
with an interface to be able to access their database and thus to perform operations like 
creating new databases, load data into the database and retrieve data by issuing queries. The 
standard PostgreSQL client is called psql. This program provides a textual interface, which 
can be run on any UNIX terminal or via a remote connection such a telnet. On start up of the 
client the user must provide a username and the name of the database to be accessed. If 
necessary a password has to be provided to access that database. If the user is authorised to 
use the specified database, a command prompt in psql will become available, which can be 
used to enter commands, including SQL queries. 
 

3.2 Spatial functionality 
 
This research focuses primarily on the spatial abilities of the DBMS. PostgreSQL offers some 
spatial abilities by providing a number of geometric data types.  This set of data types 
provides all the types which are used in the LKI database, therefore the loading of the spatial 
attributes should be possible in PostgreSQL. Interesting data types are the ones with variable 
length such as path and polygon. This overcomes the problem of having to define a maximum 
number of points in for example a polygon, which could result in losing lots of disk space 
when just a few polygons contain many points and most have only a few points. 
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Geometric Type Storage Representation Description 
Point 16 bytes (x,y) Point in space 
Line 32 bytes ((x1,y1),(x2,y2)) Infinite line 
Lseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment 
Box 32 bytes ((x1,y1),(x2,y2)) Rectangular box 
Path 4+32n bytes ((x1,y1),...) Closed path (similar to polygon) 
Path 4+32n bytes [(x1,y1),...] Open path 
Polygon 4+32n bytes ((x1,y1),...) Polygon (similar to closed path) 
circle 24 bytes <(x,y),r> Circle (center and radius) 

Table3.1: PostgreSQL spatial attributes [4] 
 
The next part of the functionality that is important is the ability to create indices on the spatial 
attributes. For this purpose PostgreSQL provides the R-Tree index [8]. This type of index is 
especially useful for spatial data. The LKI database model defined indices on point and path 
attributes. Unfortunately PostgreSQL only allows indices on boxes and circles. The point and 
path attributes can be indexed by indexing their bounding boxes. This is possible since 
PostgreSQL allows the indexing of functions of the attributes. An index on a path attribute 
would be defined as follows: 
 
CREATE INDEX xfio_boundary_0b ON xfio_boundary USING RTREE 
(BOX(path_attribute)); 
 
Here the BOX function returns a box that is the bounding box of the path attribute. Using this 
‘trick’ it is possible to create all the indices defined in the database model. The problem now 
lies in the using of these indices. This is unfortunately where PostgreSQL’s native spatial 
abilities show a large shortcoming. PostgreSQL is only able to use the RTRee indices when 
querying with one of the following operators: 
 

Operator Description Usage 
&&  Overlaps? box '((0,0),(1,1))' && box '((0,0),(2,2))' 
&<  Overlaps to left? box '((0,0),(1,1))' &< box '((0,0),(2,2))' 
&>  Overlaps to right? box '((0,0),(3,3))' &> box '((0,0),(2,2))' 
<<  Left of? circle '((0,0),1)' << circle '((5,0),1)' 
>>  Is right of? circle '((5,0),1)' >> circle '((0,0),1)' 
@  Contained or on point '(1,1)' @ circle '((0,0),2)' 
~=  Same as polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' 

Table 3.2: PostgreSQL spatial operators [4] 
 
Of the attributes used in this research only the box attributes (or the bounding boxes of other 
spatial attributes) could be examined in overlap queries. The use of other operators or 
functions like the <-> distance operator or the # and ?# intersection operators did not allow 
more precise overlap queries that take the exact shape of the geometries into account. No way 
was therefore found to perform any spatial queries except box overlaps. Fortunately a solution 
to the problem was found in the PostGIS extension to PostgreSQL which is the subject of the 
next chapter. 
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4 PostGIS 
 
The native spatial capabilities of PostgreSQL are fairly limited, but fortunately an extension is 
available which enhances PostgreSQL on this terrain, PostGIS [2]. PostGIS is being 
developed by a Canadian database consulting company, Refractions Research Inc. Although 
their product didn’t have all the desired and planned functionality at the time of this research, 
it was used to handle all the geometric attributes in the database. PostGIS is planned to be 
fully Open GIS compliant. PostGIS offers at least the following spatial attributes [3], which 
also are defined in the OpenGIS simple features specification: 
 

- GEOMETRY 
- POINT 
- LINESTRING 
- POLYGON 
- GEOMETRYCOLLECTION 
- MULTIPOINT 
- MULTILINESTRING 
- MULTIPOLYGON 

 
Of these the POINT, POLYGON and LINESTRING are used in the table definitions and 
MULTILINESTRING is used in the testing queries. The POLYGON data type is used to represent 
the box attributes in the database, since PostGIS doesn’t have a special box attribute. The 
MULTILINESTRING type is used only in querying and is not present in the PostgreSQL 
geometric data types set. The GEOMETRY type can be used to store any type of single 
geometry types. This can be useful when the actual type of the spatial attribute isn’t known at 
the design time of the database. 
 
For loading data PostGIS can use the Open GIS Well Known Text Format (with 3d 
extentions), which is part of the OpenGIS "Simple Features for SQL" specification [1]. This 
format differs somewhat from the format that was used in the data files that were used during 
this research. A description of the conversion that had to be made to these files is given in 
chapter 5. 
 
Besides the fact that PostGIS offers new functionality for spatial data handling within 
PostgreSQL, PostGIS also brings along a different indexing method. PostgreSQL provides an 
R-Tree based indexing method for spatial data-types.  The indexing method used in PostGIS 
is called GiST, which stands for Generalized Search Tree [9]. Early versions of PostGIS 
allowed the user to decide whether to use the PostgreSQL R-Tree index or the PostGIS GiST 
index, version 0.6, which was used in this research, and higher only allow GiST indices. The 
developers offer two reasons for this limitation: 

- Building an R-Tree index on a large table of geometries can take over twice as long 
as a GiST index on the same table. 

- R-Tree indices in PostgreSQL cannot handle features, which are larger than 8K in 
size. GiST indices can, using the "lossy" trick of substituting the bounding box for 
the feature itself. 

The first argument could be tested by indexing attributes which can be defined by both 
PostgreSQL native geometric attributes and PostGIS attributes, such as boxes. Actually boxes 
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are one of very few PostgreSQL’s geometric attributes that can be indexed using 
PostgreSQL’s native R-Tree index. The creation of an GiST index on the bbox attribute in the 
xfio_boundary table containing 10,044,511 records took 5h41m17s using the PostGIS GiST 
index and 4h51m34s using PostgreSQL’s native R-Tree index. So the argument that the GiST 
indices can be created faster, is not confirmed by this test. 

PostGIS is planned to be fully OpenGIS compliant, which could be very important in the 
acceptance and usability of the PostgreSQL/PostGIS combination, since it would increase the 
usability in combination with software and data from other providers. Once version 1.0 is 
available it will be submitted for OpenGIS compliance testing. The developers of PostGIS 
like to compare PostGIS (and the combination with PostgreSQL ) with ESRI's SDE or 
Oracle's Spatial extension.  
 
