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This paper introduces a new compact topological 3D data structure. The

proposed method models the real world as a complete decomposition of space

and this subdivision is represented by a constrained tetrahedral network (TEN).

Operators and definitions from the mathematical field of simplicial homology are

used to define and handle this TEN structure. Only tetrahedrons need to be

stored explicitly in a (single column) database table, while all simplexes of lower

dimensions, constraints and topological relationships can be derived in views. As

a result the data structure is relatively compact and easy to update, while it still

offers favourable characteristics from a computational point of view as well as

presence of topological relationships.

Keywords: 3D GIS; Spatial DBMS; Topology; 3D topography, Poincaré

simplicial homology; Simplicial complexes

1. Introduction

1.1 Motivation

The real world consists of three-dimensional (3D) objects and these objects are

getting more complex due to multiple land use, resulting in several buildings, roads,

etc., which are built on top of each other. At the same time, increasing awareness of

the importance of sustainable urban development and disaster management triggers

the demand for more accurate and realistic data modelling and analysis. As a result

focus within geographical information systems (GIS) is shifting from two-

dimensional (2D) towards 3D modelling. Due to the intended applications (e.g.

modelling noise propagation (Kluijver and Stoter 2003) or air pollution), the

emphasis is also shifting from visualisation to querying and analysis.

In order to support all required operations 3D topographic (i.e. physical objects)

data sets will be needed. Extending topographic data models into the third

dimension is most relevant when dealing with large scale topography. As this will

lead to a substantial increase in data volume, maintaining and ensuring data

integrity becomes of extreme importance and choosing a topological approach is an

obvious solution as topology enables better checks while updating (like detection of

overlaps or gaps); see also Ellul and Haklay (2006). In this paper, a topological

approach based on a tetrahedral network will be introduced.
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The current developments in the field of 3D topography are not only demand-

driven. The increasing availability of high density laser scan data is most certainly a

trigger in this process. Integrating 2D data with height data sets is an obvious

objective when both data sets are available. Oude Elberink and Vosselman (2006)

describe an integration of 2D data with height data in a topographic context (see

figure 1 for example of input data). Besides integrating 2D data with height data

(obtained by airborne laser scanning) direct 3D data acquisition by terrestrial laser

scanning is emerging (see figure 2). A consequence of the increasing point density of

laser scan data is a further increase in data volume of 3D data models. The ability to

maintain data integrity becomes a crucial characteristic of a 3D data structure. This

ability and the support for 3D analysis are the two main requirements for the

approach introduced in this paper.

1.2 Research objective

This research aims at facilitating 3D topographic data modelling by designing a

topological 3D data structure. The features are modelled in a constrained

tetrahedral network (TEN), which offers advantages from a computational point

of view as well as a set of well-known topological relationships. By applying operators

and definitions from the mathematical field of simplicial homology to the constrained

TEN, this paper offers a mathematically-robust 3D modelling approach. It results in a

relatively compact and easy-to-update data structure, without compromising its

required elements like facilitating analyses and validation operations.

1.3 Related research

For the last 20 years research has been performed in the field of 3D GIS. Zlatanova

et al. (2002) give an overview of the most relevant developments in this period and

Figure 1. Height data (left) and topographic data (right) of highway interchange ‘Prins
Clausplein’ near The Hague, the Netherlands (Courtesy of Sander Oude Elberink, ITC
Enschede).
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Zlatanova et al. (2004) elaborate especially on the topological ones. With respect to

the 3D approach introduced in this paper, Carlson (1987) can be seen as the starting

point as he introduced a simplicial complex-based approach of 3D subsurface

structures. However, he limited himself for reasons of simplicity to the use of 0-, 1-

and 2-simplexes in 3D space. Nevertheless, he acknowledged the possibility of

extending the simplex approach into n dimensions, as indicated by Frank and Kuhn

(1986). The possibility of including 3D manifolds is explored by Pigot (1992, 1995),

and Pilouk (1996) introduces the tetrahedral irregular network (TEN), in which also

the 3-simplex is used as 3D manifold. In applications polyhedrons are often used as

3D primitives (Zlatanova 2000, Stoter 2004, Arens et al. 2005).

The concept of simplicial complexes and its mathematical description (part of the

field of algebraic topology (Hatcher 2002)) is described by Giblin (1977). It is

mentioned by Frank and Kuhn (1986) as one of the possible cell graph approaches.

A topological data model based on 2D simplicial complexes in 2D space is

introduced by Egenhofer et al. (1989) and implemented in the PANDA system

(Egenhofer and Frank 1989), an early object-oriented database. The mathematical

approach of simplexes is also used by Pigot (1992), but full applications of simplicial

homology in three dimensions in a GIS context are not known to the authors.

1.4 Outline

Section 2 will introduce two important aspects of the new modelling approach: first

all features are by definition volumes and together these objects fill the complete 3D

space and second a constrained tetrahedronised irregular network is used as basis.

After that the mathematical foundation of the new approach is given in Section 3.

Applying this mathematical theory is discussed in Section 4. To further illustrate the

Figure 2. Terrestrial laser scanning acquires 3D data of complex objects.

Simplicial complex-based DBMS approach to 3D topographic data modelling 753
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new ideas a proof of concept implementation will be described in Section 5. This

paper ends with conclusions, a discussion of the results and some ideas on further

research in Section 6.

2. Characteristics of the new 3D modelling approach

The new modelling approach introduced in this paper has some specific

characteristics. First, as described in Section 2.1, it is a full decomposition of space

(a volume partition equivalent to a planar partition). Second, the features are

represented internally in a tetrahedronised irregular network, which will be

discussed in Section 2.2.

2.1 Full decomposition of space

With respect to modelling 3D topographic data, two fundamental observations are

of great importance (Penninga 2005):

(i) physical objects have by definition a volume. In reality, there are no point,

line or polygon objects; only point, line or polygon representations exist

(at a certain level of abstraction/generalisation). The ISO 19101 Geographic

information – Reference model (ISO/TC211 2005) defines features as

‘abstractions of real world phenomena’. In most current modelling

approaches, the abstraction (read ‘simplification’) is in the choice for a

representation of lower dimension. However, as the proposed method uses a

TEN (or mesh), the simplification is already in the subdivision into easy-to-

handle parts (i.e. it is a finite element method);

(ii) the real world can be considered a volume partition: a set of nonoverlapping

volumes that form a closed (i.e. no gaps within the domain) modelled space.

As a consequence, objects like ‘earth’ or ‘air’ are explicitly part of the real

world and thus have to be modelled.

Although the model consists of volume features, some planar features might still be

very useful, as they mark the boundary (or transition) between two volume features.

In our modelling approach planar features can exist, but only as ‘derived features’.

