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1 Introduction

We collect and store data to derive information and make judgments about
a world of our interest. Ideally, they should indicate in a unique and certain
way which possible world corresponds to the actual world [17]. Imperfection
arises when this is not possible. Imprecision is a type of imperfection that is
often encountered. Data are imprecise if we cannot precisely define the actual
world, i.e. several worlds satisfy the data. A specific type of imprecision is
vagueness [17, 22], which is the focus of this study. A concept is vague if objects
exist that cannot be classified either to the concept or to its complement.
Vagueness arises in the presence of borderline cases [18]. It is often present
in collected spatial information, such as forest inventories, or geological, soil,
and vegetation maps. Soil or vegetation classes are such that they cannot be
defined sharply. The change from one class to another is gradual. This is in
conflict with current geographical information systems (GIS) which assume
that spatial objects are precisely defined, sharp objects, using points, lines,
and polygons as representations.

Several theoretical models have been proposed to represent and handle
vague objects. They can be divided into two groups. One group [2, 3, 4, 12]
deals only with regions, called broad boundary regions. The boundary of such
a region is not a sharp line but a zone of transition, which is considered to
be homogenous. The other group [13, 14, 23] considers gradual changes in the
transition zone, and models objects by employing fuzzy sets. Schneider [14]
defines fuzzy points, fuzzy lines and fuzzy regions, based on a finite collection
of elements of a regular grid, which form a partition of IR2. The model is
directly implementable in raster data format. The other theoretical models
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have not been followed up by implementations, and (to our knowledge) there
is no other implementation of vague objects.

The work presented in this paper follows our previous work [7], which
provides formal definitions of vague object types and their operators. This
work is an implementation of these vague types and operators in GIS soft-
ware. Its objective is to store and manipulate vague spatial information, by
extending existing GIS functionality. GRASS, an open source GIS software,
was selected for the implementation, to allow the use of existing spatial data
handling capabilities. The rest of the paper is organized as follows: Section 2
informally describes vague objects and operators we deal with, giving the in-
tuition of the definitions provided in [7]. Section 3 is dedicated to the creation
of vague objects from input data points, and to their storage. Section 4 de-
scribes the visualization techniques used to display vague objects. Section 5
provides for set operators on vague objects. Sections 6 and 7 close the paper
with discussions and conclusions.

2 Vague spatial types and operators

Vagueness in spatial information could be positional, meaning the location
of a certain object is vaguely described, or it could be thematic, meaning
properties of an object are vaguely described, e.g. in natural language terms,
which are generally vague. The vague types that we have provided in [7] deal
with thematic vagueness. A spatial object described by one of these types has
a known location, but its properties can only be expressed in vague terms.
For example:

• ‘Densely populated’ residential centres are represented by points with pre-
cise location, which have different degrees of population density. Their
property of being ‘densely populated’ is a vague term.

• A traffic congestion is described by a property on a road network (which
location is precise for our purpose): the ‘congestion’ level, which can only
be expressed in vague terms. Part of the road is completely blocked, hence
certainly belongs to the traffic congestion, whereas away from the cause of
the congestion, the car build-up becomes less severe, therefore it is part of
the traffic congestion only to a certain degree.

• Agricultural land ‘suitability’ is a property of land (space) described by a
vague term. Suitability of land for a given kind of agriculture is decided
on the basis of a combination of precise criteria built on natural linguistic
terms [16]. There exist locations that are certainly suitable for agriculture,
whereas other locations are suitable only to a certain degree.

The types we provide are either simple or general ones. A simple type is used to
represent a basic object, i.e. the simplest identifiable object. A general type is
used to represent a set of basic objects that belong to the same vague class (of
a certain classification). Partitioning of space based on a given classification is
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important for many spatial applications. A classification consisting of vague
classes does not lead to a crisp partition of space. We introduce a type vague
partition that allows some kind of overlapping between classes, still giving a
meaningful classification of space.

A vague object of simple or general type is a fuzzy set in the real plane,
satisfying specific properties. It is represented by its membership function
µ : IR2 → [0, 1]. Simple types are simple vague point , simple vague line, and
simple vague region. Figure 1 illustrates objects of these types.

(b) (c)(a)

Fig. 1. (a) simple vague point, (b) simple vague line, and (c) simple vague region.
Dark tone indicates high membership value, light tone indicates low membership
value.

A simple vague point represents a site with a known location but with un-
certain existence (to a phenomenon of interest). It has a positive membership
value only at that location; the membership value represents the certainty
of existence of the site. A simple vague line represents a linear feature with
known position but with an uncertain extent, i.e. any point of the line has
some degree of participating in the line. A simple vague line is a continuous
line with mostly gradual transitions of membership values between neighbour
points on the line. Membership values are positive at every point of the line,
except perhaps at the end points. A simple vague region is a region with
a broad boundary. Locations in the broad boundary typically have different
positive membership values, which change mostly gradually between neigh-
bour points in the region. It does not have cuts, punctures, isolated lines or
isolated points. Its support set (i.e. the set of locations with positive member-
ship value) is a single-component set, possibly with holes. The core (i.e. the
set of locations with membership value equal to 1) however, can be composed
of several components, possibly containing holes.

The general types are vague point , vague line, and vague region. A vague
point is a finite set of disjoint simple vague points. A vague line is a finite
set of simple vague lines that intersect only at their end nodes, and have the
same membership value at any common end node. A vague region is a finite
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(a) (b) (c)

Fig. 2. (a) vague point, (b) vague line, and (c) vague region.

set of disjoint simple vague regions. All these finite sets are potentially empty.
Figure 2 illustrates these objects.

A vague partition is a set of classes, where a class is of type vague region.
Objects belonging to different classes could overlap only at their uncertain
parts. The certain part of one object is disjoint from all objects in any other
class.