Like PostgreSQL, PostGIS is open source software, it is therefore again necessary that before 
being able to use PostGIS, it is compiled. When a specific database is to use the PostGIS 
extension, this extension then first has to be installed for that specific database. This is done 
through running a SQL script, which is provided with the source code of PostGIS. This script 
defines al the necessary functions, objects etc, used by PostGIS. PostGIS requires the 
PL/pgSQL procedural language extension in PostgreSQL, so if this isn’t present it first has to 
be installed using:  
 

CREATE FUNCTION plpgsql_call_handler () RETURNS OPAQUE AS  
  '/export/home/postgres/pgsql/lib/plpgsql.so' LANGUAGE 'C'; 
 
CREATE TRUSTED PROCEDURAL LANGUAGE 'plpgsql' 
HANDLER plpgsql_call_handler 
LANCOMPILER 'PL/pgSQL'; 

 
The OpenGIS "Simple Features Specification for SQL" defines standard GIS object types, the 
functions required to manipulate them, and a set of meta-data tables [1]. In order to ensure 
that meta-data remain consistent, operations such as creating and removing a spatial column 
are carried out through special procedures defined by OpenGIS. Two meta-data tables are 
created by PostGIS when it is installed in a database:  geometry_columns and spatial_ref_sys. 
The geometry_columns table is used to store meta data on the columns containing PostGIS 
spatial attributes. 

The GEOMETRY_COLUMNS table definition is as follows: 

  CREATE TABLE GEOMETRY_COLUMNS (  
    F_TABLE_CATALOG VARCHAR(256) NOT NULL,  
    F_TABLE_SCHEMA VARCHAR(256) NOT NULL,  
    F_TABLE_NAME VARCHAR(256) NOT NULL,  
    F_GEOMETRY_COLUMN VARCHAR(256) NOT NULL, 
    COORD_DIMENSION INTEGER NOT NULL,  
    SRID INTEGER NOT NULL,  
    TYPE VARCHAR(30) NOT NULL  

) 
 

To add a PostGIS attribute to a table definition, the following function, which is installed 
during the PostGIS installation, can be used: 
 
ADDGEOMETRYCOLUMN(<DB_NAME>, <TABLE_NAME>, <COLUMN_NAME>, <SRID>, <TYPE>, 
<DIMENSION>). 
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By calling this function a geometry attribute is added to the indicated table and an appropriate 
record is inserted in the geometry_columns table. The attribute description given by 
PostgreSQL using the \d command describes all PostGIS attributes as GEOMETRY regardless 
of the type indicated in the ADDGEOMETRYCOLUMN function. None of the fields available in 
the GEOMETRY_COLUMNS table where used explicitly in the research.  
 
Besides the usage in this research, PostGIS can also be used to provide Websites with 
geographical abilities. One application that can use the PostgreSQL/PostGIS combination as a 
source for its data is the Minnesota Mapserver, an internet web-mapping server [4]. 
 
PostGIS also comes with a program, which can convert ESRI Shape files into insert 
statements that can read by PostgreSQL/PostGIS to fill the database. This can be an important 
feature since ESRI ArcView is a widely spread GIS application. 
 
It must be noted that PostGIS is a work in progress, so some of the desired (and often already 
planned) functionality wasn’t available at the time of the research. In this research this most 
notably concerns the intersection of features where the exact boundaries are to be considered 
and not just their bounding boxes. Fortunately workarounds were possible but it would easier 
if it was already easily possible. Questions regarding PostGIS that weren’t answered in the 
online documentation could be asked on a forum on the internet. This was done several times 
during the research and resulted in helpful reactions, often from the developers themselves, an 
example that support for Open Source software can be very useful and effective. 
 

 8



5 Building the database 
 

5.1 Creating the tables 
 
The first action after the creation of the database is the creation of the tables that are used to 
store the data. A table consists of a number of columns, which define the various attributes. 
Each row in a table represents a record. Tables are created using the SQL CREATE TABLE  
statement. Using this statement all the attributes desired can be defined and an empty table is 
created. Initially all the attributes defined were native PostgreSQL attributes, including the 
geometry types point, box and path (polyline). The path and polygon attributes are special 
since they can hold an arbitrary number of nodes. This isn’t possible in standard relational 
databases, but this is possible in PostgreSQL since it’s an object-relational DBMS. The table 
and index creation statements originally used in the research with Oracle and Ingres [6] 
describing the database model couldn’t be used directly to construct the database model in 
PostgreSQL. Although all of these DBMS’s support the SQL standard, there are often 
differences between the exact formulation of some commands at the level of database 
creation, especially regarding spatial attributes. Also at the level of the database creation there 
are differences in offered functionality between DBMS’s which can lead to differences in the 
exact content of the scripts, for example by the use of work-arounds for missing functionality. 
To create the later-to-be-used PostGIS tables, the OpenGIS function ADDGEOMETRYCOLUMN 
is used [3]. This function creates the geometry column as well as adding an appropriate record 
to the geometry_columns table, which contains some meta information regarding the added 
attribute. This meta information, except the type of the geometry, wasn’t explicitly used in 
this research and the standard create table statement could have sufficed, according to the 
PostGIS manual. What the exact procedure for adding a PostGIS attribute looks like, wasn’t 
investigated. 
 

5.2 Loading the data 
 
Now that the 7 tables of the LKI database model are ready, they can be filled with data. The 
data for this research was available in the form of files which were created by an ASCII dump 
from an Ingres database. Each table in the database had its own file which contained one 
record per line. The attributes in each line were separated by tab characters. A study of the 
PostgreSQL online documentation lead to the COPY command as the most suitable for the 
loading of large amounts of data in a single action. Some practising with the command 
resulted in the surprisingly simple line: 
 
COPY tablename FROM ‘path/filename’ 
 
for loading a single file into a table. Using this simple command on all 7 tables and their 
accompanying data files, resulted in the tables be filled correctly, including the geometric 
attributes. Apparently the Ingres export format used to create the text files, was fully 
compatible with PostgreSQL. This was only the case when using only PostgreSQL attributes 
and not using PostGIS. 
 
Unfortunately it isn’t possible to fill the PostGIS-fields using the PostgreSQL copy command. 
A direct conversion between the corresponding PostgreSQL and PostGIS attributes also 
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wasn’t possible. The documented way to fill records containing PostGIS attributes was the 
use of one SQL INSERT statement per record: 
 
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (1,GeometryFromText('LINEST
RING(191232 243118,191108 243242)',-1),'Jeff Rd');  

Example taken from [3] 
 
Unfortunately this is a very slow process, and is not very feasible when loading large amounts 
of data, as was the case in this research. The solution to this problem used in this research was 
to first load the PostGIS attributes into text attributes using the previously described COPY 
command and then update the PostGIS attributes by their text to geometry functions. After the 
conversion it was intended to drop these text columns, which were of no use after the 
conversion. Although the online documentation of PostgreSQL does describe the syntax of 
the DROP COLUMN command, an execution of this command resulted in an error, which 
indicated that this feature isn’t implemented in PostGreSQL (yet). To overcome this problem 
the loading process was extended somewhat. First the final table layout is created, which only 
contains the actual wanted attributes and not the text attributes necessary for the conversion of 
the geometric attributes. After that the loading is performed file by file. First a temporary 
table constructed which contains both the geometric attributes and their corresponding text 
attributes. The geometric attributes are located in the last columns of each table.  
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Figure 5.1: Schematic of PostgreSQL/PostGIS data loading process 
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When the PostgreSQL COPY statement is called it fills as much attributes as are present in the 
data-file. The result is that all attributes are being filled except the geometric types. When the 
loading of the file is completed, the geometric attributes are update using the content of their 
corresponding text attributes. We now have a table that contains all the required data plus the 
now surplus text attributes. All the required fields are now inserted into the main table, which 
is thus only filled with data that was originally intended to be there. Finally the temporary 
table is dropped. This process is schematically represented in figure 5.1. 
 
