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ABSTRACT: 
 
A proper representation of the surface of the earth and the man-made object build upon it is needed as a data source for 
environmental modelling and planning. One way to represent the terrain given by a set of surface points is to construct a Delaunay 
Triangular Irregular Network (DTIN). This DTIN is believed to give the ‘best’ triangular tessellation as the Delaunay empty circle 
criterion opts for well-formed ‘fat’ triangles and the resulting triangulation maximizes the smallest angle within each triangle. This 
idea is true for many computational geometry applications, but it is not valid for visual and analytical geo-computational queries 
dependent on the height of the surface. This limitation is given by the fact that the distribution of the triangular mesh is defined in 
the two-dimensional XY-plane and the Z-value of the surface points is not taken into account by the Delaunay empty circle criterion 
at all. Alternatively, Data Dependent Triangulations (DDTINs) aim to identify which triangulation over a given set of points will 
optimize some quality, i.e. the minimal spatial area of the surface or the volume below the resulting surface. The Z-value of the 
surface points is now taken into account, but still no certainty can be given that the derived TIN represents the actual surface. Hence, 
the reconstruction of the surface given by only the set of surface points is not unambiguous. 
 
This paper describes a surface reconstruction method based on the Delaunay Tetrahedronised Irregular Network (DTEN), which 
tessellates the 3D-space with non-overlapping, adjacent, tetrahedrons. The DTEN is constructed by the Delaunay criterion, resulting 
in a tessellation where the circumscribing sphere of each tetrahedron is empty. The approach presented in this paper is new in that 
not only the surface points are included into the DTEN, but also the observation lines, i.e. the lines-of-sight between the observer 
(i.e. an airborne or tripoded laser altimeter) and the targets (the measured points). These observation lines add the information 
needed to extract the Surface TIN (STIN) from this DTEN. The observation lines can also be artificial or simulated for this purpose. 
The STIN approach presented in this paper is a full 3D-implementation and refinement of the research presented in (Verbree, 2001).  
 
 

1. INTRODUCTION 

1.1 Limitations on Delaunay Triangulations 

TINs are commonly used for surface representation. Given 
target points on the surface a Triangulated Irregular Network is 
created. The Z-value of the point features is stored as the Z-
value of the nodes of the computed TIN. A Delaunay TIN 
fulfils the ‘empty circle criterion’. This criterion opts for the 
triangulation with ‘fat’ triangles, such that the triangulation 
maximizes the smallest angle within each triangle (Figure 1.1 
and 1.2). 
 

  
Figure 1.1 

Empty circle criterion 
Figure 1.2 

Resulting Delaunay TIN 
 
We have to realise however that the ‘empty circle criterion’ 
does not take the Z-value of the features into account at all. 

This is clearly seen if the point distribution is square, as in the 
following example (Figure 1.3 and 1.4). In these figures 25 
target points are given, with an alternating Z-value of 1 or 2. 
 

  
Figure 1.3 

One possible Delaunay TIN 
Figure 1.4 

Another Delaunay TIN 
 
In Figure 1.3 the diagonal of all triangles is directed north-west 
to south-east. The four points on a square are on the same 
circle, so it is with the Delaunay criterion in mind, free to 
choose a direction for the diagonals, as there is no optimum for 
the min-max angle criterion. This could be north-east to south-
west for all diagonals, more or less data dependent distributed 
as in Figure 1.4 or even complete randomly distributed. Which 
one to choose? 
 



 

1.2 Limitation on Data Dependent Triangulations 

The height values of the target points (or the Z-values of the 
nodes in the DTIN) do have consequences for derivatives like 
slope and aspect, visualization (hill-shading) and volume 
statistics (view sheds, and cut and fill calculations). One can 
argue that the 2D-Delaunay TIN (the triangulation of a ‘flat’ 
surface) is just one of the possibilities to triangulate a set of 
points and lines. In fact, any triangulation can be a candidate for 
a 2.5D terrain surface representation. 
 
Another approach is to take the Z-value of the target points into 
account in the triangulation process. Extensive research on Data 
Dependent Triangulations (DDTINs) proves this observation 
(Alboul, 2000). The idea behind this concept is to maximize or 
to minimize some cost functions that express certain local, 
regional or global properties of the resulting surface (Dyn, 
1990; Lenk, 2000). Possible options for this cost functions are: 
minimize the surface area, minimize the volume, minimize the 
maximum angle of the surface triangles, etc. But it has to be 
stated that pure DDTINs can lead to a large amounts of sliver 
triangles, which gives an artificial result. An example taken 
from (Alboul, 2000) is shown in Figure 1.5. Furthermore the 
local and global criteria could disregard certain phenomena, 
like ridges and faults.  
 

