
INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

The tGAP structure: minimizing redundancy and maximizing consistency
and offering access at any LoD

Peter van Oosterom

Delft University of Technology, OTB, Section GIS-technology,

Jaffalaan 9, 2628 BX Delft, The Netherlands.
Phone: +31 15 2786950, Fax +31 15 2782745.

Email: P.J.M.vanOosterom@tudelft.nl

1. Introduction

Despite the growing popularity of geo-information (maps) in all kinds of web services, such as
routing, or providing (spatial/context) information for a given object, and also the growing use of
mobile applications, there are currently severe problems with respect to the use of mobile maps. One
of the main problems is due to the small screens of the mobile devices, not being able to show a lot of
map. A user needs to pan and zoom a lot to get a sufficient spatial understanding, that is, a feeling of
the sizes, directions and distances between the relevant objects and their context. With current
technology in most mobile GISs (or Location Based Services, LBS) it is possible to zoom and pan.
However, after a zoom or pan action, nearly in all cases a complete redraw is performed. The user
now often looses the ‘mental’ contact between the two maps. Initial experiences show that the users
are getting lost (and do not build a good mental map in order to support their task) and therefore do
not appreciate the new solutions based on mobile maps. One of the key solutions to the described
problem of user disorientation is vario-scale maps. There are a least two possible ways to use vario-
scale maps:

- the first approach presents a map where the feature of interest (location or route) is shown at a
higher detail level (large scale) and the surrounding features are shown with less detail (small
scale), so this is a non-uniform scale representation within one image;

- the second approach is based on smooth zooming and panning: at a given moment the map
has a uniform scale, but in an animation style of visualization, the map is continuously
transformed into a target scale or location.

Both approaches try to help the user creating better mental maps, so they do not get disoriented. This
is valid for either static (provide information for a certain object/location and its environment) and/or
dynamic (provide information for a certain route between two locations and the environment) mobile
GIS applications. Two use cases, a static and a dynamic one, are selected in order to investigate the
effectiveness of the proposed solution with user tests. Before these tests can be executed, a prototype
system has to be developed first. One of the important components of the prototype is the vario-scale
data server being able to provide the necessary geo-information to the rendering engine. As the
context is a mobile application, care has to be taken to use limited bandwidth. Therefore, the vario-
scale data server should provide progressive transfer. That is, when zooming-in, only the refinements
(additional detail for a larger scale representation) should be transferred to the mobile client and not a
complete new map.

2. The tGAP structure and progressive transfer
Data structures supporting variable scale data sets are still very rare. There are a number of data
structures available for multi-scale databases based on multiple representations (MRDB’s), that is,
data to be used for a fixed number of scale (or resolution) intervals. These multiple representation
data structures try to explicitly relate the corresponding objects at the different scale levels, in order to
offer consistency during the use of the data. Drawbacks of the multiple representation data structures
are that they do store redundant data (same coordinates, originating from the same source) and that

INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

they support only a limited number of scales. Another drawback of the multiple representation data
structures is that they are not suitable for progressive data transfer as each scale interval requires its
own (independent) graphic representation to be transferred. Nice examples of progressive data
transfer are raster images, which are first presented relatively fast in a coarse manner and then refined
when the user waits a little longer. These raster structures could be based on simple (raster data
pyramid) or more advanced (wavelet compression) principles. For example, JPEG2000 (wavelet
based) allows both compression and progressive data transfer from the server to the end-user. Also,
some of the propriety formats such as ECW from ER Mapper and MrSID from LizardTech are very
efficient raster compression formats based on wavelets and offering multi-resolution suitable for
progressive data transfer. Similar effects are more difficult to obtain with vector data and require
more advanced data structures.

The tGAP structure is a data structure supporting vario-scale vector data. In earlier research both the
theoretical and practical (implementation) aspects of the tGAP structure (topological Generalized
Area Partitioning) have been described (van Oosterom, 2005, van Oosterom, de Vries, Meijers,
2006). Purpose of this tGAP structure is to store the data only once, with no redundancy of the
geometry, and derive different representations of this same data on the fly according to the level of
detail needed. It has further to be explored how this vario-scale data server can be put to effective use
in a mobile service/client environment.