One more problem had to be solved when converting the data from its textual representation 
to its PostGIS form. The required input format used by PostGIS is slightly different from the 
one used in the data files, which (accidentally) was compatible with PostgreSQL geometric 
format. The differences are indicate in table 5.1. 
 

Type PostGreSQL PostGIS 
Point (1,1) (1 1) 
Box ((0,0),(1,1)) X 
Polygon ((1,1),(1,0),(0,0)) (1 1,1 0,0 0) 
Path (Polyline) ((0,0),(0,1),(1,1))  (0 0,0 1,1 1) 

Table 5.1: Difference in textual representation of spatial attributes 
 
Although it would be possible to create functions within the database to perform the changes 
necessary, it was decided to perform the actions outside the database, directly on the input 
files. The conversions were made using Perl scripts. Each table has a corresponding script 
which was used to process the input files for that table. The scripts have the following general 
layout: 
 
Code Comment 
#!/usr/local/bin/perl 
#5 xfio_boundary.shape 
#16 xfio_boundary.bbox 

Call Perl to process this script 
Polyline attribute 
Box attribute 

while(<>) 
 

 

{ Start 
@regel = split ('\t',$_); Split line into array using TAB 

character as delimiter 
@regel[5] =~ s/,/ /g; Convert all commas to spaces 
@regel[5] =~ s/\) \(/,/g; Convert ) ( to , 
@regel[5] =~ s/\(\(/\(/g; 
@regel[5] =~ s/\)\)/\)/g; 

Convert (( to ( 
Convert )) to ) 
 

@regel[16] =~ s/,/ /g; Convert all comma’s to spaces 
@regel[16] =~ s/\) \(/\),\(/g; Convert ) ( to ),( 
Print join ( "\t" , @regel ); Output using TAB as delimiter 
} End 

Table 5.2: Input file conversion script. Example for xfio_boundary. 
 
Files were converted using the following command: 
 
gunzip -c ${TMP}/xfio_boundary.copy.gz | \ 
perl conv_xfio_boundary > ${TMP}/xfio_boundaryA.dat 
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which is a combination of the decompressing of the available data files and converting them 
to the necessary input format for PostgreSQL/PostGIS. The text files were originally 
compressed to save disk space. The additional conversion of the input files and the loading 
process using the temporary table does cause some additional processing time but this process 
shouldn’t have to be done very often. Most changes to the database will be the addition or 
changing of a limited number of records, not the loading of the entire database. Although 
reportedly the Dutch Cadastre frequently reloads the entire dataset, which would increase the 
importance of fast loading and indexing times. 
 
Errors reported during the first loading trials of the entire data set revealed that some records 
in the dataset contained the \ character. This character is interpreted specially by PostgreSQL, 
mostly meaning that the following character is ignored. The consequence is that if a \ 
precedes a TAB character, which is the default delimiter, all columns within a line are shifted 
one to the left. This can lead for example to text fields that are attemptedt to be converted to 
numeric values or attributes that remain empty while being required to be filled. This problem 
was solved by adding a line to all converting scripts to duplicate all \ characters. This way 
PostgreSQL interprets them as a single \ character resulting in the data being correctly loaded. 
 
The loading times of the various tables are shown in table 5.2. Displayed is the loading time 
without the conversion of the flat text files, but with the internal conversion of the spatial 
attributes. 
 
Table No. of records PostgreSQL  Oracle Ingres 
xfio_boundary  10,044,511 09:45 04:27 18:16 
xfio_gcpnt 60,986 00:04 00:01 00:06 
xfio_line 3,502,313 02:11 01:13 05:04 
xfio_parcel 3,820,699 04:06 01:11 06:26 
xfio_parcelover 42,852 00:01 00:01 00:04 
xfio_sympnt 2,054,463 00:57 00:15 02:59 
xfio_text 1,640,122 00:49 00:13 02:26 
Totals 21,165,946    

Table 5.3: Loading times per table (hh:mm) 
 
As can be seen in table 5.3 the PostgreSQL loading times are slower than those of Oracle but 
faster than Ingres. In [7] it is stated that the slow times of Ingres are the result of the use of the 
COPYREL command instead of the faster COPY command. This was done since the standard 
COPY command doesn’t support the loading of spatial data from ASCII text. PostgreSQL does 
support this, but using PostGIS a workaround has to be used, as described. Perhaps a similar 
procedure as used here could be used on Ingres to speed up that loading process. 
 
The disk size occupied by the data is far greater than that used by Oracle or Ingres. The 
xfio_boundary table uses 8,330 Mb without indices and 13,7 Mb with indices. Oracle uses 4.8 
Gb for this table and Ingres 2.5Gb, both without indices. The entire database including the 
indices has reached a size of about 27Gb and was even larger during indexing and VACUUM 
ANALYZE (see page 13).  

5.3 Indexing 
 
One very important feature of DBMS’s is their ability to create, maintain and use indices. 
Indices allow a DBMS to find records more quickly then when sequentially searching an 
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entire table. If an attribute is frequently used in searches, it is likely that an index would 
increase the search speeds for such queries. 
An often used method for database indexing is the B-Tree method but this type can not be 
used for spatial data. For spatial data R-Tree [8] indices are a better choice or the similar 
GiST index [9]. Although indices can improve the performance of queries they do produce 
some additional workload when changing the content of table (inserting, deleting or altering 
of records), because the indices should be kept up to date. It is therefore useful that when 
loading large amounts of data into a table, the indices on that table are dropped before the 
loading and recreated after the loading. This way the DBMS doesn’t update the index after 
each record is inserted, which can be a very time consuming procedure.  
 
As stated in chapter 3, PostgreSQL does provide the ability to use R-Tree indices on spatial 
data types, but this isn’t implemented to work (directly) on all the used spatial data types. The 
GiST index offered by PostGIS is able to do this. Indices are created using SQL commands 
like: 
 

CREATE INDEX XFIO_BOUNDARY_0B ON XFIO_BOUNDARY  
USING GIST (SHAPE GIST_GEOMETRY_OPS); 

 
The creation of indices can be quite time consuming on large tables but it can reduce search 
time dramatically. Since the tables in this research weren’t changed after loading the indexing 
of the tables had only to be done once after loading. Table 5.4 lists some indices and their 
creation times. 
 
Tablename 
(indexname) 

No. of records Indexed attribute Attr Type Index type Indexing time 

Xfio_boundary (_0b) 10044511 Bbox (polygon Polygon GiST 5 :41:17 
Xfio_boundary (_0) 10044511 shape Linestring GiST 5 :28:18 
Xfio_boundary (_1b) 10044511 object_id Integer B-Tree 0 :28:17 
Xfio_line (_0) 3502313 bbox Polygon GiST 1 :51:33 
Xfio_line (_1) 3502313 Ogroup Integer B-Tree 0 :10:34 
xfio_parcel(_3) 3820699 x_akr_objectnummer char(17) B-Tree 0 :13:56 

Table 5.4: Index creation times some indices. 
 