 
Figure 1.5 

DDT of minimising the absolute mean curvature 
 
 
1.3 

2.1 

The STIN-method; in search for improvement 

Both Delaunay and Data Dependent Triangulations are 2.5D 
surface reconstruction techniques given a discrete 2.5D data set. 
This limitation is suitable for most terrain applications, but no 
overhanging cliffs or other disturbances are possible. 
Reconstructing the surface of caves, buildings or other full 3D-
phenomena are only possible for parts of the data set, which 
first has to be projected to a suitable XY-plane. Therefore a full 
3D representation, like the Delaunay Tetrahedronized Irregular 
Network (DTEN), could be considered. Within this DTEN 
many, many surfaces through the data points are embedded. A 
little trick is needed to select the ‘best’ surface. 
 
One way to retrieve this surface is examining the data 
acquisition process. The surface point is determined by the 
position of the observer and the direction and distance of the 
measurement or observation. So, for each data site the position 
of the observer (observation point) is known. In case of airborne 
laser altimetry each target point has one corresponding 
observation point. Terrestrial laser scanning will result in a 
large set of target points measured from one or more 
observation positions. And although unlikely the possibility 

exists a surface point is measured from two or more 
observations points. But each pair of target and observation 
points are connected by one unique observation line. 
 
The line of sight (observation line) between target and observer 
should be free of obstacles or penetrated by a laser beam, 
otherwise no measurement can be made. The STIN method 
takes these observation lines into account in the surface 
reconstructing process. The observation lines are split with 
Steiner points until each part of the observation line recurs as an 
edge in the DTEN. This so-called conforming DTEN 
(Shewshuk) gives in conjunction with the Steiner points enough 
information to reconstruct the surface. 
 
In the next chapter the 2.5D surface reconstructing process 
based on these ideas are described by many figures and 
examples. Chapter 3 gives applications for the STIN algorithm 
for 3D surface reconstructions. Chapter 4 will end up with 
conclusions and recommendations for further research. 
 

2. THE STIN METHOD FOR 2.5D SURFACES 

Input target points and observation lines – Figure 2.1 

The STIN-method for 2.5D surfaces is illustrated by a basic 
example where the observation lines of the 2.5D target points 
are dropped perpendicular from a certain height, see figure 2.1. 
The algorithms consist of several steps, described in the 
following sections. These steps are: 
 

Step 1: Input target points and observation lines 
Step 2: Construct Conforming DTEN 
Step 3: Transform TIN_Edges to Volume_Edges 
Step 4: Find STIN_Edges on Surface 
Step 5: Create STIN_Faces 
 

 
Figure 2.1 

Target points and their observation lines – 2.5D case 
 
2.2 Construct Conforming DTEN – Figure 2.2 

The target points and their observation lines are included into a 
conforming Delaunay TEN. This 3D-network should result in a 
set of non-overlapping adjacent tetrahedrons, which should 
adhere to the following rules: 

1) For each of the tetrahedrons in a Delaunay TEN the 
circumsphere should not contain any other point of 
the data set. 



 

2) All observation lines are identified as edges in the 
Delaunay TEN. 

 
The Delaunay TEN is calculated based on the incremental 
algorithm (Watson, 1981) and (Bowyer, 1981). This algorithm 
adds one point at a time to an (initial) valid Delaunay 
Triangulation. This algorithm is also known as the cavity 
algorithm, since its deletes all tetrahedrons that are not longer 
empty after the intersection of the new point. This cavity is 
tetrahedronized again by connecting the newly inserted point to 
all vertices on the cavity boundary. This procedure is available 
as an independent TEN-constructing program, as used in 
(Kraak, 1992). 
 
To remain the observation lines within the TEN two 
possibilities are well-known, the constrained TEN and the 
conforming TEN. Within the constrained TEN the empty 
circumsphere requirement is loosed to allow an incorporation of 
the lines within the TEN as an entity. Conforming TENs on the 
other hand allow the insertion of so-called Steiner points. These 
extra points are iteratively added on the midpoints of the 
observation lines until each (part of) the observation line can be 
identified by an edge of the Delaunay TEN. Here is chosen for 
the Conforming TEN procedure, because of its minimalist 
approach (Calvalcanti, 1999), but also because of the use of 
these Steiner points in reconstructing the surface. 
 