In terms of unified modelling language (UML) planar features would be modelled as

association classes. For instance, a ‘wall’ might be the result of the association

between a ‘building’ and the ‘air’. It is important to realise that planar features that

mark borders between volumes might be labelled (for instance as ‘roof’ or ‘wall’ with

additional attributes), but that they do not represent or describe the building. In this

example the building in itself is represented by a volume, with neighbouring volumes

that represent air, earth or perhaps another adjacent building.

As a result the actual 3D model will show more resemblance with the real world.

Deriving visualisations from this model might result in more simplified/generalised

models, as there is no one standard ‘best’ visualisation for all purposes. However,

the choice of representation to use should be made in the digital cartographic model

(DCM, a set of cartographic rules) and not in the digital landscape model that

contains the 3D physical objects (for DCM and DLM, see Kraak and Ormeling

(1996)).

The explicit inclusion of earth and air features is not very common, as these

features are often considered as empty space in between topographic features.

However, this inclusion is not only serving the abstract goal of ‘clean’ modelling, but

754 F. Penninga and P. J. M. van Oosterom
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actually has some useful applications. First, the air and earth features do not just fill

up the space between features of the other types, but are often also subject of

analyses. One can think of applications like modelling noise propagation or air

pollution. Second, by introducing earth and air features future extensions of the
model will be enabled. Space that is currently labelled as air can be subdivided into

for instance air traffic or telecommunication corridors, while earth might be

subclassified in geographic layers or polluted regions. Figure 3 shows some examples

of future extensions.

2.2 Representing features in a tetrahedronised irregular network

After initial ideas on a hybrid data model (an integrated TIN/TEN model, based on

the pragmatic point of view: model in 2.5D where possible and only in exceptional

cases switch to a full 3D model) the decision was made (Penninga 2005) to model all

topographic features in a TEN. The preference for these simplex-based data

structures is based on certain qualities of simplexes (in Section 3.1 simplexes will be

discussed in a more formal way):

(i) well defined: a n-simplex is bounded by n + 1 (n21)-simplexes, e.g. a 2-

simplex (triangle) is bounded by 3 1-simplexes (edges);

(ii) flatness of faces: every face can be described by three points;

(iii) a n-simplex is convex (which simplifies among others point-in-polygon tests).

A disadvantage of simplexes is the introduction of a 1:n relationship between

features and their representations. A related issue is the size of these models, both in

terms of disk storage and memory usage during triangulation/tetrahedronisation.

However, this complexity should be tackled by the algorithms and preferably remain
hidden to the average user. Impressive results in terms of speed and memory usage

are described by Isenburg et al. (2006a) (and repeated in a specific GI-context in

Isenburg et al. (2006b)). In our volumetric approach, the emphasis is on the volume

features, although some less dimensional features can be identified as ‘derived’

features. Figure 4 illustrates the concept of a TEN-based volumetric approach. As

one can see, the real world phenomena are represented by volume features.

Internally these features are represented as set of tetrahedrons. Two volume features

might share a boundary face that is important enough to be identified as area
feature. Note that these area features are modelled as association classes in the

UML class diagram and therefore are lifetime-dependent of the relationship

between the two volume features.

Figure 3. Air traffic corridors towards Schiphol Airport, the Netherlands (left) and an oil
reservoir (right): examples of future extensions.

Simplicial complex-based DBMS approach to 3D topographic data modelling 755
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The most important question is how topographic features are represented within

the TEN. The UML class diagram illustrates the use of constraints to ensure the

presence of the feature boundaries in the TEN structure. In the 2D case (TIN:
triangulated irregular network) constrained edges are used to guarantee that

polygon boundaries remain present, regardless of other point insertion or edge

update operations. In the current 3D case, one would like to ensure the presence of

faces, as they bound the volume features, but unfortunately 3D algorithms still work

with constrained edges (Shewchuk 2004). As a result using constraints requires a

two-step approach: first one needs to ensure the presence of all constrained edges,

then one needs to check whether the required constrained faces are present (i.e.

whether they are intersected by other edges). To further illustrate the concept of
representing features in a TEN, the following four steps are required to insert a

volume feature in a TEN (Penninga and van Oosterom 2006):

(i) its outer boundary needs to be triangulated and all resulting edges (and faces)

should be treated as constraints;

(ii) the interior needs to be tetrahedronised. This tetrahedronisation can be

performed either directly in the TEN or separately, after which all resulting

edges can be inserted into the TEN. Input in both cases is the set of

constraint edges of the outer boundary;

(iii) regardless which of the two previous options is used, local re-tetrahedronisa-

tion might be necessary in order to optimise the structure by creating better-

shaped tetrahedrons;

(iv) updating the relevant feature table(s).

The different steps in such an operation can be seen in figure 5. The input data set

contains all feature boundaries, the constrained tetrahedronisation still holds these

boundaries and the resulting model (where only feature boundaries are drawn)

shows the same terrain and house.

3. Mathematical foundation

Simplexes and the relationships between simplexes of different dimensions were

studied by mathematicians in the late 19th and early 20th century. This field of

mathematics was known as simplicial homology and is today considered part of the
field of algebraic topology (Hatcher 2002). Simplicial homology is the part of

mathematics that deals with topological constructions of simplexes; the simplest

Figure 4. UML class diagram of the TEN-based volumetric modelling approach.
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geometries in each dimension. The foundations of simplicial homology are described

by Jules Henri Poincaré (1854–1912) in Poincaré (1895). Some relevant corrections

and additions can be found in Poincaré (1899). Since definitions and operators from

simplicial homology are crucial in obtaining the research objectives (compact data

structure, easy-to-update, provable data integrity), this section will provide relevant

background information on simplicial homology. Simplicial homology will be

introduced in Section 3.1, after which respectively orientation of simplexes in

Section 3.2 and merging simplexes into simplicial complexes in Section 3.3 will get

special attention. Some operations on simplexes and simplicial complexes will be

discussed in Section 3.4. This mathematical approach will permit us to efficiently

store our simplicial complex-based approach in a database, as shown in Section 4. In

this section the following annotations will be used: Sn for a simplex of dimension n,

L for the boundary and vi for a point. Although in mathematical language node or

vertex (both indicating the topological use) would be more appropriate terms, we

will use point to avoid confusion.

3.1 Poincaré simplicial homology

The previously introduced volumetric approach uses tetrahedrons to model the real

world. These tetrahedrons in the TEN structure consist of nodes, edges and

Figure 5. Input data (top), the resulting tetrahedronisation (mid) and as output the
constrained triangles (i.e. the feature boundaries) (bottom).

Simplicial complex-based DBMS approach to 3D topographic data modelling 757
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triangles. All four data types are simplexes. A formal definition (Hatcher 2002) of a

n-simplex Sn is given below.

Definition 3.1 A n-simplex Sn is the smallest convex set in Euclidian space

(denoted Rm) containing n + 1 points v0, …, vn that do not lie in a hyperplane of

dimension less than n. As the n-dimensional simplex is defined by n + 1 nodes, it has

the following notation: Sn5<v0, …, vn>.

