

UT I L I Z ING A D ISCRETE GLOBAL GR ID SYSTEM FOR HANDL ING
PO INT CLOUDS WITH VARY ING LOCAT IONS , T IMES , AND

LEVELS OF DETA I L

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Neeraj Sirdeshmukh

June 2018

Neeraj Sirdeshmukh: Utilizing a Discrete Global Grid System For Handling
Point Clouds With Varying Locations, Times, and Levels of Detail (2018)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

ISBN 999–99–9999–999–9

The work in this thesis was made in the:

Regional Innovation Centre Europe
Fugro
and
Department OTB - Research for the Built Environ-
ment.
Faculty of Architecture and the Built Environment
Delft University Of Technology

Supervisors: ir. Edward Verbree
prof.dr.ir. Peter van Oosterom

Co-reader: Dr. Ravi Peters

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Point clouds are getting increasingly larger and there is an ever greater need
to use a scalable, high performance, multi-dimensional spatial framework
that can be used to work with point clouds at scales from local to global.
First, point clouds stemming from disparate sources possess distinct geo-
metrical, temporal, and scale characteristics and these pose challenges for
the interoperability of these datasets in certain applications, for example
when point clouds of different countries need to be combined into a single
point cloud. A second challenge is the provision of this enormous amount of
data to anyone, anywhere via the Internet. This is the vision of Open Point
Cloud Map (OPCM), a proposed ’OpenStreetMap of point clouds’ [Verbree
et al., 2017].

To address the above challenges, having a common underlying data struc-
ture would be ideal. A Discrete Global Grid System (DGGS) can be used as a
common global data structure for the storage, visualization, and analysis of
disparate point clouds as it provides a means to encode locations on the en-
tire Earth using a hierarchical tessellation of non-overlapping cells that can
support data at multiple levels of spatial resolution. DGGS’s have emerged
in recent years as unconventional Earth reference systems for working with
global heterogeneous datasets in a Digital Earth, a term that refers to a di-
gital representation of the Earth will all geospatial information attached to
it. This research seeks to analyze the extent to which a DGGS can be used to
handle point clouds with varying location, time, and scale, and compare a
DGGS with conventional reference systems.

There exist several kinds of DGGS, each posing their own unique advant-
ages and disadvantages. These are compared to one another, and a choice is
made for a suitable DGGS for the purpose of handling heterogeneous global
point clouds. For appealing visualization, point clouds are better displayed
using variable-scale instead of multi-scale data structures, and the means to
achieve a variable-scale representation of point clouds using the hierarch-
ical nature of a DGGS is stated and implemented. The temporal dimension
of point clouds can be utilized to perform change detection, and this is il-
lustrated using a DGGS extended from 2D into 3D and 4D. Finally, a DGGS

is compared and contrasted with conventional systems such as European
Terrestrial Reference System (ETRS), International Terrestrial Reference Sys-
tem (ITRS), and the Dutch Rijksdriehoeksstelsel (RD) system. Several contribu-
tions to the field are being offered with this thesis: first, to date, there have
been no studies on using point clouds with DGGS; second, a DGGS has never
been applied to the indexing of a global point cloud; third, it is shown how
a DGGS can be used in higher than 2 dimensions; fourth, it is shown how the
precision-encoding nature of a DGGS can be used for variable-scale smooth
zoom visualization; and fifth a DGGS is compared and contrasted with con-
ventional Coordinate Reference System (CRS)’s. It can be concluded that a
DGGS-based approach provides for addressing all three potentially problem-
atic aspects of point cloud integration - location, time, and levels of detail-
in a single, consistent structure.

v

As a prototype implementation to demonstrate the feasibility of this method,
a viewer is developed that can stream point clouds in a DGGS-based system.
This further contributes to the OPCM vision and promotes the advancement
of open data. Collectively, addressing the issues of location, time, and scale
ultimately leads to better interoperability of point clouds and consequently
to more effective decision making.

vi

ACKNOWLEDGEMENTS

I would like to thank several people for providing their fullest support to me
during my thesis. First and foremost, my supervisors from the university
Edward Verbree and Peter van Oosterom, whose guidance and supervision
was extremely beneficial. The discussions I held with them provided me
with new ideas, a sense of challenge, and a proper direction for my research.
They also provided me the opportunity to attend the March 2018 Open
Geospatial Consortium (OGC) Meeting in Orléans, France, where I presented
the results of my research to the DGGS and Point Cloud Domain Working
Group (DWG)’s. I would also like to thank Martijn Meijers and Marien de
Vries from the Geomatics faculty for their willingness to provide advice
when requested. From the company Fugro, where this thesis took place, I
would like to thank Stella Psomadaki, who acted as a company supervisor,
held meetings, and was available whenever needed to provide support, and
Martin Kodde, who provided a broad, comprehensive direction at which to
aim the research. Martin also provided me the opportunity to present the
plan for my research at the September 2017 OGC meeting in Southampton,
United Kingdom, where I first got to personally meet and interact with the
experts on DGGS from the OGC and gained invaluable advice. I also thank
the members of the DGGS DWG, such as Dr. Matthew Purss, Perry Peterson,
and Robert Gibb, for their readiness to provide advice when requested. It
was a great experience interacting with them and exchanging ideas. It has
been an amazing 2 years at the Delft University Of Technology and I have
fully enjoyed my time here. I have honed my skills in geomatics and gained
an invaluable education.

vii

CONTENTS

1 introduction 2

1.1 Open Point Cloud Map . 2

1.2 Problem Statement . 3

1.3 Scientific Relevance . 4

1.4 Research Questions . 6

1.5 Research Scope . 6

1.6 Overview of Results . 7

1.7 Overview of Thesis . 7

2 theoretical background and related work 10

2.1 Coordinate Reference Systems 10

2.2 Map Projections . 10

2.3 Datums . 11

2.4 Earth Models . 11

2.5 Discrete Global Grid Systems 12

2.5.1 Base Polyhedron . 13

2.5.2 Polyhedron Orientation 14

2.5.3 Subdivision Shape . 15

2.5.4 Refinement Ratio and Transformation 17

2.6 Indexing Strategies . 19

2.6.1 Quadtrees . 19

2.6.2 Pyramid And Path Addressing 19

2.6.3 Space Filling Curves . 21

2.7 Dimensionally Extended 9-Intersection Model 23

2.8 Icosahedral Snyder Equal Area (ISEA) Projection 23

2.9 Point Clouds . 25

2.9.1 An Additional Dimension 26

2.9.2 Variable-Scale Visualization With DGGS 27

2.9.3 Change Identification With DGGS 29

2.10 Other Considerations . 30

3 methodology 32

3.1 Quantization . 32

3.2 Morton Indexing On A Curved Surface 34

3.2.1 Extensions to 3D and 4D DGGS 41

3.2.2 Order of dimensions . 47

3.2.3 Storage of Morton codes 48

3.2.4 Space Filling Curve (SFC) code convergence 48

3.3 Decoding a Morton code . 49

3.3.1 2D DGGS . 50

3.3.2 3D and 4D DGGS . 50

3.4 Change visualization . 52

3.5 Point cloud web visualization 53

3.5.1 Comparison of existing solutions 53

3.5.2 3D Tiles . 54

3.6 Analysis in a DGGS . 55

4 implementation 57

ix

x Contents

4.1 Tools And Data . 57

4.1.1 Software . 57

4.1.2 Hardware . 58

4.1.3 Data . 58

4.2 Computing point precisions . 59

4.3 Tiling the LAS files . 60

4.4 Morton Conversion . 60

4.5 Loading Of Data . 62

4.6 Storage of points . 64

4.7 Querying a DGGS . 66

4.7.1 Exact match . 69

4.7.2 Index On Full Key . 69

5 results 70

5.1 Web Visualization . 70

5.2 DGGS For Temporal Analysis 72

5.3 Comparison of DGGS with conventional reference systems . . 73

5.3.1 Latitude and longitude 75

5.3.2 The Dutch Rijksdriehoeksstelsel (RD) system 75

5.3.3 European Terrestrial Reference System of 1989 76

5.3.4 International Terrestrial Reference System 77

5.3.5 DGGS . 78

6 conclusion 82

6.1 Problems Faced In Research . 84

6.2 Future Work . 85

6.2.1 Utilization of a different DGGS 85

6.2.2 Utilization of a different SFC 85

6.2.3 Using a DGGS to study moving observations 86

6.2.4 Implementing a distance or direction metric on a DGGS 86

6.2.5 Standardization of a 3D and/or 4D DGGS 86

6.2.6 Using parallel processing 87

a appendix 94

a.1 DGGS Statistics Table . 94

L I ST OF F IGURES

Figure 2.1 Triangular cells (left), and hexagonal cells at two levels
of resolution (middle and right) in a DGGS. Figure
from Purss et al., 2017. 14

Figure 2.2 A base polyhedron (top) and its initial equal-area tes-
sellation of the sphere (bottom). a = tetrahedron, b =
cube, c = octahedron, d = icosahedron, and e = do-
decahedron. Figure from Purss et al., 2017. 14

Figure 2.3 The Archimedean solids. Figure from Sacred Geo-
metry, 2017. 15

Figure 2.4 A rhombus tessellation offers uniform orientation at
successive levels of refinement/resolution. 17

Figure 2.5 A rhombus tessellation possesses radial symmetry
about its center. The distance from point A to the
center is identical to the distance from point B to the
center. 17

Figure 2.6 All rhombuses in a single resolution Discrete Global
Grid (DGG) grid have the same size, shape, and ori-
entation. 18

Figure 2.7 A quadtree in a plane. At every iteration, the par-
ent cell is subdivided into 4 children. Figure from
Johnson, 2009. 20

Figure 2.8 The quadrant-recursive Morton SFC on a planar surface. 22

Figure 2.9 The Icosahedral Snyder Equal Area (ISEA) projection
provides a mapping from a sphere/ellipsoid to a flattened
icosahedron. The 20 triangular faces are pictured.
Figure from Harrison et al., 2011. 25

Figure 2.10 Depiction of a variable-scale view frustum. During
visualization, both high and low important points
are displayed closer to the observer position, and a
gradual change is made to display only the most im-
portant points far from the observer. 28

Figure 3.1 The precision of a Light Detection And Ranging (LIDAR)
point observation is mainly determined by the size of
the laser beam footprint at the location where it hit
the point. Figure from Rohrbach, 2015a. 34

Figure 3.2 The initial numbering of triangles on a flattened ico-
sahedron using the ISEA projection. 36

Figure 3.3 Pairs of adjacent triangles can be combined to yield
rhombuses on a flattened icosahedron. 36

Figure 3.4 The ISEA projection can be used to convert geographic
coordinates into grid (x,y) coordinates on the projection. 37

Figure 3.5 A rhombus, along with its diagonals. The diagonals
are perpendicular, and the lengths of the sides of the
rhombus are equal. 38

Figure 3.6 The opposite orientations of the triangles need to be
taken into account, as the orientation of the axes dif-
fers depending on the triangle orientation. 39

xi

xii List of Figures

Figure 3.7 Diagram of the process used to import data into a
DGGS reference frame for the Dutch point cloud data-
sets, which use grid coordinates in the RD CRS. 41

Figure 3.8 Repeated map projections and datum transformations
introduce compounding errors on spatial data. A
DGGS approach makes it unnecessary to apply re-
peated map projections and datum transformations. . 42

Figure 3.9 A DGGS extended into 3D on a spherical Earth. Only
a single resolution is shown. The cell in red is a 2D
cell on the curved surface of the Earth, and shown for
reference. 44

Figure 3.10 The normal to the surface of an ellipsoidal Earth does
not always pass through its center. Therefore, it can-
not be directly used on an ellipsoid to create 3D DGGS

cells. 45

Figure 3.11 Time, a continuous dimension, can be discretized into
a hierarchy of nested temporal ranges for encoding
the temporal dimension of point clouds, or any other
observations for that matter. 45

Figure 3.12 The X and Y coordinates in a skewed coordinate sys-
tem on a rhombus can be found by observing the
pattern of numbers in the Morton code of a cell: even
(0,2) and odd (1,3) values for X, and (0,1) and (2,3) for
Y. Figure from Zhao et al., 2006. 51

Figure 4.1 The linear relationship between the number of points
and amount of time needed to obtain their Morton
codes. 61

Figure 4.2 Ellipsoidal SFC’s at resolutions 5 (left) and 6 (right) of
an icosahedral rhombus DGGS. There exists a separate
SFC at every resolution of a DGGS. 61

Figure 4.3 Visualization of the query procedure used for this
thesis to retrieve point observations in a query region. 68

Figure 5.1 A 3D DGGS query result visualized in Google Earth.
This particular 3D query returned only one DGGS cell
at resolution 17, and its shape clearly resembles that
of a rhombus. The query selected all points in all
cells overlapping a 3D bounding box in between 42

and 45 meters above the World Geodetic System of
1984 (WGS84) ellipsoid. 72

Figure 5.2 Point density in the 2010 dataset in a small subset of
the study area. 73

Figure 5.3 Point density in the 2016 dataset in a small subset of
the study area. 73

Figure 5.4 The difference in point densities in between the two
years. Only cells containing points in both datasets
are shown. The use of equal-area cells makes such a
kind of spatial analysis more meaningful. 74

L I ST OF TABLES

Table 3.1 The CRS’s of national point clouds of three countries. 38

Table 3.2 With increasing resolution, the Morton code converges
to the true latitude, longitude, elevation, and time
values of every point. 49

Table 3.3 The equivalent time in Universal Coordinated Time
(UTC) for every GPS Time value provided in Table 3.2. 49

Table 4.1 Details about the datasets used in this thesis 59

Table 4.2 The laser beam footprints at various distances from
the Riegl VQ-250 LIDAR scanner. A direct linear rela-
tionship exists between the distance and width of the
beam footprint. 59

Table 4.3 File sizes and processing times (Morton conversion
and bulk loading combined) for chunks of the 2010

point cloud. A tile size of 5,000 points per tile provides
the most optimal processing times. 60

Table A.1 Whole-Earth statistics about the first 32 resolutions of
an icosahedral rhombus 2D DGGS. 94

xiii

L I ST OF ALGOR ITHMS

3.1 4D Morton Encode . 47

3.2 4D Morton Decode . 52

xv

ACRONYMS

ALS Airborne Laser Scanner . 4

API Application Programming Interface . 16

ASCII American Standard Code for Information Interchange.26

AWS Amazon Web Services .87

CAD Computer Aided Design . 2

CRS Coordinate Reference System . v

CSV Comma Separated Values . 63

CZML Cesium Language . 54

DBMS Database Management System . 8

DE-9IM Dimensionally Extended 9-Intersection Model 23

DGG Discrete Global Grid . xi

DGGS Discrete Global Grid System . v

DWG Domain Working Group. .vii

ECEF Earth Centered Earth Fixed . 29

EC2 Elastic Compute Cloud. .87

ETRS European Terrestrial Reference System . v

GB Gigabyte . 56

GIS Geographic Information Systems . 3

GLONASS Global Navigation Satellite System . 75

GLTF GL Transmission Format . 54

GNSS Global Navigation Satellite System . 26

GPS Global Positioning System. .3

GPU Graphics Processing Unit . 16

GRS80 Geodetic Reference System of 1980 .11

GUID globally unique identifier. .35

HD Hausdorff Distance . 30

HPC High Performance Computing . 56

IMU Inertial Measurement Unit . 33

ISEA Icosahedral Snyder Equal Area . xi

ITRF International Terrestrial Reference Frame. .12

ITRS International Terrestrial Reference System . v

LAEA Lambert Azimuthal Equal Area. .11

LAS LASer . 26

LIDAR Light Detection And Ranging . xi

LOD Level Of Detail . 5

LOD Levels Of Detail . 4

LOPOCS Light Open Source Point Cloud Server . 54

xvii

LIST OF ALGORITHMS 1

KML Keyhole Markup Language . 56

NAD27 North American Datum of 1927 . 11

NAD83 North American Datum of 1983 . 11

NAVD88 North American Vertical Datum of 1988 . 11

OGC Open Geospatial Consortium . vii

OPCM Open Point Cloud Map . v

OPENGL Open Graphics Library . 53

O-QTM Octahedral Quaternary Triangular Mesh . 16

OSM Open Street Map . 2

PIP Point In Polygon . 56

RADAR Radio Detection And Ranging . 26

RAM Random Access Memory . 58

RD Rijksdriehoeksstelsel . v

RDD Resilient Distributed Dataset . 58

RGB Red, Green, Blue . 30

SDI Spatial Data Infrastructure . 2

SFC Space Filling Curve . ix

SNR Signal-Noise Ratio . 33

SONAR Sound Navigation And Ranging . 26

SQL Structured Query Language . 63

SSE Screen Space Error . 71

TB Terabyte. .56

TLS Terrestrial Laser Scanning . 26

TLS Terrestrial Laser Scanner . 4

TMS Tiled Map Service . 54

UAS Unmanned Aerial System . 3

UPS Universal Polar Stereographic . 75

UTC Universal Coordinated Time. .xiii

UTM Universal Transverse Mercator . 11

VGI Volunteered Geographic Information . 2

WEBGL Web Graphics Library . 53

WGS84 World Geodetic System of 1984 . xii

WMS Web Map Service . 54

WMTS Web Map Tile Service . 54

1 INTRODUCT ION

Point clouds are becoming increasingly popular ways of mapping the Earth’s
surface. Several technologies exist to generate these massive point clouds,
with one of the major ones being LIDAR [Wang et al., 2018], which uses laser
scanning to generate a digital 3D representation of the target of interest.
Point clouds can be used towards a number of applications, from creating
3D Computer Aided Design (CAD) models, rendering, quality inspection,
change detection, vegetation mapping, and others [Pfeifer, 2018].