The basic operators we provide are union, intersection, and difference.
These are binary operators defined on general types. General types are closed
under these vague spatial operators, meaning the result of an operator is of
one of these types. Every operator takes as arguments (two) objects of the
same type, and returns an object of that type, except for the intersection of
vague lines, which returns a vague point. The union between two vague regions
can be used to generalize a classification: two classes can be joined to create
a new class that is more general than the previous two. The intersection of
vague regions can be used to combine two classifications into a new one: two
classes from different classifications can be combined to form a more refined
class.

Union, intersection, and difference between vague objects are defined us-
ing fuzzy set operators – fuzzy union, fuzzy intersection, and fuzzy difference,
respectively. Union of two objects µ1, µ2 gives a new object µ of the same
type, of which the membership value at every location is taken as the maxi-
mum of membership values of the input objects: µ(P ) = max {µ1(P ), µ2(P )}.
Intersection between two vague lines gives a vague point, whereas intersec-
tion between vague points and between vague regions gives, respectively, a
vague point and a vague region. The intersection of two vague objects µ1

and µ2 results in a vague object µ of which the membership value at every
location is the minimum of membership values of input objects at that lo-
cation: µ(P ) = min {µ1(P ), µ2(P )}. The difference µ between two vague
objects µ1 and µ2 is the intersection of the first object with the comple-
ment of the second. The membership value at each location is taken as
µ(P ) = min {µ1(P ), 1− µ2(P )}.
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3 Storage of vague objects

In this section we discuss our storage model of vague objects. An object of a
general vague type is a collection of simple vague type objects. Simple type
objects are the basic objects that we need to store. An identifier is given to
such an object and used to compile the complete information at any time the
object is needed. In this section we show how to store simple vague points,
simple vague lines, and simple vague regions. The data we can collect and
store can only be finite, while a simple vague line and a simple vague region
represent infinite point sets. An interpolation method is used in both cases to
complete (approximate) information about objects.

The GRASS vector format4 is used to store vague objects. Feature types
supported by GRASS are point, line, boundary , area (without holes), and
centroid. All data is stored using line representations. A line is a sequence of
(x, y) coordinates forming types point, line, boundary , or centroid. A point
or a centroid is constructed as a sequence of two identical elements. A line or
a boundary is constructed as a sequence with at least two elements. A line
type is used to store linear features, whereas a boundary type is used to store
areal features. An area is formed by a set of lines of type boundary , which
constitute its boundary. GRASS allows the storage of three dimensional (3D)
features, i.e. a line can be a series of (x, y, z) coordinates. It can only build the
complete topology for 2D features; it builds connectivity of 3D linear features,
but ignores the third coordinate when creating (and building the topology of)
areal features. We use that third coordinate to store membership values.

Objects within a theme, e.g. road lines, vegetation classes, form what we
call a data layer. A data layer is physically stored as a directory that contains
several files, coor, topo, sidx, etc. each containing specific information. For
example, vegetation data is stored in a directory vegetation. Location infor-
mation is stored in the coor file in that directory, while topology information
is stored in the topo file. One or more attributes can be attached to objects
of a data layer.

Our simple vague point is implemented in GRASS by an SVpoint that is a
triple (x, y, mv), where (x, y) ∈ IR2 provides the location and mv ∈ (0, 1] pro-
vides the membership value. A simple vague line is implemented by an SVline
that is a sequence of triples 〈(x1, y1,mv1), . . . , (xn, yn,mvn)〉, each triple pro-
viding the x, y location of a point in the line, associated by the membership
value of that point to the line. An approximation of the simple vague line is
achieved by linear interpolation between consecutive points. A simple vague
region is a surface embedded in IR2. Triangulations can be used to represent
it, e.g. TIN structures in GIS software. A triangulation is the division of a sur-
face or a polygon into a set of triangles, such that each triangle edge is shared
by two adjacent triangles. A triangulation method consists of two parts: creat-
ing the triangulation, and performing an interpolation within each triangle. A
4 We use GRASS version 6.0.
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simple vague region is implemented by an SVregion that is a triangulation. An
approximation of the simple vague region is achieved by a linear interpolation
within each triangle of SVregion.

A vague point is implemented by a Vpoint, which is a set of triples
(x, y, mv) having different locations. A vague line is implemented by Vline,
which is a collection of SVline objects intersecting only at end points. A vague
region is implemented by Vregion, which is a set of triangulations that do not
overlap each other. Objects of a simple type belonging to the same class are
stored in a data layer. We call it a vague data layer, for containing vague in-
formation. It is of one of the implementation types: Vpoint, Vline, or Vregion.
For example, all SVregion objects belonging to the class ‘forest’ of a vegetation
theme, are stored in a vague (data) layer of type Vregion.

A vague layer is created by input containing membership information, or
such information is derived from attributes in input data by applying mem-
bership functions. We provide a module v.vague.membership that applies
trapezoidal membership functions to a numerical attribute of a data layer. A
vague point layer, i.e. a layer of type Vpoint, may derive from any point data
containing membership information, or an attribute to which we could ap-
ply membership functions. Each input point associated with the membership
value creates an SVpoint object in the vague point layer. A vague line layer
is derived from measurements along linear features, e.g. level of congestion at
locations along roads in a road network data layer. Such measurements can
be direct membership values, or functions can be applied to them to derive
membership values. An SVline object is created in the vague layer for each
line object in the input data.

We assume that data about a vague region layer comes from points as-
sociated with membership values, or points having an attribute to which we
apply a membership function. These points may be irregularly distributed,
e.g. coming from measurements. They may also be regularly distributed, e.g.
coming from processed satellite images. The only information we can get from
such input is a membership value to a certain vague class, which may be in-
deed composed of several SVregion objects. The input needs to be interpreted
to create the simple objects. We cluster input points, and consider that each
cluster establishes a separate object. Points of each cluster are then used to
create a triangulation for each simple object identified.