Equivalent conditions to the hyperplane condition would be that the difference

vectors v12v0, …, vn2v0 are linearly independent or, if one considers v0, …, vn as set

of vectors, that these vectors are affinely independent. In a less formal way one

could describe a n-simplex Sn as the simplest geometry of dimension n, where

simplest refers to minimising the number of points required to define such a simplex.

For instance, one needs at least three points to define a 2D shape (a triangle) and the

hyperplane condition states that these three points should not lie on the same line

(since that would result in a 1D edge). This triangle is denoted as S25<v0, v1, v2>.

Some observations on simplexes:

(i) it is assumed that all simplexes are ordered. With any n-simplex, (n + 1)!

distinct ordered simplexes are associated. All even numbers of permutations

of an ordered simplex Sn5<v0, …, vn> have similar orientation, all odd

numbers of permutations an opposite one. So for instance the following two

statements are true:

S1~Sv0, v1T~{Sv1, v0T

S2~Sv0, v1, v2T~{Sv0, v2, v1T~Sv1, v2, v0T~

{Sv1, v0, v2T~Sv2, v0, v1T~{Sv2, v1, v0T

The first line can be read as ‘an edge directed from point v0 to point v1 has

opposite orientation to the edge directed from point v1 to point v0’. This

characteristic can be used to change simplex orientation by performing a single

permutation, thus eliminating the need of using signed simplex descriptions;

(ii) a face of Sn is a simplex of lower dimension whose vertices form a non-empty

subset of {v0, …, vn}. In other words, a simplex is constructed of simplexes of

lower dimension and these simplexes are defined by some of the points that

define the original simplex. For instance, a tetrahedron S35<v0, v1, v2, v3>

consists of four triangles <v1, v2, v3>, <v0, v2, v3>, <v0, v1, v3> and <v0, v1,

v2>. The formula to derive these less dimensional boundaries will be given in

Definition 3.2;

(iii) if the subset is proper (i.e. not the whole of {v0, …, vn}) than the face is a

proper face (Giblin 1977);

(iv) a n-simplex has in total 2(n + 1)22 proper faces;

(v) for the number of faces of a specific dimension, the following holds: a n-

simplex has
nz1

pz1

� �
faces of dimension p with (0(p,n). For instance: a

tetrahedron consists of four triangles, six edges and four points;

(vi) the 0- and 1-dimensional faces of a n-simplex form a complete graph on n + 1

vertices;

(vii) the boundary of a n-simplex is defined by the following sum of n21

dimensional simplexes (Poincaré 1899) (the hat indicates omitting the specific

node):

758 F. Penninga and P. J. M. van Oosterom
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Definition 3.2

LSn~
Xn

i~0

{1ð ÞiSv0, . . . , v̂i , . . . , vnT

This results in (see figure 6) the following boundaries (note that only one

permutation is showed in each dimension):

S1~Sv0, v1T LS1~Sv1T{Sv0T

S2~Sv0, v1, v2T LS2~Sv1, v2T{Sv0, v2TzSv0, v1T

S3~Sv0, v1, v2, v3T LS3~Sv1, v2, v3T{Sv0, v2, v3T

zSv0, v1, v3T{Sv0, v1, v2T

It is important to realise that all these observations are true in any dimension. As a

result, simplicial homology definitions and operations are not only applicable to 2D

and 3D modelling, but a simplicial homology-based modelling approach can also easily
be extended into 4D, thus offering a solid mathematical foundation for spatio-temporal

modelling. However, this paper will focus only on the 3D modelling approach.

3.2 Orientation of simplexes

Observation (i) introduced the concept of orientation of simplexes. In the 1D-case

orientation is specified in terms of direction: an edge from A to B has opposite

orientation to an edge from B to A. In 2D orientation is specified by order, i.e. edges

are travelled clockwise or counter clockwise. By convention counter clockwise

orientation is denoted positive ( + ) and clockwise orientation negative (2). In 3D

orientation is specified by the direction of the normal vectors of the boundary faces.
Normal vectors pointing outwards are denoted positive and normal vectors pointing

inwards negative.

As a simplex Sn is defined by n + 1 vertices, (n + 1)! permutations exist. All even

numbers of permutations of an ordered simplex Sn5<v0, …, vn> have the same
orientation, all odd numbers of permutations have opposite orientation. So edge

S15<v0, v1> has boundary LS15<v1>2<v0>. The other permutation S152<v0,

Figure 6. Simplexes and their boundaries (Hatcher 2002).

Simplicial complex-based DBMS approach to 3D topographic data modelling 759
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v1>5<v1, v0> has boundary LS15<v0>2<v1>, which is the opposite direction. In a

similar way the boundaries of the other five permutations of S2 and the other 23

permutations of S3 can be given. The six permutations of S2 are illustrated in

figure 7. It shows that two groups of three permutations are equivalent to each

other, i.e. the three (1st, 3rd, 5th) with positive and the three (2nd, 4th, 6th) with

negative orientation. As a consequence operators like the dual of a simplex (the dual

of a simplex is the simplex with identical geometry and opposite orientation) become

very simple: it only requires a single permutation.

This flexibility in handling orientations is a convenient characteristic of simplicial

homology, but it brings another favourable characteristic in 3D. S3 has 24

permutations, 12 with positive and 12 with negative orientation. It holds for all 24

permutations that the four bounding triangles have identical orientation; either all

normal vectors of the triangles point inwards or all normal vectors of the triangles

point outwards. This is of course a desired characteristic and it requires no effort at

all; as it is a direct result from Definition 3.2. Lemma 3.3 will prove this consistent

orientation by applying the boundary operator twice:

Lemma 3.3 since L2Sn50 (‘the boundary of the boundary equals zero’), all

boundary triangles of S3 have the same orientation.

Proof First the so-called zero homomorphism (L250) needs to be proven when

applied to any oriented n-simplex. Now:

L2Sn~L
Xn

i~0

{1ð ÞiSv0, . . . , v̂i , . . . , vnT

~
Xn

i~0

{1ð Þi
Xn

j~iz1

{1ð Þj{1Sv0, . . . , v̂i , . . . , v̂j , . . . , vnT

z
Xn

i~0

{1ð Þi
Xi{1

j~0

{1ð ÞjSv0, . . . , v̂j , . . . , v̂i , . . . , vnT

Figure 7. The six permutations of simplex S2 and their orientation. Permutation <v2, v0, v1>
is illustrated in more detail.
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All terms in this expression cancel in pairs, since each oriented (n21)-simplex

Sv0, . . . , v̂i, . . . , v̂j, . . . , vnT appears twice, the first time with sign (21)i + j21 and the

second time with the opposite sign (21)i + j.