One of the most significant challenges in point cloud data processing lies
in handling its increasing data volume. Contemporary remote sensing data
acquisition technologies have the potential to generate point clouds with
10E12 or even 10E15 of 3D points [van Oosterom et al., 2015]. But a further
challenge and one more important from a practical perspective is the pro-
vision of this enormous amount of point cloud data to the general public
at free or reasonably low-cost rates. The shining examples of countries that
have provided all or most of their point cloud data as open data are the
United States, the Netherlands, Denmark, and Finland [Open Data Diliman,
2017]. In general, however, point cloud data remains inaccessible, licensed
and/or proprietary and out of reach of the general public. It is therefore
of enormous added value to research whether it is possible to establish an
open-source platform for the accessibility of point clouds and to investigate
the key challenges of point cloud data management in the creation of this
platform.

1.1 open point cloud map

Volunteered Geographic Information (VGI) refers to the harnessing of tools
to create, assemble, and disseminate geographic data provided voluntarily
by individuals [Goodchild, 2007]. Over the past decade or so, there has
been a tremendous growth in the engagement of private citizens, most of
whom do not possess any formal training in the discipline of geography, in
the creation of geographic information, and this has been further reinforced
by the explosive growth of the Internet. These individuals are participating
in the Spatial Data Infrastructure (SDI) on a purely voluntary basis, and
their input into the geographic data creation process might or might not
be entirely accurate. However, as more and more individuals are gaining
access to the Internet, they are better able to contribute to VGI-based projects.

One of the prime examples of a VGI-based initiative is Open Street Map
(OSM), a map of the entire world built by a global community of mappers
that is free for anyone to edit, use, and contribute [Neis and Zipf, 2012].
OSM is purely open data: data which is available in its entirety at no more

2

1.2 problem statement 3

than a reasonable reproduction cost, and that which can be freely used,
re-used, and re-distributed by anyone, without any discriminatory policies
against any certain group of individuals [Open Knowledge International,
2017]. Anyone with an Internet connection can contribute to the expansion
of OSM. The advent of cheap portable hand-held Global Positioning Sys-
tem (GPS) devices, aerial imagery, field survey equipment and unmanned
data collection systems such as Unmanned Aerial System (UAS)’s and the
original lack of map data for many regions of the world have fueled OSM’s
growth to a community of more than 2 million registered users [Neis and
Zipf, 2012]. Although many areas of the world are still not completely
mapped in digital form in OSM, this enormous effort by a global community
of Geographic Information Systems (GIS) professionals, engineers, human-
itarians working in disaster zones, and others will significantly narrow the
gap in the accessibility and availability of geographic information to a typ-
ical end-user.

The success of VGI initiatives such as OSM would propel one to wonder
why the same cannot be accomplished with point clouds. Just as OSM

provides a global map of vector features such as roads, railways, parks, res-
taurants, lakes, cycle routes, and others, an ’OpenStreetMap of point clouds’
could also be created (as a web application) to allow for the use and dis-
semination of point cloud data. Point cloud data has often been overlooked
[Verbree et al., 2017], but its growing popularity among both professional
and non-professional users and the broad range of applications for which it
can be utilized further motivate the creation of an Open Point Cloud Map
(OPCM).

The vision of the OPCM [Verbree et al., 2017] is to make point cloud data
accessible to anyone, everywhere via an Internet connection. The objective
of this project is to research and implement an open source platform for the
accessibility of point clouds, similar to an ‘OpenStreetMap of point clouds’
[Verbree et al., 2017]. Open data, in general, provides a wide range of be-
nefits, including improved efficiency of public administrations, economic
growth in the private sector, improved transparency and accountability and
development of innovative services [European Data Portal, 2017]. Creating
a global OPCM will allow anyone, anywhere, with access to the Internet to
upload, download, edit, use, and contribute to the existing repository of
crowd-sourced point cloud data, and this will further propel the expansion
of VGI and user-generated content.

1.2 problem statement
The creation of the OPCM is no easy task. The management and visualization
of massive volumes of point clouds requires a scalable framework to begin
with, and their incorporation into a global OPCM necessitates the addressing
of three of the most common challenges faced when trying to integrate point
clouds coming from different origins. These challenges in the creation of the
OPCM pertain to the aspects of location, time, and densities of point clouds
[Verbree et al., 2017].

The first aspect pertains to the geometry of the point cloud data. Dif-
ferent regions of the world use disparate CRS’s and point clouds in these

4 introduction

regions will likely also be in these distinct CRS’s, each of which could have
its own unique origin, orientation, and scale. Therefore, a problem arises
when trying to integrate or combine these datasets that are each linked to
a different CRS. If the points aren’t projected into a common system, the
coordinates in the combined point cloud would be meaningless. A common
CRS needs to be devised to handle such varying point clouds. Moreover, for
a project such as the OPCM, where point cloud data of the entire world will
be incorporated into a common reference framework, a common CRS is a
fundamental requirement.

Second, point clouds coming from different sources could have varying
Levels Of Detail (LOD); a point cloud collected using a Terrestrial Laser Scan-
ner (TLS) could, for example, have a point density of 1000 points per square
meter whereas another point cloud of the same area but collected using an
Airborne Laser Scanner (ALS) could have a much lower point density of 10

points per square meter, 100 times lower than the TLS point cloud. If one na-
ively combines such point clouds of the same area with significantly varying
densities into one dataset, sharp jumps between the densities will be seen
at the boundary between the two point clouds [van Oosterom et al., 2015].
Using such a multi-scale approach means that there are a discrete number
of LOD’s in the combined point cloud and the viewer might notice the dif-
ference in the point densities between neighboring blocks at different levels
of detail [van Oosterom et al., 2015]. Therefore, this is yet another problem
that needs to be addressed.

Finally, in time-stamped point clouds each point has an attribute that in-
dicates the time at which the laser pulse that captured the point was emitted
from the point cloud data collection platform (for example, aircraft or TLS).
The time component of point clouds is of prime importance if point clouds
of the same area but that were acquired at two different times need to be
analyzed for the purposes of change detection, or to create time-dynamic
visualizations that showcase how an area has changed in between times t1
and t2. Having a fixed, regular structure would be ideal for performing
such a change analysis. Collectively, addressing these three issues will ulti-
mately lead to better integration of point clouds from different sources, and
will eventually promote more effective decision making.

To address the above challenges, having a common underlying data struc-
ture would be ideal. A DGGS can be used as a common global reference
frame for the storage, visualization, and analysis of point clouds as it provides
a means to encode locations on the entire Earth using a hierarchical tessel-
lation of non-overlapping cells that can support data at multiple levels of
spatial resolution [Purss et al., 2017]. A DGGS provides for rapid spatial data
integration, storage, and analytics at scales from local to global in a single
consistent framework [Open Geospatial Consortium, 2017b]. Although at
present it is used in 2 dimensions, in this research it has been extended into
3D and 4D to allow for analysis of higher-dimensional data such as point
clouds. Therefore, a DGGS-based approach to handling massive point clouds
stemming from across the world has been investigated in this research.

1.3 scientific relevance

1.3 scientific relevance 5

Addressing these above challenges will allow for more interoperability among
point clouds stemming from different origins with respect to location (geo-
metry), time, and densities. That is, these datasets can more frequently be
used in tandem with one another in geospatial projects. The transformation
of point clouds into a common reference system provides several advant-
ages: we can study the systematic errors in-between the various datasets;
moreover, the internationalization of recent decades and growth in cross-
border projects has necessitated the need for a common reference system,
and transforming data into a common system will greatly aid the exchange
of geographic information [Geonovum, 2013], allowing for more interna-
tional cooperation and strengthening of ties between countries. Public au-
thorities at all levels need to regularly exchange geographic information
with other authorities [European Environment Agency, 2017], especially
with those with whom they share a political border. In these situations,
it is of prime importance to exchange geographic information in a common
CRS to avoid positional errors and facilitate improved decision making and
planning. Doing otherwise will hinder the success of cross-border projects.

Point clouds stemming from different origins are likely to have varying
initial point densities. Moreover, point densities are also likely to differ for
different applications towards which point clouds are utilized. For example,
for basic 3D surface models or forest inventory purposes, point density is
likely to be around 0.5 - 1 point/square meter, for flood modeling around
1-2 points/square meter whereas for detailed 3D city models it could be
up to 10 points/square meter [Rohrbach, 2015b]. The density is dictated by
the requirements for the usage of the generated point cloud, and is also an
indicator of the Level Of Detail (LOD): more dense point clouds will have
high LOD whereas less dense point clouds will have low LOD. When try-
ing to combine such point clouds with varying densities into a composite
point cloud, it is of added value to create a continuous LOD representa-
tion of the composite point cloud rather than a discrete LOD representation
(with multiple LOD’s). Doing so will make for more appealing point cloud
visualization, and will suppress any artefacts. Using continuous LOD based
upon a continuous dimension added to the points will suppress the density
shocks that discrete LOD based representations have [van Oosterom et al.,
2015]. Such continuous LOD representations can be performed not only on
points, but also on the other primitive vector data types such as lines and
polygons. These so-called variable-scale representations provide a gradual
change in the display of vector features when they are zoomed in or out
upon, without any split and/or merge operations causing a sudden local
’shock’ [Meijers, 2011]. It is desirable to prevent such breaks or jumps in the
data, to provide a positive end-user experience. It must also be taken into
consideration that most of the end users of the OPCM will be part of a non-
expert audience [de Haan, 2010], and therefore this requirement becomes
even more crucial. As a DGGS inherently provides a system of multiple res-
olutions, the advantages and disadvantages of using it as a variable-scale
structure can be studied. This research seeks to analyze this aspect of DGGS.

Time-stamped point clouds allow for the spatial analysis of changes that
could have taken place in an area of interest; we can study what has re-
mained unchanged, or has been been added, removed or modified across
an area in-between times t1 and t2. Timely and accurate change detection of
features on the Earth’s surface is invaluable for understanding relationships
between human and natural phenomena [Lu et al., 2004] and helps maintain

6 introduction

and update databases [Xiao et al., 2013]. Point clouds can also indicate the
land cover of an area based upon their spectral characteristics, and the study
of land cover change using point clouds can help in the understanding of
how the Earth is changing, for determining which factors are contributing
to these changes, and to predict how the landscape will look like in the fu-
ture [Boriah et al., 2008]. Ultimately, this promotes more effective decision
making.

In the academic literature, the use of DGGS’s for point clouds is non-
existent; a key contribution of this thesis is to the application of DGGS techno-
logy for ”handling” (i.e. analyzing/manipulating/processing) point clouds.
Moreover, at present DGGS’s are 2D systems; this thesis presents an inaug-
ural conceptualization of how they would appear in 3D and 4D. Integrating
four dimensions into one DGGS cell index rather than storing them as attrib-
utes results in improved query performance, and allows us to fully exploit
the multi-dimensional nature of point cloud data.

1.4 research questions

The main research question for this thesis is:

To what extent can a Discrete Global Grid System be used to handle
point clouds with varying locations, times, and densities/levels of detail?

The goal of this research is to analyze to which extent a DGGS is suitable
for handling point clouds stemming from different origins with respect to
location, time, and LOD’s and create a DGGS-based viewer allowing for visual-
ization, analysis, and upload of global open point cloud data. Sub-questions
are:

• How can a variable-scale structure be implemented to support smooth
zoom in DGGS?

• How can a DGGS be constructed to store the time component associated
with point cloud data for analysis of spatio-temporal point clouds?

• What are the advantages and disadvantages of using a DGGS as com-
pared to using conventional CRS’s?

1.5 research scope
The following remarks outline the scope of this research.

• There exist several methods of constructing a DGGS, based on different
choices of initial parameters. These methods have been briefly com-
pared to one another. However, only the ISEA aperture 4 rhombus DGGS

method was implemented. More explanation follows in Section 2.5.

• Change detection using the time component of point clouds is one of
the focus areas of this research. However, this research does not aim to
identify the most suitable method for change detection, nor does it aim
to perform any sophisticated change detection itself. It simply aims to

1.6 overview of results 7

study how changes in time-enabled point clouds can be analyzed and
visualized with a DGGS.

• Automatic feature detection/identification and object reconstruction
from point clouds is outside the scope of this research.

• Different ways to generate point clouds exist. This thesis has focused
on point clouds acquired only from LIDAR, and this could be terrestrial
or airborne.

1.6 overview of results
An icosahedral rhombus-based DGGS approach was utilized for this thesis,
as it provides a congruent tessellation of cells covering the Earth at vari-
ous resolutions, simpler geometry as compared to other shapes such as
hexagons, and the application of quadrant-recursive indexing algorithms
such as Morton SFC’s. The key results of this research include:

• As the current DGGS specification is 2D on the surface of the Earth,
extensions to 3D and 4D DGGS are proposed.

• As a DGGS is a hierarchical system with multiple resolutions, it can be
used to encode the discrete precision of point observations collected
in the real world. Moreover, this additional dimension can be utilized
for a variable-scale visualization of point clouds, which is explained.

• A DGGS is also ideal for analyzing changes between time-stamped
point clouds as it provides a fixed global reference frame that, once
defined, does not move due to geophysical forces. The use of DGGS for
identifying and visualizing changes between two moments in time is
studied.

• Finally, as they are not widely-used technologies in the geomatics com-
munity, DGGS’s are compared and contrasted with existing coordinate
reference systems.

It can be concluded that DGGS’s are an ideal tool for handling point clouds
with varying locations, times, and densities/levels of detail.

1.7 overview of thesis
This thesis is organized as follows:

• Chapter 2 provides a broad introduction to the concepts that are ne-
cessary to understand the rest of this thesis. This includes topics such
as coordinate systems, datums, map projections, ellipsoids, DGGS’s,
indexing approaches using SFC’s, and point cloud visualization and
change analysis with DGGS.

• Chapter 3 elaborates on the methodology utilized in order to answer
the research questions for this thesis. The procedure followed to en-
code and decode a 2D, 3D, and 4D Morton code for any location on
Earth is explained. The methodology used to generate a variable-scale

8 introduction

visualization and conduct change analysis is elucidated. Also, the op-
erations that can be conducted using a DGGS are briefly summarized,
in conceptual terms.

• Chapter 4 discusses the datasets used and the implementation of the
methodology developed.

• Chapter 5 presents the results of this thesis.

• Chapter 6 provides answers to the main research questions, discusses
drawbacks of the current approach, and provides recommendations
for future work.

The work performed for this thesis started in July 2017 and took approx-
imately 9 months. The work was performed at Fugro GeoServices in the
Netherlands, with academic supervision from TU Delft. I started work on it
a bit earlier than the usual university period, because it’s always good to be-
gin something early in case extra time is needed towards the end, especially
with a large research project such as a Master’s thesis. Over the course of
this period, I got the opportunity to study in-depth an up-and-coming topic
in the field of geomatics, DGGS. As far as I know, this topic has rarely been
researched in academia and therefore there was a lot of new ground to ex-
plore. This was as daunting at first as it was exciting. However, with a sense
of adventure, I decided to step foot into unexplored territory.

The Geomatics programme at TU Delft provided me the core founda-
tion needed for conducting such a kind of research, as it taught me invalu-
able skills in data collection, processing, analysis, and visualization. My
research was a combination of several topics, such as point clouds and re-
mote sensing, databases, cartography, geodesy, positioning, and web GIS

and visualization. I was able to utilize the knowledge from several of the
core foundation courses of the first year, such as Sensing Technologies, GIS
and Cartography, Positioning and Location Awareness, Geo-Database Man-
agement System (DBMS), and Geo-Web Technology, to name the most im-
portant. Sensing Technologies taught me skills in data acquisition; GIS and
Cartography skills in spatial analysis and map generation; Positioning and
Location Awareness skills in geodesy (projections, CRS’s, datums, etc.), sur-
veying, and navigation; Geo-DBMS skills in data storage and retrieval; and
Geo-Web Technology skills in sharing geospatial data with others across the
Web. I also honed my skills in Python in the Python Programming class, and
this greatly aided me in writing the code for my thesis, which was almost
all done using this language. I also wrote code in Javascript and C#, and
although these are different languages, having a strong foundation in one
language allows one to easily grasp other languages. My thesis followed a
methodical procedure much similar to the order in which the core founda-
tion courses were taught. For example, I first had to acquire the point cloud
data, then store it in a DBMS, then process and analyze it, and finally use it
for web visualization.

Over the course of my thesis, I was also given the privilege to present the
state of my research at the OGC Technical and Planning Committee Meet-
ings of September 2017 and March 2018, in Southampton, UK and Orléans,
France, respectively. These were both invaluable opportunities to meet and
network with experts in the DGGS and point cloud domains, exchange ideas,
understand the work of others, and showcase my own work in front of an in-
ternational audience. I got to meet the chairs and members of both the DGGS

1.7 overview of thesis 9

and Point clouds DWG’s and developed strong professional associations. As
I had just begun work on my thesis at that time, I presented a proposed
plan for my research during the September 2017 meeting. At this meeting I
met Dr. Matthew Purss, whom I thank wholeheartedly for being available
anytime to provide guidance and/or feedback on my questions. During the
March 2018 meeting, I mainly presented the results from my research. I
greatly thank my supervisors from both TU Delft and Fugro for allowing
me the opportunity to attend these meetings.

My thesis topic is highly germane to the field of geomatics, as it involves
many relevant aspects. It has a lot to do with geodesy and mapping and
modeling the Earth. Moreover, due to the large volume of data in a point
cloud and an equally large data structure such as a DGGS, scalability is im-
portant and it becomes consequential to use a spatial DBMS for indexing,
clustering, and querying such massive datasets. Finally, data has to be
shared with/displayed to others somehow, and spatial web visualization
tools are needed. These are all various parts of the science of geomatics,
which according to the website of the Master’s in Geomatics programme is
”concerned with the acquisition, analysis, management and visualization of
geographic data”.

2 THEORET ICAL BACKGROUND AND
RELATED WORK

This chapter provides an overview of all the topics relevant to and necessary
to understand this thesis. It is organized as follows: sections 2.1,2.2,2.3, and
section 2.4 provide an introduction to the techniques used to map and model
the Earth. Section 2.5 discusses the key components of a DGGS, while section
2.6 elucidates various forms of indexing strategies for use on a sphere or an
ellipsoid. Section 2.8 provides a detailed overview of the ISEA projection that
has been used. Finally, section 2.9 elaborates on the key challenges in the
handling of point clouds that are dealt with in this thesis.

