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Abstract 

Topographic features such as physical objects become more complex due 
to increasing multiple land use. Increasing awareness of the importance of 
sustainable (urban) development leads to the need for 3D planning and 
analysis. As a result, topographic products need to be extended into the 
third dimension. In this paper, we developed a new topological 3D data 
model that relies on Poincaré algebra. The internal structure is based on a 
network of simplexes, which are well defined, and very suitable for 
keeping the 3D data set consistent. More complex 3D features are based on 
this simple structure and computed when needed. We describe an 
implementation of this 3D model on a commercial DBMS. We also show 
how a 2D visualizer can be extended to visualize these 3D objects. 

1 Introduction 

The 3D data models should enable 3D analysis, whereas early 3D GIS 
developments often focused on visualization, often in Virtual Reality-like 
environments. Another important characteristic of topographic data sets is 
the wide variety of applications, thus disabling optimization of the data 
model for a specific task. Due to current developments in sensor 
techniques (Vosselman 2005) more and more 3D data becomes available. 
Furthermore, the point density and thus data volume is increasing. An 
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example of the capabilities of terrestrial laser scanning is illustrated in 
Figure 1. 
 

 
Fig. 1. Terrestrial laser scanning provides insight in complex 3D objects 

There are a vast number of studies (amongst others Arens et. al. 2005, 
Guibas et. al. 1985, van der Most 2004, van Oosterom 1994, 1997, 2002, 
Penninga 2005, Verbree et. al. 2005, Zlatanova 2000a, 2000b, 2002a) on 
3D data modeling. Most of these studies are summarized and neatly 
compared in (Zlatanova 2002b). Extending topographic data models into 
3D is most relevant at large scale topography. However, this will lead to a 
substantial increase of data volume. With this increase, ensuring data 
integrity and maintaining performance become important requirements. As 
a result, implementing the 3D data structure in a spatial database is a 
sensible thing to do. In this research, the Tetrahedronized Irregular 
Network (TEN) is selected as an internal data structure. The selection of 
this structure, motivated by computational advantages, the well-
definedness of the triangles (always flat), the presence of well-known 
topological relationships (Guibas and Stolfi, 1985), easy maintenance, 
visualization of triangles (Zlatanova 2002a, 2002b), and flexibility of 
forming more complex objects, is described by (Penninga 2005). Our 
model is based on the Poincaré algebra (and has therefore a solid 
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foundation) and does pay attention to DBMS issues, such as indexing, 
updating and locking mechanisms.  
 
In Section 2 an introduction to the theory behind our conceptual TEN-
model is given with ingredients such as n-dimensional simplexes, 
boundary and coboundary, Poincaré algebra, network of simplexes (in 3D 
called the TEN). DBMS issues related to the 3D TEN-based modeling are 
introduced in Section 3, while Section 4 describes an (partial) 
implementation of the in the DBMS with a ‘toy’ example. The paper 
concludes with summarizing the most important results and indication on 
future research in Section 5. 

2 3D Topographic data modeling in a TEN data 
structure 

As we see topography as the collection of physical objects, two 
observations can be made regarding 3D topographic data modeling: 
 
1. Physical world objects have by definition a volumetric shape. There are 

no such things as point, line or area features; only point, line and area 
representations at a certain level of generalization. Which 
representation to use should be stated in the DCM (Digital 
Cartographic Model) but not in the DLM (Digital Landscape Model), 
which contains our 3D topography. 

2. The real world can be considered as a volume partition: a set of non-
overlapping volumes that form a closed modeled space. As a 
consequence, objects like 'earth' or 'air' are explicitly part of the real 
world and thus have to be modeled. 

 
As a result, the topographic data set consists of volume features. However, 
in some cases area features might be useful. Area features can be modeled 
in our approach to mark important boundaries between two volume 
features (and can have their own properties, such as surface material and 
color). Therefore, they cannot exist without the presence of these volume 
features; an area feature is the first derivative of a volume feature (and this 
is repeated for line features and point features). In the UML class diagrams 
in Figure 3 and Appendix A, these area features are modeled as association 
classes.  
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The decision to explicitly include 'air' and 'earth' features – thus modeling 
'empty' space in between physical objects - is influenced by the fact that 
this empty space is subject of many analyses. In case of modeling air 
pollution or flooding, the user is interested in what happens in this empty 
space. The remainder of this section will discuss the Poincaré algebra (2.1) 
and the resulting conceptual TEN model in UML class diagram (2.2). 