Now consider L2S3. The boundary of a tetrahedron consists of four triangles, and

the boundaries of these triangles consist of edges. Each of the six edges of S3 appears

twice, as each edge bounds two triangles. The zero homomorphism states that the

sum of these edges equals zero. This is the case if and only if the edges in these six

pairs have opposite signs. The edges of two neighbouring triangles have opposite

signs if and only if the triangles have the same orientation, i.e. either both are

oriented outwards or both are oriented inwards.

3.3 Combining simplexes: simplicial complexes

As most volume features will be represented by more than one tetrahedron,

operations on sets of simplexes will be useful. A simplicial complex is such a

combinatorial object of a number of simplexes. A formal definition is given below:

Definition 3.4 A simplicial complex C (Giblin 1977) is a finite set of connected

simplexes that satisfies the following two conditions:

(i) any face of a simplex from C is also in C;

(ii) the intersection of any two simplexes from C is either empty or is a face for

both of them.

The dimension of C is the largest dimension of any simplex in C (Giblin 1977). A

simplicial complex is said to be of homogeneous dimension n if all simplexes of

lower dimension than n in C are proper faces (refer to Observation (iii) in Section

3.1) of n-simplexes in C.

An interesting application of the boundary formula is joining or merging two

simplexes of equal dimension into a simplicial complex. The boundary of a

simplicial complex can be derived by adding the boundaries of the separate

simplexes. As most volume features will be represented by simplicial complexes, this

operation will result in the volume feature boundary.

Definition 3.5 The boundary of the simplicial complex Cn consisting of m + 1

simplexes of dimension n is defined as:

Simplicial complex Cn~SSn0, . . . , SnmT has boundary LCn~
Xm

i~0

LSnm

For example, if we join the two neighbouring triangles S205<v0, v1, v2> and

S215<v0, v2, v3> into a 2D complex C2 (see figure 8), adding the boundaries results

in:

LC2~LS21zLS22~ Sv1, v2T{Sv0, v2TzSv0, v1Tð Þz Sv2, v3T{Sv0, v3TzSv0, v2Tð Þ

~Sv1, v2TzSv0, v1TzSv2, v3T{Sv0, v3T

Note that the shared boundary <v0, v2> is removed as it appeared once with positive

and once with negative direction. This appearance with opposite signs relies on the

assumption of similar orientation of the simplexes in the simplicial complexes. As

long as this similar orientation is ensured, the zero homomorphism (see Lemma 3.3)

will also apply to simplicial complexes: L2Cn~
Pm

i~0 L2Snm~0.

Simplicial complex-based DBMS approach to 3D topographic data modelling 761



D
ow

nl
oa

de
d 

B
y:

 [T
u 

D
el

ft-
 F

ac
 C

itg
] A

t: 
13

:3
3 

20
 M

ay
 2

00
8 

As stated earlier, joining simplexes into simplicial complexes and deriving its outer

boundary can be very useful in our modelling approach. If for instance a building is

modelled as a set of eight tetrahedrons (see figure 9), the building boundary

representation can be obtained by merging the boundaries of all eight tetrahedrons.

The triangles of C3 are the boundary triangulation of this building. This boundary

triangulation might be used in the visualisation process. It is already a polyhedron,

but if one is interested in a polyhedron with a minimal number of faces, merging

boundary triangles with identical (within a tolerance) normal vector direction into

flat polygons will result in seven flat boundary faces for this building.

Up to this point only simplexes and simplicial complexes are discussed. A special

case of simplicial complexes in 3D is the TEN.

Definition 3.6 A TEN is a simplicial complex of homogeneous dimension of

three. This means that a TEN is a simplicial complex consisting only of face-

connected 3-simplexes that model the full 3D domain.

Such a structure contains several topological relationships, thus enabling both

topological querying and, more important, validation tools in order to maintain data

integrity. Another important concept with respect to topological relationships in a TEN

structure is the coboundary. A coboundary is more or less the opposite of a boundary.

Definition 3.7 The coboundary of a n-dimensional simplex Sn is the set of all

(n + 1)-dimensional simplexes Sn + 1 of which the simplex Sn is part of their

boundaries LSn + 1.

For example, a triangle has three boundary segments (its edges) and two

coboundary segments (the adjacent tetrahedrons). An edge has two boundary

segments (its nodes) and (in 3D!) an unknown number of coboundary segments

(adjacent triangles).

Figure 8. Merging two simplexes into one simplicial complex.
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3.4 Operations on simplexes

In a simplicial complex-based approach features will be represented by a set of

simplexes. As a result certain operations on features will translate into operations on

simplexes. For instance a point-in-polyhedron test at feature level will be performed

in the simplicial complex, as all simplexes are convex. Guaranteed convexity will

enable the use of more efficient point-in-polyhedron algorithms.

Another example is the operation to obtain the volume of a building, which will

be performed as the sum of the volume calculations of the individual tetrahedrons.

The Cayley-Menger determinant (Colins 2003) is a determinant that gives the volume

of a n-simplex in m-dimensional space. With simplex Sn5<v0, …, vn> the (n + 1)6(n + 1)

matrix B5(bij) is given by bij5|vi2vj|
2. Matrix B̂ is the (n + 2)6(n + 2) matrix obtained

by bordering matrix B with a top row (0, 1, …, 1) and a left column (0, 1, …, 1)T.

Definition 3.8 The volume V of a simplex Sn is given by:

V2 Snð Þ~
{1ð Þnz1

2n n!ð Þ2
det B̂
� �

Since matrix B̂ consists of distances between vertices instead of vertex coordinates,

the formula is dimension independent, meaning that it will produce the volume of a

Figure 9. Deriving the boundary triangulation from the TEN.
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n-simplex, irrespective of the dimension of the space in which Sn is located. For n52

(a triangle) and n53 (a tetrahedron) this results in (with dij as length of edge <vi,

vj>):

n~2 : {16V 2~

0 1 1 1

1 0 d2
01 d2

02

1 d2
10 0 d2

12

1 d2
20 d2

21 0

���������

���������
n~3 : 288V2~

0 1 1 1 1

1 0 d2
01 d2

02 d2
03

1 d2
10 0 d2

12 d2
13

1 d2
20 d2

21 0 d2
23

1 d2
30 d2

31 d2
32 0

������������

������������
Simplexes offer not only support for calculations, but also for more complex spatial

operations like buffer and overlay. Verbree et al. (2005) describe the possibilities of

executing these basic GIS operators on tetrahedrons. Validation is another

operation that can be performed on both simplexes and features. At simplicial

complex level the validation of a TEN can be performed by applying the Euler-

Poincaré formula: N2E + F2V50 with N the number of nodes, E the number of

edges, F the number of faces and V the number of volumes (including the exterior).