2.1 coordinate reference systems

A CRS is a means to describe the position of a point in space. CRS’s are
usually one of three types: 2-dimensional Cartesian systems, in which case
separate X, Y horizontal coordinates are used; 3-dimensional Cartesian sys-
tems, in which separate X, Y, and Z coordinates describe a point’s position;
or geodetic coordinates, also known as ellipsoidal or geographic coordinates, in
which latitude, longitude, and height above a reference ellipsoid that is used
to model the Earth are used to describe a point’s position [van der Marel,
2016]. 3D Cartesian systems usually originate from the center of mass of the
Earth, in which case they are referred to as geocentric coordinates; however,
sometimes the origin is placed somewhere on the surface of the Earth, in
which case the resulting coordinates are referred to as topocentric coordin-
ates [van der Marel, 2016]. Each of these kinds of CRS’s have their own
unique advantages and disadvantages. Geodetic coordinates are actually
angular measurements that describe position using curvilinear coordinates
on a sphere or an ellipsoid. A DGGS greatly differs from such conventional
CRS’s and provides an alternative approach to representing the locations of
objects on the Earth’s surface (see Section 5.3).

2.2 map projections

Locations on a 3-dimensional model (for example, a sphere or an ellips-
oid) that represents the Earth are usually provided in angular geodetic (lat-
itude, longitude) coordinates. However, in practice, it is more common to
transform these angular coordinates into 2-dimensional X, Y grid coordin-
ates on a map projection since these projected coordinates are easier to work
with than their angular counterparts. A map projection is a systematic trans-
formation of the geodetic coordinates of locations on the surface of an Earth
model such as a sphere or an ellipsoid into coordinates describing locations
on a flat, 2D Cartesian plane [Snyder and Voxland, 1989] without any loss

10

2.3 datums 11

of information [van der Marel, 2016]. Grid coordinates can originate from
any point on the projection; in many cases, however, they are set to originate
from the lower left of the projection, thereby turning them into positive False
Eastings(x) and False Northings(y) [van der Marel, 2016]. In theory, there are
an infinite amount of map projections [Snyder, 1993]. A map projection can
preserve angles, areas, distances, or directions, but never a combination of
all of the above. Furthermore, no map projection can preserve both area
and angles (i.e. be both conformal and equal-area). The map projection to
be mainly used in this thesis is the ISEA projection, more information about
which is provided in section 2.8. Most DGGS implementations are based
upon a map projection, and usually an equal-area one, such as ISEA.

Examples of some commonly used projections are the Mercator, Robinson,
and Lambert Azimuthal Equal Area (LAEA). 2-dimensional CRS’s are defined
on top of these projections for locating features on the surface of the Earth.
For example, the Universal Transverse Mercator (UTM) coordinate system is
defined on top of a worldwide Transverse Mercator projection.

2.3 datums

A geodetic datum defines a means to link a coordinate system to a model
of the Earth, such as a sphere or an ellipsoid. More specifically, it defines
the size and shape of the Earth model and the origin, orientation, and scale
of the coordinate systems that are linked to that model [Dana, 2017]. Separ-
ate datums can be used for horizontal and vertical position measurements.
Every CRS has its own datum. Examples of some common datums are
North American Datum of 1983 (NAD83) and North American Datum of
1927 (NAD27) (horizontal), North American Vertical Datum of 1988 (NAVD88)
(vertical), and WGS84 and ETRS 1989 (composite, both horizontal and vertical).
Every observation in the real world, such as a vector linear feature or a
point in a point cloud, is collected in some original CRS. It is important
to remember that transformations between CRS’s on two or more different
datums lead to a certain loss of information or error, whereas transforma-
tions between CRS’s on the same datum are lossless i.e. they do not introduce
any errors or loss of information on the original observations[van der Marel,
2016].

2.4 earth models

The Earth is best approximated as an oblate spheroid, a mathematical con-
struction resembling a sphere squashed on the top and bottom sides so that
the diameter from pole to pole is less than the diameter of a line going from
the Equator through the center to the other side on the Equator again. It
is almost similar to an ellipsoid. The two most common ellipsoids in use
today are the Geodetic Reference System of 1980 (GRS80) and WGS84 ellips-
oids [ICSM, 2016]. The two ellipsoids are nearly identical to each other, with
the only major difference being the length of their semi-minor axis (half the
distance from the North to the South pole) [Neacsu, 2011].

12 theoretical background and related work

Using a global network of monitoring stations in a reference frame, the loc-
ation of the axis of rotation (the line connecting the North and South poles
of the Earth) and the position of any point relative to the center of the Earth
can be determined in 3D geocentric coordinates. These geocentric coordin-
ates can then easily be converted into ellipsoidal coordinates by fitting a
reference ellipsoid into this 3D Cartesian reference frame and converting
the geocentric coordinates into latitude, longitude, and ellipsoidal height.
The two main reference frames in use today are the International Terrestrial
Reference Frame (ITRF) and WGS84 reference frames. The ITRF is linked with
the GRS80 ellipsoid and the WGS84 reference frame is linked with the WGS84

ellipsoid [ICSM, 2016]. It is important to note that due to plate tectonics,
reference frames have to be continuously updated to correct for plate mo-
tion. These corrections are known as realizations and reflect improved meas-
urements of station positions and velocities, datum definitions, and newly
added or discontinued stations [van der Marel, 2016].

For the rest of this thesis, the WGS84 ellipsoid, and not a sphere, was used
as a basis on which to construct a DGGS, as it is one of the most popular
global terrestrial reference systems, not the least because it is also the basis
for the American GPS system. Moreover, Vincenty’s direct and inverse for-
mulas can be used on the WGS84 ellipsoid, and they are more accurate than
methods that assume a spherical Earth such as great-circle distance, because
they assume the Earth to be an oblate ellipsoid (which is also what is used
by WGS84) [Rooy, 2016]. The direct formula computes a point’s location on
an ellipsoid given a distance and bearing/direction from another point; the
inverse formula computes the geographical distance and bearing/direction
between two points. WGS84 is also the most globally accurate Earth model.
In some cases, however, concepts are simpler to explain if a sphere is as-
sumed, and this is stated wherever necessary.

2.5 discrete global grid systems

A DGG is a hierarchical tessellation of the Earth’s surface into a set of cells
at discrete resolutions that forms a complete partition of the surface. That
is, there are no gaps or overlaps between the cells and the cells completely
cover the Earth’s surface. Each cell in the tessellation has a single point in-
side of it that is representative of it [Sahr et al., 2003]. Usually, this is chosen
to be the centroid of that cell. The cells do not necessarily have to be of the
same shape or size in between resolutions. The cells at a single resolution
constitute a DGG. A collection of these DGG’s constitutes a DGGS. As each
of the cells of the DGG’s that form a DGGS is of a different size/resolution,
a DGGS consists of a series of increasingly finer resolution grids [Sahr et al.,
2003] organized in the form of a hierarchy.

The conventional latitude/longitude grid or graticule is a popular example
of a DGGS. It partitions the Earth’s surface into a series of cells, each of
which is bounded by a certain latitude and longitude. A limitation of this
approach to subdividing the Earth is that these cells are not equal-area [Sahr
et al., 2003], and become progressively distorted in area, shape, and inter-
cell spacing as one moves north or south of the Equator [Sahr et al., 2003].
This makes it increasingly difficult to perform any kind of geostatistical

2.5 discrete global grid systems 13

analysis using such grids, as the underlying cells all do not have the same
area. The North and South poles map to 1-dimensional lines in such grids,
when in reality they are simple 0-dimensional points on the Earth’s surface.
Furthermore, the top and bottom rows in this form of grid structure are
squares, when in reality they should be triangles on the plane, as they share
a common point (i.e. the pole). Although the graticule is familiar to most
people, for statistical surveying or sampling purposes [Sahr et al., 2003] it
is not apt for use. Due to the large distortions in area, each cell does not
provide an equal probability of contributing to an analysis using such a
grid.

It would be ideal if there was an alternative to the graticule that provides
an equal-area tessellation of the Earth’s surface into a hierarchy of resol-
utions. Indeed, this is exactly what is provided by a geodesic equal-area
DGGS. DGGS’s are polyhedral reference systems on the surface of a base
polyhedron’s circumscribed ellipsoid [Purss et al., 2017]. One of a number
of polyhedrons, usually either a Platonic or an Archimedean solid, can be
chosen as the base polyhedron for a DGGS, and its faces subdivided into a
series of finer resolution cells, which are then inversely projected using an
equal-area projection onto the surface of a sphere or an ellipsoid that rep-
resents the Earth. The basic idea of the equal area projection is that the area
of an infinitesimal disk on a polyhedron and its mapping to the sphere are
preserved. Since the area of a cell on the planar face of a polyhedron is the
integration of all of these infinitesimal disks, the area of a cell is also pre-
served. Since, at any particular resolution, all the cells have the same area in
the refined polyhedron (i.e. they are equal-area), their area after mapping
to a sphere or an ellipsoid is also the same within that resolution. Unfortu-
nately, no map projection can preserve both shape (angles) and area; that is,
it is impossible to have a projection that is both conformal and equal-area
[Olson, 2006]. Therefore, although it is possible to achieve an equal-area tes-
sellation of the ellipsoid using a base polyhedron in a DGGS, the shapes of the
cells on the ellipsoid after the inverse projection can be heavily distorted.

A DGGS consists of a number of design parameters. These include: 1) a
base regular polyhedron 2) an orientation of the polyhedron relative to the
chosen Earth model 3) a subdivision method defined on each face of the
polyhedron, including the choice of a shape 4) the amount of refinement
applied to each parent cell at a particular resolution in the hierarchy to
yield the corresponding children cells at the next higher resolution, known
as the refinement ratio or aperture and 5) a method to transform the cells from
a planar surface to that of the chosen Earth model [Sahr et al., 2003] i.e. from
the planar faces of the polyhedron to a sphere or an ellipsoid that represents
the Earth. Therefore, it is readily apparent that there are various kinds of
DGGS’s, each with their own unique properties. A DGGS can be chosen that is
optimal for a particular application or use-case. The use-case for this thesis
is in handling point clouds that have varying initial CRS’s, LOD’s, and/or
times.

2.5.1 Base Polyhedron

The most commonly used polyhedrons in the creation of a DGGS are the 5

Platonic solids, namely the tetrahedron, cube, octahedron, dodecahedron,

14 theoretical background and related work

and icosahedron. These are depicted in Figure 2.1. Less commonly ex-
plored polyhedrons are the 13 Archimedean solids, such as the truncated
octahedron, or the icosidodecahedron. The key difference between Platonic
and Archimedean solids is that Platonic solids consist of surfaces of only a
single kind of regular polygon, whereas Archimedean solids consist of sur-
faces of more than a single kind of regular polygon [Snyder, 1992]. Many of
the Archimedean solids are truncated, or ”cut-off”, versions of the Platonic
solids or combinations of two Platonic solids. The Archimedean solids are
depicted in Figure 2.3. Unfortunately, in general these polyhedra remain
unexplored as choices for a base polyhedron in DGGS. Therefore, this thesis
has focused on the Platonic solids, and specifically the icosahedron as it is a
better approximation of the Earth than any of the other four Platonic solids
[Amiri et al., 2015a, 2016]. The icosahedron has smaller face sizes than all
of these other solids, and therefore the resulting shape and area distortions
when it is mapped to the ellipsoid are minimized [White et al., 1998].

Figure 2.1: Triangular cells (left), and hexagonal cells at two levels of resolution
(middle and right) in a DGGS. Figure from Purss et al., 2017.

Figure 2.2: A base polyhedron (top) and its initial equal-area tessellation of the
sphere (bottom). a = tetrahedron, b = cube, c = octahedron, d = icosa-
hedron, and e = dodecahedron. Figure from Purss et al., 2017.

2.5.2 Polyhedron Orientation

Once a polyhedron has been defined, its orientation relative to the Earth
model can be chosen. For example, one vertex of the icosahedron can be
aligned with the ’North Pole’ of the sphere or ellipsoid that represents the
Earth, which due to the nature of the icosahedron would also mean that
there is another vertex that is tangent to the ’South Pole’ of the Earth. With
this orientation, bearings between points on an icosahedron projected onto
the ellipsoid can be computed easily, and it is also relatively trivial to tell
on which icosahedral face a point is located. Another possible orientation
tries to minimize the number of icosahedron vertices that fall on land, to
avoid any ruptures in the landmass when the icosahedron is unfolded onto
the plane [Sahr et al., 2003]. However, for the purposes of making the OPCM,
polyhedron orientation is not considered to be a significant factor, as theor-
etically point clouds could be located anywhere on the surface of the Earth,

2.5 discrete global grid systems 15

Figure 2.3: The Archimedean solids. Figure from Sacred Geometry, 2017.

including in the oceans. Therefore, the classic pole-aligned orientation was
chosen for this thesis, as it provides for ease of use and computations.

2.5.3 Subdivision Shape

A variety of shapes can be used to subdivide the planar faces of the icosa-
hedron into cells of finer resolution. These include the hexagon, pentagon,
rhombus, and triangle. It is wise to compare the advantages and disadvant-
ages of using each of these shapes before making a selection.

Squares, although they have a simple and familiar geometry, have the
disadvantage that their geometry makes them unusable on triangle-faced
polyhedrons such as the icosahedron [Sahr et al., 2003] that are better ap-
proximations of the Earth than other polyhedrons such as the cube. How-
ever, their skewed counterpart - rhombuses - can be used on the triangle-faced
icosahedron (see Figures 3.2 and 3.3 for an illustration of how rhombuses
can be used on an icosahedron). Although in layman’s terms a rhombus is
also known as a diamond, the proper mathematical term for this shape is a
rhombus and this is what was used throughout this thesis.

Hexagons possess several favorable properties such as maximal compact-
ness [Sahr et al., 2003], greatest angular resolution [Golay, 2000], and uni-
form adjacency, meaning that the centers of adjacent hexagons are the same
distance from one another[Gregory et al., 2008]. However, a significant
disadvantage lies in the fact that hexagonal DGGS’s are incongruent: it is
impossible to decompose perfectly a parent hexagon into smaller children
hexagons. This complicates implementing a hierarchical indexing scheme
on hexagonal cells. Furthermore, it is impossible to completely subdivide a
spherical icosahedron into hexagons [Sahr et al., 2003], as pentagons will be
formed at each of the vertices of an icosahedron. This necessitates a modi-
fication of existing algorithms that need to take both of these shapes into
account. It should be noted, however, that as hexagons are the most com-
pact of all the shapes, they are ideal if Tobler’s First Law Of Geography is to

16 theoretical background and related work

be considered: ”everything is related to everything else, but near things are
more related than distant things” [Miller, 2004]. One of the objectives of this
thesis is to formulate a method to index and retrieve global point clouds in
the OPCM. That is, it should be possible to retrieve points in a highly efficient
manner based on a spatial, temporal, or spatio-temporal query. Therefore,
a hierarchical indexing mechanism is needed in order to assign a proper
identifier to each point in a global point cloud. It would also be ideal to
spatially/temporally cluster the points; that is, to find a method that can be
used to store points that in reality are close to one another also close to one
another in a database. The cell identifier should indicate the approximate
location of the point on the Earth model, and it should be possible then
to retrieve points based upon this identifier. Due to their non-hierarchical
nature, hexagons are not a proper choice for a DGGS for this thesis.

Triangles have the advantage of allowing for rapid visualization and ren-
dering, as many pipelines in the cross-platform, cross-language Application
Programming Interface (API) OpenGL framework support such structures
[Amiri et al., 2015a]. Modern Graphics Processing Unit (GPU)’s are partic-
ularly optimized at rendering triangles [Loop and Blinn, 2017]. However,
triangles suffer from non-uniform orientation at successive resolutions. At
each successive resolution, the orientation of the inner triangle flips. This
complicates the implementation of algorithms such as adjacency analysis,
spatial queries, and data update [Bai et al., 2005] on DGG’s built from them,
as they must take this changing orientation into account. One of the earli-
est implementations of a DGGS was the Octahedral Quaternary Triangular
Mesh (O-QTM) [Dutton, 1996]; however, this uses a triangle subdivision that
suffers from such a non-uniform orientation at different levels of the subdi-
vision; as a result, spatial-analytical operations are much more complicated.

This leads to the choice to use a rhombus as a spatial partitioning method
in a DGGS. [White, 2000] and [Bai et al., 2005] provide several advantages
rhombuses provide over other shapes. First, the geometry of a rhombus is
simpler than that of a triangle or a hexagon [Bai et al., 2005]. The rhombus
tessellation has uniform orientation at successive resolutions (see Figure 2.4)
[Bai et al., 2005], as well as radial symmetry (see Figure 2.5) and translation
congruence (see Figure 2.6) [White, 2000]. Radial symmetry refers to the fact
that there is a point the same distance in the opposite direction from the cen-
ter of the rhombus as another point. [White, 2000]; this provides a certain
balance in how far away a point observation can be from the centroid of a
cell and in the assignment of an observation to a cell. Translation congru-
ence refers to the fact that rhombuses maintain the same size, shape, and
orientation at each level in the DGGS hierarchy [White, 2000]. Perhaps the
most beneficial property of a rhombus tessellation is that quadrant-recursive
orderings, such as Morton or Hilbert SFC’s, can be used to index the cells of
a rhombus-based DGGS (more information about SFC’s can be found in Sec-
tion 2.6.3). The rhombus hierarchy is nested, such that each parent rhombus
completely contains all its children rhombuses [White, 2000]. Moreover, the
two most important needs of the global data user community are equal-area
cells and a nested hierarchy among cells [Gregory et al., 1999], and a rhom-
bus satisfies both, unlike a hexagon. This property is very desirable for
indexing a global point cloud in a rhombus-based DGGS. Using a Morton
curve, the cells of a rhombus-based DGGS can be uniquely indexed in both a
hierarchical and space-filling manner. Therefore, this allows for the imple-
mentation of both an efficient indexing and clustering mechanism. One of

2.5 discrete global grid systems 17

the key requirements of any DGGS implementation is that each cell across
the entire domain of a DGGS has a spatial reference (index) assigned to it
via a spatial referencing method that uniquely identifies it within the DGGS

[Purss et al., 2017]. Morton indexing and its relationship to a hypercube can
be used to accomplish this task on a rhombus-based DGGS.