2.1 Poincaré algebra 

The Tetrahedronized Irregular Network (TEN) is the three-dimensional 
variant of the well-known Triangulated Irregular Network (TIN). Besides 
nodes, edges and triangles, a TEN also consists of tetrahedrons for 
representing volumetric shapes. Nodes, edges, triangles and tetrahedrons 
are all simplexes, i.e., the simplest possible geometry in every dimension. 
Modeling 3D features by the use of simplexes is described by Carlson 
(1987). Using simplexes has three advantages: 
 
1. Simplexes are well-defined: a kD simplex is bounded by k+1 (k-1)D 

simplexes (Egenhofer et. al. 1989a). For instance: a 2D simplex 
(triangle) is bounded by 3 1D simplexes (edges). 

2. Flatness of the faces: every face can be described by three points. 
3. Every simplex is convex, regardless of its dimension. 
 
A direct result of the well-defined character of simplexes and thus of a 
TEN is the availability of 3D topological relationships. Whereas in the 
two-dimensional case, (the TIN) the important relationships are on edge 
level (i.e. an edge has a face on the left and one on the right, thus defining 
adjacency of faces), in three dimensions the important relationships are on 
face level. Each face (triangle) bounds two tetrahedrons. Left and right are 
meaningless in 3D, but due to the ordering of the edges in the triangle one 
can determine the direction of the normal vector and thus relate to 
tetrahedrons in the positive and negative direction. The n-dimensional 
simplex is defined by n+1 nodes and has the following notation Sn = 
<x0,…,xn>.  
 
So, the first four simplexes are S0 = <x0>, S1 = <x0 ,x1>, S2 = <x0 ,x1,x2>, 
and S3 = <x0 ,x1 ,x2 ,x3>. With (n+1) nodes, there are (n+1)! combinations 
of these nodes, that is for the four simplexes, there are respectively 1, 2, 6 
and 24 options. For S1 the two combinations are <x0 ,x1> and <x1 ,x0>, of 
which the first one (from start to end) is called positive (+) and the other 
one negative (-), indicated as: <x0 ,x1> = - <x1 ,x0>.   The two-dimensional 
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simplex has six combinations S2: <x0,x1,x2>, <x1,x2,x0>, <x2,x0,x1>, 
<x2,x1,x0>, <x0,x2,x1>, and <x1,x0,x2>. The first three have the opposite 
orientation from the last the three combinations, so one can state 
<x0,x1,x2> = - <x2,x1,x0>. The positive orientation is counter clockwise (+) 
and the negative orientation is clockwise (-). For the three-dimensional 
simplex S3 = <x0 ,x1 ,x2 ,x3> there are 24 different combinations of which 
12 are related to positive oriented tetrahedrons (+, all normal vectors 
outside) and the other 12 are negative oriented tetrahedrons -, all normal 
vectors inside). As there are several equivalent notations (combinations), it 
is possible to agree on a preferred notation; e.g., the combination related to 
a positive orientation with the nodes with lowest id’s (indices) first. 
According to the Poincaré algebra (Geoghegan 2005), the boundary of a 
simplex is defined by the following sum of (n-1) dimensional simplexes 
(omitting the ith node and with alternating + or – sign): 
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So, S2 (triangle) has 3 0D simplexes (nodes) and 3 1D simplexes (edges) as 
boundary ‘faces’. The simplex S3 has respectively 4, 6 and 4 0D, 1D and 
2D simplexes as boundary ‘faces’. When neighbor simplexes of the same 
dimension are joined or merged, then their shared boundary is removed as 
shown in Figure 2. For example, take neighbor triangles <x0,x1,x2> and 
<x0,x2,x3>  then adding the boundaries results in: (<x1,x2> - <x0,x2> + 
<x0,x1>) +(<x2,x3> - <x0,x3> + <x0,x2>) = <x1,x2> + <x0,x1> + <x2,x3> - 
<x0,x3> = <x1,x2> + <x0,x1> + <x2,x3> + <x3,x0>. Note that the shared 
boundary <x0,x2> is removed. Similarly, when merging the two neighbor 
tetrahedrons <x0,x1,x2,x3> and <x0,x2,x4,x3>, then adding the boundaries 
(triangles) results in <x1,x2,x3> + <x0,x1,x3> + <x2,x1,x0> + <x2,x4,x3> + 
<x3,x4,x0> + <x4,x2,x0>. When looking at the edges again, then it can be 
observed that every edge is used once in the positive direction and once in 
the negative direction. A set of merged (joined) neighbor n-simplexes is 
called a simplicial complex (or n-cell). It is also possible to create a 
topological structure consisting of connected n-simplexes (with all their 
lower level boundaries: 0,...,n-1 simplexes) partitioning the whole n-
dimensional domain. In 3D, this is then called the tetrahedronized network 
(TEN). In such a network, it is not only interesting to give the boundary of 
a simplex, but also to give the coboundary. For example, the boundary of a 
triangle is formed by the 3 edges and the coboundary is formed by the 2 
tetrahedrons. Similarly, the boundary of an edge is formed by 2 nodes and 
the coboundary is formed by 2 or more triangles. 