The PostgreSQL documentation advises to perform a VACUUM ANALYZE  on the database after 
the creation of indices. It isn’t exactly clear to me what this command does, but the 
documentation states: VACUUM ANALYZE: Updates column statistics used by the optimizer to 
determine the most efficient way to execute a query [5]. Anyway, this is a very time 
consuming operation. When all the tables were loaded it took over three entire days to 
complete a VACUUM ANALYZE. A test without VACUUM ANALYZE revealed that for the simple 
type of queries that were used in the testing, it isn’t necessary to execute this command, since 
it didn’t yield any advantages in query time. 
 

5.4 Clustering 
 
Besides indexing PostgreSQL also supports the clustering of tables. During clustering the 
order in which the records are stored is altered to represent that of a certain index. According 
to the PostgreSQL manual, clustering should mostly affect queries performed on tables which 
contain lots of duplicate values (in the attribute where the index and the subsequent clustering 
was based on).  
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Clustering was only tested on the xfio_boundary table. During the clustering the entire table is 
copied to a new table and therefore temporarily twice the disk space normally used by the 
table (without indices) is needed. Queries performed after clustering were performed slightly 
faster than before clustering (see chapter 7, table 7.2). 
PostgreSQL allowed the indexing to be based upon the spatial GiST index without any 
problem, this in contrast to Oracle, Informix and Ingres which currently do not support 
clustering based on spatial attributes [7]1.  
 
The following command was issued to create a clustering on the xfio_boundary table based 
on the xfio_boundary_0 index [5]: 

 
CLUSTER xfio_boundary_0 ON xfio_boundary; 

  

                                                 
1 According to a co-author of that article, this remark needs to be checked for the Informix DBMS. 
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6 Querying 
 
The most frequent use of databases is in the querying by users. Queries should be handled as 
quickly as possible, but this should never be at the cost of the correctness of the result. The 
dataset used in this research is mainly used for its spatial attributes, therefore the queries that 
were performed during testing, are aimed at testing the performance of the database in this 
area. There are many different spatial queries possible so first there will be a discussion of 
some frequently used spatial operators. Paragraph two will discuss the queries used to test the 
DBMS and the results that were returned. The results are compared to the results of a previous 
research, which used exactly the same data and the same queries. The content of the results 
should therefore be the same. However with regards to the performance there can be 
differences. These will most notably be in the sense of longer or (hopefully) shorter duration 
of the computations. 
 

6.1 Spatial operators 
 
The following spatial operators are available in Postgis [3]: 
 
A <& B returns true if A's bounding box overlaps or is to the right of B's bounding box. 
A &> B  returns true if A's bounding box overlaps or is to the left of B's bounding box. 
A << B  returns true if A's bounding box is strictly to the right of B's bounding box. 
A >> B  returns true if A's bounding box is strictly to the left of B's bounding box. 
A ~= B  is the "same as" operator. It tests actual geometric equality of two features. So 
A ~ B   returns true of A's bounding box is completely contained by B's bounding box. 
A && B  is the "overlaps" operator. If A's bounding box overlaps B's bounding box the 

operator returns true. 
 
It is interesting to notice that this set doesn’t seem to be complete. The first four operators use 
left and right but there isn’t another set of operators that use above and below. Besides these 
operators which all utilise the bounding boxes of objects, there are some additional functions 
that can be useful in queries: 
 
TRULY_INSIDE(A,B)  returns true if any part of B is within the bounding box of A. 
DISTANCE(A,B) return the cartesian distance between two geometries in projected units. 
 
Some queries to be performed had to use the actual shape of the objects and not just the 
bounding boxes. The difference between a bounding box comparison and a comparison that 
takes the exact geometry into account is visualised in figure 6.1. The first attempts to use 
these two functions resulted in disappointing results. Search times of over 30 minutes weere 
encountered when utilising the truly_inside or distance functions. This compared to search 
times of less than 1 second for Oracle and Ingres. Fortunately the results were correct. An 
investigation into the source of this problem gave to following cause: instead of using the 
created indices the database performed a sequential scan. This means that the DBMS checks 
the validity of every record in a table for a given query. This is especially a problem with 
large tables, e.g. xfio_boundary. The documentation of PostGIS suggested to set the 
PostgreSQL variable ENABLE_SEQSCAN to false, but this didn’t work, the DBMS still 
performed a sequential scan of all records. When the && overlap operator from the first set 
was used an index scan was performed. This leads to the assumption that some operators and 
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functions do not support index scans. From the operators and functions used in the queries, 
the && overlap operator supports the use of indices in both PostgreSQL as in PostGIS. The 
PostGIS DISTANCE function does not use the indices and neither does the PostgreSQL <-> 
distance operator, which I couldn’t get to return the expected answer. 
The queries to be used in the testing should therefore at least use some of the first set of 
operators to limit the number of records that have to be processed by the other functions. 
Some testing indicated that when queries are constructed which use of a combination of the 
bounding box and other functions the results will be correct and returned in a time span that is 
comparable to that of the reference DBMS’s.  

Figure 6.1: Influence of bounding box use in queries. 

Distance=0 query, there is no overlap between the 
actual geometries 

Box/box query, there is overlap between the boxes 

 
 

6.2 Queries used in testing 
 
The queries used in testing are the same, as the ones used in [6]. At least the intention of the 
queries is the same, that is, they are made to produce the same result. Since the available 
operators are somewhat different then the ones used in the reference dataset and given the 
previously described problem with the use of indices, the actual queries are a little different 
from the ones used to test the reference databases. The queries are adapted in such a way that 
they produce the same results with as high a performance as possible. This is achieved by 
combining the operators that use indices and therefore provide speed, with operators and 
functions that require sequential scanning of all candidate records but give a more accurate 
result. That is, they don’t use the bounding boxes, but the actual shapes of the objects.  
The index operators quickly limit the number of candidate records by comparison of the 
bounding boxes. These candidates are subsequently checked by more precise operators and 
functions to arrive at the correct answer to the query. This was implemented in the queries by 
using the distance function. If the distance between two geometries is equal to zero the two 
geometries overlap or touch. The selection of records for which the distance function is to be 
performed, is than made by the standard PostGIS && overlap operator. The general layout of 
these queries is: 
 
SELECT COUNT (*) FROM TABLE_NAME WHERE ((SEARCHGEOMETRY && GEOMETRY) AND 
(DISTANCE (SEARCHGEOMETRY,GEOMETRY)=0)); 
 
Where GEOMETRY are the records stored in the database and SEARCHGEOMETRY is the users 
region of interest. Without any additional commands the DBMS decides to only calculate the 
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distance function when the && operator returns true. This query layout has the following 
consequence: when the selection by the && operator returns a small number of records the 
total time of the query will be small since few distances are to be calculated, but when a large 
number of records is returned the query time will increase dramatically over the pure overlap 
query since a lot of distances have to be calculated. If the query shape differs very much from 
its bounding box the difference in the number of records returned between a overlap only 
query and a DISTANCE = 0 query can be very large. Figure 6.1 shows why there can be  
differences in the result of a queries using only the bounding boxes and a queries using the 
actual geometries. 
 
The same technique was tried using the PostgreSQL <-> distance operator in combination 
with the PostgreSQL && overlap operator, but this only resulted in counts that returned 0 as 
the result. Also no alternatives where found to perform those queries within PostgreSQL. 
 