Figure 2.4: A rhombus tessellation offers uniform orientation at successive levels of
refinement/resolution.

Figure 2.5: A rhombus tessellation possesses radial symmetry about its center. The
distance from point A to the center is identical to the distance from point
B to the center.

2.5.4 Refinement Ratio and Transformation

Rhombuses allow for a nested, congruent aperture 4 hierarchy: each par-
ent rhombus can be perfectly subdivided into 4 children rhombuses. This
allows for quadtree-based algorithms, such as Morton indexing, to be ap-
plied. Quadtrees are explained in more detail in Section 2.6.1. It should
also be noted that rhombuses can also be subdivided into n2 children, with

18 theoretical background and related work

Figure 2.6: All rhombuses in a single resolution DGG grid have the same size, shape,
and orientation.

n being a positive integer larger than 2; however, by definition, a quadtree
cannot be used in this case.

Finally, a method is needed to transform the cells created on the planar
faces of the icosahedron onto the ellipsoid. One of the fundamental require-
ments of any DGGS is that the cells at any resolution should all be equal-area
or approximately equal-area [Purss et al., 2017]. This provides each area on
the Earth’s surface an equal probability of contributing to an analysis [Purss
et al., 2017]. The rhombus cells on the triangular-faced icosahedron all have
the same areas and shapes (internal angles). To preserve their areas on a
sphere, an (inverse) equal-area projection is needed. The ISEA projection
can be used for this task, as it provides for relatively low linear scale vari-
ation and angular deformation [Snyder, 1992] and provides an equal-area
mapping between the icosahedron and the ellipsoid. Figure 2.2 shows the
Platonic polyhedrons along with their initial equal-area tessellations on a
sphere. The initial equal-area tessellation represents Resolution 0 of a DGGS.
The ISEA projection is explained in more detail in Section 2.8. Therefore,
the DGGS that has resulted from the above considerations is an icosahedral,
pole-oriented, rhombus-based DGGS with a refinement ratio of 4 and the
ISEA projection to be used to transform from the icosahedron to the WGS84

ellipsoid.

Although DGGS’s have been in existence since at least the 20th century,
they were officially standardized and released as a specification by the OGC

in October 2017. Therefore, as of this writing, DGGS’s remain not widely un-
derstood or used technologies throughout the geomatics community [Open
Geospatial Consortium, 2017a]. Moreover, their use with respect to point
clouds is even more limited. The OGC DGGS specification does mention the
term ’point cloud’ in several places in its writing [Purss et al., 2017]. In con-
trast to a growing amount of literature on vector and raster data handling
with a DGGS, however, there does not exist any academic literature on point
cloud data handling with a DGGS. However, a DGGS is designed to work
with vectors, rasters, and/or point clouds in a seemingly interoperable way.
All of these data structures can ultimately be reduced to a set of points; a

2.6 indexing strategies 19

vector polygon is composed of lines (edges) that are in turn composed of
points (vertices); a raster is a gridded data structure in which each cell con-
tains one value and the cell’s center point represents that value, so it can
also be reduced to a lattice of point values; and a point cloud by definition
is a collection of points. Therefore, the same kinds of spatial analytical op-
erations that can be applied on vector and raster datasets in a DGGS can also
be applied to point clouds.

2.6 indexing strategies
The practical use of DGGS-based systems has been hampered by a lack of

proper spatial indexing techniques [Sahr, 2008]. However, in order to be
usable, a DGGS implementation must assign a unique location code to each
cell of a DGGS [Purss et al., 2017], thereby converting the DGGS into a spatial
database that can be efficiently queried and analyzed [Sahr, 2008]. A unique
location code for each cell at every resolution provides a means to associate
observations collected in the real world to a single location code, that of the
cell to which they are assigned. A rhombus DGGS conveniently lends itself
to efficient indexing strategies for querying and retrieval of point clouds.

2.6.1 Quadtrees

A quadtree is a tree data structure in which, at each level, each internal
node forks into four children nodes [Ottoson and Hauska, 2002]. A quadtree
is picture in Figure 2.7. Quadtrees are usually used in a 2-dimensional co-
ordinate system that does not take the curvature of the Earth into account.
At progressively large scales, however, this approach can lead to increas-
ingly large errors, as the areas of cells within a quadtree differ more and
more from their ’true’ areas on the curved surface of the Earth. As a rhom-
bus DGGS is essentially a linear quadtree [Bai et al., 2005] on the plane, a
quadtree-based decomposition of the surface of the Earth can be achieved
by indexing cells and their contained observations on the ISEA map projec-
tion plane and inverse-projecting them onto the ellipsoid. It is important to
remember that not all shapes in a DGGS can be indexed as a quadtree. For
example, pentagons or hexagons do not lend themselves easily to hierarchy-
based quadtree algorithms [Sahr et al., 2003].

A quadtree is invaluable in an aperture 4 based 2D DGGS, and can be
viewed as a means to index a 2-dimensional hypercube. For indexing higher
dimensional hypercubes (such as regular cubes and tesseracts, in 3D and 4D
respectively), a quadtree can be extended into an octree and a 4-dimensional
hypercube, respectively.

2.6.2 Pyramid And Path Addressing

[Sahr, 2008] introduces the two types of multi-resolution location coding
systems in use with DGGS: pyramid addressing and path addressing. Pyramid
addressing assigns a unique location code to a cell within its containing DGG.
Therefore, pyramid addressing is only useful for single-resolution spatial or
statistical analysis. The multi-resolution DGG location code for a location

20 theoretical background and related work

Figure 2.7: A quadtree in a plane. At every iteration, the parent cell is subdivided
into 4 children. Figure from Johnson, 2009.

can be obtained by listing the series of single-resolution pyramid addresses
for that location, ordered by increasing resolution [Sahr, 2008]. A signific-
ant limitation of this approach is that due to its single-resolution nature,
relationships between cells at different levels of a DGGS hierarchy cannot
be known based only on a single pyramid address. Therefore, interpola-
tion and/or decimation of point observations through the DGGS hierarchy
cannot be performed as no hierarchical structure is available. Furthermore,
pyramid addressing can lead to a lot of redundancy [Sahr, 2008] in data
storage as the location of the same point on the Earth’s surface is recorded
once for every resolution in the DGGS, which is unnecessary. Multiple rep-
resentations are stored, and potentially separate databases will need to be
maintained and harmonized [Dutton, 1996], one for each resolution. For
efficient indexing of and retrieval from a global point cloud, this is undesir-
able.

A path address, on the other hand, is essentially just that: a path through
the tree structure of a DGGS beginning at the root (i.e. the whole Earth)
that encodes the location of a point on the Earth’s surface. Path addresses
provide several advantages: the length of the address indicates the approx-
imate resolution and precision level in a DGGS, eliminating the need to store
the (discrete) precision separately as metadata; they do not store redundant
information [Sahr, 2008] and can reduce data size [Bartholdi and Goldsman,
2001], as only a single address can be used to identify the location of a fea-
ture at any resolution in the hierarchy, and this address can also be used
to find the path addresses at all coarser resolutions; they also simplify the
implementation of hierarchical algorithms and greatly improve the perform-
ance of spatial queries, such as containment, intersection, or adjacency, on
the data [Sahr, 2008]. A rhombus DGGS conveniently lends itself to a path
addressing system due to its congruent, nested nature, and this is what was
utilized in this thesis. Consecutive numbers in the complete path address
identify sub-regions within the parent rhombus, and thereby all observa-
tions (i.e. points) that are not located within the corresponding child rhom-
bus can be ignored instantaneously in a spatial query, thereby significantly
speeding up query execution time. Also, for the DGGS chosen for this thesis,
each parent rhombus cell has four smaller children cells. Therefore, in 2D
DGGS, one of four digits (0-3) is added to the location code of the parent cell
to yield the location code of the child cell. Each additional digit can be rep-

2.6 indexing strategies 21

resented using 2 bits (base 4), and therefore no bits are wasted during index
assignment. For 3D and 4D DGGS (see Sections 3.2.1 and 3.2.1), one of 8 or
16 digits/letters, respectively, is added to the parent location code to yield
the child location code. Each path address location code for a rhombus also
automatically encodes: the number of cells in the whole-Earth DGG at that
resolution and the inter-cell spacing between cells at that resolution.

A disadvantage of path addresses is that they can get rather long, es-
pecially for extremely high precision/resolution levels. For example, to
achieve sub-meter precision, up to at least 23 digits could be needed to en-
code the location of a point with that precision using a path address in an
icosahedral rhombus DGGS. However, these addresses can be truncated to
yield a coarse filter (representation of the same location at a coarser res-
olution) for spatial analytical operations such as containment, intersection,
and/or adjacency [Sahr, 2008]. This means that coarser resolution cells can
be used as a filter for spatial queries at finer resolutions, because they com-
pletely cover these finer resolution cells (i.e. are congruent), thereby speed-
ing query execution time.

2.6.3 Space Filling Curves

A SFC can be defined as a linear traversal of discrete finite multidimen-
sional space [Gotsman and Lindenbaum, 1996] . It is a path through space
that traverses through all the elements of that space at a given resolution. It
therefore provides a mapping from n-dimensions into 1 dimension, a line.
The mapping is a linear ordering of the elements along the SFC [Psomadaki
et al., 2016]. Consequently, utilizing a SFC can allow for efficient clustering
of spatial data. Spatial clustering refers to grouping together objects that
are close together in reality (i.e. on the Earth’s surface) [Pfoser et al., 2011].
Clustering can also be performed temporally. Spatio-temporal clustering
provides for better performance of queries in a DBMS, as objects close to one
another in the real world in space and time are also stored close together in
the database so that they can be accessed together in a query. The number of
disk accesses is reduced [Bartholdi and Goldsman, 2001]. Furthermore, the
derived one-dimensional locations along the SFC can be sorted [Bartholdi
and Goldsman, 2001] and indexed using data structures such as a B-Tree
[Psomadaki et al., 2016].

Several types of SFC’s exist. Some common ones are Morton, Hilbert,
Peano, Row, Row-Prime, and Moore. Each has a certain set of unique prop-
erties. The SFC to be used in this thesis is the Morton curve, particularly
because it can be used in a rhombus-based DGGS and because of its innate
relationship with a quadtree. The Morton curve on a plane and its relation-
ship to a quadtree is depicted in Figure 2.8.

It is important to remember that the indexing will ultimately need to be
implemented on an ellipsoid, and not on a flat Cartesian plane, thereby
facilitating spatial analysis at increasingly large scales where the curvature
of the Earth becomes a limiting factor. A DGGS structure provides a means to
achieve this goal. An ellipsoidal space-filling curve provides a 1-1 mapping
from a one-dimensional location on the curve to a point on the ellipsoidal
surface [Bartholdi and Goldsman, 2001] and vice-versa. In general, this
conversion is not perfectly reversible; that is, converting from a SFC index

22 theoretical background and related work

Figure 2.8: The quadrant-recursive Morton SFC on a planar surface.

to a position on the ellipsoid and back might not always result in the exact
same SFC location, but it will still be approximately close [Bartholdi and
Goldsman, 2001].

A SFC ordering is said to be continuous when cells with sequential indices
on the curve at least share a common vertex [Bartholdi and Goldsman, 2001].
Most of the indexing schemes proposed to-date have been discontinuous, in-
cluding Dutton’s O-QTM [Dutton, 1996], which uses triangles. Indexing the
Earth using a rhombus-based DGGS provides such a continuous ordering,
where all of the cell centroids at any one resolution are connected on the SFC

without any discontinuities and taking into account their spatial proximity
to one another. The rhombus centroids that represent the ’start’ and ’end’
point positions of the curve are also sequential positions on the curve. Con-
tinuous orderings are usually much shorter than discontinuous orderings,
and are invaluable in spatial, analytical, or logistical operations [Bartholdi
and Goldsman, 2001]. A rhombus-based ordering is also order-consistent,
that is, the order of cells along the SFC does not change at different levels of
the subdivision [Bartholdi and Goldsman, 2001]. This means that rhombus
cells at resolution k will have children at resolution (k + 1) that are in the
same order along the SFC as the cells at resolution k. The rhombus SFC order-
ing is also adjacency-preserving because the relationships with neighboring
rhombus cells can be easily found using their Morton codes. Furthermore,
an SFC encoding can be extended into n-dimensions in a DGGS; for this thesis,
n ≤ 4.

In conclusion, a host of beneficial properties are provided by the above
proposed indexing of the Earth using a rhombus DGGS, and these are sum-
marized below. The ordering is:

• Path-based

• Hierarchical

2.7 dimensionally extended 9-intersection model 23

• Space-filling

• Continuous

• Order-consistent

• Adjacency-preserving

• Precision-encoding

• N-dimensional

2.7 dimensionally extended 9-intersection
model

Spatial objects of any type of geometry (point, line, or polygon) can have
spatial relationships with other objects. The Dimensionally Extended 9-
Intersection Model (DE-9IM) is a framework that provides an approach to
determining the spatial relationships between features by considering the
dimensions of the intersections of the interiors, boundaries, and exteriors of
these features [Strobl, 2008]. The dimension returned by a DE-9IM query is
a number from the set [-1,0,1,2], with -1 a null set (i.e. no intersection), 0

a point, 1 a line, and 2 an area intersection [ESRI, 2017b]. A host of spa-
tial relationships are described by the DE-9IM, such as ”equals”, ”intersects”,
”disjoint”, ”contains”, and ”within” [Strobl, 2008]. Although mainly used in
spatial databases such as PostGIS, the DE-9IM is also the fundamental model
on which a DGGS operates. A DGGS is essentially a large spatial database.
Once constructed, the cell ID’s at each resolution along with their geometry
can be stored in the form of an array or list, and the various spatial rela-
tions provided by the DE-9IM can be tested as array processes, up and down
the DGGS hierarchy. This is scalable. However, it must be noted that the
construction, comparison, and querying of geometries is a procedure that
requires considerable overhead. Although the geometries of cells can be
compared with geometries of points in a point cloud, this is not what was
utilized for the reasons mentioned above. This can be avoided completely
by using an alternative query procedure, and this is described in Section 4.7.

2.8 icosahedral snyder equal area (isea) pro-
jection

Area-preserving projections such as ISEA are important for various reas-
ons. Spatial analysis is more meaningful when using cells that are all of the
same area. Each cell would then represent an equal portion of the Earth’s
surface, and have an equal probability of contributing to the analysis at
hand. For example, if we wish to extract intensity or elevation information
from a point cloud to create a map showing the mean distribution of these
values across a region, it is more preferable to conduct this analysis using
cells that are all of the same area (even though their shapes could be dis-
torted). Then, each resulting intensity or elevation value will represent the
measured amount of that variable in an equally sized area. In many ways,

24 theoretical background and related work

this is similar to the population vs. population density paradigm: even
though a country could have an extremely high population, it might not
necessarily be distributed evenly across its area. What is more meaningful
in this case is to analyze the population per unit area, or population dens-
ity. With equal-area cells, each measured value of the population density
then represents the number of people living in an identically-sized area as
any other measured value. Population density maps convey information
at a finer LOD than simple population maps. Furthermore, equal area cells
also enable standardized interoperability between DGGS and other geospa-
tial data infrastructures [Purss, 2016].

The ISEA projection is a function that outputs coordinates on a flattened
icosahedron given coordinates on a sphere (this can also be extended to an
ellipsoid). The projection is shown in Figure 2.9. The 20 triangular faces of
the icosahedron have been flattened onto a plane. The projection is shown
in its normal orientation (the orientation chosen for this thesis), with the
North and South poles of the Earth each being vertices where 5 unique
triangles converge. The projection essentially uses a modified form of the
more popular LAEA projection, and centers it for each face of the icosahedron
[Harrison et al., 2011].

The projection consists of a number of steps, with the overall goal being
to equalize the areas of two right triangles, one defined on the planar icosa-
hedral face and one defined on the spherical (or ellipsoidal) Earth surface
[Snyder, 1992]. For a point on the sphere for which we wish to compute
its planar ISEA coordinates, a sequence of steps are followed. First, a sphere
is circumscribed around the icosahedron, and a scaling factor is determined
between this sphere and the sphere that represents the Earth. Second, the
areas of two scalene triangles (one on the sphere, the other on the plane) are
equated for a given azimuth (direction or bearing) from a vertex of the spher-
ical scalene triangle , and the matching azimuth from a vertex of the planar
scalene triangle is calculated appropriately to obtain local areal equivalence.
Finally, a point P is positioned along this computed planar azimuth to pre-
serve overall areal scale [Harrison et al., 2011]. A proportionality factor is
computed, and this is then used to compute rectangular/grid coordinates
(x,y) on the ISEA projection. The coordinates initially originate from the cen-
ter of the projection, that is, from the point with latitude 0

o, longitude 0
o

on Earth. These coordinates can then be translated as needed to any other
point on the projection. The mathematics behind this projection is far more
complicated than the description above, and relevant formulae for forward
and inverse projections are provided in [Snyder, 1992]. Although [Snyder,
1992] provides formulae that assume a spherical Earth, in order to get them
to work on the WGS84 ellipsoid, Vincenty’s formulae can be used. The in-
depth discussion of these formulae is outside the scope of this thesis.

The ISEA projection can be used to construct a compliant DGGS. The faces
of the flattened icosahedron (i.e. the triangles) can be subdivided into finer
and finer cells until the desired resolution in the DGGS hierarchy is reached.
The triangles can then be subdivided into hexagons, rhombuses, or smaller
triangles. Two neighboring triangles can be combined to yield rhombuses.
For the icosahedron, this projection yields a maximum angular deformation
of 17.27%, a maximum scale factor of 1.163, and a minimum scale factor of
0.860 [Snyder, 1992]. This means that the linear scale does not vary less than

2.9 point clouds 25

Figure 2.9: The ISEA projection provides a mapping from a sphere/ellipsoid to a
flattened icosahedron. The 20 triangular faces are pictured. Figure from
Harrison et al., 2011.

.