 

 

(a) 

 
 
 

(b) 
 

Fig. 2. Adding simplex with a neighbor to form complex of simplex in (a) 2D and 
(b) 3D. 
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2.2 3D Topography: TEN based conceptual model  

The closest data models to our model are implemented in the Panda system 
(Egenhofer et. al. 1989b) and Oracle Spatial (Kothuri et. al. 2004, Oracle 
2005), both of which consider up to two-dimensional spaces. Panda is 
based on complexes, which are unions of neighbor simplexes also called n-
cells. There is no attention called for the feature modeling as opposed to 
our system. 

 
Fig. 3. UML class diagram of our first TEN model (i.e., model 1) 

 
Although the topographic model is very strict in its way of handling only 
volume (and implied area, line and point) features, the actual TEN 
implementation will be more generic and also support true point, line and 
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area features (which might be good representations at smaller scales for 
features that are in reality also volumes). For other cases, line and point 
features might be useful, too. Three different conceptual models (UML 
class diagrams) have been created. These are all more or less identical as 
they all capture the tehraheronized network structure and the features 
embedded. However, there are already remarkable differences in these 
conceptual models. As these conceptual models form the start for the 
logical and technical models (implementation), this is an important issue. 
We will therefore present three different conceptual models (in UML class 
diagrams). The first one is given in Figure 3 as model 1. The primitives are 
directed (positive) and the boundary/coboundary associations between 
node and edge, edge and triangle, and triangle and tetrahedron are signed 
(indicated by the association class Orientation). An efficient 
implementation of this model will not explicitly include the association 
class Orientation, but will use signed (+/-) references to encode the 
orientation. The association between tetrahedron (or triangle) and node can 
be derived (and gives a correct ordering of the nodes within the primitive).  

 
The second model (presented in Appendix A) is based on the first model, 
but instead of the association classes with explicit Orientation indicating 
the sign/direction (+/-), new undirected classes are created, which are the 
counterparts of their directed origins. The model may suggest that both 
positive and negative versions of the directed primitives are stored (as the 
undirected counterpart is a composition of a positive and negative directed 
primitive), but this is not the case: only the positive oriented primitives are 
stored. Similar to the first model, the association between tetrahedron (or 
triangle) and node can be derived and is again ordered. 
 
Finally, the third model (again depicted in Appendix A): this is the 
conceptual model based on Poincaré formulas: direct associations from 
node to all three other primitive classes (edge, triangle, tetrahedron). The 
ordering of the nodes to define the primitives is important as it implies the 
orientation. Based on these associations, now the other 
boundary/coboundary associations can be derived (tetrahedron-triangle 
and triangle-edge), and it should be noted that these are again signed. The 
main differences between all these models are: (1) which associations are 
‘explicit’ and which are derived and (2) in case of signed association 
(references), is this modeled with an association class or with an additional 
undirected primitive? Somehow, the third model seems to be the least 
redundant with respect to references. However, it is common use to 
explicitly model (and store) the references between a primitive and its 
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boundary. Therefore we will continue in this paper with the first (or 
second) model, but the orientation is implemented via +/- sign in the 
references (and not via explicit classes). 