Figure 1: UML class diagram of tGAP tables, from (Meijers, 2006).

The tGAP structure consists of a few structures: the face tree that captures the merging of faces as the
result of generalization via the parent-child relation of nodes in the tree; the edge forest that holds the
boundary edges needed for any level of generalization, derived from their relation to the faces; the
Binary Line Generalization (BLG) trees that enable the simplification of edges; there is a BLG tree
for each edge. The tGAP structure is implemented in Oracle tables shown in Figure 1 and Appendix
A.1 does give the corresponding SQL table definitions. A 3D spatial index (R-tree) is used for fast
selection of features to be displayed for a given detail level: two dimensions are used for spatial
selection (based on the bounding box) and the third dimension is used for specifying the required
importance level; see Figure 2.

INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

Figure 2: Importance levels schematically represented by the third dimension (at the most detailed
level, bottom, there are several objects while at the most coarse level, top, there is only one object);

from (Vermeij et al, 2003). The hatched plane represents a requested level of detail and the
intersection with the symbolic ‘3D volumes’ then gives the faces.

3. Current research

The tGAP structure can be used in a number of different ways: 1. to produce a representation at an
arbitrary scale (a single map), 2. to produce a representation with feature(s) of interest at a larger scale
and the surrounding features at smaller scales (a non-uniform scaled map) or 3. to produce a
continuous range from rough to detailed representations. These three ways of using the tGAP
structure are all useful, however the smooth zooming, realised through progressive transfer does seam
to be the most promising solution for mobile maps. Currently research is being conducted to improve
the tGAP structure with respect to the theoretical, functional, and practical aspects.

Improvement in the theoretical aspects include:

- More formal description of the structure (based on axioms), and how the different parts
(tGAP face tree, tGAP edge forest, BLG edge trees) work together.

- Consider collapsing of areas in lines or points. As the current tGAP structure is designed for
area objects only, this implies a (partial) reconsideration of the basic principles. For example,
for a certain detail level a road area must collapse to its centreline, while its neighbour faces
must then be extended until the road centreline (this situation was not yet possible in the
current tGAP structure). An area may also collapse to a point, e.g. the centroid location, for a
certain detail level. Again, the neighbour areas must then be expanded to cover for the
collapsed area.

- Change the original principle of building the tGAP structured from a global minimum to
possibly a local minimum, in order to localise the effects of an update to the whole structure.
The original principle of creating the tGAP structure is to join the least important face with
the most compatible neighbour. Two functions are used for calculating the face importance
and compatibility between two faces. The change of values or formulas of these functions
results in a different type of generalization (with a different filling of the tGAP structure).
Important in the context of updates is the fact that a change of a face geometry may propagate
through the whole structure. This is caused by the global minimum requirement. Therefore,
we will investigate alternative tGAP structure creation/update principles.

Current research on functional aspects is focused on:

- Support the updating of the source data, without rebuilding the complete tGAP structure. We
want to keep the changes as local as possible by controlling the propagation of changes in the
structures. A list of possible updates is reshaping a boundary edge, splitting a face, merging
two faces. These updates will affect the three parts of the tGAP structure, the face tree, the
edge forest, and BLG trees. The change on the area size of faces will change their importance
values, which in turn will affect the face tree. We expect the changes to be limited to a branch

INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

of the tree, leaving unaffected the other part of the tree. The edge forest has a strong
relationship with the face tree. By knowing which is the branch of the face tree that is
affected by changes, we may determine the part of the edge forest that will be possibly
affected by changes. The change in the BLG trees is limited to the edges affected by changes.
There is no propagation affect here, because each edge has its own BLG tree.