14% and more than 16.3% from the nominal map scale. This means that even
if it is an equal-area projection, it does not perfectly preserve areas. However,
it is convenient in the sense that it provides a 1-1 mapping between an
icosahedron face and a sphere/ellipsoid, and is one of the most popular
projections used in DGGS. In fact, the dodecahedron has less angular and
areal distortion than the icosahedron, but due to its pentagonal faces, it is
not of much use for the global indexing of point clouds.

2.9 point clouds

A point cloud is a collection of data points in a given CRS. The CRS could
be 2-dimensional (X, Y), but is usually 3-dimensional (X, Y, and Z). Further-
more, each point in a point cloud usually has not only positional attributes
that identify its location in space in a given CRS, but also other attributes
such as a GPS timestamp, color, classification, and intensity [ESRI, 2017d]. It
inherently possesses an n-dimensional nature. An explanation of some of
the more important attributes associated with points in a LIDAR point cloud
follows, with the ones most relevant to this thesis listed first:

• X, Y, Z: These are the coordinates of the point in a 2 or 3 dimensional
coordinate system. X and Y are horizontal coordinates, whereas Z is
a vertical coordinate that represents the elevation of the point above
the surface of the Earth in the corresponding coordinate system. For
a bathymetric point cloud, Z will be negative. Many times, if these
coordinates are really large numbers, they can be converted into a
local coordinate system using topocentric coordinates, yielding smaller
numbers. This is achieved by translating/shifting and/or rescaling the
original coordinates. This is the approach used by the popular point
cloud processing software CloudCompare [CloudCompareWiki, 2016].

• Time: This is the time of acquisition of the point, that is, the time at
which the pulse that captured the point was emitted from the data
collection platform. This is usually stored in the form of GPS Time for

26 theoretical background and related work

LIDAR datasets. GPS Time is a uniformly counting time scale begin-
ning at 12 AM on January 6, 1980. GPS Time represents the current
time in weeks and seconds of that week since this date. One of the
main differences between GPS Time and regular UTC time is that UTC

time takes into account the Earth’s rotation by adjusting using leap
seconds, whereas GPS Time does not incorporate leap seconds [NPS,
2016]. However, GPS Time can be converted to UTC Time and vice
versa.

• Intensity: This refers to the strength of the pulse that was returned
to the scanner by an object that reflected the pulse. Many factors can
influence the intensity, including the reflectivity and composition of
the target object [ESRI, 2017c], near infrared energy absorption and
the amount of obstruction to the pulse as it travels through space.

• Classification: The classification defines the type of object that reflec-
ted the laser pulse that generated the point. Every point can have a
classification, such as ”bare ground”, ”water”, or ”vegetation”. The
industry-standard LASer (LAS) file format, in its 1.4 version, contains
up to 256 possible classification codes [ESRI, 2017a].

• RGB: An acronym for Red, Green, Blue, RGB refers to the reflectance
in these three bands of the electromagnetic spectrum. Each point in a
point cloud can be attributed with its RGB values. Many point clouds
already come with these values, but if not provided, they can be as-
signed using color aerial imagery.

• Return number: Each pulse can have many potential returns. This
simply identifies the number of the return that generated the respect-
ive point.

• Number of returns: This is the total number of returns for the pulse
that generated the respective point.

It is important to state here that point clouds acquired from photogram-
metry can have different attributes than those acquired from LIDAR; this
thesis, however, has only focused on LIDAR point clouds.

The most common file format for handling point cloud data remains the
LAS format, and this is what was utilized throughout this thesis. Point
clouds, although most frequently acquired with LIDAR techniques, can also
be acquired using Global Navigation Satellite System (GNSS), Terrestrial
Laser Scanning (TLS), Radio Detection And Ranging (RADAR), Sound Navig-
ation And Ranging (SONAR), leveling, or photogrammetry [Lemmens, 2014].
The LAS format can be used to work with any of these kinds of data, and
not only laser data [ASPRS, 2013]. It is a public binary file format that
allows for more interoperability between systems in comparison with its
contender, the American Standard Code for Information Interchange (ASCII)
format, and can be used to work with any 3-dimensional data. Further-
more, many existing software systems are already capable of working with
LAS files, such as FugroViewer, LASTools, CloudCompare, and FME.

2.9.1 An Additional Dimension

2.9 point clouds 27

A point in a point cloud can have not only a unique X, Y, Z and time value,
it can also be assigned an additional dimension that indicates its importance
as compared to all of the other points in the point cloud. ’Importance’ is
just that: the relevance or significance of a point as compared to other points.
A variety of methods can be used to compute this importance value, includ-
ing a random function [van Oosterom et al., 2015], minimum distance to the
nearest point, distance from the data collection platform (i.e. scanner exit
point where pulse originated), and importance based upon neighborhood-
based feature detection and identification using the point and its surround-
ing points within a certain distance. Importance is an indicator of the LOD of
a point: points with a higher importance have a higher LOD than points with
a lower importance. This added dimension can then be used to efficiently
visualize point clouds that have varying densities in a smooth, continuous
manner (see Section 2.9.2 for more information). The hierarchical nature
of a DGGS can be utilized to create such a variable-scale representation of
massive amounts of points.

Time is an extremely valuable dimension for point clouds, as it allows us
to spatially analyze the changes that have taken place across a scanned area
between two different times in history. A DGGS can be utilized to answer one
of the most fundamental questions of big geospatial data analytics: ”How
has it changed?” [Purss et al., 2017], referring to how an area has changed
over a span of time. This thesis has attempted to study the effective uses of
a DGGS in monitoring spatial change.

Therefore, in essence, although there can be many additional dimensions
for each point in a point cloud, five separate dimensions and their applic-
ability to a DGGS were studied in this thesis. These include the positional
dimensions X, Y, Z, in addition to importance/LOD and time.

2.9.2 Variable-Scale Visualization With DGGS

The density of a point cloud refers to the amount of measurements that
have been sampled on the surface of the Earth in a given area within the
point cloud [Rohrbach, 2015b]. This is the most discriminating feature of
a point cloud when used for the purpose of visualization of heterogeneous
point clouds in a common environment. That is, two or more point clouds
used in the same visualization environment can be readily identified as sep-
arate entities if they have relatively varying initial point densities. Density is
usually provided in units of number of points per square meter, and varies de-
pending on the application at hand. For example, for basic surface models
or forest inventory, density is usually in the range of 0.5-1 point/m2; for ba-
sic 3D models in the range of 5-10 points/m2, and for highly detailed (LOD3

or LOD4) 3D city models in the range of more than 10 points/m2 [Rohrbach,
2015b].

A problem arises when trying to integrate points clouds with varying ini-
tial densities in a common visualization environment. Sharp ”jumps” in
point density will be seen at the borders between the point clouds, when
each has a distinct discrete LOD. For example, the density of a less-detailed
point cloud could be 5 points/m2 whereas another point cloud with a higher
LOD in the same area could have a density of 15 points/m2. These discrete-
LOD-based data representations, also known as multi-scale representations

28 theoretical background and related work

[van Oosterom, 2005], although desired, when used as-is have the disad-
vantage of producing potentially drastic density shocks in the data [van
Oosterom et al., 2015]. In an attempt to address this situation, an additional
continuous importance dimension can be added to the points, and the points
displayed according to a perspective view query that uses this additional di-
mension.

Figure 2.10: Depiction of a variable-scale view frustum. During visualization, both
high and low important points are displayed closer to the observer pos-
ition, and a gradual change is made to display only the most important
points far from the observer.

This additional continuous dimension is called ’importance’ [van Oost-
erom et al., 2015], and can be based upon any user-defined function. In
the context of a DGGS, points in a point cloud are assigned to a cell based
upon their precision: the level of measurement and exactness of description
of observations [Foote and Huebner, 1995]; that is, it is the degree to which
independent measurements of locations of the same observation agree to one
another. An ’observation’ as applicable to this thesis refers to a point in a
point cloud, but in general could be any other type of feature such as a vec-
tor line, vector polygon, or raster cell. Precision is composed of two aspects:
repeatability and reproducibility. Repeatability refers to the degree to which
multiple measurements of a point’s location will show the same result (i.e.
same location). Reproducibility refers to the degree to which an experiment
or study can be accurately reproduced or replicated by someone else. Pre-
cision is also an indicator of the spatial uncertainty of an observation: the
higher the precision, the lower the spatial uncertainty, and the lower the
precision, the higher the spatial uncertainty of a point observation.

A highly regular global grid should document the precision and location
of spatial data on the globe [Gregory et al., 1999]. Every point in a point
cloud has a spatial uncertainty that can be represented as an area feature
around that point. A DGGS’s hierarchical, multi-resolution structure is ideal
for encoding the discrete precisions of points directly on the surface of an el-
lipsoid, and not in any map projection. If only an approximate indicator of
precision is desired, this obviates the need to store the precision separately

2.9 point clouds 29

as additional metadata, which is the usual case in the conventional GIS ap-
proach. If exact, continuous precision is desired, then DGGS by themselves
do not inherently allow for encoding continuous precision. This has to be
stored as additional metadata along with the observations, as precision is a
continuous variable and DGGS’s are by definition discrete. Once the continu-
ous precision is stored alongside every observation, it can be modeled as an
additional continuous dimension that can be used to visualize the points in
a more effective and appealing manner. The smaller the size of a DGGS cell,
the higher the precision because the area covered by the cell is small, indicat-
ing that the spatial uncertainty of points that are assigned to that cell is also
small and that the points have been measured very precisely. Conversely,
the larger the size of a DGGS cell, the lower the precision and the higher the
spatial uncertainty of a point. Points which are not very precise are also not
very important, and therefore during visualization they should be shown
only at larger scales (i.e. when zoomed in sufficiently close). Points that
have high precision are shown at both smaller and larger scales and are
stored in higher levels of the structure during visualization.

Through assigning a point observation to a DGGS cell defined on the sur-
face of the Earth that has approximately the same area as the precision of that
point (a process known as quantization [Sahr, 2008], explained in more detail
in Section 3.1), and visualizing the points based upon this continuous di-
mension, a true variable-scale visualization can be created. DGGS’s by defin-
ition are discrete; that is, each cell at a particular resolution in the hierarchy
of a DGGS has a fixed area. However, precision is continuous. Therefore, it
can be utilized to provide a variable-scale visualization of points. That is,
the points are not stored for any predefined scales (i.e. the discrete levels
of a DGGS), but can rather provide levels of detail for an entire scale range,
at any variable scale [Meijers, 2011]. Within a perspective view query, the
lower importance points are gradually ignored when moving further from
the observer position [van Oosterom et al., 2015]. Only the higher import-
ance points are shown far from the observer, and both higher and lower
importance points are displayed while close to the observer [van Oosterom
et al., 2015]. As the observer position moves through space, the view frustum,
a 3-dimensional polyhedron, changes. The view frustum is simply the field
of view of the observer, that is, the region of space that appears on the screen
in a visualization environment. It is useless to render points that do not in-
tersect with the view frustum, as these points are not even visible. These
points can be discarded using a process known as view frustum culling.

2.9.3 Change Identification With DGGS

A DGGS is an Earth Centered Earth Fixed (ECEF) reference system [Purss
et al., 2017]. That is, the location and orientation of the polyhedron utilized
for a DGGS are defined in ECEF coordinates. An ECEF system is a geocentric
Cartesian coordinate system which represents positions on the surface of
the Earth in coordinates originating from the center of mass of the Earth,
hence ”earth centered”. It is ”earth fixed” in the sense that the coordinates
of any point defined in ECEF do not change due to tectonic movement and
are not subject to any other motion (such as erosion or orogenesis), as ECEF

rotates along with the Earth [Clynch, 2006]. Any point with coordinates in
latitude, longitude can be readily converted into ECEF , and vice-versa.

30 theoretical background and related work

Given that a DGGS is an ECEF system, the cells of a DGGS are fixed onto the
surface of the ellipsoid that represents the Earth. One can think of them as
lying in a static position ’below’ the mobile tectonic plates above. It is only
the orientation of a polyhedron in a DGGS that can be changed. Changing
the orientation will also change the ECEF coordinates of all cell centroids.
The fact that the cells of a DGGS are fixed once the polyhedron orientation
is defined, is, however, ideal for the purposes of using a DGGS for identify-
ing changes between two moments in time. Indeed, one of the three most
fundamental questions of spatial analytics, namely ”How has it changed?”,
can be effectively answered using a DGGS [Purss et al., 2017]. Even though
the cells are fixed in position, observations such as points in a point cloud,
vectors, or raster cells are mobile due to geophysical forces. Therefore, these
will move across the DGGS reference frame over a period of time. Although
in theory the movement of a point between two moments in time is a single
numerical value, in practice the rate of movement varies depending on the
datum used to measure the points; for example, station positions and velo-
cities in the ITRS are on the order of a few centimeters/year, whereas in the
ETRS they are only a few millimeters/year [van der Marel, 2016]. Therefore,
metadata regarding the datum used to measure observations might need to
be stored for certain applications.

As the cells of a DGGS are fixed onto the Earth model, changes between
two moments in time can be analyzed on a cell-by-cell basis, as the cell is the
fundamental atomic object of a DGGS reference frame [Purss et al., 2017]. The
cells are all of equal-area (in 2D), and pseudo-equal volume (in 3D), which
makes any kind of spatial or geostatistical analysis much more meaningful
than when non equal-area/volume cells are being used. Statistics such as
the mean, median, mode, minimum, maximum, or range of an attribute can
be found in every cell, and the cells color-coded based upon these values.

One of the most common metrics for measuring the amount of change in
the surface between two moments in time is Hausdorff Distance (HD). This
involves computing the shortest distances between the two point clouds,
for every point in the first point cloud. A disadvantage is that the HD is
extremely sensitive to any possible variation in point density between two
scans [Montaut et al., 2005]. Moreover, a DGGS encoding cannot be used
directly to compute shortest distances between points, without performing
a decode operation. However, other metrics can be used to compute change,
not necessarily in the surface but in other quantities. For example, changes
in point density, elevations, intensities, Red, Green, Blue (RGB) values, or
other attributes can all be studied on a cell-by-cell basis, as the cell is the
fundamental element of a DGGS. Changes in point density were studied in
this thesis; the same procedure can be used to work with most other metrics.
More information about the analysis and visualization aspect is provided in
Section 3.4.

2.10 other considerations
[Sahr et al., 2003] provides a broad overview of the different parameters

that go into constructing a DGGS (discussed in Section 2.5) and compares sev-
eral existing DGGS’s with each other to decide on an good general-purpose
one, namely an icosahedral hexagon-based DGGS with a refinement ratio of

2.10 other considerations 31

3 and symmetry about the Equator, which also minimizes the number of ico-
sahedron vertices that fall on land. Although this is a valid design choice,
for the purposes of this thesis an efficient method to index a global point
cloud is needed, and polyhedron orientation is not a mitigating factor (see
Section 2.5.2). However, [Sahr et al., 2003] also concludes that the rhom-
bus DGGS may prove popular due to its direct relationship with the square
quadtree. [Gregory et al., 1999] provide a thorough comparison of various
global grids with respect to metrics that define an ’ideal’ global grid sys-
tem. Their conclusion is that the ISEA method is the best current choice for a
global grid system, more efficient to compute and easier to implement than
other methods [Gregory et al., 1999]. Hexagons are currently the most pop-
ular choice of shapes for a DGGS, but as stated earlier they also have several
disadvantages. Therefore, an icosahedral rhombus DGGS was investigated
in this thesis.

3 METHODOLOGY

This chapter provides a conceptual overview of the methodology utilized for
this research. Section 3.1 describes the methodology used to assign a point
to a DGGS cell. Section 3.2 describes the procedure followed to generate a
Morton code for a point in 2D using the ISEA method, and extends this ap-
proach into 3D and 4D for handling the distance of a point above or below
the Earth’s surface (as an additional dimension) and also the time at which
the point was captured. Section 3.3 explains how the decoding of a 2D, 3D,
or 4D Morton code works. Section 3.4 describes how a DGGS can be used
to study changes between two point clouds taken at two different moments
in time. Section 3.5 compares existing point cloud web visualization soft-
ware frameworks, and also discusses 3D Tiles, an up-and-coming format for
visualization of massive amounts of points in a web browser. Section 3.6
concludes by providing examples of spatial-analytical operations that can
be performed using a DGGS.

3.1 quantization

Quantization refers to the mechanism for assignment of data to cells and
retrieval of data from cells [Purss et al., 2017]. There exist several different
types of quantization, each well-suited for a specific purpose. For example,
there are data tile, data cell, tag, and graphic cell quantization. Of particular
relevance for this thesis is coordinate quantization. Every spatial dataset is
ultimately composed of point features: a vector feature is a set of points
topologically connected to one another in some way, a raster is a gridded
data structure obtained from interpolation of a set of points, and a point
cloud by definition is a collection of points. Each of these points has a
coordinate value indicating its position on or relative to the surface of the
Earth model and each coordinate has a certain degree of precision. Within a
DGGS, a spatial observation is assigned to a cell whose area is approximately
commensurate with that observation’s precision or area of uncertainty. This
is because DGGS’s are error-minimizing spatial data structures, whereby the
error in the data, once mapped onto a DGGS, is contained. The size of a
DGGS cell should ideally be as close as possible to the spatial uncertainty of
an observation in order for that observation to be assigned to that DGGS cell.
This obviates the need to store the closest (discrete) precision separately
as additional metadata. When heterogeneous data from multiple sources
are to be combined in a manner that minimizes the accumulated error in
the combined dataset, the precision of the measurements is important to
consider, and the metadata for these data need to be looked at for acquiring
such information. This could be a time-consuming process. Within a DGGS,
however, discrete precision is explicit in the size of the cells.