The next two sections, Section 3.1 and Section 3.2, are dedicated, respec-
tively, to clustering the input to form separate SVregion objects, and creating
objects from triangulation of clusters. Up to here, we have discussed about
creation and storage of a vague layer, which is the implementation of a vague
class. It is convenient to bind together all classes belonging to the same theme.
This is discussed in Section 3.3.
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3.1 Clustering input and delineating boundaries

Several techniques exist that can be used for clustering points in space: K-
means (K-median) clustering, self organizing maps, hierarchical clustering,
alpha shapes (see [1] for an overview). All techniques are based on some dis-
tance measure between points. The first two techniques require the number
of clusters to be determined beforehand. This is usually not known for our
case. Hierarchical clustering with Euclidean distance could be used for clus-
tering the input. The technique is used for different inputs, not just points in
Euclidean space, by employing different distance measures or different group
(linkage) distances. It is a quite general, but slow technique. Alpha shapes
(α-shapes from here onwards) work only with points in Euclidean space. They
detect separate clusters from a given point set and delineate boundaries of the
detected point clusters. The technique is faster than hierarchical clustering,
and its output is richer as it contains a boundary for each cluster. We use
α-shapes to cluster the input data and delineate the boundary of each cluster.

Fig. 3. Positive α-hull in the left, negative α-hull in the right (taken from [8]).

The α-shapes are a generalization of convex hulls. The convex hull of a
point set S may be defined as the intersection of all closed half-planes that
contain all points of S. This notion is generalized to α-hulls in [8]. For positive
(yet sufficiently small) α, the α-hull of S is the intersection of all closed discs
with radius 1/α that contain all points of S. Large α produce a curved hull
of which the boundary consists of parts of circles (with radius 1/α) that
pass through extreme points of S. As α approaches zero, the curved hull
converges to the convex hull. An α-hull is smoother than the convex hull, but
its approximation of the intuitive shape of points is coarser than that of the
convex hull. The shape of the hull can be refined by considering negative α’s.
For negative α, the α-hull of S is taken to be the intersection of all closed
complements of discs with radius −1/α that contain all points of S. Figure 3
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shows the positive α-hull (left) and the negative α-hull (right) of a point set
resembling the letter ‘A’.

The α-hull can be defined more concisely using the notion of a generalized
disc. A generalized disc of radius 1/α is a disc of radius 1/α for α > 0; it is the
complement of a disc of radius −1/α for α < 0, and a half-plane for α = 0.
For a point set S and a real value α, the α-hull of S is the intersection of all
closed generalized discs of radius 1/α that contain all points of S. Two other
concepts, α-extreme and α-neighbour, are used in [8] to define the α-shape
concept. A point p of a set S is termed an α-extreme in S if there exists a
closed generalized disc of radius 1/α such that p lies on its boundary, and it
contains all points of S. Two α-extremes p and q are said to be α-neighbours
if there exists a closed generalized disc of radius 1/α with both points on its
boundary, and which contains all points of S. An α-shape of S is then the
straight line graph whose vertices are the α-extremes and whose edges connect
the α-neighbours [8]. The assumption is that no four points of S are cocircular
and no three points are collinear.

(a) (b) (c) (d)

Fig. 4. (a) input points, (b) α-shape for a positive α, (c) α-shape for α equal to 0,
(d) α-shape for a negative α.

Figure 4(b)–(d) illustrate α-shapes produced for decreasing α values on
the same point set shown in Fig. 4(a). A decreasing α value results in a finer
shape. Depending on the α value, a single point can be a cluster (and its own
boundary at the same time), as is the case in Fig. 4(c) for four points. The set
of α-extremes becomes larger when α decreases: the set of α1-extreme points
of a point set S is a subset of α2-extreme points of S if α1 > α2 [8]. We are
interested in shapes finer than the convex hull, therefore we work only with
negative α values. This simplifies the checks for α-extremes and α-neighbours,
and also the complete algorithm for building the α-shape.

A point is an α-extreme of a point set if and only if a circle with radius
−1/α (α-circle hereafter) can be constructed such that the point is on the
circle and no other point of the set lies inside it. Figure 5 illustrates α-extremes
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m n

Fig. 5. Examples of α-extreme in a set A: point m is an α-extreme, point n is not.

in a point set A. Point m from A is an α-extreme. Point n is not an α-extreme;
any α-circle passing through n contains at least another point of A. We use
the same set A for illustrations 5–9 in this section. The set is chosen such that
it covers all cases treated by the α-shape algorithm.

s

t v

w

Fig. 6. Examples of α-neighbours: v and w are α-neighbours, s and v are not.

Two points are α-neighbours, if and only if an α-circle can be constructed
through them, but with no other points of the set within that circle. Figure 6
illustrates α-neighbours in A. Points v and w are α-neighbours: there is a circle
passing through v and w that does not contain any other point of A. Points
s and v are not α-neighbours: there are only two circles with radius −1/α
passing through both of them; both circles contain point t.

The tests for building the α-shape of a point set are based on the De-
launay triangulation of the set, its dual (in the graph theoretical sense), the
Voronoi diagram, and relations between the two. A Delaunay triangulation is
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a triangulation that maximizes the minimum angle [5]. A Voronoi diagram of
a point set is a partition of the plane into convex polygons, one for each point
of the set, such that each polygon contains only one point from the set that
is its central point, and every point in a polygon is closer to its central point
than to any other point of the set. Figure 7 shows the Delaunay triangulation
(in light grey) and the Voronoi diagram (in thick light grey lines) of the point
set A.

The α-shape of a point set S is a subset of the Delaunay triangulation of
S [8]. It is built by first constructing the Delaunay triangulation of S, then
testing for Delaunay edges whether they are in the α-shape. The complete
algorithm is:

create a Delaunay triangulation DT of S
create Shape as an empty set of edges
for every edge (p, q) in DT

if p is α-extreme and q is α-extreme and p and q are α-neighbours
add (p, q) to Shape

fi
rof

To build the Delaunay triangulation we use TRIANGLE, an open source
tool created by Shewchuk [15]. Testing for α-extremes and α-neighbours of
S, based on relations between the Delaunay triangulation and the Voronoi
diagram of S, is explained in the next few paragraphs. Tests are translated
into properties of the Delaunay triangulation and its convex hull, therefore
this is the only structure needed for constructing the α-shape.