Both PostgreSQL and PostGIS do not seem to support the use of tolerances in spatial queries. 
The use of tolerances in spatial data can be important since the measurements that are used to 
create the data are subject to stochastic variations. The Oracle DBMS supports tolerances and 
to achieve results equal to Ingres these were set to zero during that research. Since the count 
results of PostgreSQL/PostGIS are equal to those results, it can be assumed that no tolerances 
are used, otherwise they are set to zero by default. Also no references to the use of tolerances 
are made in either the PostgreSQL or the PostGIS online manual. 
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7 Results 
 
In this chapter the results of the performance testing are presented. These results consist 
mainly of durations of queries. The timing results are compared to the ones of Oracle 8i 
Ingres and Informix 8.11 as presented in [6]2. The numeric results of the queries are 
fortunately identical to the ones given in [6] and can also be found in appendix F.  
 
The timing results were obtained by creating time stamps in the log files that were created 
when the queries were run. This was done through the use of SELECT NOW(); SQL queries. 
The result of this query is a line like 2002-01-30 14:45:00+01 which accompanies every 
query result. The length of the runtime of a query was obtained by subtracting the time stamp 
before the query from the one after. Since this had to be done for a lot of queries an Excel 
spreadsheet was created to automate part of this process. But still all the time stamps had to be 
copied one by one to the spreadsheet. It would have been nice if this process was automated 
but that would have taken to long to develop for this research.  
To achieve an honest comparison to the other DBMS’s tested in [6] one test run was made 
just after the server had been rebooted. This test also took place in a weekend so few other 
activity was present on the server. This led to the overall timing results as shown in table 7.1 
which are also compared to the results of Oracle, Ingres and Informix as presented in [6]. The 
entire results of the query timings are given in appendix E. The influence of rebooting the 
server just before the queries are performed is rather small. The queries are performed 
approximately 7% faster on a duration of about 2h40m. The increase in speed by clustering is 
about 10% with regards to timing before clustering, and both without rebooting. These figures 
are based upon timings as indicated in table 7.2. 
 
As can be seen in table 7.1 the overall performance of PostgreSQL/PostGIS is far behind the 
performance of the other DBMS’s with the exception of the box/box queries. This is the query 
which only uses the && overlap operator. As soon as more detailed queries are to be 
performed, that have to take the exact shape of the geometries (both the ones in the query as 
the ones in the database) into account, the performance of PostgreSQL drops dramatically. 
This is a consequence of the way these queries were implemented in this research. Distance 
calculation between two geometries is a computationally expensive function. Especially since 
the function used is designed to return the exact distance. A cheaper implementation of the 
function could be designed that does answer the question whether the distance is equal to 
zero, but without calculating the exact distance. For example by omitting some square rooting 
that could be used in the function. Of course the distance = 0 was only a workaround for the 
lack of an overlap function in PostGIS that takes the exact geometries in to account. In the 
future there will probably be a better, faster function to perform this type of query. 
It must be noted that although Oracle and Ingres are both much faster than 
PostgreSQL/PostGIS, they are still very far from the speed of Informix 8.11. This shows that 
a dramatic improvement in speed is possible when intelligent search algorithms are 
implemented, as is clearly the case with Informix 8.11. Informix 8.10 shows results similar to 
Oracle and Ingres.  
Unfortunately no results for PostgreSQL only could be shown in this table, since not all 
queries could be implemented. Therefore no totals could be calculated for comparison with 
the other databases. Timings for queries that could be performed are shown in appendix E, 

                                                 
2 The timing results for Informix are not available in [6]. 
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and they indicate the PostgreSQL only can achieve a better performance than the 
PostgreSQL/PostGIS combination. 
 
Besides the aspects of the database that were used in the research, additional parameters could 
be used to influence the performance. An interesting parameter could be the 
SHARED_BUFFERS variable which is used to assign the number of buffers available. More 
buffers means that the chance that records can be retrieved from the buffers, instead from 
disk, is greater [5]. This could improve query performance since memory access is faster than 
disk access. During performance testing the database was located on a hardware raid5 disk 
set, but in a single directory. The PostgreSQL documentation only states how to locate an 
entire database at a specific location whereas other DBMS sometimes allow locations to be 
set per table and per index. This later option could improve performance since index and table 
can be accessed simultaneously. A posting on the internet mentioned that this could also be 
done for PostgreSQL, but it involves manually moving database files to other directories and 
creating symbolic links. If the data stored is very important, this probably isn’t the way you 
want to go since it can give problems if the database crashes and has to be restored, since you 
altered files which are normally handled by the DBMS.  
 
Type No PostGIS Oracle Ingres Informix 811 
Box/Box 1-16 0:00:59 0:01:04   

17-27 0:42:56 0:40:02   
Total 0:43:55 0:41:06   

Bnd/box 1-16 0:01:31 0:01:32 0:00:40 0:01:20 
17-27 2:33:14 0:11:57 0:50:07 0:00:55 
Total 2:34:45 0:13:29 0:50:47 0:02:15 

Bnd/shp 1-16 0:01:51 0:00:45 0:00:32 0:00:32 
17-27 1:47:34 0:09:42 0:49:47 0:00:24 
Total 1:49:25 0:10:27 0:50:19 0:00:56 

Line/box 1-16 0:00:21 0:00:12 0:00:06 0:01:10 
17-27 0:45:44 0:06:37 0:11:49 0:01:01 
Total 0:46:05 0:06:49 0:11:55 0:02:11 

Text/loc 1-16 0:00:05 0:00:05 0:00:02 0:00:07 
17-27 0:04:03 0:01:56 0:04:11 0:00:09 
Total 0:04:08 0:02:01 0:04:13 0:00:16 

Gcpnt/loc 1-16 0:00:01 0:00:00 0:00:01 0:00:01 
17-27 0:00:12 0:00:05 0:00:10 0:00:01 
Total 0:00:13 0:00:05 0:00:11 0:00:02 

Sym/loc 1-16 0:00:07 0:00:06 0:00:03 0:00:08 
17-27 0:05:29 0:02:34 0:04:59 0:00:11 
Total 0:05:36 0:02:40 0:05:02 0:00:19 

Par/box 1-16 0:00:36 0:00:35 0:00:16 0:00:48 
17-27 0:55:51 0:05:15 0:15:28 0:00:59 
Total 0:56:27 0:05:50 0:15:44 0:01:47 

Table 7.1: Timing comparisons between PostgreSQL, Oracle, Ingres and Informix. 
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Query bnd/box bnd/shp ln/box txt/loc gcp/loc sym/loc par/box 
Before reboot 
Sum 1-16 0:01:33 0:01:58 0:00:22 0:00:08 0:00:01 0:00:08 0:00:37 
Sum 17-27 2:44:03 1:56:45 0:48:37 0:04:25 0:00:12 0:05:43 0:57:45 
Total 2:45:36 1:58:43 0:48:59 0:04:33 0:00:13 0:05:51 0:58:22 
After reboot 
Sum 1-16 0:01:31 0:01:51 0:00:21 0:00:05 0:00:01 0:00:07 0:00:36 
Sum 17-27 2:33:14 1:47:34 0:45:44 0:04:03 0:00:12 0:05:29 0:55:51 
Total 2:34:45 1:49:25 0:46:05 0:04:08 0:00:13 0:05:36 0:56:27 
After clustering 
Sum 1-16 0:01:17 0:01:29 
Sum 17-27 2:28:36 1:40:19 
Total 2:29:53 1:41:48 

Table 7.2: Influence of rebooting and clustering on performance. 
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8 Conclusions 
 
This chapter comes back to the question presented in chapter one and an answer is given 
based upon the results and experiences gained in the research. The question to be answered is: 
 

How does the PostgreSQL DBMS perform in the loading and querying of 
geometrical spatial cadastral data in comparison with other DBMS’s such as 
Oracle spatial, Ingres and Informix? 