32

3.1 quantization 33

It is important to mention here that, innately, points are infinitesimally
small 0-dimensional features. Projecting or transforming the coordinates
of these points into another map projection, CRS, or datum will not result
in any loss in precision (the transformations are completely lossless) if the
points are viewed as 0-dimensional features. However, every point has a
certain spatial uncertainty, and this can be represented as an area feature
centered around that point. Transforming this areal feature into another
system will result in a ’warping’ in the area and a change in the spatial
uncertainty of the observation. Consequently, point observations in a point
cloud need to be viewed as area features (and not points) when it comes to
mapping them to a DGGS reference frame. This is because the cells of a (2D)
DGGS are precision-encoding areas, and a feature can only be incorporated
into such a system if it itself is also an area. Therefore, for the purposes
of this research, points have been viewed not as 0-dimensional features but
as areas (or volumes, in 3D) whose extent is an indicator of their spatial
uncertainty.

A laser beam signal scatters more the further away from the source of
emission (i.e. scanner exit point). This is depicted in Figure 3.1. It follows
a cone-shaped volumetric region in between the scanner exit point and the
target. The amount of dispersion is indicated by the size of the beam di-
vergence angle, usually expressed in milliradians. A larger angle yields a
lower Signal-Noise Ratio (SNR) as the beam disperses across a larger volume,
thereby inflicting more noise on the measurement, whereas a smaller angle
yields a higher SNR [Rohrbach, 2015a]. The SNR affects the precision of the fi-
nal measurement. The beam divergence is directly related to the size of the
laser beam footprint: a larger beam divergence yields a larger beam foot-
print, and a smaller beam divergence yields a smaller footprint. It is also
worth noting that the distance from scanner to target also influences the size
of the resulting beam footprint: a larger distance (i.e. higher altitude) yields
a larger footprint [Rohrbach, 2015a]. In reality, however, for laser scanned
point clouds there are several other factors that ultimately contribute to the
precision of point measurements; these include the quality and operation
of the GPS sensor, Inertial Measurement Unit (IMU), mirror, and aircraft, and
also how the point cloud has been processed and how well the entire system
has been calibrated [Tully, 2012]. For the purposes of this research, however,
the simplistic assumption of point precision as mainly dependent on the
ranging from the laser was made. It is also important to note that other
means of generating point clouds, such as dense image matching from pho-
tos, photogrammetry, multi-beam echo sounding, and others [van Oosterom
et al., 2014], each have their own unique sources of error that affects point
precision differently. This needs to be taken into account when utilizing
point clouds acquired from such sources. This thesis has focused on point
clouds acquired only from LIDAR, and this could be terrestrial or airborne.

With any DGGS, one should store observations at a level in the DGGS hier-
archy that best represents the spatial resolution/uncertainty of the obser-
vation (i.e. point in point cloud). The spatial resolution of each point is
indicated by the size of the footprint of the laser beam that generated the
point. This size can be inferred by examining the distance from the laser
scanner to the point; the larger this distance, the larger the footprint due
to beam divergence, and the lower the spatial resolution or precision of the
point.

34 methodology

Figure 3.1: The precision of a LIDAR point observation is mainly determined by the
size of the laser beam footprint at the location where it hit the point.
Figure from Rohrbach, 2015a.

By calculating the sizes of the laser beam footprints at each point in a
point cloud, point precision can be determined. Then, using the principles
of coordinate quantization, the point can be assigned to a DGGS cell covering
the same location as the point and which has approximately the same area
as the point’s precision. The precision needs to be computed in projection
space in units such as meters, and brought over (as an attribute) before
quantization onto a DGGS ellipsoid. Ultimately, this means that the various
points constituting a real-world object such as a church could be assigned to
different DGGS cells depending on their ranging (distance) from the scanner.
A higher precision point is contained within a lower precision point, and
the containment is a property of their cell ID’s.

It should be noted that this approach only works if all the points in the
respective point cloud have different point precisions, thereby implying (un-
der this simplified assumption) that they are not at the same range (distance)
from the scanner.

For overview analysis or visualization, high precision points are stored in
the top levels (with important points, and not a lot of data) of the structure
as these should be shown at both smaller and larger scales. Points with a
lower precision / higher spatial uncertainty are stored in the bottom levels
of the structure as these are only shown at larger scales (i.e. only when
zoomed in sufficiently close). High-precision points are also highly import-
ant, and this additional continuous dimension can be used to visualize the
points in an appealing manner using a perspective view query (see Section
2.9.2).

3.2 morton indexing on a curved surface

One of the most beneficial properties of a rhombus tessellation in a DGGS

is that quadrant-recursive orderings, such as Morton or Hilbert curves, can
be used to index the cells in the tessellation. This is because a rhombus

3.2 morton indexing on a curved surface 35

tessellation can be viewed as a skewed transformation of a square tessella-
tion [White, 2000]. The geometry of the cells and the topological relation-
ships between neighboring cells can be used to assign globally unique iden-
tifier (GUID)’s to the cells at any resolution [Purss et al., 2017]. Addressing
the cells of a DGGS using such an ordering allows the preservation of spatial
locality that can then be utilized for efficient spatial database and geometric
operations such as parent-child hierarchical operations, spatial clustering,
neighbor-finding and adjacency testing. Furthermore, addressing the en-
tire globe using an array of cells in a multi-resolution structure provides
a common reference frame for the entire world that obviates the need to
use separate map projections for every region. As indicated in Table 3.1,
different countries use heteregenous map projections, CRS’s and datums for
their point clouds, and a common map projection, datum, and/or coordin-
ate system is needed to work with data spanning international borders. A
DGGS provides a common underlying reference frame for such data, and
the cell indices provide a way to address/index the individual elements (i.e
cells) within such a structure. Each cell is defined on the curved surface of
the Earth ellipsoid, thereby facilitating improved spatial analysis at scales
where the curvature of the Earth becomes a significant factor, and lies in a
fixed position that, once defined, never changes.

As a DGGS is an ECEF system, it is tied to a particular model of the Earth,
such as the GRS80 or WGS84 ellipsoids. It can be tied to any model. Further-
more, even though currently they are Earth-based reference frames, they
could theoretically be used for other planetary or celestial bodies, such as
the moon or Mars. Therefore, the cells of a DGGS hierarchically cover the
surface of the Earth model without any overlaps or underlaps (similar to a
planar partition on a plane). Therefore, to assign a unique identifier or in-
dex to each cell at every resolution of a DGGS, a spherical or ellipsoidal SFC

is needed, and not a planar SFC. The ISEA projection, on which the icosa-
hedral rhombus DGGS used in this thesis is based, can be used to generate
unique Morton codes for each cell. More information about this projection
is provided in Section 2.8 . The ISEA projection projects the faces of an ico-
sahedron onto a flat 2D plane. An icosahedron, by definition, consists of 20

triangles, and these can be numbered as shown in Figure 3.2. Although its
faces are initially triangles, pairs of adjacent triangles can be connected to
form rhombuses that form the initial equal-area tessellation to be used for a
rhombus DGGS. As the icosahedron has 20 triangles, there are 10 total rhom-
buses. The numbering of these rhombuses to be used in this thesis is shown
in Figure 3.3. Such a numbering yields a continuous SFC ordering.

In this way, the entire surface of the Earth can be covered with rhombus
cells. Each parent rhombus has four smaller children rhombuses (see Figure
3.12 for an illustration), thereby discretizing the surface of the Earth into a
linear quadtree on top of which Morton indexing (or any other kind of SFC

ordering, for that matter) can be applied. This indexing can be extended into
n dimensions, as explained in section 3.2.1, so that not only the spatial but
also the temporal dimension is integrated into one code. Forward and in-
verse formulas for the ISEA projection are well-documented in [Snyder, 1992].
These can be used to convert geographic coordinates (a latitude, longitude
location) into rectangular (x,y) coordinates on the ISEA projection plane (see
Figure 3.4). Then, pairs of adjacent triangles can be combined, and recurs-
ively subdivided to yield the hierarchy of cells that constitute the chosen
DGGS.

36 methodology

Figure 3.2: The initial numbering of triangles on a flattened icosahedron using the
ISEA projection.

Figure 3.3: Pairs of adjacent triangles can be combined to yield rhombuses on a
flattened icosahedron.

As there are 10 total rhombuses, each can be assigned a unique label
number from 0-9 that indicates its location on the Earth. To preserve a
degree of spatial locality and maintain a continuous ordering (i.e with no
sharp ’breaks’ or ’jumps’ in the Morton codes), these numbers have been
assigned as follows: triangles 1 and 6 are connected to form rhombus 0; 11

and 16 to form rhombus 1; 2 and 7 to form rhombus 2; 12 and 17 to form
rhombus 3; 3 and 8 to form rhombus 4; 13 and 18 to form rhombus 5; 4 and 9

to form rhombus 6; 14 and 19 to form rhombus 7; 5 and 10 to form rhombus
8; and 15 and 20 to form rhombus 9. This is illustrated in Figure 3.3. It can
be readily seen that nearby rhombuses also have closer label numbers. This
is similar to the approach that was utilized by [Bai et al., 2005], although for
an octahedral rhombus DGGS; this thesis has utilized it for an icosahedron.

Then, to generate each cell at every resolution within the rhombus, each
rhombus face is subdivided into finer and finer cells. For example, to gen-
erate the tessellation at the second level, the midpoints of opposite-facing
sides of an initial rhombus are connected to yield four smaller, nested chil-
dren rhombus cells (2 along every dimension). There will therefore be 4n

3.2 morton indexing on a curved surface 37

Figure 3.4: The ISEA projection can be used to convert geographic coordinates into
grid (x,y) coordinates on the projection.

cells at resolution n (the initial equal-area tessellation can be considered as
’resolution zero’). It is important to mention here some of the favorable prop-
erties of a rhombus as opposed to other shapes. By definition, a rhombus is
a quadrilateral whose four sides all have the same length. Connecting the
midpoints of opposite sides will therefore yield 4 smaller equal-area rhom-
buses. Every rhombus has two diagonals that connect pairs of opposite
vertices, and these diagonals bisect (divide into two equal parts) their op-
posite angles. The diagonals also intersect one another at right angles (see
Figure 3.5). On an icosahedral rhombus face, there are two interior angles
of 120

◦(angle b in Figure 3.5) and two of 60
◦(angle a in Figure 3.5) located

opposite of one another [White, 2000].

It is important to state that all SFC’s are based on hypercubes (i.e. n-
dimensional analogues of squares (n=2) and cubes(n=3)), and there is a sep-
arate hypercube on every rhombus face of the icosahedron. However, the
numbering of the faces shown in Figure 3.3 yields a continuous ordering of
n-dimensional space. As each cell has a unique Morton code based on its
location on the SFC, all of the points that are physically contained in that cell
automatically inherit the same Morton code as the cell. A point is assigned
to a cell in a DGGS based upon its precision (explained in Section 2.9.2). With
the above information, an elaboration of the entire procedure to generate an
n-dimensional Morton code for a point in a point cloud is readily facilitated.

1. First, the (continuous) precision of the point in a standard map projec-
tion is calculated. Usually, point clouds of different countries will use
their country’s national map projection and coordinate system, and
not geographic coordinates. For example, the CRS’s used by the point
cloud datasets of the Netherlands, Belgium, and Germany are presen-
ted in Table 3.1. All of these CRS’s use units of meters. The precision
of a point in a point cloud can be calculated according to the proced-
ure described in Section 3.1. This precision needs to be stored as an
attribute of the point.

38 methodology

Figure 3.5: A rhombus, along with its diagonals. The diagonals are perpendicular,
and the lengths of the sides of the rhombus are equal.

Country Horizontal CRS Vertical CRS

Netherlands Amersfoort / RD New Normaal Amsterdams Peil (NAP)
Belgium Belgian Lambert 72 Ostend
Germany ETRS89 / UTM Zone 32N DHHN92

Table 3.1: The CRS’s of national point clouds of three countries.

2. Then, the point is converted from its initial CRS/datum and/or ellips-
oid into geographic coordinates on the WGS84 ellipsoid (used for this
thesis), with the precision in its original CRS brought over as an attrib-
ute. This conversion will involve a loss in point positional accuracy
if the two ellipsoids are different (i.e it is not completely lossless and
reversible). For example, the Dutch RD system uses the Bessel ellips-
oid of 1841 [van der Marel, 2016], therefore there will be a minor loss
in point accuracy after conversion of points on this ellipsoid onto the
WGS84 ellipsoid.

3. The precision associated with the point is linked to the closest discrete
resolution of a DGGS. This is the point’s discrete precision. For ex-
ample, if a point has a spatial uncertainty of (+ -) 3 meters (i.e. an area
of approximately 28 square meters), then this point should be associ-
ated with a DGGS cell that has an area close to 28 square meters. The
cell areas at all resolutions of an icosahedral rhombus aperture 4 DGGS

are provided in Table A.1. In theory, cells can be defined for infinite
possible resolutions. At this stage, both discrete and continuous point
precisions have been computed.

3.2 morton indexing on a curved surface 39

4. Then, to compute the Morton code for use in a global indexing frame-
work, the point is projected onto the ISEA projection. This involves a
number of steps. First, the icosahedral triangle face on which the point
is located needs to be found. The numbering of these faces are shown
in Figure 3.2. This is a recursive procedure that tests each of the 20

faces one by one until it finds the proper face. Internally, this uses Vin-
centy’s Inverse Formula for quickly determining on which face a point
is located. Then, grid coordinates originating from the geographic cen-
ter of that face need to be computed, formulas for which are provided
in [Snyder, 1992]. The geographic coordinates for all triangle centers
are also provided in [Snyder, 1992]. The coordinate axes on which
these coordinates are based have different orientations due to the dis-
similar orientation of triangles on the icosahedron. For example, for
triangles 1-5 and 11-15, the x-axis will be positive to the right of the
center and negative to the left of the center, whereas the y-axis will
be positive up and negative down from the center; for triangles 6-10

and 16-20, however, due to their opposite orientation, this will be the
reverse: the x-axis will be positive to the left and negative to the right,
and the y-axis will be positive ’down’ and negative ’up’. This is illus-
trated in Figure 3.6.

Figure 3.6: The opposite orientations of the triangles need to be taken into account,
as the orientation of the axes differs depending on the triangle orienta-
tion.

5. The point’s rhombus face number is then determined based upon its
triangle face number. This is simple as the rhombus-triangle contain-
ment relationships are known. The rhombus face number uses the
numbering defined in Figure 3.3.

6. Taking into account the orientation of the axes mentioned earlier, the
point’s coordinates are then translated to the left vertex of their con-

40 methodology

taining rhombus, because this is the origin of the Morton SFC for every
face. This results in only positive coordinates for x and positive or
negative coordinates for y in a right-handed Cartesian system.

7. Since the interior angle of an icosahedral rhombus at the left vertex is
120
◦(angle b in Figure 3.5), its x and y axes are also skewed with an

interior angle of 120
◦. Therefore, the coordinates obtained in step 6

need to be rotated into this skewed system. The equations to convert
an (x,y) coordinate from the Cartesian system of step 6 into those of a
skewed system on an icosahedral rhombus are:

Xskewed = x− y√
3

(3.1)

Yskewed = x +
y√
3

(3.2)

8. The rotated x and y coordinates from step 7 are converted into bin-
ary form with the same number of bits as the DGGS resolution of the
point. For example, if a point has been assigned to a cell at resolution
3, and its rotated (x,y) coordinates from step 7 are (5,4), then these co-
ordinates should be converted into 3-bit binary form as (101,100). The
binary coordinates are then converted into integers. Then, the below
formula can be used to generate the Morton code MC for the point in
2 dimensions [Zhao et al., 2006]:

MC = 2 ∗ (Ybin) + (Xbin) (3.3)

This formula can easily be extended into n dimensions:

MC = 8 ∗ (Tbin) + 4 ∗ (Zbin) + 2 ∗ (Ybin) + (Xbin) (3.4)

9. The complete Morton code for the point is calculated by concatenat-
ing the rhombus face number found in step 5 with the Morton code
computed in step 8. Therefore, the first digit in the index is the face
number, and this is then followed by the actual Morton code.

10. This Morton code is then brought back to the original point on the
WGS84 ellipsoid defined in step 2 as an attribute. As in this thesis, a
DGGS is being constructed on top of the WGS84 ellipsoid, this step also
constitutes a ’mapping’/import of point clouds to a DGGS reference
frame.

Figure 3.7 provides an overview of the above process that is being used
to map/import a point cloud into a DGGS.

After step 10, there is no need to re-project the point positioned on the
WGS84 ellipsoid in latitude, longitude, and (optionally) height and time di-
mensions. Every map projection involves a certain degree of error. This error
accumulates over the course of time as projections are applied to the data
and coordinate conversions between different datums and ellipsoids are per-
formed. For example, even for a projection such as ISEA, there is a max-
imum angular deformation of 17.27% and maximum and minimum areal

3.2 morton indexing on a curved surface 41

Figure 3.7: Diagram of the process used to import data into a DGGS reference frame
for the Dutch point cloud datasets, which use grid coordinates in the RD

CRS.

deformations of 16.3% and 14%, respectively [Snyder, 1992]. Re-projecting
or inverse-projecting a point will ’warp’ its fuzzy region of uncertainty in un-
predictable, erroneous, and irreversible ways. Although if one is working at
significantly large scales (i.e. continent or whole-Earth) these warps become
insignificant, if working at local scales this is an important consideration.
This is precisely what a DGGS is designed to avoid. Once spatial observa-
tions are imported into a DGGS, there is no need to apply any projection or
datum transformation on the data. The error in the original observations is
contained and not exacerbated due to the repeated projections and datum
conversions that could have been applied to it had a DGGS approach not
been used.

In summary, repeated map projections and datum transformations (i.e.
between different ellipsoids) introduce compounding errors on spatial data
(see Figure 3.8). Usually, this error increases further from the center of the
projection, on a line referred to as the central meridian, and can be variable.
The amount of spatial uncertainty is indeterminate. A DGGS minimizes the
amount of error accumulation on spatial data because it requires the data
to be mapped into it only once at a particular level in its hierarchy. Every
spatial analysis after this point is an array process using set theory and/or
the DE-9IM (explained in Section 2.7).