Section 5.4 will describe validation in more detail, see also figure 10 for a 2D and 3D

example of the Euler-Poincaré formula. Combining simplex validation results leads

to validation on feature level. If one is interested in validating a volume feature,

three checks need to be performed. First of all a valid TEN is required. Second, the

boundary of the volume feature (represented by a set of constraints) should be

watertight. The third and last criterion is that the interior of the volume feature is

face connected, thus preventing the creation of two separate volumes that touch

only on edge or node level.

Figure 10. Using Euler-Poincaré in 2D and 3D for validation: dangling edges and faces
remain undetected.
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4. Applying simplicial homology to the TEN: the simplicial complex-based DBMS

approach

As shown in the previous section, a solid theoretical foundation exists for working

with simplexes. Applying this mathematical theory on the TEN approach leads to a

new conceptual model. After the introduction of this conceptual model in Section

4.1, the loosely related concept of vertex encoding will be described in Section 4.2.

Based on the conceptual model and the concept of encoding vertices the DBMS

implementation will be discussed in Section 4.3. Although out of scope of this paper,

the section will end in Section 4.4 with some remarks on the required algorithms.

4.1 Conceptual model

Compared to the initial ideas on the volumetric approach (see figure 4), the TEN

structure itself is modified. Originally tetrahedrons were defined by four triangles,

triangles by three edges and edges by two nodes. Geometry is stored at node level.

As a result reconstructing geometry of for instance a tetrahedron is a relatively

laborious operation. In simplicial homology, as described in the previous section,

simplexes are defined by their vertices. Relationships between other simplexes, for

instance between tetrahedrons and triangles, can be derived by applying the

boundary operator (from Definition 3.2). As a result (Penninga et al. 2006), there is

no need for explicit storage of these relationships. The simplicial complex-based

TEN structure is illustrated in the UML class diagram in figure 11. The associations

between the tetrahedron, triangle and edge class and the node class show that these

simplexes are specified by an ordered list of nodes. The interrelationships between

tetrahedrons, triangles and nodes (the boundary–coboundary relationships) are

derived and signed (i.e. oriented). Note that for instance triangle and edge data

Figure 11. Conceptual model of the simplicial complex-based approach in an UML class
diagram (compare to figure 4). Neither vertex encoding (Section 4.2) nor spatial DBMS
implementation (Section 4.3) are taken into account in this conceptual model.
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might not be stored at all, but only derived when needed. Section 4.3 will give more

details on the actual implementation.

4.2 Vertex encoding

In the simplicial complex-based approach, simplexes will be defined by their vertices,

resulting in a lot of references to the vertices. As the geometry is the only attribute of

a vertex, adding a unique identifier to each point and building an index on top of

this table will cause a substantial increase in data storage, which we try to avoid in

our approach. To deal with this an alternative approach is used. It is based on the

idea that adding a unique identifier is a bit redundant, as the geometry in itself will

be a unique identifier as well. To achieve this the coordinate triple is concatenated

into one long identifier code. Sorting this list will result in a very basic spatial index.

In a way this approach can be seen as building and storing an index, while the

original table is deleted. The possibilities of applying techniques like bitwise

interleaving, which results in 3D Morton or Peano-Hilbert coding are recognised,

but for reasons of insightfulness the concatenated version will be used in this paper.

A small example of vertex encoding in the simplicial complex-based approach can be

found in figure 12. The building from figure 9 is tetrahedronised and its tetrahedrons

are described as concatenation of their four encoded vertices. Each row in the

encoding should be interpreted as x1y1z1x2y2z2x3y3z3x4y4z4. In this example two

positions are used for each coordinate element. For instance the last row

(100000000600100600100608) should be interpreted as the tetrahedron defined by

the vertices (10,00,00), (00,06,00), (10,06,00) and (10,06,08), i.e. the tetrahedron at

the bottom right.

The current vertex encoding implementation is intended as a proof of concept and

might be altered in more elaborate implementation tests. Current work by Penninga

and van Oosterom (2007) also focuses on an alternative approach, in which node

identifiers instead of actual node coordinates will be concatenated in simplex codes.

Reasons to compare the two approaches lie both in the string size in the case of

many decimal places as in avoiding redundant coordinate storage (as each point will

be used in multiple tetrahedrons), although this will result in a second table (a node

table) and more references.

Figure 12. Describing tetrahedrons by their encoded vertices.
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4.3 Incorporating the TEN structure in a spatial DBMS

Due to the use of the Poincaré simplicial homology in the TEN structure substantial

parts of the structure can be derived. Explicit storage of tetrahedrons is required, all

other information (both less dimensional simplexes and topological relationships)
can be derived. Applying this in a DBMS environment will result in a table with

tetrahedrons and functions to derive all other simplexes. These functions are used to

create views with triangles, edges and nodes. As stated in Section 2.2, constraints are

used to ensure the presence of the feature boundaries in the TEN structure. These

constraints on certain triangles and edges indicate that these simplexes are required

and therefore can not be deleted in retriangulation or update processes. Section 5

will show that these constrained triangles and edges can also be derived and

therefore require no explicit storage either. As a result, the DBMS structure consists
of a single (tetrahedron) table and several views (see figure 13).

In terms of explicit storage this means that the presented TEN approach is

relatively compact. Consider the case of the building in figure 9. In a polyhedron

approach, it would be described by its seven faces. Implicitly these seven faces also

define the enclosed volume and the edges and nodes. In a classic TEN approach, the

same building would require a lot more components, as both tetrahedrons, triangles,

edges and nodes would be stored. However, in the TEN approach presented in this

paper, only eight tetrahedrons are stored explicitly. Although tests with large data
sets still need to be performed, one could expect that storage requirements are more

or less in the same order of magnitude as the polyhedron approach (see table 1).

Notwithstanding the fact that compactness is one of our goals, our approach still

contains some redundancy as the coordinates of a vertex will be encoded in several

tetrahedron codes. However, the delicate balance between compactness and

manageability needs fine-tuning.

Compactness is not the only advantage of deriving huge parts of the structure.

Another favourable characteristic is that updates are relatively easy, as only the
tetrahedron table needs to be updated. Any changes in less dimensional simplexes or

topological relationships are derived automatically. Especially these automatic

updates in the topological relationships are pleasant, as it implies that one can

benefit from the presence of topology without the need to maintain topology.