3 Incorporating the TEN structure in a spatial DBMS 

In this section the following issues will be further discussed: incremental 
update within the TEN feature model (3.1), primitive update functions 
(3.2), feature level updates (3.3), and storage requirements (3.4).  

3.1 Implementing an incremental algorithm 

All data are stored in a spatial database. Initially the database is empty, and 
via incremental updates is should be brought from one consistent state into 
the next consistent state. The most straightforward implementation of the 
TEN structure consists of four tables with nodes, edges, triangles and 
tetrahedrons and a table with volume features. If one wants to add a feature 
(for instance, a building), one needs to ensure correct representation in the 
TEN model by enforcing the boundary faces of this building to be present. 
As tetrahedronization algorithms can only handle constrained edges, the 
building's surface first needs to be triangulated. The resulting edges are the 
input for the building tetrahedronization, which is performed separately 
from the TEN network. The complete set of edges is then inserted as 
constraints into the TEN model by an incremental tetrahedronization 
algorithm. Note that this is one specific procedure and more efficient/direct 
procedures and associated algorithms could be imagined (though not so 
easy to realize). As a last step, the volume feature table needs to be 
updated. A new record is created which links the building to the 
representing tetrahedrons and the previous 'air' tetrahedrons on the specific 
location are removed. 
 
If one wants to remove this building from the data set, for instance because 
it is demolished, the record from the volume feature table can be deleted. 
At the same time, the TEN needs to be updated. The constraints on the 
edges of the surface triangulation can be removed only if this building is 
the only feature that is bounded by this constrained edge. In the case of the 
demolished building, constrained edges on the building's floor also bound 
the earth surface and therefore needs to remain present in the TEN model. 
The tetrahedrons that were previously representing the building now need 
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to be re-classified, in this case, most likely just as 'air'. This reclassification 
is necessary to maintain the volume partition. At this moment, the building 
is entirely removed from the model, both on TEN and on feature level, but 
the deletion process is not finished. As a last step, it is necessary to check 
whether the TEN can be simplified by creating larger tetrahedrons or can 
be optimized by creating better-shaped tetrahedrons (by flipping; see 3.2). 
As an alternative, one might delete directly all edges that were part of the 
building, except for (constrained) edges that also contribute to the shape of 
other features. The resulting hole in the TEN needs to be re-triangulated 
and the created tetrahedrons will be linked to the 'air' feature. 

 
New (volume) features that are inserted take over the space of the existing 
features. This will be not a problem in case of the air and ground 
tetrahedrons. However, in case of tehrahedrons belonging to other types of 
features, the correctness of this occupation has to be checked (by the user) 
before committing. Further, it should be noted that most features are also 
(indirectly) connected to the earth surface, and also this has to be translated 
into constraints, which can be used to validate changes. Now that the 
update process is described, the algorithm requirements can be extracted. 
For creating and maintaining the TEN, an incremental algorithm is 
required. Due to the potential enormous amount of data, this incremental 
algorithm has to work in the database and should preferably impact the 
TEN structure as locally as possible. In the TEN, all simplexes should be 
available. As the tetrahedrons represent volume features, the triangles 
contain most topological relationships, the edges contain the constraints 
and the nodes contain the geometry. Another requirement is the need for 
numerical stability through detection and repair of ill-shaped triangles and 
tetrahedrons. Shewchuk has performed a lot of research (Shewchuk 1997, 
Shewchuk 2004) in the field of Delaunay mesh refinement in both 2D and 
3D. 

3.2 Basic updating of the topological elements 

The basic update procedures to modify an existing topology complex are 
described here, which are low level editing operations and are usually done 
in three steps: First, the user decides a window to be updated in a user 
session. A lock operator is executed after specifying the area of interest. 
The database will lock all of the features and topological elements 
overlapping the specified area of interest to prevent other users from 
updating the same area (Oracle 2005). Second, the user selects all of the 
required pieces of topology and features into memory and operates only on 
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them. At this stage, new topological elements can be added or old ones can 
be removed as well. Third, all of the changes done in the session are 
committed back to the database. Next, we describe some of the basic 
functions available in the interface. The operations on the primitives 
consist of the following: 

 
1.  Move node (only allowed without destroying topology structure) 
2.  Insert node and incident edges/triangles/tetrahedrons (or the reverse 

operation ‘remove node’), where 3 cases can be distinguished 
depending on where the node is inserted (see Figure 4): 
• Middle of tetrahedron (one tetrahedron involved) and added are +1 

node, +4 edges, +6 triangles, and +3 tetrahedrons (respectively the 
0/1/2/3-simplexes). 