The 2.5D Volume beneath the target points and thus the Surface 
are found by the procedure, given by the code in the next step. 
Within this step a little trick is applied to derive the volume 
edges. 
 

 
Figure 2.2 

Conforming Delaunay TEN 
 
2.3 Transform TIN_Edges to Volume_Edges – Figure 2.3 

All TEN_Faces are examined. If a TEN_Face has one Steiner 
point and two target points the algorithm will replace the 
Steiner point by the target point at the end of the observation 
line. The TEN_Edges of this TEN_Face are stored as 
Volume_Edges. Also the TEN_Edges of the TEN_Faces with 
three target points are stored as Volume_Edges and the 
remaining TEN_Faces are discarded. These set of 
Volume_Edges represents the Body of the object defined by the 
3D-convex hull of the target points. The complete set of 
Volume_Edges can be linked together to a TEN, which is partly 

Delaunay. The ‘top’ of the Body, as visible from the 
observation points, defines the Surface TIN we are looking for. 
 

 
Figure 2.3 

Volume_Edges of Conforming DTEN 
 

Find STIN_Edges on Surface – Figure 2.4 2.4 

In this step a hidden edge removal algorithm is applied on the 
Volume_Edges to retrieve the STIN_Edges. The algorithm 
applied projects the Volume_Edges to 2D and tests each one 
with the intersecting Volume_Edges. The intersection point is 
calculated in 2D, and the algorithm continues with calculation 
of the Z-value of the Volume_Edges at the intersection point. 
The Volume_Edge with the lowest Z-value is the furthest away 
from the observer and therefore not at the surface. This one is 
removed from the Volume_Edges. All remaining edges are 
declared to be STIN_Edges.  
 
A problem arises in that some removed Volume_Edges are to 
be considered as STIN_Edges to obtain a complete and valid 
STIN_Surface. The removed Volume_Edges that have no 2D-
intersection with another removed Volume_Edge are therefore 
promoted to STIN_Edges. 
 

 
Figure 2.4 

TEN_Edges on Surface 
 



 

2.5 Create STIN_Faces – Figure 2.5 

Finally the STIN_Faces (Surface triangles) are constructed. The 
STIN_Edges on the surface gives a complete and non-
overlapping triangulated partitioning of the surface. The 
internal numbering of the nodes of the STIN_Edges gives 
enough information to construct the STIN_Faces.  
 

 
Figure 2.5 

TEN_Faces on Surface 
 
 

3. THE STIN METHOD FOR 3D SURFACES 

3.1 Extending the STIN method to 3D – figure 3.1 

The STIN method is described and explained with an example 
data set in 2.5D. The only step in the STIN method, which uses 
this property, is the hidden edge algorithm to find the 
STIN_Edges on the surface (Section 2.4). That fast algorithm 
could be applied because the observer was thought to be far 
above the scene and thus could the observation lines, like 
airborne laser scanning, be considered perpendicular. 

 
Figure 3.1 

One observation point, many target points - 3D case 
 
 

 
If the observer is more or less within the scene, like in the case 
of terrestrial laser scanning, another hidden edge algorithm 
should be applied. This modification is necessary, because the 
target points are now really distributed in 3D. But that is the 
only modification. The remaining algorithm is not affected. 
This is demonstrated by the following example, where one 
observer from within the object scans several target points 
around it in 3D space.  
 
3.2 Construct Conforming DTEN – Figure 3.2 

The observation lines has to be cut off at a certain distance from 
the observer, for sake of unwanted site-effects (unlimited 
addition of Steiner points) in the calculation of the conforming 
DTEN.  

 
Figure 3.2 

Conforming Delaunay TEN 
 
3.3 Transform TIN_Edges to Volume_Edges – Figure 3.3 

The same algorithm as in Section 2.3 is applied.  

 
Figure 3.3 

Volume Edges of Conforming DTEN 



 

Again all TEN_Faces are examined and transformed if one of 
the nodes is an added Steiner point. In that case the target point 
at the end of the observation line replaces this node. All 
TEN_Edges of the TEN_Faces are now stored as 
Volume_Edges. 
 
3.4 Find STIN_Edges on Surface – Figure 3.4 

To determine which TEN-Edges are on the surface a full 3D 
hidden edge algorithm had to be applied. This algorithm is a 
straightforward three dimensional generalization of the 2D 
method presented in (Aftosmis) and described by (O’Rourke, 
1994). Figure 3.4 gives an illustration of this method. 