4.4 Modelling 3D objects: algorithms for incremental updates

Although this paper focuses emphatically on a new data structure, some remarks

on the required algorithms will be made here. In 2D triangulation algorithms are

Figure 13. Schematic overview of DBMS storage structure.
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well-known and features can be represented by constrained (Delaunay) triangula-

tions. In 3D however, tetrahedronisation is more complex—first of all because not

every shape can be tetrahedronised (Schönhardt 1928) without the insertion of

additional points (i.e. Steiner points). How to derive a constrained tetrahedronisa-

tion is still an open problem (especially the question how to model multiple features

in one constrained tetrahedronisation). Cavalcanti and Mello (1999) opt for a

minimalist approach, as they derive a tetrahedronisation first and try to recover all

constrained edges and faces afterwards. Shewchuk (2002a) describes an approach

that creates a constrained tetrahedronisation incrementally. Liu and Baida (2000)

discuss flipping as a tool for constrained tetrahedronisation. In Shewchuk (2003) the

focus is on the importance of flips for updating. Flipping is further described by

George and Borouchaki (2003) and Ledoux et al. (2005) use flipping to delete

vertices from a tetrahedronisation. Penninga and van Oosterom (2006) describe an

idea for the insertion of constrained edges as a connected set of two nodes, in which

they distinguish nine unique cases. Another important aspect of tetrahedronisation

algorithms is the quality of the tetrahedronisation, as it will affect the robustness of

the operations. Refinement (i.e. the operation to acquire well-shaped triangles and

tetrahedrons) is described by (among others) Shewchuk (1997, 2002b) and Si (2006).

Based on this very short overview, one can conclude that algorithms for

constrained tetrahedronisation are still being developed. Flipping is an important

technique, as it offers a robust approach to tetrahedronisation. Robustness is an

important criterion as the TEN will become very large and complicated. In the TEN

multiple features will be represented with constraints, whereas techniques from the

more general field of meshing often focus on tetrahedronisation of a single object.

Due to the expected size of the TEN, algorithms that act locally are favourable,

maybe even mandatory.

5. Implementation: proof of concept

In order to provide more insight in the proposed new approach, this section will

outline the current DBMS implementation. It is developed and tested with a small

toy dataset, consisting of 56 tetrahedrons, 120 triangles, 83 edges and 20 nodes. This

dataset was also used in a previous implementation (a classical TEN approach).

Based on this implementation a 2D viewer (Oracle MapViewer) was adapted for 3D

data by the use of a function rotateGeom. Both the implementation and the viewer

are described in Penninga et al. (2006). In figure 14 the small dataset can be seen in

the MapViewer. The dataset basically represents a small piece of the earth surface

with a house and a road on top of it.

Table 1. Intuitive comparison of storage requirements of the polyhedron, classic TEN and
new TEN approach for the building in figure 9. The brackets indicate implicit presence (as
opposite of explicit storage). It appears that the polyhedron and new TEN approach do not

differ much.

Building as polyhedron Building as classic TEN Building as new TEN

(1 volume) 8 tetrahedrons 8 tetrahedrons
7 faces 24 triangles (24 triangles)
(15 edges) 25 edges (25 edges)
10 points 10 nodes 10 nodes
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This section will start in Section 5.1 with creating the data structure, i.e. to define

the table and views to store tetrahedrons, triangles, edges and nodes. After that it

will be shown in Section 5.2 that also the constraints can be derived, so no additional

explicit storage is required. The topic of Section 5.3 is deriving topological

relationships. The section continues with some remarks on validation in Section 5.4,

followed by some examples on querying and analysis in Section 5.5 and ends with

initial remarks on performance in Section 5.6.

5.1 Creating the data structure

As illustrated in figure 13, the tetrahedron table is the base table. It consists of a

single column in which the encoded tetrahedrons are described in the form

x1y1z1x2y2z2x3y3z3x4y4z4oid:

create table tetrahedron (tetcode NVARCHAR2(100));
Note that besides the concatenation of the four encoded vertices a unique object

identifier is also added, which describes which volume object is (partly) represented

by the tetrahedron. Since a tetrahedron is described by its four vertices, there are (4!)

24 permutations of this single tetrahedron. By convention each tetrahedron <a, b, c,

d> is rewritten such that a,b,c,d holds, which is an arbitrary criterion. For each

tetrahedron in the tetrahedron table, it is ensured that they are oriented correctly.

The followed convention is that each tetrahedron has positive orientation, i.e. all

normal vectors of the bounding triangles are oriented outwards. This consistent

orientation is required to ensure that each boundary triangle appears two times: one

with positive and the other with negative orientation. In a procedure, each

tetrahedron’s orientation is checked. All tetrahedrons with inward orientation are

Figure 14. Adapting the 2D MapViewer for 3D data by a function rotateGeom.
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replaced by tetrahedrons with outward orientation, which is achieved by performing

a single permutation on the vertices:

create or replace procedure tettableoutwards
(…)

ordertetrahedron (codelength, tetcode, currenttetcode);
checkorientation (codelength, currenttetcode, bool);
if (bool50) then
permutation34 (codelength, currenttetcode, newtetcode);
update tetrahedron set tetcode5newtetcode where current of
tetcur;
(…)

The checkorientation procedure compares the direction of the normal vector

of one of the boundary triangles with a vector from this triangle to the fourth

(opposite) point of the tetrahedron. In the case of an inward orientation a single
permutation is carried out by the procedure permutation34, which permutes the

third and fourth vertex: permutation34(2<v0, v1, v2, v3>) results in <v0, v1, v3, v2>.

The ordering now meets the criterion a,b,d,c. The total result of the ordering,

orientation check and in some cases permutation is (consider the tetrahedron code as a

number) that every tetrahedron is described with the smallest positive tetrahedron

code. This is a unique identifier of which of the 24 permutations will be used.

Based on the encoded tetrahedrons, the boundary triangles can be derived by

applying the boundary operator from Definition 3.2. The procedure to derive the

four boundary triangles of a tetrahedron looks like:

create or replace procedure deriveboundarytriangles
(…)

a:5(SUBSTR (tetcode, 1, 3*codelength));
b:5(SUBSTR (tetcode, 1+3*codelength, 3*codelength));
c:5(SUBSTR (tetcode, 1+6*codelength, 3*codelength));
d:5(SUBSTR (tetcode, 1+9*codelength, 3*codelength));
oid:5(SUBSTR (tetcode, 1+12*codelength));
ordertriangle (codelength, ‘+’IbIcIdIoid, tricode1);
ordertriangle (codelength, ‘2’IaIcIdIoid, tricode2);
ordertriangle (codelength, ‘+’IaIbIdIoid, tricode3);
ordertriangle (codelength, ‘2’IaIbIcIoid, tricode4);
(…)

Note that the triangles inherit the object id from the tetrahedron, i.e. each

triangle has a reference to the object which is represented by the tetrahedron

of which the triangle is a boundary. The reason for this will be introduced

later in this section. It can also be seen that each boundary triangle is ordered

by the ordertriangle procedure. The objective of this procedure is to gain control

over which permutation is used. A triangle has six (3!) permutations, but it is

important that both in positive and negative orientation the same permutation

is used, as they will not cancel out in pairs otherwise (as described in section 3.3
on simplicial complexes). The procedure ordertriangle rewrites a triangle

<a, b, c> such that a,b,c holds, which is again an arbitrary criterion. For

example: ordertriangle ( + 014035012022035012014035018003) results in

2014035012014035018022035012003, as its input ( + 014035012 022035012
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014035018 003) does not satisfy the criterion a,b,c, so the second and third term

are permutated and the odd permutation causes a sign change. One might expect

that this ordering of triangles is not necessary due to the tetrahedron ordering, as

performed earlier. However, this is not the case, as the need for consequent

orientation (all tetrahedrons have positive orientation) causes tetrahedron codes

that are not strictly ordered any more due to the permutation.