An α-extreme of a point set is a point on the boundary of the convex hull
of the set, or a point which maximal circumradius5 of triangles of which the
point is a vertex, is bigger than the radius −1/α. These properties are used
to test for α-extremes. We explain them using Fig. 7. Points on the boundary
of the convex hull of a point set have unbounded Voronoi polygons; any other
point has a bounded Voronoi polygon. The point m is on the boundary of the
convex hull of A; its Voronoi polygon Vm is unbounded. Any α-circle centred
inside Vm that passes through m does not contain any other point of A. Point
t is inside the convex hull of A; it has a bounded Voronoi polygon Vt. The
Voronoi polygon Vt of t contains all points that are closer to t than to any
other point of A. This means that any circle passing through t and centred
at a point inside Vt does not contain any other point of A. The maximal
circle having this property (shown with dashed line) is the one centred at the
furthest Voronoi vertex cmax

t from t. An α-circle passing through t, and lying
inside the maximal circle of t, does not contain other points of A. Vertices of
the Voronoi polygon Vt are the circumcentres of Delaunay triangles of which
5 The circumradius is the radius the triangle’s circumscribed circle, i.e., the unique

circle that passes through each of the triangles vertices. The circumscribed circle
is called circumcircle of the triangle.
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t

Vt

m

Vm

c t
max

Fig. 7. Test for α-extremes: unbounded Voronoi polygon Vm and an α-circle (in
grey) passing through m; bounded Voronoi polygon Vt, an α-circle passing through
t, and the maximal circle of t (with dashed line).

t is a vertex. The maximal circle of t is one of the circumcircles of triangles t
is a vertex of; it is the circumcircle that has the maximal radius.

m
n

r

u

g

vg

Fig. 8. Delaunay triangles sharing edge g and their circumcircles (in light grey); the
corresponding Voronoi edges; and circles centred inside and outside edge vg passing
through end points of g (with dashed and dotted line, respectively).

The test for α-neighbours is based on the relation between Delaunay edges
(D-edge) and Voronoi edges (V-edge). Let us first explain this relation using
Fig. 8 that shows a partial Delaunay triangulation and Voronoi diagram of A.
D-edges are shown in light grey, V-edges are shown with thick light grey lines.
Every D-edge has a corresponding V-edge, e.g. D-edge g has its corresponding
V-edge vg. V-edge vg joins the centres of the circumcircles of the two Delaunay
triangles of which g is an edge. Circumcircles of Delaunay triangles are shown
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in light grey. Any circle passing through the end points r and u of g has the
centre in l, the perpendicular line to g at its midpoint (the dashed grey line).
The V-edge vg lies on this line. A Delaunay triangle has the property that its
circumcircle does not contain any other point of the set. The two circumcircles
of triangles sharing edge g have their centres at the end points of edge vg.
Any circle passing through end points of g and centred inside vg has no other
point from A, e.g. the circle in dashed line. Moving the centre of the circle
along line l, outside vg, produces a circle that encloses m or n, and possibly
other points from A, e.g. the circle with dotted line in Fig. 8 encloses point
m.

g
vg

f

vf

d

vd

Fig. 9. Testing Delaunay edges for being in the α-shape by using min and max
circles (with dotted and dashed lines, respectively), and α-circles passing through
end points of D-edges (in grey).

Two α-neighbours are connected through a D-edge, and the centre of one
of the α-circles passing through them is on the corresponding V-edge; no other
point of the set lies inside the α-circle that has its centre in the V-edge. This
property is used to test a D-edge whether its end points are α-neighbours,
that is the D-edge is in the α-shape. The centre of an α-circle passing through
end points of a D-edge is on the corresponding V-edge, if the radius −1/α is
between the minimum and maximum distance from any of these points to the
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V-edge. If a D-edge is in the boundary of the convex hull, its corresponding
V-edge is a half line, in which case the maximum distance is infinite. The test
reduces to checking whether the radius −1/α is bigger than the minimum
distance. Figure 9 shows three different cases for calculating the minimum
and maximum distance for a D-edge. Edge d is in the boundary of the convex
hull A; its corresponding V-edge vd is a half line. The minimum distance of an
endpoint of d to the V-edge vd is the circumradius of the triangle of which d is
an edge. The circumcircle of this triangle is shown with dotted line. D-edge g
intersects with its V-edge vg. The minimum distance of a g endpoint to vg is
the half length of g (vg is perpendicular with g at its midpoint). The minimum
circle is shown with dotted line. The maximum distance is the distance from
an endpoint of g to one of vg endpoints. Endpoints of vg are circumcentres
of triangles of which g is an edge. The maximum distance is the maximum
circumradius of the two triangles. The maximum (circum)circle is shown with
dashed line. D-edge f does not intersect with its V-edge vf . The minimum
and maximum distance for f are respectively, the minimum and maximum
circumradius of the two triangles of which f is an edge. The minimum and
maximum (circum)circles of triangles sharing edge f are shown in dotted and
dashed line, respectively. The α-circles and their centres are shown in grey.
Only D-edge f is in the α-shape.

(a) (b)

Fig. 10. (a) α-shape for the initial α-value, (b) α-shape for decreased α-value.

The value of α defines the level of detail of the α-shape. The criterion we
use to set an initial α value is that every point is at least vertex of one triangle
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in the α-shape interior. Figure 10(a) shows the α-shape taken from such α
value, and 10(b) shows the shape after decreasing the α value. In Fig. 10(b)
we see that there are loose points, not part of any shaped object. A triangle
is part of the α-shape if and only if the radius of its circumscribed circle is
smaller than or equal to −1/α [8]. To set an initial α value for a point set S,
we calculate for every point s ∈ S the minimum radius rs of circumscribed
circles of all Delaunay triangles that have s as a vertex. The radius −1/α is set
to the maximum of rs values for all points of S. The α value calculated from
that is used to estimate the shape. This initial value can be further adjusted
by the user, if needed.