 
It must be noted that the research was limited to the spatial part of the dataset. The answer to 
this question has to be split into two aspects. The first of which is the loading of the data.  
 
Natively the PostgreSQL DBMS does support all the data types present in the LKI table 
definitions and accidentally the textual format in which the data was available was compatible 
with PostgreSQL, which gave a good performance on the loading process. However the 
DBMS lacks in support for spatial data when it comes to indexing and querying. Therefore it 
was necessary to use the PostGIS extension to PostgreSQL. Using this extension it is possible 
to successfully perform all necessary actions on the spatial attributes, but the loading of the 
data became a more complicated procedure. With this loading procedure, loading is 
performed slower than Oracle, but still faster then Ingres. The GiST indexing method used by 
PostGIS is claimed to be created faster than PostgreSQL’s native R-Tree indexing method, 
but this couldn’t be confirmed in this research. In fact the opposite was observed; GiST 
indices were created slower than R-Tree indices. 
 
With regards to the performance of querying, the PostgreSQL/PostGIS combination is much 
slower than Oracle and Ingres on all queries except the pure bounding box queries, which are 
performed slightly faster. If only PostgreSQL’s native spatial abilities are used, the bounding 
box queries are performed much faster than with PostGIS or Oracle or Ingres. Assuming that 
PostGIS is used, most of the improvement in performance will have to come from this part. It 
is important to note that both PostgreSQL and PostGIS are continuously being developed to 
provide more functionality and better performance. Especially the PostGIS software is 
expected to provide more functionality, amongst others because they’re planning to be 
OpenGIS compliant in the future, which does require more functionality than presently 
implemented. It would be interesting to see how well the combination performs when that is 
the case. 
 
In order to achieve the best performance on queries PostgreSQL/PostGIS allows the 
clustering based upon the GiST indices on spatial attributes, although this only results in a 
minor increase of query performance. Another way to increase performance could be the use 
of multiple physical locations for tables and indices, but this isn’t supported by PostgreSQL. 
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Appendix A: Test Configuration 
 
1 Hardware and OS [6] 

• Sun Enterprise E3500 server with Sun Solaris 7 
• Two 400 MHZ UltraSPARC CPUs with 8Mb CPU cache each 
• 2Gb main memory 
• two mirrored internal disks of 18.2 Gb, fiber channel; 
• two internal software RAID0 sets (3*18.2Gb each), fiber channel 
• four external, hardware controlled, RAID5 sets (6*18.2 Gb each) 

all disks are 10,000 rpm 
 
2 Software 

• PostgreSQL  7.1.3 
• PostGIS  0.6 
• gcc (GNU C++)  2.95.2 
• perl  5.005_03 
• gunzip 1.3 
 

3 My own computer 
• Athlon 900 MHZ processor 
• 196 Mb main memory 
• Asus A7v mainboard 
• Suse Linux 7.2  NL 
• PostgreSQL 7.0.3 
• 40 Gb IBM 305040 harddisk 
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Appendix B: PostgreSQL only loadscripts 
 
This is an example of the scripts used to load data into a PostgreSQL-only database. Since the 
files are directly compatible no additional conversions have to be made. The /echo statements 
are to provide comments in the logfile, so the progress can be monitor. The select now(); 
statements are present to be able to calculated run times of commands. 

 
--loads data from files into db 
\echo '***start copy_data.sql***' 
 
select now(); 
\echo 'copy xfio_boundary' 
copy xfio_boundary from 
'/export/home/postgres/tempdata/rhenen/xfio_boundary.dat'; 
 
select now(); 
\echo 'copy xfio_gcpnt' 
copy xfio_gcpnt from 
'/export/home/postgres/tempdata/rhenen/xfio_gcpnt.dat'; 
 
select now(); 
\echo 'copy xfio_line' 
copy xfio_line from '/export/home/postgres/tempdata/rhenen/xfio_line.dat'; 
 
select now(); 
\echo 'copy xfio_parcel'; 
copy xfio_parcel from 
'/export/home/postgres/tempdata/rhenen/xfio_parcel.dat'; 
 
select now(); 
\echo 'copy xfio_parcelover'; 
copy xfio_parcelover from 
'/export/home/postgres/tempdata/rhenen/xfio_parcelover.dat'; 
 
select now(); 
\echo 'copy xfio_sympnt'; 
copy xfio_sympnt from 
'/export/home/postgres/tempdata/rhenen/xfio_sympnt.dat'; 
 
select now(); 
\echo 'copy xfio_text'; 
copy xfio_text from '/export/home/postgres/tempdata/rhenen/xfio_text.dat'; 
 
select now(); 
\echo '***end copy_data.sql***' 
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Appendix C: PostGIS loadscripts 
 
This is an example of a load scripts as it was used to load into a PostgreSQL/PostGIS 
database. The data is first loaded into a temporary table, then the spatial attributes are 
converted and finally the appropriate records are inserted into the main table which has been 
created before. 
 
 
\echo 'convert geometry content xfio_boundary_tmp, copy to xfio_boundary 
and drop' 
 
select now();      --create textual time stamp 
\echo 'drop any existing xfio_boundary_tmp, including geometry columns' 
drop table xfio_boundary_tmp; 
delete from geometry_columns where f_table_name = 'xfio_boundary_tmp'; 
select now(); 
 
create table xfio_boundary_tmp 
( 
  --oid                serial(1)             , 
 ogroup         integer       not null,  -- Group Id (KEY.1) ->CLASS.1 
 object_id      integer       not null,  -- Line object Id (KEY.2) 
 slc            integer       not null,  -- slc code 
 classif        integer       not null,  -- Object class code ->CLASS.2 
 interp_cd      smallint      not null,  -- Line interpolation 
 shape_txt      text     not null,  -- Line coordinates (2D) 
 height         integer       not null, 
 node_cd        smallint      not null,  -- Node code 
 status_cd      integer       not null, 
 fl_line_id     integer       not null,  -- Line Id left side 1st p.->LINE 
 fr_line_id     integer       not null,  -- Line Id right side 1st p.->LINE 
 ll_line_id     integer       not null,  -- Line Id L side last pnt->LINE 
 lr_line_id     integer       not null,  -- Line Id R side last pnt->LINE 
 l_obj_id       integer       not null, 
 r_obj_id       integer       not null, 
 accu_cd        integer       not null,  -- Accuracy code 
 bbox_txt       text          ,  -- Bounding box 
 --abox         box           ,  -- Area box 
 linelen        integer       not null,  -- Length of line 
 object_dt      integer       not null, -- Date (of measurement; user time) 
 tmin           integer       not null,  -- Time created/last updated 
 tmax           integer       not null,  -- Time deleted/last updated 
 sel_cd         char(3)               ,  -- Belongs to map: cadast, GBKN... 
 source         char(5)               ,  -- Source of data 
 quality        char(2)               ,  -- Data quality: method, accuracy 
 vis_cd         char(1)       not null,  -- Visibility code 
 l_municip      char(5)               ,  -- Left Mun. code ->ALT-TEXPGN.1 
 l_section      char(2)       ,  -- Left Section code ->ALT-TEXPGN.2 
 l_sheet        char(4)               ,  -- Left Sheet code ->ALT-TEXPGN.3 
 l_parcel       char(5)               ,  -- Left Parcel code ->ALT-TEXPGN.4 
 l_pp_i_ltr     char(1)               , 
 l_pp_i_nr      char(4)               , 
 r_municip      char(5)               ,  -- Right Mun. code ->ALT-TEXPGN.1 
 r_section      char(2)       ,  -- Right Section code ->ALT-TEXPGN.2 
 r_sheet        char(4)               ,  -- Right Sheet code ->ALT-TEXPGN.3 
 r_parcel       char(5)       ,  -- Right Parcel code ->ALT-TEXPGN.4 
 r_pp_i_ltr     char(1)               , 
 r_pp_i_nr      char(4)               not null   -- Visibility code 
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); 
--Create PostGis fields 
\echo 'Create postGis fields' 
SELECT AddGeometryColumn ('lki7','xfio_boundary_tmp','shape',-
1,'LINESTRING',2); 
SELECT AddGeometryColumn ('lki7','xfio_boundary_tmp','bbox',-
1,'POLYGON',2); 
 