Slightly altered versions of the deriveboundarytriangles procedure are

used to create the triangle view. The modified procedures derive respectively the
first, second, third and fourth boundary triangle of a tetrahedron. The resulting view

contains all triangles and their coboundaries (see Definition 3.7). In this case the

coboundary is the tetrahedron of which the triangle is part of the boundary. This

coboundary will prove useful in deriving topological relationships later in this

section. The view is created as:

create or replace view triangle as
select deriveboundarytriangle1 (tetcode) tricode, tetcode
fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle2 (tetcode) tricode, tetcode
fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle3 (tetcode) tricode, tetcode
fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle4 (tetcode) tricode, tetcode
fromtetcode from tetrahedron

The resulting view will contain four times the number of tetrahedrons, and every

triangle (except for triangles on the outer boundary of the tetrahedronisation)

appears two times: one with positive and the other with negative sign (and not in a
permutated form, due to the ordertriangle procedure).

In a similar way the views with edges and nodes can be constructed. In current
implementation edges are undirected and do not inherit object ids, as no application

for this is identified at the moment. However, strict application of the boundary

operator would result in directed triangles. The views are created as:

create or replace view edge as
select distinct deriveabsboundaryedge1 (tricode) edcode
from triangle
UNION
select distinct deriveabsboundaryedge2 (tricode) edcode
from triangle
UNION
select distinct deriveabsboundaryedge3 (tricode) edcode
from triangle;

create or replace view node as
select distinct deriveboundarynode1 (edcode) nodecode
FROM edge
UNION
select distinct deriveboundarynode2 (edcode) nodecode
FROM edge
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With the tetrahedron table and triangle, edge and node view the data structure is

accessible at different levels. Another characteristic of this approach is that both

geometry and topology are present at every level, so one can determine for each

operation whether a geometrical (i.e. using the simplex coordinates) or a topological

(i.e. using references to boundaries, see Section 5.3 for more details) approach is the

most appropriate.

5.2 Deriving constraints

As mentioned at the end of Section 2.2, features in the model are represented by a set

of tetrahedrons. To ensure that these tetrahedrons represent the correct geometry,

the outer boundary is triangulated and these triangles are used as constraints. This

implies that these triangles will remain present as long as the feature is part of the

model (i.e. they are not deleted in a flipping process). To achieve this, the

incremental tetrahedronisation algorithm needs to keep track of these constrained

triangles. In contrast with what one might expect, it is not necessary to store these

constraints explicitly, as they can be derived as well, thus reducing data storage:

create or replace view constrainedtriangle as
select t1.tricode tricode from triangle t1
where not exists (select t2.tricode from triangle t2
where t1.tricode5t2.tricode*21);

This statement uses the fact that although every triangle (in a geometric sense)

appears twice (with opposite orientation) in the triangle view, not every triangle

code appears twice. Boundary triangles are unpaired, since in this case the triangle

code will differ due to the different inherited object ids. In the case of internal

triangles (i.e. within an object) the triangle and its dual will have (apart from the

sign) the exact same triangle code (geometry + object id). Deriving constrained edges

from constrained triangles is easy, as all boundary edges from constrained triangles

are constrained edges.

5.3 Deriving topological relationships

In a TEN the number of possible topological relationships is limited (note that

topological relationships between features are not taken into account). As the TEN

can be considered as a decomposition of space, relationships like overlap, cover or

inside do not occur. Only relationships based on the interaction between tetrahedron

boundaries occur. Tetrahedrons (and their boundaries) are either disjoint or touch.

Three different types of the topological relationship touch can be distinguished:

(i) (only) two nodes of neighbouring tetrahedrons touch;

(ii) (only) two edges of neighbouring tetrahedrons touch;

(iii) two triangles of neighbouring tetrahedrons touch.

The third case is the definition of a true neighbour relationship between two

tetrahedrons. The other two cases are less important. As the neighbour relation is

very important in certain operations and algorithms, two related relationships are

derived in views in the implementation. The first is the relationship between a

triangle and its dual. This relationship is important in the process of finding

neighbours from tetrahedrons. Obviously triangles at the outer boundary of the
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tetrahedronisation will not have a dual. The view is created by a select statement

that uses the identical geometric part of the triangle codes:

create or replace view dualtriangle as
select t1.tricode tricode, t2.tricode dualtricode
from triangle t1, triangle t2
where removeobjectid (t2.tricode)521 *removeobjectid
(t1.tricode);

By combining the triangle view and the dualtriangle view, neighbouring

tetrahedrons can be found:

create or replace function getneighbourtet1
(…)

select fromtetcode into neighbourtet from triangle
where removeobjectid(tricode)521 *removeobjectid
(tricode);
(…)

and based on functions like this one the view with tetrahedrons and their

neighbours can be created. Analogue to this approach topological relationships at

feature level can be derived.

5.4 Validating the data structure

The Euler-Poincaré formula N2E + F2V50 is introduced in Section 3.4. As can be

seen in figure 10, this formula holds for all simplicial complexes, including simplicial

complexes that consist of simplexes of different dimensions. Due to this

characteristic dangling edges and faces cannot be detected, but for instance holes

(i.e. missing faces) can be detected.

Besides validation at data structure level, one can also think of validation on

feature level. As mentioned in Section 3.4, a valid volume feature satisfies three

conditions:

(i) the TEN in which the volume feature is modelled, should be valid;

(ii) the boundary triangulation (a set of constraints in the TEN) should form a

watertight boundary;

(iii) the interior of the volume feature should be face-connected.

Within the simplicial complex-based approach the validation strategy is to start

with a valid tetrahedronisation and to check every update for correctness before

committing it to the database. As a result one will migrate from one valid state into

another valid state. This strategy will also include the application of for instance

flipping algorithms for the deletion of vertices (Ledoux et al. 2005), as such

algorithms are designed to maintain a valid TEN during each step of the process.

Other correctness checks can be implemented, like for instance a check on the

triangle view to ensure that every triangle appears two times (with opposite sign,

ignoring the inherited object ids). Also validation on feature level can be considered;

for instance one can check whether all constrained triangles form a valid polyhedron

and whether these constrained triangles are intersected by edges (which is not

allowed). For more details on the validation of polyhedrons, see Arens et al. (2005).
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5.5 Query and analysis

The presence of views helps to simplify a lot of queries as the functions on which the

views are based can be omitted from the queries. The most frequently used elements

and relationships are made available through these views. If one is interested in for

instance a boundary representation of a feature, one could query the constrained

triangle view with a specific object id. The resulting set of constrained triangles

will form a valid polyhedron, see figure 15 for an example. One might consider

simplifying this polyhedron further by merging triangles with identical (given a

specific tolerance) normal vectors into polygons. However, a polyhedron may

consist of triangular faces and these triangulations might be useful for visualisation

purposes.