(a) (b)

Fig. 11. (a) input from a regularly distributed point set, (b) object boundaries
detected with the initial α-value.

The α-shape of regularly distributed point data (grid data) resulting from
the use of the initial α-value is shown in Fig. 11. Grid points with membership
value equal to zero have been excluded from the input.

3.2 Creating and storing triangulations

The output of α-shapes consists of boundary lines together with the input
data points. The lines constitute boundaries of the support sets of simple
vague regions. They are processed to identify objects by their boundary. An
identifier is assigned to every simple region object detected. Each simple re-
gion is then built from the constrained Delaunay triangulation performed on
boundaries of the region and points inside the boundary. Its triangulation
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data is stored together with the identifier. Module v.vague.triangle per-
forms the whole procedure. Each step of the procedure is explained in more
detail in the following paragraphs.

Simple vague regions are identified from cluster boundaries. Each region
may contain holes. Because GRASS does not support areas with holes, we
have to check for them. A hole inside a simple vague region may contain other
regions. Therefore, from cluster boundaries we have to detect which boundary
is an outer boundary of a region and which is a hole boundary. We check for
every area boundary if it lies inside other areas. It is the outer boundary of a
simple vague region if it lies inside an even number of areas. It is the boundary
of a hole if it lies inside an odd number of areas. Figure 12 shows two different
configurations of outer boundaries and holes: area A is inside area B and it is
a hole. Area C is inside area D which in turn is inside area E. The boundary
of E and the boundary of D form (the boundaries of) a simple vague region.
The boundary of C gives another simple vague region.

E

D

A

B
C

Fig. 12. Identifying simple vague regions (shown in grey) from areal boundaries: one
simple vague region in the left; two simple vague regions in the right, one enclosing
the other.

After identifying all simple vague regions, we perform a constrained De-
launay triangulation for every region. A constrained Delaunay triangulation is
a triangulation of vertices with predefined edges. It consists of four steps [15]:

1. creating a Delaunay triangulation from the input vertices;
2. inserting missing line segments from the boundary and deleting the De-

launay edges that overlap with them;
3. removing triangles at concavities and holes;
4. adding more points in order to improve the quality of the triangulation.

Figure 13 illustrates the first three steps of the constrained Delaunay triangu-
lation. Figure 13(a) shows boundaries of a simple vague region. For simplicity
of illustration we consider a constrained Delaunay triangulation with only line
boundaries as input. Figures 13(b)–(d) show the results from the first, second
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and third step, respectively. To visualize change in different steps, the bound-
ary edges are always drawn in black. In the two intermediate steps, the other
edges are shown in dark grey, and the edges to be removed are shown with
dashed grey lines.

(a) (b)

(d)(c)

Fig. 13. Results of three steps constrained Delaunay triangulation in a simple vague
region. (a) region boundaries, (b) Delaunay triangulation, (c) insertion of missing
boundary lines, (d) removal of triangles outside the boundary and inside holes.

We use TRIANGLE by Shewchuk [15] to perform the constrained De-
launay triangulation. GRASS data is transformed to the TRIANGLE data
format, the program is run on the transformed data, and its output is trans-
formed back to GRASS vector format. The program cannot handle holes when
the input is big (i.e. more than 50,000 points). We use TRIANGLE to per-
form the triangulation constrained only on the outer boundaries. Then we
remove all edges inside holes. We expect the core of a region to have many
input points, therefore many flat triangles will be created. We remove the
redundant core triangles, by first constructing the boundary of the core from
all flat triangles of value 1, then performing the constrained Delaunay on the
boundary. Figure 14 shows triangulation of a simple vague region after the
simplification of its core triangulation. Points are very dense outside the core,
which makes the triangulation very dense. Core triangles are visible after the
simplification phase.

For each simple vague region, triangulation edges are stored as boundary
lines with (x, y, z) coordinates in the coor file. An attribute is used to store
the identifier of the simple vague region to which the edge belongs. Topology
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Fig. 14. Triangulation of a simple vague region after reducing core triangles. Tri-
angulation is very dense outside the core; only core triangles are distinguishable.

data of triangles and holes, e.g. indices of line boundaries, is stored in the
topo file.

The output of module v.vague.triangle is a data layer that contains
information about a vague class. The complete algorithm of the module is
presented below:

create a list SVR of simple vague regions from cluster boundaries
for every region r in SVR

find all points that are inside its boundary
build constrained Delaunay triangulation from r’s boundary and points
if r has holes

remove edges inside every hole
store triangulation edges together with r index in SVR
store topology for triangles and holes

rof

Every time a layer of simple vague regions is used, its information is com-
piled from stored data, and put in memory in a list Vague region of simple
vague regions. Every element of Vague region contains a list of triangles and
a list of holes. Information about triangles and holes is built using several
GRASS data structures that are inside a main structure, Map info [11]. Every
time a vector layer is used, data from coor and topo files is read and put into
these structures. The indexed lists Area and Line inside a Map info structure
contain topology information of areas and lines, respectively. Each element of
Area contains a list of indices of lines that constitute its boundary. The index
of the Line list is used to connect every element with the corresponding ele-
ment in another list that contains attribute values. Figure 15 shows relations
between these data structures.
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Area

321

2 43

lines

4321 65

Line

100

Map_info

Vague_region

21

...

...

lines

5 64

...

...

triangles

1 2 ...
holes

100 ..

7 985

lines

Fig. 15. GRASS structures (inside Map info) used to store information about simple
vague regions.