select now(); 
\echo 'copy data from xfio_boundary.dat'; 
copy xfio_boundary_tmp from '/export/home/postdata/tmp/xfio_boundary.dat'; 
 
\echo 'Update PostGIS fields' 
Select now(); 
\echo 'xfio_boundary_tmp.shape' 
update xfio_boundary_tmp set shape = geometryfromtext(('LINESTRING ' 
||shape_txt)::geometry,-1); 
 
Select now(); 
\echo 'xfio_boundary_tmp.bbox' 
update xfio_boundary_tmp set bbox =  
 
--envelope returns bounding box of a geometry as a polygon 
Envelope(geometryfromtext(('MULTILINESTRING '||bbox_txt)::geometry,-1)); 
 
 
Select now(); 
\echo 'insert content xfio_sympnt_tmp into xfio_boundary' 
insert into xfio_boundary 
( 
 ogroup, 
 object_id, 
 slc, 
 classif, 
 interp_cd, 
 height, 
 node_cd, 
 status_cd, 
 fl_line_id, 
 fr_line_id, 
 ll_line_id, 
 lr_line_id, 
 l_obj_id, 
 r_obj_id, 
 accu_cd, 
 linelen, 
 object_dt, 
 tmin, 
 tmax, 
 sel_cd, 
 source, 
 quality, 
 vis_cd, 
 l_municip, 
 l_section, 
 l_sheet, 
 l_parcel, 
 l_pp_i_ltr, 
 l_pp_i_nr, 
 r_municip, 
 r_section, 
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 r_sheet, 
 r_parcel, 
 r_pp_i_ltr, 
 r_pp_i_nr, 
 shape, 
 bbox 
) select  
 ogroup, 
 object_id, 
 slc, 
 classif, 
 interp_cd, 
 height, 
 node_cd, 
 status_cd, 
 fl_line_id, 
 fr_line_id, 
 ll_line_id, 
 lr_line_id, 
 l_obj_id, 
 r_obj_id, 
 accu_cd, 
 linelen, 
 object_dt, 
 tmin, 
 tmax, 
 sel_cd, 
 source, 
 quality, 
 vis_cd, 
 l_municip, 
 l_section, 
 l_sheet, 
 l_parcel, 
 l_pp_i_ltr, 
 l_pp_i_nr, 
 r_municip, 
 r_section, 
 r_sheet, 
 r_parcel, 
 r_pp_i_ltr, 
 r_pp_i_nr, 
 shape, 
 bbox 
from xfio_boundary_tmp; 
 
 
select now(); 
\echo 'drop any existing xfio_boundary_tmp, including geometry columns' 
drop table xfio_boundary_tmp; 
delete from geometry_columns where f_table_name = 'xfio_boundary_tmp'; 
select now(); 
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Appendix D: Query scripts 
Two types of queries where used:  
 
1, queries with only the && overlap operator 
 

select now(); 
\echo  'Query 1 box Scheveningen' 
 
select count (*) from :x_tablename where  ( GeometryFromText( 
'POLYGON ((78550000 457900000,78550000 458025000,78650000 
458025000,78650000 457900000,78550000 457900000))' 
,-1 ) && :x_attribute ); 
 
select now(); 

 
2, queries with both the && overlap operator and the DISTANCE = 0 function 
 

select now(); 
\echo  'Query 1 box Scheveningen' 
 
select count (*) from :x_tablename where  ( GeometryFromText( 
'POLYGON ((78550000 457900000,78550000 458025000,78650000 
458025000,78650000 457900000,78550000 457900000))' 
 ,-1 ) && :x_attribute ) 
AND  
distance ( GeometryFromText( 
'POLYGON ((78550000 457900000,78550000 458025000,78650000 
458025000,78650000 457900000,78550000 457900000))' 
 ,-1 ),:x_attribute )=0; 
 
select now(); 
 

Herein :x_tablename and :x_attribute are variables that are replace by the table and the 
attribute to be queried. This way two scripts are sufficient to perform all the required queries. 
 
The script that calls these queries has the following layout: 
 

\set x_tablename  ‘xfio_boundary’  
\set x_attribute  ‘shape’ 
\i ‘querie_general.sql  

 
\set x_tablename  ‘xfio_text’  
\set x_attribute  ‘location’ 
\i ‘/query_general.sql  

                
Whereby query_general.sql is a script that contains queries as described above. 
The overall script is run through the PostgreSQL client psql by a UNIX shell script: 

 
#!/usr/local/bin/tcsh 
 
psql -f /home/user/allqueries.sql lki7 postgres >&! 
/home/user/query_lki.txt 

 
Which starts the client and directs the output to a logfile for later analysis.  
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Appendix E: Timing results 
 

Results of run without reboot (h:mm:ss) 
 
Query &&1 &&2 bnd/box bnd/shp ln/box txt/loc gcp/loc sym/loc par/box Totals 
1 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:04
2 0:00:00 0:00:01 0:00:01 0:00:02 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:05
3 0:00:01 0:00:01 0:00:02 0:00:02 0:00:02 0:00:01 0:00:00 0:00:01 0:00:01 0:00:09
4 0:00:00 0:00:01 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:04
5 0:00:05 0:00:08 0:00:10 0:00:13 0:00:04 0:00:01 0:00:00 0:00:02 0:00:05 0:00:35
6 0:00:16 0:00:38 0:00:56 0:01:16 0:00:06 0:00:03 0:00:00 0:00:04 0:00:19 0:02:44
7 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02
8 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01
9 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00
10 0:00:00 0:00:01 0:00:02 0:00:02 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:06
11 0:00:01 0:00:00 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 0:00:01 0:00:00 0:00:03
12 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:02
13 0:00:00 0:00:00 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:00 0:00:00 0:00:04
14 0:00:00 0:00:01 0:00:02 0:00:02 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:05
15 xxxxxxx 0:00:03 0:00:07 0:00:06 0:00:02 0:00:00 0:00:00 0:00:00 0:00:03 0:00:18
16 xxxxxxx 0:00:03 0:00:09 0:00:10 0:00:02 0:00:01 0:00:00 0:00:00 0:00:03 0:00:25
Sum  0:00:59 0:01:33 0:01:58 0:00:22 0:00:08 0:00:01 0:00:08 0:00:37 0:04:47
             