- Support the queries for the different types of vario-scale representations (non-homogenous
scale, feature centred map, vario-scale animation: smooth zoom/pan).

structure #face/Mb #edge/Mb #blg/Mb #node/Mb Total Mb

Basic topology 170.368/2 418.530/94 -/0 281.216/11 107
tGAP structure 340.735/56 7.113.680/291 658.219/133 281.216/11 491

Table 1. Number of rows and size in Mb in tGAP structure for a sample data set (compared to the
same data at the largest scale in a ‘mean-and-lean’ topology structure)

The current implementation is based on (Meijers, 2006), which provides a proof of concept of the
tGAP structure. However, also a number of potential improvements were indicated. The storage space
required by the current implementation is a bit worrying: about 5 times more space than a ‘mean-and-
lean’ topology structure (according to the SQL table definition in appendix A.2) at the largest scale
(fixed); see table 1. The use of more disk space itself is not dramatic, but the fact the accessing and
transferring this information may also take more time is the main reason to investigate improvements
in the data storage (and transfer) efficiency. Therefore, current work on practical aspects include:

- Reduce the storage requirements of the current implementation. Most of the overhead is for
storing edge information. The edge table keeps information about the left and right face for
each edge, as well as the edge importance values. An edge is in the boundary of at most two
faces in the lowest level of detail. During the merging of faces for the creation of the face
tree, the same edge will be a boundary edge of several faces in different steps of the process.
A separate row is created currently for each version of an edge in a given step of the process.
The different rows storing versions of the same edge have the same values for most of the
fields. The current solution may be replaced with having only one row for each edge, and
keep the information for each version of the edge in the corresponding fields as arrays of
values, e.g. imp_low is an array of importance low values. The proposed new table
definitions can be found in appendix A.3.

- Improve the time performance of the current implementation. The code for the first
implementation was written in shell scripts calling PL/SQL procedures inside the Oracle
database. This will be replaced with C or C++ code (that will execute faster as they are
compiled languages), with possibly keeping some of the functions/procedures written in
PL/SQL. However, the main performance gain is expected to be obtained by minimizing the
number of SQL selections. Instead of many ‘small SQL queries’ the goal will be to have just
a few ‘large SQL queries’ efficiently retrieving all necessary data. In theory these could be
four queries, one for each of the based tables: face, edge, blg and node. The WFS server on
top of the database then streams the result of the queries to the WFS client. This client then
builds a local copy of the tGAP structure. After having received a few records the first rough
visualizations can be made. At the same time this local structure is refined with additional
details being streamed-in (enabling subsequent visualizations to be more refined).

- Modification of the standard communication protocols WFS/GML (Web Feature
Server/Geography Markup Language) to enable progressive transfer of vario-scale data. In
order to accomplish the progressive refinement when the geo-data is retrieved from the WFS-
R service (our proposed special variant of the standard WFS service to provide progressive
refinement) an 'order by' expression (or functional equivalent) has to be included in the WFS
query to the data source. Necessary requirement for the data storage system is therefore that
the WFS service can retrieve the geo-objects from the data source in a sorted way. A

INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

'Progressive Refinement' WFS-R service, that serves data in order of importance and in a
certain importance range, does not need large extensions to WFS software. What is extra in
the WFS layer is: 1. adding a 'order by' to the queries sent to the data source and 2. adding a
importance selection to the Filter conditions (either spatial or non-spatial) that the user
already has specified in the request to the WFS. A tricky aspect is the fact that the ordered
information is mix of the four involved tables (face, edge, blg and node).

Crucial for the quality of the tGAP-structure is the assignment of proper importance values to the
involved feature classes (and importance function) and the compatibility values between two different
feature classes (and compatibility function). More research is needed in this area to automatically
obtain good generalization results for real world data. Related to this aspect is finding the relationship
between the importance value and the actual scale.