3.2.1 Extensions to 3D and 4D DGGS

At present, the OGC DGGS Abstract Specification is 2D on the surface of
the globe. That is, the cells of a DGGS cover the curved surface of the Earth
in a non-overlapping manner with their normal vectors pointing in different
directions. They are not volumetric; they do not inherently allow the stor-
age and representation of 3 dimensional values, such as those that include

42 methodology

Figure 3.8: Repeated map projections and datum transformations introduce com-
pounding errors on spatial data. A DGGS approach makes it unnecessary
to apply repeated map projections and datum transformations.

elevations, and much less 4 dimensional ones, such as those that include
time. However, a point in a point cloud contains such attributes and it is
important to preserve this information in the spatial location code for that
point. This speeds up the processing of spatio-temporal queries on the data
as the query does not have to perform yet another sequential search on the
3rd or 4th dimension attributes after narrowing the database records based
on the 2 dimensional attributes.

This section presents an approach to extend DGGS into 3D or 4D, assuming
the 3rd dimension to be the distance of the point above or below the Earth’s
surface and the fourth to be the time that the point was captured. It also
assumes the Earth to be a sphere, and not an ellipsoid; however, in general
the same procedure can be applied on an ellipsoid, but some corrections are
needed, and this is noted as appropriate.

3D DGGS

In 2D DGGS the cells of the tessellation at any one level are all of equal-
area, but are distorted in shape (as no projection can preserve both area and
shape). They tessellate the surface of the Earth, and are therefore ’flat’ on
the curved surface of the Earth (although on a spherical/ellipsoidal Earth
volume, the vertices that form the cells do not all lie on the same plane).
It would be invaluable if DGGS could be extended into higher dimensions
to take advantage of the multidimensional nature of geographic data, and
especially point clouds. Every point can have an n number of dimensions,
including its 3D position (latitude, longitude, height), time, and other at-
tributes such as intensity or color. Therefore, in 3D DGGS it makes sense to
make them all of equal volume at any one resolution in the hierarchy, above
or below the Earth’s surface.

3.2 morton indexing on a curved surface 43

The 2D cells can be extended into 3D either on the base polyhedron or
directly on the sphere/ellipsoid. This is ideal because DGGS’s, although
usually constructed using a polyhedron, can also be built on the sphere or
ellipsoid directly (using a method known as direct spherical subdivision [Sahr
et al., 2003]). If a polyhedron is used as a base to construct the 3D cells, then
a 3D hypercube is constructed on each face of the polyhedron and a SFC is
created that traverses through all of the cells of the hypercube. This provides
a unique ID for each cell. Then, the cell vertices are inverse-projected onto
the Earth model (sphere or ellipsoid) using an equal-area projection, and the
cells appear on a spherical Earth as shown in Figure 3.9. The ’height’ above
the face of the polyhedron (i.e. above the plane of the DGGS projection) is a
scaled version of the height above the surface of the Earth model. If a DGGS is
built on a sphere directly, the 2D cells can be extended into 3D by computing
the normal to the surface of the Earth at each of their vertices (see Figure
3.9). The normal to the surface also automatically passes through the center
of a spherical Earth. For an ellipsoid, however, this is not generally true (see
Figure 3.10). The Earth is slightly bulged at the Equator and flattened at
the poles (i.e. is an ellipsoid), therefore the normal to the surface does not
always pass through its center. Ellipsoidal DGGS’s are more accurate than
spherical DGGS’s, as the Earth itself is most closely resembled as an oblate
ellipsoid. The general idea, however, is to connect each of the vertices of all
of the cells of a DGGS to the center of the Earth model (be it a sphere or an
ellipsoid) in an earth-centered system such as ECEF.

Unfortunately, 3D cells at any one resolution in the hierarchy will not be
of the exact same volume, as the amount of space expands outwards from
the Earth’s center. However, the cells in a concentric ring at any one radius
(distance) outwards from the center of the Earth within the same resolution
will be of the same volume, if the Earth is assumed to be a sphere. For other
Earth models, such as ellipsoids, some corrections are needed, and the cells
above or below the surface in equatorial regions will be of a larger volume
than those closer to the poles because the Earth, being an oblate spheroid,
bulges out at the Equator and is more flattened at the poles. However, for
most purposes these differences in volume are negligible. For point clouds,
an elevation range of +- 5000 meters, or 5 kilometers, is sufficient, as even
high-altitude airborne LIDAR acquisition surveys are usually performed at
around 3000 meters [Hopkinson, 2007]. In this elevation range, the volume
of the cells is roughly identical and the differences in volume can be ignored.
Therefore, for all practical purposes, 3D cells of the same volume are being
used when it comes to handling point clouds or even other near-surface
features. This elevation range can be user-defined and customized to suit
application-specific needs.

Although the faces of the 3D cells are not planar, for all practical purposes
one can think of them in terms of simple primitives such as 3D planes. The
3D cells extend both above and below the Earth’s surface, and as stated
earlier, an elevation range of +-5000 meters from the surface is sufficient to
incorporate both terrestrial and bathymetric point clouds. Just as a parent
cell is subdivided into 4 smaller children on the flat 2D icosahedral plane, a
volumetric 3D cell can be subdivided into 8 smaller children by splitting the
3D hypercube on the polyhedron by 3 splitting planes, when an aperture 4

2D DGGS is extended into 3D. A 3D SFC can be defined that traverses through
all of the cells at each resolution in a hierarchical manner, thereby allowing
the storage and representation of the 3D location in space of the point that

44 methodology

Figure 3.9: A DGGS extended into 3D on a spherical Earth. Only a single resolution
is shown. The cell in red is a 2D cell on the curved surface of the Earth,
and shown for reference.

was generated by the laser pulse, in an earth centered system such as ECEF

or latitude-longitude.

As the 3D cells extend below the surface of the Earth model, they can be
used to work with bathymetric or other point clouds acquired below the
surface. If the elevation range extends below the Earth’s surface, negative
elevation values are also automatically encoded: the range of elevation val-
ues (maximum – minimum), always a positive number, is computed, and
hierarchically split into 4 smaller elevation ranges at every resolution of an
aperture-4 DGGS. With other apertures, the amount of refinement would be
different.

It is important to note that cells of any shape- such as triangles, squares,
and hexagons- can be extended into 3D in the same manner; this procedure
is not limited to rhombuses. Moreover, any polyhedron can be used, and
not only the icosahedron. Once the orientation of the polyhedron is set, the
3D cells stay in the same position with respect to the surface of the Earth,
similar to in 2D. Changing the polyhedron orientation allows for adjusting
the positions of 3D cells for application-specific purposes.

4D DGGS

All points are captured at a specific moment in time, and this additional
dimension can also be encoded into a DGGS cell, thereby turning it into a 4D
cell that is fine enough in temporal resolution to encode not just the date
but the exact observation time of each point. The fineness in time (i.e. hours,

3.2 morton indexing on a curved surface 45

Figure 3.10: The normal to the surface of an ellipsoidal Earth does not always pass
through its center. Therefore, it cannot be directly used on an ellipsoid
to create 3D DGGS cells.

minutes, seconds) can be set as appropriate. In 4D DGGS, the behavior of the
time dimension is much similar to the behavior of the spatial dimensions,
in which at each resolution the range of a dimension is hierarchically split
into a certain number of finer parts. Just as how space is subdivided into a
hierarchy of nested spatial areas or volumes in 2D and 3D DGGS respectively,
in 4D DGGS time is discretized as a hierarchy of nested temporal ranges. For
example, a large temporal range is subdivided into exactly four smaller
temporal ranges at every resolution in any aperture-4 DGGS (see Figure 3.11

for an illustration). With other apertures, the refinement ratio would be
different. A 4D SFC will traverse through all four dimensions and allow for
efficient indexing, clustering, and querying of 4D point cloud data.

Figure 3.11: Time, a continuous dimension, can be discretized into a hierarchy of
nested temporal ranges for encoding the temporal dimension of point
clouds, or any other observations for that matter.

Before encoding all dimensions into a proper SFC code, their range of
values should be scaled to a common range. This range is dependent on
the resolution of the DGGS. For example, at resolution 3 in 2D DGGS there
are 8 possible X values and 8 possible Y values, because space is subdivided
three times hierarchically. This can be seen in Figure 3.12. Similarly, in 3D
DGGS, Z should be scaled to a range of 0-8 at this resolution. In 4D DGGS,
time should also be scaled to the same range. Time uses different units from

46 methodology

space, as it is measured using years, months, weeks, days, hours, minutes,
and seconds. The amount of change applied to the time to get it to be the
same range as the X, Y, and Z dimensions is known as the scaling and is the
factor of how much time is integrated with how much space [Psomadaki
et al., 2016]. In the context of a DGGS, the scaling differs depending on
the resolution, with a larger scaling applied applied to smaller resolutions
(i.e. those containing larger cells), and a smaller scaling applied to larger
resolutions (i.e. those containing smaller cells). As time can be measured
using a variety of different units (i.e. year, month, day, etc.), it should first be
converted into a single unit that is fine enough so as to be able to distinguish
each point separately in a point cloud, but coarse enough so as to not yield
unnecessarily large numbers that might pose an overhead for storage and
retrieval.

In 4D DGGS, time is represented on a continuous scale since a certain
moment in history. For the dataset used in this project, it is in the form of
GPS Time, a scale beginning at 12 AM on January 6, 1980 that is currently
18 seconds ahead of the more popularly used UTC time, because it does not
take into account leap seconds [QPS, 2018]. The time is given in seconds.
By setting an appropriate end value for the time range, the entire range of
values can be discretized into a hierarchy of nested temporal ranges. The
end value chosen here is 12 AM on January 6, 2018, exactly 38 years after the
beginning of GPS Time. This range is sufficient for studies of most recent
point clouds. The end value for the time range could also be set to update
dynamically, as time itself is dynamic. This would mean that, the 4D DGGS

SFC codes of a point observation would also change dynamically as time
passes by. For this thesis, however, a static time range was used.

The user-friendly hexadecimal base-16 system lends itself exceptionally
well to its use in encoding 4D DGGS observations. The system uses the digits
0 - 9 to represent values from zero to nine, and the letters A - F to represent
values from ten to fifteen, respectively. This means that there are a total of
16 possible values that can be represented using hexadecimal. This is also
the case with a 4D DGGS at every resolution, whereby one out of sixteen
values is used. Due to its user-friendly nature and analogy to a 4D DGGS, it
was used in this research to encode 4D point clouds.

When time is encoded into the DGGS cell and its ID, spatio-temporal quer-
ies on the data can run a lot faster as the database engine does not have to
perform a complete sequential scan of the data as when time is stored only
as an additional attribute. 3D space and time are incorporated into one SFC

key and this key can be decoded into its original space and time values (i.e.
the point’s latitude, longitude, distance from the surface of the Earth, and
time of acquisition).

Algorithm 3.1 provides a high-level overview of the Morton encoding
procedure in 4-dimensions.

3.2 morton indexing on a curved surface 47

Algorithm 3.1: 4D Morton Encode
Input: Point X, Y, Z, and time values, A maximum DGGS resolution

number maxRes, an elevation range above and/or below
surface of Earth hRange, a time range tRange in an established
system such as GPS Time

Output: 4D Morton code MC for point

1 Point (Long,Lat,Height in WGS84)← Project Point(X, Y, Z) in
projection
while triangle face not found do

2 for i← 1 to 21 do
3 Find triangle face

Find x,y coordinates from center of face
XTrans, YTrans← Translate coordinates to lower left/upper
left origin
XSkewed, YSkewed← Rotate axes so that interior angle is
120◦ using formulas
—- XSkewed = XTrans - YTrans / sqrt(3)
—- YSkewed = XTrans + YTrans / sqrt(3)
Round down to nearest integer
Tbin, Zbin, Ybin, Xbin← Convert to binary
Convert binary to integer
Find rhombus face using triangle face
MC← Compute nD Morton code using formula 8 * (Tbin) +
4 * (Zbin) + 2 * (Ybin) + (Xbin)

4 return MC

The resulting Morton code has some unique properties. The first digit
of the code indicates the icosahedron rhombus face on which the point is
located. For a spatial query, this allows a rapid determination of where
on the Earth the point could be located. Points on all other faces can be
immediately discarded from further consideration. Depending on the use
case, n dimensions can be integrated into one code. For this thesis, the three
spatial dimensions (X, Y, Z) have been integrated into a 3D DGGS code, an
attempt to draw a 3D DGGS tessellation has been made (see Figure 3.9), and
it also has been demonstrated how in addition time (T) can be incorporated
into a single 4D DGGS code. The length of the code indicates the resolution of
a DGGS in which a point is contained, and also that point’s discrete precision.
As there are a fixed number of cells at every resolution and a fixed minimum
spacing between the cells, a Morton code also automatically encodes the
number of cells and the DGGS inter-cell spacing at that resolution.

3.2.2 Order of dimensions

The order of the space/time dimensions (latitude, longitude, distance
from the surface of the ellipsoid, and time) used in the encoding of an ob-
servation’s Morton code influences the resulting Morton code (or any other
SFC code, for that matter). For example, using the order of latitude, longitude,
altitude, time will yield a different Morton code from the order of time, alti-
tude, longitude, latitude. However, as long as all points in all datasets have
been consistently encoded in the same manner, the order of the dimensions
will not result in any problem for querying and retrieval.

48 methodology

3.2.3 Storage of Morton codes

For storage purposes, there are two options:

1. The Morton code only up to the resolution to which the point has
been assigned can be stored, thereby obviating the need to store the
(discrete) precision separately as additional metadata as the length
of the entire sequence of numbers in the code indicates the discrete
precision/resolution level in a DGGS hierarchy to which the point is as-
signed [Bai et al., 2005]. However, in order to uniquely identify and get
access to the spatial and temporal properties of each and every point,
additional information would have to be stored. Latitude, longitude,
distance from the surface of the Earth, and time are all continuous
dimensions. DGGS’s, on the other hand, are by definition discrete. Un-
less a SFC with dimensions represented by only integer values is used,
converting to a DGGS will result in a loss of information as continu-
ous values are rounded down to their closest integers. To preserve the
original information, the differences in the continuous and discrete val-
ues, for each dimension, will need to be stored separately in addition
to the Morton code. This will result in 4 additional fields as there are
4 total dimensions. This approach provides a good way to encode a
point’s discrete precision without the need to store it as an additional
attribute. However, it also requires storing a lot of additional data.

2. The full-resolution Morton code can be stored for each and every point,
thereby eliminating the need to store the additional fields for each di-
mension. In case the discrete precision/resolution level in a DGGS has
to be stored, this approach would necessitate its storage as a separ-
ate attribute, because the length of the code itself cannot be used to
recover the discrete DGGS resolution to which the point has been as-
signed. However, this approach requires considerably less storage.

The second approach to DBMS storage for points was used as overall it
requires the lowest storage. If the cells of this DGGS are to be stored, only
the leaf cells (i.e. cells at the highest resolution) need to be stored, as the
location of all the other cells can be obtained through simple spatial aggreg-
ation using their Morton codes, benefiting from the congruent nature of the
rhombus tessellation. However, for query purposes, storing the cells is un-
necessary as the Morton codes of the cells are also the Morton codes of their
assigned points.

3.2.4 SFC code convergence

As resolution increases, a DGGS SFC code slowly converges to the true values
of the its encoded dimensions. For this thesis, the Morton code gradually
converges to the true latitude, longitude, elevation, and time values of a
point as full-resolution is approached. This is illustrated in Table 3.2 for
an example location. The table shows the values for the four dimensions
obtained from decoding a 4D Morton code for a hypothetical point observa-
tion at various resolution levels. The decoded values are slowly converging
to the actual values. Therefore, although latitude, longitude, elevation, and
time are all continuous variables, storing a single full-resolution code allows

3.3 decoding a morton code 49

for encoding the continuous nature of the data as the code encodes these di-
mensions up to such an arbitrarily high LOD so as to converge to the true
values of these dimensions for that point.

Point Observation:

Latitude: 36
◦ N

Longitude: 25
◦ E

Elevation: 44.0 meter (WGS84)
Time: February 1, 2008 00:00:00 (12 AM) UTC / 885,859,218 seconds GPS
Time (seconds since 12 AM January 6, 1980)

4D DGGS Morton code: 4F38AAA1D23699081A69D5B67D79A2928B (hexa-
decimal)

Resolution Latitude Longitude Elevation (m) GPS Time (s)
2 30.2809 18.7822 0.0 599,616,027

5 35.7917 23.7038 0.0 861,948,031

10 35.9975 24.9653 39.0625 885,370,531

15 36.0006 24.9989 43.9453 885,846,301

25 36.0000 24.9999 43.9999 885,859,203

32 36.0000 25.0000 44.0000 885,859,218

Table 3.2: With increasing resolution, the Morton code converges to the true latitude,
longitude, elevation, and time values of every point.

Resolution GPS Time (s) Equivalent UTC
2 599,616,027 Jan 6, 1999 00:00:09 AM
5 861,948,031 Apr 30, 2007 06:00:13 AM
10 885,370,531 Jan 26, 2008 08:15:13 AM
15 885,846,301 Jan 31, 2008 20:24:43 PM
25 885,859,203 Jan 31, 2008 11:59:45 PM
32 885,859,218 Feb 1, 2008 00:00:00 AM

Table 3.3: The equivalent time in UTC for every GPS Time value provided in Table
3.2.

A 4D Morton code at resolution 10, when decoded, will not simply return
a GPS Time that is double the time returned by decoding a Morton code at
resolution 5. For example, as can be seen in Table 3.2, a decoded resolu-
tion 5 4D DGGS code returns a GPS Time of 861,948,031 seconds, whereas a
code at resolution 10 returns a value of 885,370,531 seconds, which is not
simply double the first amount. What is observed, however, is that the differ-
ence in decoded values at consecutive resolutions decreases with increasing
resolution. For example, there is a difference of only about 15 seconds in
time between resolutions 25 and 33, but a difference of more than 9 years
between resolutions 2 and 10 (see Table 3.3). The greatest differences in suc-
cessive resolutions lie in-between smaller resolutions, whereas the smallest
differences lie in-between larger resolutions.

3.3 decoding a morton code

A Morton code for a point can be decoded into its latitude, longitude, and
elevation on the WGS84 ellipsoid, and time. However, an important point to

50 methodology

note is that converting between coordinates and spherical SFC positions is
not completely reversible; the exact latitude, longitude coordinate may not
be recovered, but it will be sufficiently close [Bartholdi and Goldsman, 2001].
Unfortunately, if a projection contains many formulas that are not lossless,
the error accumulates.