17 0:00:07 0:00:10 0:00:20 0:00:17 0:00:05 0:00:01 0:00:00 0:00:02 0:00:09 0:00:54
18 0:00:10 0:00:16 0:00:31 0:00:26 0:00:16 0:00:02 0:00:00 0:00:34 0:00:11 0:02:00
19 0:02:03 0:03:41 0:10:39 0:08:37 0:03:05 0:00:26 0:00:01 0:00:00 0:03:48 0:26:36
20 0:00:14 0:00:23 0:01:11 0:00:50 0:00:19 0:00:02 0:00:00 0:00:01 0:00:26 0:02:49
21 0:02:44 0:04:13 0:14:56 0:10:53 0:03:15 0:00:33 0:00:01 0:00:43 0:05:10 0:35:31
22 xxxxxxx 0:03:52 0:19:03 0:13:04 0:05:21 0:00:24 0:00:00 0:00:42 0:06:33 0:45:07
23 0:01:44 0:03:24 0:12:13 0:09:10 0:03:25 0:00:18 0:00:01 0:00:26 0:04:05 0:29:38
24 0:04:26 0:08:03 0:26:23 0:19:21 0:06:22 0:00:38 0:00:03 0:00:49 0:09:41 1:03:17
25 0:04:42 0:09:07 0:37:28 0:24:31 0:12:41 0:00:59 0:00:04 0:00:59 0:13:11 1:29:53
26 xxxxxxx 0:04:54 0:22:53 0:17:03 0:03:33 0:00:18 0:00:00 0:00:46 0:07:52 0:52:25
27 xxxxxxx 0:04:53 0:18:26 0:12:33 0:10:15 0:00:44 0:00:02 0:00:41 0:06:39 0:49:20
Sum  0:42:56 2:44:03 1:56:45 0:48:37 0:04:25 0:00:12 0:05:43 0:57:45 6:37:30
Total  0:43:55 2:45:36 1:58:43 0:48:59 0:04:33 0:00:13 0:05:51 0:58:22 6:42:17
 
All timings are based upon PostgreSQL/PostGIS queries except the &&1 query which is 
based upon a query using only the PostgreSQL native overlap operator &&. xxxxxxx 
indicates that that query wasn’t performed. The &&2 column shows results of the PostGIS 
overlap operator &&. Both && operators use only bounding boxes. 

 29



Results of run with reboot (h:mm:ss) 
 
Query bnd/box bnd/shp ln/box txt/loc gcp/loc sym/loc par/box Totals 
1 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:04 
2 0:00:01 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:04 
3 0:00:02 0:00:02 0:00:02 0:00:01 0:00:00 0:00:00 0:00:01 0:00:08 
4 0:00:02 0:00:01 0:00:01 0:00:00 0:00:00 0:00:01 0:00:01 0:00:06 
5 0:00:10 0:00:13 0:00:03 0:00:01 0:00:00 0:00:02 0:00:05 0:00:34 
6 0:00:52 0:01:10 0:00:06 0:00:02 0:00:00 0:00:04 0:00:18 0:02:32 
7 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:02 
8 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 
9 0:00:01 0:00:01 0:00:01 0:00:00 0:00:01 0:00:00 0:00:00 0:00:04 
10 0:00:01 0:00:02 0:00:00 0:00:00 0:00:00 0:00:00 0:00:01 0:00:04 
11 0:00:01 0:00:00 0:00:00 0:00:01 0:00:00 0:00:00 0:00:00 0:00:02 
12 0:00:00 0:00:01 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:03 
13 0:00:02 0:00:01 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:03 
14 0:00:02 0:00:02 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:06 
15 0:00:06 0:00:06 0:00:02 0:00:00 0:00:00 0:00:00 0:00:03 0:00:17 
16 0:00:09 0:00:09 0:00:02 0:00:00 0:00:00 0:00:00 0:00:03 0:00:23 
Sum 0:01:31 0:01:51 0:00:21 0:00:05 0:00:01 0:00:07 0:00:36 0:04:32 
           
17 0:00:19 0:00:18 0:00:05 0:00:02 0:00:00 0:00:02 0:00:09 0:00:55 
18 0:00:29 0:00:26 0:00:14 0:00:02 0:00:00 0:00:02 0:00:11 0:01:24 
19 0:09:48 0:07:59 0:03:02 0:00:19 0:00:01 0:00:31 0:03:41 0:25:21 
20 0:00:57 0:00:47 0:00:18 0:00:02 0:00:00 0:00:01 0:00:26 0:02:31 
21 0:13:59 0:10:30 0:03:11 0:00:27 0:00:01 0:00:41 0:05:05 0:33:54 
22 0:18:16 0:12:25 0:05:12 0:00:24 0:00:01 0:00:41 0:06:20 0:43:19 
23 0:11:16 0:07:40 0:03:23 0:00:17 0:00:00 0:00:25 0:04:01 0:27:02 
24 0:25:27 0:18:22 0:06:07 0:00:36 0:00:03 0:00:47 0:09:21 1:00:43 
25 0:33:32 0:21:04 0:11:56 0:00:55 0:00:03 0:00:55 0:12:52 1:21:17 
26 0:21:43 0:16:10 0:03:01 0:00:17 0:00:01 0:00:45 0:07:20 0:49:17 
27 0:17:28 0:11:53 0:09:15 0:00:42 0:00:02 0:00:39 0:06:25 0:46:24 
Sum 2:33:14 1:47:34 0:45:44 0:04:03 0:00:12 0:05:29 0:55:51 6:12:07 
Total 2:34:45 1:49:25 0:46:05 0:04:08 0:00:13 0:05:36 0:56:27 6:16:39 
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Appendix F: Query counts 
  
Count results returned by queries 
 
Query &&  Bnd/box Bnd/shp Ln/box Txt/loc Gcp/loc Sym/loc Par/box 
1 423 423 415 58 78 0 0 231 
2 271 271 267 274 71 0 0 115 
3 2118 2118 2118 1890 389 0 169 623 
4 784 784 782 409 40 0 473 301 
5 17250 17250 17241 4181 1400 56 6053 7594 
6 142405 142405 142405 8656 9186 51 13398 51951 
7 1 1 1 1 0 0 1 10 
8 0 0 0 0 0 0 0 0 
9 508 508 507 187 126 1 129 198 
10 2114 1692 1680 401 227 103 171 649 
11 440 396 392 103 89 27 44 198 
12 378 300 293 113 46 0 22 137 
13 919 462 442 57 39 12 42 227 
14 1082 573 549 260 125 2 93 257 
15 8472 5189 5159 900 892 8 0 2291 
16 13699 10065 10035 864 673 0 0 3891 
Sum 190864 182437 182286 18354 13381 260 20595 68673 
         
17 27911 340 267 14 0 0 0 488 
18 50488 242 125 5 0 0 0 248 
19 814919 1647 1133 159 0 0 0 2176 
20 94963 799 670 47 0 0 0 878 
21 956608 1411 931 206 0 0 0 1899 
22 895891 1247 884 164 0 0 0 1677 
23 735999 1011 792 89 0 0 0 1425 
24 1932126 2851 1753 314 0 0 0 3507 
25 2027970 2216 1530 740 0 0 0 2914 
26 1028776 3305 2385 297 0 0 0 3880 
27 1211695 1739 1426 634 0 0 0 2290 
Sum 9777346 16808 11896 2669 0 0 0 21382 
                 
Total 9968210 199245 194182 21023 13381 260 20595 90055 
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