3.3 Creating themes from several layers

A data layer keeps information about one class. For example, a layer forest
keeps data about simple vague regions that belong to a class ‘forest’ of a
‘vegetation’ theme. The vegetation theme consists of several classes: forest,
grassland, shrubs, etc. Vague classes could overlap with each other, e.g. forest
and shrubs, in which case triangulations representing them will overlap. Over-
lapping lines or areas are not allowed (handled) by the topology, which we
need for compiling object information. Therefore we cannot store all classes
together. However, we often need to have all classes of a theme together, to
operate with all or a selected subset of them.

We create two tables to store the relation class and theme it belongs to.
Figure 16 shows their schemas. Tables are stored in DBF format, which is a
format integrated in GRASS, meaning that no connection to an external data-
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base is needed. Table Themes.dbf stores theme name and description, respec-

Themes
Name Description

Name Description
Classes

Theme GRASSfolder

Fig. 16. Tables that keep information about themes and classes belonging to each
theme.

tively in Name and Description. Name is the identifier. The table Classes.dbf
stores class name, the name of the theme it belongs to, the name of the GRASS
folder where (layer) data is stored, and class description, respectively in Name,
Theme, GRASSfolder, Description. The combination Name, Theme is the iden-
tifier of the table. Theme refers to Themes.dbf table.

Module v.vague.combine binds several layers in a theme. The created
theme is added to the Themes.dbf table and its list of layers is added to the
Classes.dbf table (each layer as a new record in the table). The module
allows users to add or remove layers from an existing theme, or to delete a
theme. Changes are then reflected in Classes.dbf and Themes.dbf table.

A theme of vague region layers forms a vague partition. Objects in a layer
do not overlap with each other. This is assured by the triangulation process.
When adding layers to a theme with the v.vague.combine we check if objects
from different layers overlap only in their uncertain part. We give a warning
when this criterion is violated, and store a report for the violating cases (object
identifiers, layers they belong to, and the theme).

4 Visualizing objects and displaying information

Visualization of objects in a layer is done using colour brightness to display
levels of membership values, e.g. using grey scales. Different layers are dis-
played using different colour hue for each layer, and brightness for membership
value on each layer. Objects can be selected by clicking. Selected objects are
shown in a separate colour, not used for displaying layers. Figure 17 shows a
theme of vague regions having two classes. Different colour hue is used for each
class. Darker colour shows higher membership value. An object is selected and
shown in yellow colour.

Module v.vague.what performs visualization of layers. It allows to select
objects from a layer, and displays information for a given location in a layer.
A theme (created by v.vague.combine module) is the input for this mod-
ule. Vague regions can be displayed by drawing only triangle edges of their
triangulations. The set of triangles is drawn with a different colour for each
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Fig. 17. Visualization of several layers, each drawn in separate colour hue. A selected
object is shown in yellow.

layer. The interpolated values inside triangles can be used to colour the full
extent of objects in a layer, as it is shown in Fig. 17. Section 4.1 explains more
thoroughly the techniques used for the visualization.

The interface of v.vague.what uses two windows: the ‘control window’
that contains the list of layers, one layer in a separate tab, and the ‘display
window’ for drawing the layers. Layers are first drawn in the order in which
they are stored in the theme. The selected layer (tab) in the control window
becomes the top layer in the display window. An object of the top layer can
be selected by clicking at a location inside the object. The triangle containing
the given location is found first, then the object the triangle belongs to. The
object is highlighted. The information of the given location is displayed in
the control window. This information contains the membership value of the
location, the directory storing the layer data, and the identifier of the object
(it falls in). The membership value is calculated by using linear interpolation
inside the triangle containing the location. The user can select several objects
and output them to a new layer.

4.1 Visualization techniques

A GRASS module, d.vect, is used to draw vague region layers with triangle
edges. Each layer is drawn in a different colour. A new module, d.vague, is
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created to fill triangles with interpolated values and draw them. The module
uses a scanline rendering algorithm [20]. The rest of the section describes how
this module works.

GRASS functions are used to map the coordinates of triangle vertices to
screen coordinates. A screen is a raster map consisting of pixels. Every pixel
has a red, green, and blue value, specifying its colour. Scanline rendering fills
a triangle by drawing a line at a time, starting at the top of the triangle. All
pixels of a line are drawn, which are part of this triangle. The line is then
moved down and the drawing is repeated until the bottom of the triangle
is reached. Figure 18 illustrates how the algorithm draws a triangle. Linear

Scanline

Fig. 18. Scan-line visualization technique.

interpolation is used to calculate the membership value at every location.
Every triangle lies on a plane defined by the three triangle vertices. Any point
(x, y, z) of the plane satisfies the equation z = ax + by + c. The a, b, and c
values are calculated from the coordinates of the three triangle vertices. The
membership value for any point in the triangle is calculated by replacing its
(x, y) location in the above equation.

A different colour is used for each layer, selecting only colours that have the
same saturation, so no colour draws more attention than others. The brightest
colour is specified for every layer. The saturation and hue are kept constant
for a layer. The brightest colour is used for the lowest membership value of the
layer. The colour with brightness equal to 0 is used for the membership value
equal to 1. The corresponding brightness value for any other membership value
is calculated by first inverting the [0, 1] interval (of membership values) then
stretching it linearly to the range of brightness values. Because the monitors
work with RGB colours, we use a function that applies that idea in an RGB
model. The function that maps memberships value to RGB colours is

f : [0, 1] → IR3 such that for every λ ∈ [0, 1]
f(λ) = (1− λ)× (Rmax, Gmax, Bmax),

where (Rmax, Gmax, Bmax) is the specified brightest colour of the layer.
If multiple layers overlap, transparency is used to draw them together.

This is calculated with alpha-blending [20]. The colour (R,G,B)new at every
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location in the overlapping part is calculated as

(R,G,B)new = 0.5× (R,G,B)S1 + 0.5× (R,G,B)S2 ,

where (R,G,B)S1 and (R,G,B)S2 are the colours at that location for the top
and bottom layer respectively. When more than two layers are to be drawn,
first the two bottom layers are calculated. Then for every layer to be added
on top of them, the above formula is reused, replacing (R,G,B)S2 with the
calculated colour for the previous layers, and (R,G,B)S1 the colour of the
new layer.