• Middle of triangle (2 tetrahedrons involved) and added are +1 
node, +5 edges, +7 triangles, and +4 tetrahedrons. 

• Middle of edge (n tetrahedrons involved) and added are +1 node, 
+(n+1) edges, +2n triangles, +n tetrahedrons. 

3.  Flipping of tetrahedrons, two cases, depending on configuration (see 
Figure 5): 
• 2-3 bistellar flip 
• 4-4 bistellar flip 

 

 
Fig. 4. Inserting a node: in triangle, neighbor tetrahedron not displayed) (above) 
and in edge with four incident tetrahedrons (below), both taken form (van der 
Most 2004) 
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Fig. 5. Flipping in 3D 2-3 bistellar flip (left) and 4-4 bistellar flip (and right), 
again taken from (van der Most 2004, Verbree et. al. 2005). 
The feature mapping when topology is updated can be described as 
follows: Since spatial features are defined on topological elements, it is 
very important to keep the integrity of spatial features even when updates 
are allowed on the underlying topological elements. The features define 
the constraint (nodes,) edges and triangles and care must be taken that 
these constraint simplexes are included within the TEN, in order to be able 
to represent the features. The other type of edges and triangles are 
introduced to make the TEN structure a ‘complete’ tetrahedronization (and 
during manipulation there is more freedom for these simplexes: flip, 
remove, etc.) 

3.3 Feature level updates 

It is also desirable to have an interface where feature geometry can be 
directly inserted into the topology complex returning a list of 
corresponding topological elements. This is more natural to users only 
dealing with the feature geometry and not necessarily caring about the 
actual storage model used for the geometry. In such cases, the interface can 
take the geometry as the input and insert into the topology complex. This 
operation will translate into a series of lower level topology update 
operations. At the end of this step, a list of primitives mapping to the input 
geometry are returned.  
Feature creation from the primitives: In some cases, an existing feature 
needs a minor modification for some reason. For example, a segment of 
the road needs a small adjustment, which results in a new shape for the 
road. In simple feature model, this would result in updating the whole 
geometry for the road, even though one needs to change only a piece of the 
road. In the topological model, the edge (or edges) corresponding to the 
new shape is updated and the road automatically derives the new shape 
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from its corresponding edges. In case of a 3D building, this could be a 
small extension to the back of a building. 
 

3.4 Storage requirements 

If one considers the tetrahedronization of the building in Figure 6, it will 
be clear that storing the building in a TEN requires a lot of storage. In 
Table 1 the required number of tetrahedrons, triangles, edges and nodes is 
compared to the number of volumes, faces, edges and points in a 
polyhedron approach.  
 

 
Fig. 6. Tetrahedronized building 

Table 1.  Comparison between polyhedron and TEN model of the building 

Building as polyhedron Building as TEN 
(1 volume) 8 tetrahedrons 
7 faces 24 triangles 
(15 edges) 25 edges 
(10 points) 10 nodes 

 
In order to reach acceptable performance, it has to be decided which 
relationships (as modeled in the class diagrams in Figure 3 and Appendix 
A) will be stored explicitly. The performance requirements do not tolerate 
full storage of all possible relationships. Several approaches exist in 2D to 
reduce storage requirements of TINs by either working with an edge or a 
triangle based approach, in which not both triangles, edges and nodes are 
stored explicitly. However, in the 3D situation and in the case of 
constraints in the TEN this is very difficult.  
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4 Implementation: first experiences 

A small ‘toy’ data set is created by hand. It consists of an earth surface 
with a road on top and a single building with a saddle roof. This dataset 
was tetrahedronized by hand. In order to get 'air' and 'earth' tetrahedrons 
two extreme points were added, one on top and one at the fat bottom. 
Figure 7 shows the small data set, with the building and the road in front of 
it. This small data set, consisting of three volume features (building, air, 
earth), is composed by 56 tetrahedrons, 120 triangles, 83 edges and 20 
nodes in Oracle Spatial (Kothuri et. al. 2004). 