The number of analyses that can be performed on the TEN structure is virtually

unlimited. One can think of basic operations like distance, line-of-sight or volume

calculations, or more complex operations like tetrahedron-based buffer and overlay

(Verbree et al. 2005). As mentioned in Section 3.4, operations can be performed

both on simplex level and on feature level. Feature operations will collapse into

operations on individual simplexes and from these separate results the feature result

Figure 15. Output in VRML: result of select tricode from constrainedtriangle where
getobjectid (3,tricode)53. This is the same object as in figure 14.

774 F. Penninga and P. J. M. van Oosterom



D
ow

nl
oa

de
d 

B
y:

 [T
u 

D
el

ft-
 F

ac
 C

itg
] A

t: 
13

:3
3 

20
 M

ay
 2

00
8 

will be composed. Also a wide variety of simulations can be performed on the

tetrahedral mesh, like flooding or air flow simulations. Tetrahedronal meshes can be

used and optimised (into better-shaped tetrahedrons/triangles) for simulation

purposes (Joe 1995, Cutler et al. 2004).

5.6 Performance

The tetrahedron table is potentially very large, so indexing becomes an important

aspect of the data structure. Sorting the table on the tetrahedron code after bitwise

interleaving will function as an index, as tetrahedrons in a particular area will be

stored closed to each other in the table as well. However, a secondary index might

still be needed. As the tetrahedron code contains all geometry, constructing the

minimal bounding boxes and building a R-tree will be a logical step. To ensure

performance for queries on the views, function based indexes are created for all

functions that are used to create views. Updates in the data structure will also

require updates in the indexes.

6. Conclusions and discussion

6.1 Conclusions

The objective of our research is to develop a data structure that focuses on analytical

capabilities and to maintain data consistency. This paper has introduced a new

topological approach, based on a tetrahedral network. It is based on the observation

that all physical objects are volumetric by nature. As a result the real world can be

considered as a volume partition: a full decomposition of 3D space. Space is

partitioned by a large structure consisting of connected 3-simplexes (tetrahedrons).

Operators and definitions from the field of simplicial homology are used to define

and handle this structure of tetrahedrons. Applying simplicial homology offers full

control over orientation of simplexes and enables one to derive substantial parts of

the TEN structure efficiently, instead of explicitly storing all primitives. As a result

only the single column tetrahedron table has to be stored explicitly. Due to the

encoded vertices and inheritance of object ids, all constrained edges and faces can be

derived, thus avoiding redundant data storage. Since the topological relationships

are also derived, updating the structure turns out to be limited to updating the

tetrahedron table (and perhaps a feature attribute table). All implicit updates in

simplexes of lower dimension or topological relationships propagate from this single

update action.

Besides the advantages of the solid theoretical foundation offered by simplicial

homology, the tetrahedral network was also selected as a structure due to its

favourable characteristics from a computational point of view. All elements of the

tetrahedral network consist of flat faces, all elements are convex and they are well

defined. Where for instance a polyhedron approach might result in a virtually

endless variation in shapes and geometries, the TEN limits this variation to a single

shape.

The described data structure is developed as a DBMS data structure. Spatial

DBMS characteristics as the usage of views, function based indexes, 3D R-trees and

more complex operations are extensively used and contribute to the compactness

and versatility of the data structure. Furthermore, a database is capable of coping

with large data volumes, which is an essential characteristic in handling large scale

3D data.
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6.2 Discussion

One of the often raised objections to a TEN approach is its complexity, which might

confuse the user as the link between tetrahedrons and the real world features can be

hard to recognise. However, one can think of a setup in which the user handles only

features (as polyhedrons), while the algorithms translate these polyhedrons into

constrained triangles and use these to construct or update the constrained

tetrahedronisation. In other words, the user interface determines the perceived

complexity, not the internal representation. Considering the proposed data structure

as an internal data representation could even be taken to the next level, as one might

argue that a polyhedron data type in a DBMS should be represented internally as a

set of tetrahedrons to determine and maintain the polyhedron’s validity.

Another discussion topic is to identify the innovative aspects of the proposed

method. As discussed in section 1.3, neither the idea to use a TEN data structure for

3D data nor the idea to use simplexes (in terms of simplicial homology) in a DBMS

implementation is new. However, the proposed approach reduces data storage and

eliminates the need for explicit updates of both topology and simplexes of lower

dimension. By doing so, the approach tackles common drawbacks as TEN

extensiveness and laboriousness of maintaining topology. Furthermore, applying

simplicial homology offers full control over orientation of simplexes, which is a huge

advantage especially in 3D. In addition to this aspect, the mathematical theory of

simplicial homology offers a solid theoretical foundation for both the data structure

and data operations. Integrating these concepts with database functionality results

in a new innovative approach to 3D data modelling.

6.3 Further research

Some further research topics can be identified.

(i) Test the data structure with a more extensive data set. Within the research

project a 3D data set will become available of the inner city of

’s-Hertogenbosch, an ancient Dutch city with a small river called

Binnendieze that runs under houses and streets for about one third of its

length. This data set should give further insight in the possibilities of the new

data structure. Currently the model is tested with a data set with 1796

buildings, resulting in 167.598 tetrahedrons. Preliminary implementation

results will be presented in the work by Penninga and van Oosterom (2007).

(ii) Integrate the required constrained tetrahedronisation algorithms, as dis-

cussed in section 4.4. With this algorithms updating the structure will become

possible. Preserving all constraints and maintaining a valid data structure

will be the challenges.

(iii) Implement more analyses and simulations as proof of the feasibility of a

TEN data structure for such operations. More specific, it should also prove

the feasibility of the current structure, with little explicit storage and lots of

derived elements.

(iv) The current implementation is based on the idea of a single valued vector

map (Molenaar 1989). However, one could think of a simplicial-complex

based approach that models for instance both 3D topography and

ownership. This would require the introduction of multi valued constraints

in the structure. Both at theoretical and implementation level this is an open

problem. This multi valued approach should be compared to an approach in
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which two single independent valued vector maps (separate topography and
ownership map) have to be combined by a map overlay.

(v) In the future simplexes should be considered as possible building blocks for

4D modelling. As simplicial homology offers control over orientation and

derivation of boundaries, a 4D simplex might be suitable for temporal 3D

modelling. Although a 4-simplex is hard to imagine, simplicial homology

states that it is defined by five 4D vertices and bounded by five tetrahedrons.
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Technik und Wissenschaft. Proceedings of GI/SI Fachtagung, Zürich, 1989, Informatik
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