5 Operators on vague objects

The operators we implemented are union, intersection, and difference. This
section describes shortly these operators for vague points and vague lines, for
being simple, and concentrates more on the operators for vague regions.

The operators for vague points take two Vpoint layers as input, and output
a new Vpoint layer. The three operators check first for simple point objects in
the two input layers that have identical location. Union operator selects from
each pair (of identical location points) the point with the higher membership
value, and puts it in the result layer. It also adds all other (unmatched) points
from both layers to the result layer. The intersection operator selects the
point with the lower membership from each pair of matched objects, and
inserts them in the result layer. For each pair of matched points, the difference
operator calculates a new membership value (the formula provided in Sect. 2),
and inserts in the result layer a point with the common location and the
calculated membership value. It also adds to the result layer all unmatched
points from the first layer.

L1
L2

L3

L5

L 4 L 6

Fig. 19. Union of two simple vague lines.

The union operator for vague lines takes two Vline layers as input, and
outputs a new Vline layer. It first checks for simple lines that intersect. The
operator splits the intersecting lines at the intersection point, which becomes
common node for the newly created lines. The membership value at the com-
mon node is the maximum value of the memberships at this location in the
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two initial lines. The new lines are inserted in the result layer. Lines that
do not intersect are directly added to the result layer. Figure 19 illustrates
union of vague lines: lines L1 and L2 from input layers are intersecting; lines
L3, L4, L5, L6 are created and added in the result layer. The intersect operator
for vague lines takes two Vline layers as input, and outputs a Vpoint layer. It
checks for intersecting lines, creates a point at the intersection location with
membership value the minimum of the two lines at this location, and inserts
these points in the result layer.

Operators for vague regions take two Vregion layers as input, and out-
put a Vregion layer. A Vregion layer is a surface that consists of several
non-overlapping triangulations. Triangulations belonging to different surfaces
might overlap. The overlapping zone between two surfaces is important for
the operators, because they treat differently triangles inside and outside the
overlapping zone. The overlapping zone may consist of several separate areas.
Operators start by detecting the intersection line between triangulations. The
line separates the input triangulations into parts that are used to construct
the output surface. Union is built by taking the higher triangulation inside an
overlapping area, and adding unchanged triangulation parts that are outside
the overlapping zone. Intersection is built by taking the lower triangulation
inside any overlapping area. The difference operator re-calculates values at
triangulations inside an overlapping area, and adds unchanged triangulations
of the first surface that are outside the overlapping zone. The basic steps for
the operators are:

1. Add vertical faces along boundaries of triangulations on both surfaces;
2. Detect the intersection line;
3. Re-triangulate both surfaces with this intersection line;
4. Select the right triangles from the re-triangulated surfaces to build the

result.

The first three steps are the same for union and intersection operators. The
forth step, selecting triangles for the output, is different. We explain the first
three steps, and give the algorithm of the forth step for union. This algorithm
can be used for the intersection with only few changes, which are described
shortly. Difference operator requires specific treatment in most of the steps,
therefore we explain it separately.

To add vertical faces along a triangulation boundary we consider every
edge of the boundary. Two vertical triangles are created for each edge
and added to the triangulation. Suppose the edge is defined by points
p1 = (x1, y1, z1) and p2 = (x2, y2, z2). The face determined by p1, p2 and their
projections in plane, p3 = (x1, y1, 0) and p4 = (x2, y2, 0) is split into two
triangles, and these are added to the triangulation.

Detection of the intersection line is performed using the GNU triangulated
surface library (http://gts.sourceforge.net). It produces the set of looped lines
where the two surfaces intersect. The intersection between two triangles can
be a line segment, or a polygon if the triangles lie in the same plane. There-
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fore, the intersection line between two surfaces consists only of straight-line
segments.

(a) (b)

Fig. 20. Re-triangulation: (a) old triangles and intersection line in grey, (b) new
triangles after re-triangulation.

The intersection line is added as constraint to the triangulations of both
surfaces. On each surface, only triangulations containing a part of the inter-
section line are to be re-triangulated. For every triangulation (to be changed),
the triangles containing a line segment from the intersection are split into
several new triangles. The other triangles are added unchanged to the new
triangulation. The splitting of triangles is done by greedy triangulation, as
described in [21]. Figure 20 illustrates the splitting of three triangles. The
algorithm below explains how splitting is done. Let Vi be the set of vertices
of the triangle i, and Li the set of line segments of the intersection line pass-
ing through the triangle i. Let us denote by Ei the set of edges of the new
triangulation in triangle i, and Pi the union of Vi with the end points of Li.

set Ei = Li

for all points p from Pi

create Dp as edges from p to any other point in Pi

sorted in ascending order on length
for every edge d = (p,q) in Dp

if d /∈ Ei and no edge e ∈ Ei intersects with d
and no point r ∈ Pi − {p, q} lies on d

add d to Ei

fi
rof

rof

After the re-triangulation, the relation of a triangle from one surface to
any triangle in the other surface is one of the three cases:

• The three vertices of the triangle are on the other triangle: the triangle is
part of an area that is contained in both surfaces.

• One or two vertices are on the other triangle: the triangle intersects the
other surface only at a point or along a line (the edge joining the two
vertices). The rest of the triangle is above or below the other surface.
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• No vertex of the triangle is on the other surface: The triangle does not
intersect with the other surface. It is completely above or below the other
surface.

A point is above a surface when its z coordinate is higher than the z value of
the surface at the point location. A point in the interior of a triangle from one
surface determines the relation of this triangle with the other surface. When
an interior point is above, on, or below the other surface, the whole triangle is
above, on, or below the other surface, respectively. The centre of the incircle
of a triangle6 is always in the interior the triangle, and can therefore be used
for such testing.

