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INTRODUCTION 
 
In earlier research a TEN (Tetrahedronised Irregular Network)-based 
DBMS approach for modelling 3D Topography was developed. This 
topological 3D data model relies on Poincaré algebra. Topographic features 
are modelled within the TEN as set of constraints. This paper focuses on 
the way in which these constraints can be inserted (incrementally). It is 
shown that 16 theoretical cases can be identified, in which 9 unique cases 
will be distinguished. A more comprehensive discussion can be found in 
the accompanying Technical Report (Penninga and Van Oosterom 2006). 
 
 
BACKGROUND: MODELLING APPROACH 
 
The volumetric approach as introduced in (Penninga 2005, Penninga et al. 
2006) has the basic assumption that in the case of topography we consider 
the real world as a volume partition (analogously to a planar partition): a 
set of non-overlapping volumes that form a closed modelled space. The 
most important consequence is that objects like earth and air are explicitly 
part of the real world and thus have to be modelled. The UML class 
diagram of our topographic data model is given in Figure 1. Note that the 
Tetrahedron, Triangle and Edge class are all directly specified by an 
ordered list of Nodes. This is a direct result of the implementation of the 
boundary operator of Poincaré’s simplicial homology (Poincaré 1895, 
Giblin 1977 and Hatcher 2002) and in contrast with the earlier models 
based on the direct relationships between tetrahedron and triangle (and 
triangle and edge, and edge and node), which are now all derived. Another 
important aspect is that our approach deals with multiple features in a 
single TEN, modelled by constraints. Using constraints of multiple features 
in a TEN structure rarely happens in the adjacent field of computational 
geometry (more specific: finite element meshing research (e.g. Shewchuk 
1997, 2004) as they often focus on a single 3D object. 
 

In: Martin Raubal, Harvey J. Miller, Andrew U. Frank, Michael F. Goodchild (eds.). Geographic Information 
Science, Fourth International Conference, GIScience 2006, Münster, Germany, September 2006, Extended 
Abstracts. IfGI prints vol.28, pp. 147-152 



 
148                                                                                         F.Penninga, P. van Oosterom 

UPDATING FEATURES BY THE INSERTION OF CONSTRAINTS 
 
The insertion process of the volume features needs the following aspects 
(example in Figure 2): 
 Its outer boundary needs to be triangulated and all resulting edges 

(and faces) should be treated as constraints  

 
Fig. 1:   UML class diagram of the TEN structure (discussed in Penninga 
and Van Oosterom 2006) 
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Fig.2:   Triangulation of boundary and internal tetrahedronisation 
 
 The interior needs to be tetrahedronised. This tetrahedronisation can 

be performed either directly in the TEN or separately, after which all 
resulting edges can be inserted into the TEN. Input in both cases is 
the set of constraint edges of the outer boundary. 

 
 Regardless which of the two previous options is used, local 

tetrahedronisation might be necessary in order to optimize the 
structure by creating better-shaped tetrahedrons. 

 
 Updating the relevant feature table(s). 

 
Within this procedure the basic operator can be identified: the insertion of 
constraint edges (representing the feature’s boundary) into the TEN. As this 
edge consists of two nodes, inserting an edge is equivalent to the insertion 
of two nodes and connecting them. In inserting a new node in an existing 
TEN structure four different cases can be distinguished, as a the node can 
lie within a tetrahedron, on a triangle, an edge or a node. In case of 
inserting the start- and end node of the edge 4*4=16 cases can be identified 
of which are 6 symmetric (see Table 1). 
 
 
Tab. 1:   Options of inserting a constrained edge into a tetrahedron 

 
 
If the constraint edge crosses several tetrahedrons, it is split into a 
combination of these cases. For instance an edge crossing three 
tetrahedrons results in cases 8-7-8 (Figure 3: node inside tetrahedron to 
additional node on boundary triangle, from this node to another additional 

Node lies on… Node Edge Triangle Tetrahedron 
Node    0    1      2        3 
Edge   (1)    4      5        6 
Triangle   (2)   (5)      7        8 
Tetrahedron   (3)   (6)     (8)        9 



 
150                                                                                         F.Penninga, P. van Oosterom 

node on boundary triangle (thus crossing the third tetrahedron) and from 
this additional node to the endnode inside the third tetrahedron. As a result, 
case 0 is not a real case, as in this case the edge is already present (one of 
the edges of the tetrahedron).  
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3:   Insertion of a edge trough 3 tetrahedrons (top: before, bottom: 
after) 
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BASIC OPERATORS 
 
In (Penninga and Van Oosterom 2006) the nine unique cases are all 
considered. In this abstract we confine ourselves to one example (case6): 
One node lies on an edge, the other node lies in the middle of one of the n 
involved tetrahedrons (n tetrahedrons involved): First the node on the edge 
is inserted. Added are +1 node, +(n+1) edges, +2n triangles, +n 
tetrahedrons. In Figure 4 the case n=4 is illustrated. As one can see, each 
original tetrahedron in split into two new tetrahedrons. Since one knows in 
which original tetrahedron the second node would be inserted, two sub-
classes can be distinguished, related to these two new tetrahedrons: 
 The second node lies in the middle of one of the two tetrahedrons, 

changing the totals to: +2 nodes, +(n+5) edges, +(2n+6) triangles, 
+(n+3) tetrahedrons. 
 The second node lies in the triangle between the two tetrahedrons, 

changing the totals to: +2 nodes, +(n+6) edges, +(2n+7) triangles, 
+(n+4) tetrahedrons. Similar to case 2(b)  

In both cases the constraint edge is one of the newly formed edges. Further, 
it is impossible for the second node to lie on an edge (after split) as the 
second node lies in the interior of an original tetrahedron and not on its 
boundary.  

 
Fig. 4:   Insertion of a node in case n=4 
 
 
CONCLUDING REMARKS 
 
In this paper a further step is taken in the development of a 3D topographic 
TEN-based data structure: the inclusion of constraints due to the features. 
The TEN structure is very well accessible through the use of the boundary 
operator of Poincaré’s simplicial homology.   
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