 
Figure 3.4 

Test visibility Edge (a,b) and Edge (1,2) from Observer (0) 
 
Each Volume_Edge is tested against all other Volume_Edges. 
To determine whether or not Volume_Edge (a,b) is in front of 
Volume_Edge (1,2) given the observation from point (0) three 
tetrahedrons T(a,1,2,b), T(a,0,1,b) and T(a,2,0,b) are 
constructed. The Volume_Edge (a,b) is in front of 
Volume_Edge(1,2) if the sign of the determinant of these 
tetrahedrons is the same (all positive or all negative). These 
Volume_Edges are eliminated and the remaining 
Volume_Edges are on the surface and declared as STIN_Edges. 
 
Again (as in the 2.5D example) some of the removed 
Volume_Edges are needed to obtain a complete and valid 
STIN_Surface. Given the set of visible Volume_Edges the 
eliminated ones are examined. One case one of these is visible 
it will be restored and declared as a STIN_Edge. 
 
3.5 Create STIN_Faces – Figure 3.5 

 
Figure 3.5 

TEN_Faces on Surface 

The set of STIN_Edges gives a complete and non-overlapping 
partitioning of the Surface and all STIN_Faces are constructed. 
However, one extra test is necessary. Although the observation 
lines enforces the selecting of the STIN_Edges, it is possible 
that a triple of STIN_Edges constructs a STIN_Face, which is 
intersected by an observation line. Each constructed STIN_face 
is tested against intersecting by an observation line and deleted 
in case of.   
 
3.6 Examples – Figures 3.6 and 3.7 

In this example all steps of the STIN method are made visible. 
Given are the eight target points on the corners of a cube and 
six target points slightly pushed inside the cube. The quest is to 
reconstruct the surface, given an observation point. In figure 3.6 
this observer is in the mid of the cube and the STIN Surface is 
found given the procedure described in the former sections.  

 
Figure 3.6 

STIN Surface of ‘Pushed’ Cube with observation inside 
 
Figure 3.7 shows the reconstructed STIN Surface of almost the 
same dataset (one of the pushed target points is eliminated to 
give sight inside the cube) and the effect of the position of the 
observer (slightly below the position of the eliminated target 
point). The observer is now outside the object and a complete 
different - but still valid - surface is derived. 
 



 

 
Figure 3.7 

STIN Surface of ‘Pushed’ Cube with observation outside 
 
 

4. CONCLUSIONS AND RECONMANDATIONS  

The standard Delaunay TIN (DTIN) method has to be handled 
with care for surface reconstruction purposes, as the Z-value of 
the target points is not considered in the construction. Within 
the Surface TIN (STIN) method the Z-value of the target points 
is taken into account along the position of the observer and the 
observation lines. The surface is created and derived within a 
Tetrahedronised Irregular Network (TEN) in three dimensions. 
This method lines up with all kinds of Data Dependent 
Triangulations (DDTINs). The STIN method is capable to 
reconstruct surface out of a given point cloud in 3D as long as 
the location of the observer is known. 
 
Current research is undertaken to extent the method to: 
 
- Handle large data sets. The STIN method is now available 

in a prototype environment written in the scripting 
language Avenue of ArcView 3.2a (ESRI) and own TEN-
constructing software. It is possible to create surfaces to 
1000 points in reasonable time. The use of a more robust 
and scalable environment as the Computational Geometry 
Algorithm Library (CGAL) should be considered. 

- Handle contouring datasets. The obtained surfaces of this 
kind of dataset are notorious for their problems with flat 
triangles and missing ridges and vaults when triangulated 
with a Delaunay triangulation. The idea is to retrieve 
Surface TIN based on locale constructed TENs instead of 
one TEN for the entire dataset.   

- Handle more observation points for the 3D-surface 
reconstruction procedure. This will introduce some 
complexity in the algorithm as observation lines will cross 
and possible intersect each other. But the potential to 
reconstruct 3D-surface measured from two or more 
tripoded laser altimeters is promising.   

 
Furthermore research is undertaken to: 

- Give a formal proof of the correctness of the reconstructed 
surfaces (no holes or overlapping parts). 

- Compare the 2.5D STIN surfaces into detail with results 
from Data Dependent Triangulations. 

- Combine 2.5D surfaces with full 3D objects for terrain 
modelling applications. The 3D objects will be retrieved 
by the full 3D-STIN method, while the surface is 
reconstructed by the 2.5D-STIN method, where after these 
models have to ‘glued’ together to one 2.5D/3D 
datamodel.  
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