The intersection line consist of several looped lines. Triangles of one surface
that are inside a looped line are all above the other surface, or all below the
other surface. So the union of two surfaces is formed by groups of triangles
bounded by these looped lines. The algorithm that performs union of two
re-triangulated surfaces S1 and S2 and outputs a surface S is given below:

set S to an empty surface
for any triangle t from surface S1

generate a point p(x, y, z) in the interior of t
if S2 exist in location (x, y)

if p is on or above S2

add t to S
else

add t to S
fi

rof
for any triangle t from surface S2

generate a point p(x, y, z) in the interior of t
if S1 exist in location (x, y)

if p is above S1

add t to S
else

add t to S
fi

rof

After the output surface is created, separate triangulations are detected
and given an object identifier. They are the SVregion objects of the result
layer.

The algorithm for calculating the intersection is quite similar. The differ-
ence is that a triangle in one surface is discarded if the other surface does not
exist at the interior location of the triangle. Also, the testing for the z value of
a point and a surface is reversed: the point should be on or below the surface.
6 The incircle is the inscribed circle of a triangle, i.e. the unique circle that is

tangent to each of the triangle’s edges.
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Difference between surfaces S1 and S2 is the intersection of S1 with the
complement of S2. Outside S2 its complement is equal to 1. The values of
S1 are everywhere smaller or equal to 1, therefore the intersection outside S2

is equal to S1. Thus, we only need to build the complement of S2 inside its
boundaries. Surface S′

2 is built from S2 triangulation by inverting the values
of each triangle vertex. The core of S2 will be a hole for S′

2, therefore core
triangles are not put in S′

2. Holes of S2 constitute the core of S′
2. Boundary of

each hole is triangulated and included in S′
2, all as flat triangles with value 1.

To build the result surface we pass through the same steps of union and
intersection. First vertical faces are added along boundaries of S1 and S′

2. For
S1 faces are added from the boundary line to its projection in the horizontal
plane, that is down to membership value 0. For S′

2 vertical faces are built
along the boundary up to membership value 1. The intersection line between
the two surfaces (extended by the vertical faces) is detected, and both surfaces
are re-triangulated with this line. The forth step, selecting the right triangles,
is quite similar with the intersection operator, except that every triangle of
the first surface is included in the output if the second surface does not exist
at its location(s). We keep to notations S1 and S′

2 to denote now the surfaces
taken after re-triangulation. The algorithm for the last step, selecting the right
triangles for the output surface, is

set S to an empty surface
for any triangle t from surface S1

generate a point p(x, y, z) in the interior of t
if S′

2 exist in location (x, y)
if p is on or below S′

2

add t to S
else

add t to S
fi

rof
for any triangle t from surface S′

2

generate a point p(x, y, z) in the interior of t
if S1 exist in location (x, y)

if p is below S1

add t to S
rof

As for the other operators, after the output surface is created, separate
triangulations are detected and given an object identifier. Triangle edges of
every triangulation are stored together with this identifier in the new layer.

6 Discussions

The current implementation of α-shapes gives good results for data sets with
more or less regular sample density. If the sample density changes too much,
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the α-shapes do not work very well. Density-scaled α-shapes [19] provide a
solution to this. Implementation of their algorithm would make the clustering
process more robust. On the other side, density-based clustering algorithms
(pointed out by a reviewer), e.g. DBSCAN, OPTICS, would be another pos-
sible solution to clustering of data points. It seems though that the technique
aims at clustering of points, and does not provide for delineation of cluster
boundaries.

The only input type we consider for vague regions is data points. Data
about vague regions could also be (vague) lines, e.g. lines having the same
membership value. A part of the procedure to create vague regions from line
input would be the same as for point input. They both need the constrained
Delaunay triangulation. The identification of objects would need another tech-
nique.

The operators we implemented are only part of a complete set of spatial
operators, e.g. those offered by ROSE algebra [9, 10]. These are the operators
returning spatial objects (types). From this group we left out the difference
between vague lines, for having a certain complexity. Besides, we consider it
less important than operators on vague regions, therefore we gave priority to
their implementation. Other spatial operators would make use of these imple-
mented basic operators. Several spatial relations (which definitions we have
provided in [6]) are based on intersection of vague objects. Other spatial rela-
tions are based on operators like bounded difference, and absolute difference.
They would therefore need an extension of these basic operators for their
implementation.

The membership function of a simple vague region can have discontinu-
ities along lines. These discontinuities result in vertical faces in triangulations.
The work presented in this paper does not consider discontinuity lines. We
build and store the topology of triangulations using GRASS topology, which
ignores vertical faces and areas adjacent to them. We do not need to store ver-
tical faces, but we do need triangles adjacent to them. To allow discontinuity
lines we could build separate functions for the topology of triangulations from
GRASS topology functions, modifying the last. GRASS topology builds the
connectivity of 3D lines (through their nodes) correctly, but considers only
their x, y coordinates when building areas from lines. We can use line connec-
tivity to build the adjacent triangles to vertical faces, changing the existing
functions to consider the special cases we need. Operators on vague regions
are to be modified in order to consider discontinuities.

7 Conclusions

The paper shows how vague spatial objects can be stored and manipulated
using existing GIS functionality for vector data format. Known spatial data
types and structures were employed to construct vague object types. Points,
lines, and triangulations were used to store simple vague points, lines, and
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regions, respectively. These simple vague types represent identifiable objects.
Classes of simple objects were stored in separate vague layers. Classes a cer-
tain theme can be bound together via relations saved on database tables. A
theme of vague region classes forms a vague partition, which allows for a soft
classification of space that is important for many spatial applications.

Few modules were offered to handle vague objects: a module that creates
layers of vague objects from input data points; a module that visualizes vague
layers in the screen, and allows to retrieve and display information about
their objects; some modules that perform different operations on vague lay-
ers. Union, intersection, and difference operators were implemented for vague
objects. These are basic operators, on which other spatial operators can be
built.
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