 
Fig. 7.  Small test data set rotated ‘3D view’ 
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The database tables (node, edge, triangle, tetrahedron) contain mainly 
references, geometry is only stored in the node table (note this is the 
physical model corresponding to conceptual model 1 in Figure 3). 
 
Functions are defined to obtain the geometry associated with the edges 
(get_edge_geometry) and the triangles (and test). These are then the 
counterparts of the ‘constructGeom’ methods in the conceptual UML 
models. One example will be given to obtain the geometry for the edge 
(including the definition of a view with geometry ‘full_edge’ and a 
functional spatial index on the 3D geometry of the edge): 

 
 
create view full_edge as 
select a.*, get_edge_geometry(eid) edge_geometry from edge a; 
 
insert into user_sdo_geom_metadata values('EDGE',  
   'TUD.GET_EDGE_GEOMETRY(EID)', 
   sdo_dim_array(sdo_dim_element('X', -100000, 100000, 0.05),  
   sdo_dim_element('Y', -100000, 100000, 0.05),  
   sdo_dim_element('Z', -100000, 100000, 0.05)), null); 
 
drop index edge_Sidx; 
create index edge_sidx on edge(get_edge_geometry(eid)) 
indextype is mdsys.spatial_index 
parameters('sdo_indx_dims=3') 
 
The realization of a simple 3D viewer was based on an available 2D 
viewer i.e., Oracle AS MapViewer (Kothuri et. al. 2004) and the 
implementation of one 3D rotation function ‘rotate_geom’ (suitable for 
any type of Oracle spatial geometry). Further by depth sorting (after 
rotation) also hidden line hidden surface may be obtained (painter 
algorithm). Further nice features are semi-transparency. Further simple 
improvements could be the development of a GUI that defines the rotation 
angles for a set of views. 

5 Conclusions and further research 

Extending topographic data models into 3D is most relevant at large scale 
topography. However, this will lead to a substantial increase of data 
volume. With this increase, ensuring data integrity and maintaining 
performance become important requirements. As a result, implementing 
the 3D data structure in a spatial database is a sensible thing to do. In this 
paper, we developed a new topological 3D data model that relies on 
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Poincaré algebra. We described an implementation of this 3D model on a 
commercial DBMS. We also showed how a 2D visualizer can be extended 
to visualize these 3D objects. In this research, the Tetrahedronized 
Irregular Network (TEN) is selected as an internal data structure. The 
selection of this structure, motivated by computational advantages, the 
well-definedness of the triangles (always flat), the presence of well-known 
topological relationships, easy maintenance, visualization of triangles, and 
flexibility of forming more complex objects. As future work, we will work 
on temporal topology where there are no holes and overlap in time.  
 
Alternative physical models than the one presented in Section 4 (based on 
conceptual model 1) are possible; for example the direct specification of 
the nodes of a tetrahedron and views for edges and triangles. Issues to be 
kept in mind are: 1. What to do with the ‘isconstraint’ attributes? (these 
attributes might also be part of the view and could be computed). 2. Would 
these views be efficient enough for manipulation (updating and querying)? 
This is very difficult to estimate upfront. Future work will consist of 
experiments needed to discover these aspects. The well-definedness of the 
TEN model comes with a prize of a large number of (conceptual) 
simplexes, therefore it is important to investigate in detail the actual size of 
tables and indices and evaluate what to store explicitly and what to derive 
(and present as a view). 
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Appendix A 

 
UML class diagram of our second model 
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UML class diagram of our third TEN model (based on Poincaré) 
 


	2.2 3D Topography: TEN based conceptual model  
	The basic update procedures to modify an existing topology complex are described here, which are low level editing operations and are usually done in three steps: First, the user decides a window to be updated in a user session. A lock operator is executed after specifying the area of interest. The database will lock all of the features and topological elements overlapping the specified area of interest to prevent other users from updating the same area (Oracle 2005). Second, the user selects all of the required pieces of topology and features into memory and operates only on them. At this stage, new topological elements can be added or old ones can be removed as well. Third, all of the changes done in the session are committed back to the database. Next, we describe some of the basic functions available in the interface. The operations on the primitives consist of the following: 