4. Conclusion
In order to evaluate the effectiveness of the smooth zooming and the new vario-scale mobile maps,
two use cases are selected. The current prototype will be enhanced to support these use cases and
actual tests with end-users will be executed (see project plan on website for more details
http://www.gdmc.nl/uwsm2). The enhanced prototype will first be based on a simulation of a mobile
device: a small window in desktop environment. The user experiences will then be included in a
second prototype, which will be realized on top of a true mobile platform. Again, users are asked to
perform their tasks with the aid of this prototype and the effectiveness will be compared to the
currently available mobile solutions (without vario-scale maps).

References
Meijers, B.M. (2006), Implementation and testing of variable scale topological data structures -

Experiences with the GAP-face tree and GAP-edge forest. TU Delft, MSc Geomatics thesis,
June 2006.

van Oosterom, P. (2005), Variable-scale Topological Data Structures Suitable for Progressive Data
Transfer: The GAP-face Tree and GAP-edge Forest, Cartography and Geographic
Information Science, 32 (4): 331-346.

van Oosterom, P., de Vries, M. and Meijers, M. (2006), Vario-scale data server in a web service
context. In the Workshop of the ICA Commission on Map Generalisation and Multiple
Representation – June 25th 2006.

Vermeij, M., van Oosterom, P., Quak, W., and Tijssen, T. (2003), Storing and using scale-less
topological data efficiently in a client-server DBMS environment, In the proceedings of the
7th International Conference on GeoComputation, University of Southampton, Southampton,
UK 8-10 September 2003.

INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

Appendix A: Table definitions

A.1 tGAP structure

sql> desc tgap_face;
 name null? type
 --- -------- ---------------------
 face_id number
 mbr_geometry mdsys.sdo_geometry
 area number
 imp_low number
 imp_high number
 parent_id number

sql> desc tgap_edge;
 name null? type
 --- -------- ---------------------
 edge_id number
 left_face_id number
 right_face_id number
 imp_low number
 imp_high number
 blg_id number

sql> desc tgap_blg;
 name null? type
 --- -------- ---------------------
 blg_id not null number(11)
 start_node_id number(11)
 end_node_id number(11)
 child1_id number(11)
 child2_id number(11)
 tree_source blgtree
 top_tolerance float(126)

sql> desc tgap_node
 name null? type
 --- -------- ---------------------
 node_id number
 geometry mdsys.sdo_geometry

A.2 topology structure

sql> desc face;
 name null? type
 --- -------- ---------------------
 face_id not null number

sql> desc edge;
 name null? type
 --- -------- ---------------------
 edge_id not null number
 left_face_id number
 right_face_id number
 start_node_id number
 end_node_id number
 geometry mdsys.sdo_geometry

sql> desc node;
 name null? type
 --- -------- ---------------------
 node_id not null number
 geometry mdsys.sdo_geometry

INSPIRE Multiple-Representation and Data Consistency Workshop, Ispra (VA, Italy) on 7-8 November 2006.

A.3 Improved tGAP structure proposal

sql> desc tgap_face;
 name null? type
 --- -------- ---------------------
 face_id number
 imp_low number
 imp_high number

sql> desc tgap_edge; /* note: all versions of edge in single record */
 name null? type
 --- -------- ---------------------
 edge_id number
 imp_low number
 imp_highs varray(number)
 start_node_id number
 end_node_id number
 left_face_ids varray(number)
 right_face_ids varray(number)
 blg_id number

sql> desc tgap_blg_original;
 name null? type
 --- -------- ---------------------
 blg_id not null number(11)
 tree_source blgtree

sql> desc tgap_blg_joided;
 name null? type
 --- -------- ---------------------
 blg_id not null number(11)
 child1_id number(11)
 child2_id number(11)
 top_node number(11)
 top_tolerance float(126)

sql> desc tgap_node;
 name null? type
 --- --------
 node_id number
 geometry mdsys.sdo_geometry

sql> create view tgap_blg as (select
 blg_id,
 tree_source,
 null as child1_id,
 null as child2_id,
 null as top_node,
 null as top_tolerance
 from tgap_blg_original)
 union all (select
 blg_id,
 null as tree_source,
 child1_id,
 child2_id,
 top_node
 top_tolerance
 from tgap_blg_joined);