3.3.1 2D DGGS

Since the Morton code is computed on a projection (ISEA), inverse-projection
formulas, all of which are documented in [Snyder, 1992], are needed in
order to transform an encoded point into geographic coordinates. First,
however, the Morton code needs to be converted into the skewed x, y co-
ordinates mentioned in Section 3.2. This requires the determination of two
unknowns from one equation (see Equation 3.3). Although this is mathem-
atically impossible, it can be done using a simple process of elimination in
any quadtree-based DGGS by observing the digits comprising the code. The
length of the code indicates the resolution level, which in turn indicates the
number of possible unique values for the x and y coordinates; for example,
resolution 4 means 24 or 16 potential x or y values (0-15). The first number
in the code is simply the rhombus face number, and can be ignored tem-
porarily. To determine the rotated x coordinate, one can loop through the
remaining numbers in the code, one by one, and eliminate the possible val-
ues for the x and y coordinates to yield only 1 possible value after the series
of iterations. For the x coordinates, this works as follows: each successive di-
git is tested to see if it is even or odd. This restricts the set of possible values
to half the original amount at every iteration. Odd numbers (1 or 3) are on
the upper side of the current range, whereas even numbers (0 or 2) are on
the lower side of the range. For the y coordinates, a digit of 2 or 3 restricts
the set of possible values to the upper half of the current range, whereas
a digit of 0 or 1 restricts it to the lower half of the current range. This is
illustrated in Figure 3.12. By looping through the entire Morton code, the X
and Y coordinates of the point in the skewed system can be determined.

The x,y coordinates are rotated back into a right-handed Cartesian sys-
tem originating at the left vertex of each rhombus face using the system of
equations 3.1 and 3.2. The triangle face number then needs to be computed
from the rhombus face number. This is simple: if the Cartesian y coordin-
ate is negative, the triangle is one out of either (6-10) or (16-20); if positive,
it is one out of either (1-5) or (11-15). The triangles associated with each
rhombus are known beforehand. The coordinates can then be translated
to the geographic center of their respective triangle, taking into account tri-
angle orientation. Finally, the inverse ISEA projection formulas from [Snyder,
1992] can be applied to yield a latitude, longitude value. This essentially in-
volves the determination of the azimuth Az and the spherical distance z
from the center of the icosahedral triangle face. The geographic centers of
all icosahedral triangles are also known beforehand. With an azimuth and
spherical distance along with a starting location in geographic coordinates,
the geographic coordinates of a point can be calculated using Vincenty’s
Direct Formula.

3.3.2 3D and 4D DGGS

3.3 decoding a morton code 51

Figure 3.12: The X and Y coordinates in a skewed coordinate system on a rhombus
can be found by observing the pattern of numbers in the Morton code
of a cell: even (0,2) and odd (1,3) values for X, and (0,1) and (2,3) for Y.
Figure from Zhao et al., 2006.

In 3D DGGS, the distance from the Earth’s surface is computed using the
exact same method as in 2D, except that the range of possible values for the
Z-dimension extends both above and below the surface, and this needs to be
taken into account in the decoding process. By looping one by one through
the numbers comprising the Morton code, the exact encoded Z value can be
found.

For 4D DGGS, the hexadecimal base-16 system has been used in this re-
search. As each digit/letter represents a number from 00 - 15, each digit-
/letter needs to first be decoded into this number. Once all digits/letters
are decoded, by looping through the sequence of numbers comprising the
full-resolution code and observing every two successive digits at a time, the
time of acquisition of the point can be computed to an arbitrarily high level
of precision. Algorithm 3.2 provides a high-level overview of the Morton
decoding procedure in 4-dimensions.

52 methodology

Algorithm 3.2: 4D DGGS Morton Decode
Input: Morton code MC for point, DGGS full resolution number

maxRes, elevation range hrange, and time range trange
Output: latitude lat, longitude lon, elevation H and time T for point

1 Face Number f ← first digit in MC
Code c← remaining digits in MC
Resolution res← length of code
Total range of values totRange← 2 ˆmaxRes
numXValues, numYValues, numZValues, numTValues← 2 pow
maxRes
xMarker, yMarker, zMarker, tMarker← (numXValues/2,
numYValues/2), (numZValues/2), (numTValues/2)
yVals← [0,1,4,5,8,9,12,13]
zVals← [0,1,2,3,8,9,10,11]
Code cNum with numbers← Code c of hexadecimal
for i← 0 to (maxRes - 1) do

2 Observe every pair of two digits in cNum and narrow down
possible values for xMarker, yMarker, zMarker, tMarker

3 Look at last two digits of cNum and find precise values of xMarker,
yMarker, zMarker, tMarker
H ← (-1) * hrange + (zMarker / totRange) * (2 * hrange)
T ← round((tMarker/totRange) * trange) + 18

Find triangle coordinates from rhombus coordinates
Find azimuth Az and spherical distance z
lat, lon← Use Vincenty direct formula
return lat, lon, H, T

3.4 change visualization

In order to analyze changes in an area between two moments in time,
a separate dataset is needed for each moment (old and new). Unfortu-
nately, DGGS’s by themselves are not good frameworks for calculating dis-
tances between points. These are better calculated using a conventional CRS

defined on a map projection. That is, there is no formula that can com-
pute distances between two observations using their DGGS SFC codes dir-
ectly, without performing a decoding operation. A DGGS is fundamentally
designed as an information grid, and not a navigation grid [Purss et al.,
2017]. Therefore, changes in the surface, which require the computation of
minimum distances between points in two point clouds, was not studied in
this thesis. Other metrics, such as changes in point density, can be studied.
DGGS’s offer a scalable approach to spatial data manipulation and one of
the three most fundamental questions of spatial analytics, namely ”How has
it changed?” [Purss et al., 2017], can be answered effectively using a DGGS.
The SFC codes of observations can be used directly to perform the change
analysis.

DGGS’s hierarchical, multi-resolution nature is ideal for analyzing spatio-
temporal phenomena at arbitrary discrete LOD’s. This allows the user much
flexibility in choosing a resolution that is most suitable for the application
at hand. In order to visualize the above changes, a particular single DGGS

3.5 point cloud web visualization 53

resolution (for example, 17) can be chosen (in 2D), and the point density
of all of the points that fall in every cell can be computed by dividing the
total number of points in a cell by the cell’s area. The areas of the cells are
known beforehand, for every resolution, and are fixed (i.e. do not change).
The cells can then be symbolized based upon their point densities. The res-
ult will yield a visual spatial indication of where most of the changes in
point density have taken place. This approach works for point clouds of
different densities where the density is consistent throughout the extent of
every individual point cloud but varies in-between point clouds, and also
for point clouds of different densities where the density varies internally
within a single point cloud across its extent. Once the arbitrary resolution at
which to conduct the analysis has been chosen, the Morton codes of points
only up to that resolution need to be found. This is straightforward as the
full-resolution Morton codes are stored for every point; a simple trunca-
tion/substring operation needs to be performed to acquire the Morton code
only up to a certain length (i.e. resolution). The truncated Morton code
indicates that the point could be located anywhere within the 2D DGGS cell
that shares the same Morton code. If all of the points are truncated to the
same length, the point density within each cell at that resolution can be eas-
ily found. Truncation and concatenation operations on the Morton codes
allow for moving observations up and down the DGGS hierarchy, without
increasing the error in the original observations.

3.5 point cloud web visualization

In order to create a viewer allowing for visualization of DGGS-based point
clouds, an existing framework is needed.

3.5.1 Comparison of existing solutions

There exist several commercial and open-source Earth viewers, many
based on Web Graphics Library (WEBGL), that can be considered. WEBGL

is an extension of the underlying Open Graphics Library (OPENGL), which is
aimed at providing GPU-rendering capabilities to webpages on many kinds
of devices, such as desktops, mobile phones, and tablets [Schûtz, 2016].
A thorough comparison of the existing viewers is outside the scope of
this thesis, however a brief overview of some of the more popular ones
is provided here.

• Potree: Potree is an open-source WEBGL viewer that uses a multi-
resolution octree to structure and render the points, in which every
internal node has eight children nodes. It uses the three.js Javascript
library as a coding and rendering environment. The octree allows for
efficient view frustum culling and perspective view queries [Martinez-
Rubi et al., 2015]. Points are stored in one of the nodes of the octree
based upon the spacing between them and their surrounding points.
However, Potree renders a point cloud in a flat, Cartesian environment.
For the purposes of this thesis, a globe-like representation is more just
and appealing.

54 methodology

• Plasio: A WEBGL-based viewer still in its early stages of development,
it supports a functional implementation of the LAS and LASzip file
formats. Also, it only works in Google Chrome. Due to its currently
limited capabilities and Cartesian environment, it is not suitable for
this thesis.

• Cesium: An open-source Javascript library to render 3D globes and
maps in a web browser. Cesium offers support for not only point
clouds, but also vectors, rasters, terrain, imagery, 3D models, and geo-
metrical objects. As a DGGS can be used to integrate all of these kinds
of data, this functionality is ideal. Point clouds can be rendered in
the 3D Tiles format (see Section 3.5.2, a relatively new specification
for streaming massive heterogeneous 3D geospatial datasets. With its
integrated time-slider and support for Cesium Language (CZML) for
displaying movements or changes of objects between different times,
along with its 3D globe-view, Cesium forms an ideal visualization en-
vironment for the purposes of this thesis. Another advantage of us-
ing Cesium is that the Light Open Source Point Cloud Server (LOPOCS)
(written in Python) can be used to load point cloud data from a spatial
database such as PostgreSQL into Cesium using the 3DTiles format.

• iTowns:A Javascript/WEBGL framework for 3D geospatial data visu-
alization, iTowns is also based on the three.js library, like Potree. It
also supports many formats, including 3D Tiles, 3D textured models,
imagery, elevation, GeoJSON, Web Map Service (WMS)/Web Map Tile
Service (WMTS)/Tiled Map Service (TMS) services, in both a globe and
planar view. It also allows for making precise measurements in 3D.
Despite providing the above benefits, iTowns is still in an early stage
of development. Also, LOPOCS support is non-existent with iTowns.

After reflecting upon the above considerations, Cesium was chosen as the
visualization environment for this thesis.

3.5.2 3D Tiles

An open specification for streaming massive heterogeneous 3D geospatial
datasets, 3DTiles can be used to stream 3D content such as buildings, trees,
point clouds, and vector data into Cesium. 3D Tiles was created by the
Cesium team and is based on the popular GL Transmission Format (GLTF)
3D format for geospatial data. The primary goal of 3D Tiles is to improve
the streaming and rendering performance of these datasets. Each tile in
a 3D Tile is one WEBGL draw-call. A collection of individual 3D Tiles or-
ganized in the form of a hierarchy is referred to as a tileset. A tileset is a
hierarchical data structure consisting of a number of individual tiles located
at a certain level within the hierarchy, each of which is enclosed by a bound-
ing volume. Every tile can contain one or many features, such as points in
a point cloud or 3D models of buildings. Each tile has a number of prop-
erties, such as bounding volume (defines a bounding box for the tileset in
geographic coordinates on the WGS84 ellipsoid), geometric error (defines the
error, in meters, introduced if this tile is rendered and its children are not),
content (contains metadata about the tile’s content), refine (specifies which
kind of refinement is desired while moving the observer position), and chil-
dren (an array defining the children of this tile). The geometric error property

3.6 analysis in a DGGS 55

can be used to perform a perspective view query-based visualization in the
Cesium viewer, so that only the most ’important’ points are shown when
farther from the viewer and successively lesser important points are shown
closer to the viewer. 3D Tiles is internally based on a Cartesian ECEF system
using the WGS84 ellipsoid, with units in meters.

Point clouds in 3D Tiles are stored in tiles in the .PNTS (points) format.
The .PNTS format enables efficient streaming of massive point clouds for
3D visualization. Every tile is composed of a feature table and a batch table.
The feature table stores positions and colors for each point, whereas the
batch table allows for storing distinct per-point properties that can be used
for declarative styling. The hierarchical nature of 3D Tiles is similar to that
of a DGGS. Both are ’tree-like’ structures. 3D Tiles allows for cells with
increasing volume from the center of the Earth in its specification, useful
for 3D DGGS. It also allows for overlap between tiles in a tileset, although
for this thesis this approach was not pursued as the cells of a 3D DGGS are
non-overlapping.

3.6 analysis in a DGGS

A DGGS is essentially a large spatial/temporal database spanning the
Earth at many discrete resolutions. Therefore, many of the kinds of spa-
tial operations that can be applied in a spatial database such as PostGIS
can be applied on a DGGS. Once a set of observations has been assigned
a Morton code, two distinct kinds of algebraic operations can be applied:
cell navigation operations, which exploit the hierarchical nature of a DGGS

for parent-child-sibling relationships, adjacency and neighbor-finding op-
erations, and spatial analysis operations, which utilize the framework of the
DE-9IM to determine the relationships between DGGS cells and spatial query
objects [Purss et al., 2017] and/or conduct spatial analysis using any of the
resolutions of a DGGS. Once imported into a DGGS, spatial observations do
not need to be further projected or transformed, thereby minimizing the ad-
ditional error introduced by repeated forward and inverse projections. The
cell indices along the Morton SFC are used to perform the above operations
on the DGGS.

Every point has an associated cell whose spatial resolution and precision
are explicit. To retrieve a representation (i.e. cell) for the same point at a
lower resolution, the Morton code of that point can be trimmed to the neces-
sary length and the cell corresponding to the trimmed Morton code can be
selected. Reference data stored at a particular level in a DGGS hierarchy can
be interpolated or decimated as an array process to move up or down the
hierarchy without increasing the initial error in the data. Storing the cells
or their contained observations as arrays (i.e. lists) is a scalable approach
to spatial analysis. For example, suppose that there are point observations
stored at levels 15, 16, and 17 in a DGGS. To generate a map of interpolated
LIDAR intensity in a cell at resolution 15, all of the points falling into the
geographical extent of that cell (at any resolution) can be ”moved” up to
level 15 and the points interpolated to form a grid or coverage on the ellips-
oid. The points in resolutions 16 and 17 are selected solely based upon their
Morton codes, whose prefix will indicate whether they are children of the

56 methodology

cell at resolution 15. The same operation can be applied to traverse down
the hierarchy if points at resolutions 15, 16, and 17 need to be spatially ana-
lyzed alongside points at resolutions 19 or 20. If points with only a certain
range of precision need to be analyzed, then only the points stored in those
resolutions can be selected.

As all of the points belonging to a cell share the same Morton code, spatial
and statistical operations can be carried out on these points by simply se-
lecting and analyzing the points having a common Morton code. This does
not require CPU-intensive operations such as Point In Polygon (PIP) queries.
Examples of such operations are finding the average, maximum, median, or
most frequent RGB, intensity, or elevation value within a study area. If the
geographic area to be analyzed is to be extended, then performing the same
spatial analysis on the bigger area (i.e. larger size cells) is simple: all of the
points sharing the same prefix (up to a certain length) in their Morton code
can be quickly selected and the spatial analysis performed. Only if the area
is to be extended into another icosahedron rhombus face will the prefixes
be different. Most of the times, however, the study area is usually smaller
than the area of a 2D rhombus face, which is 51,006,562.17 square kilometers
on the surface of the Earth (see Table A.1). However, since the locations of
every rhombus face are known beforehand, the adjacent faces can be easily
found. As the difference between the sizes of cells at successive resolutions
decreases with increasing resolution (i.e. when going from larger to smaller
cells), it is more likely for spatially near points at higher resolutions to have
distinct Morton codes than near points at lower resolutions.

The volume of data in a project such as OPCM that is based upon a DGGS

is massive. For example, simply storing the 2D cells at resolution 30 across
the entire Earth could take at least 15,300 Gigabyte (GB) or 15 Terabyte (TB)
of storage space if the cells are stored in Keyhole Markup Language (KML)
format; for other less redundant formats, such as GeoJSON, this will be
lower, but still very large. Storing a global point cloud will require even
more space. For instance, a nationwide point cloud scan of only the United
States is expected to generate close to 27 10E15 points, with an estimated
storage need of 540 TB [Schûtz, 2016]. Other formats, such as GeoJSON,
pose less of a storage overhead as they are less verbose, but regardless of
the format used the amount of cells and points in a global point cloud ne-
cessitates the need for an advanced computing infrastructure to store and
process such large datasets. This very problem makes DGGS exceptionally
well suited for High Performance Computing (HPC) and big data infrastruc-
tures such as Apache Spark and Hadoop MapReduce. Instead of allocating
a workload to only a single node (computer), a cluster of nodes can be util-
ized to spread out the processing in parallel, distributed algorithms across
several nodes, each handling a ”chunk” of the workflow. It is worth noting,
however, that spatial/algebraic operations requiring access to all of the cells
of a DGGS at the same time are less common than other operations which
require access to only a small portion of the cells at a time. Furthermore,
the nested, hierarchical nature of an icosahedral rhombus DGGS necessitates
the storage of observations in only the leaf cells (i.e. cells at the largest res-
olution) along with their cell indices in a database; the extent of data in all
of the other cells can be recovered through simple aggregation based upon
the cell indices [Bai et al., 2005].

4 IMPLEMENTAT ION

4.1 tools and data

A variety of tools were used throughout this research.The analysis was
tested on two datasets of the same area that have been acquired at different
times.

4.1.1 Software

• DGGRID: This is a software available in the public domain for cre-
ating and manipulating DGGS, and was created mainly by Kevin Sahr.
DGGRID allows one to create many kinds of different DGGS, such as
triangular, hexagonal, and rhombus ones with varying apertures. This
software was used purely for research purposes; for example, to verify if
the 2D Morton codes have been accurately computed. It was also used
to visualize the changes in point density across two moments in time.

• LASTools: One of the most popular tools for processing vast LIDAR

datasets in a memory-efficient manner, LasTools commands were used
for various purposes, such as retrieving information about a LAS file
and tiling a LAS file into chunks.

• C#: C Sharp was used to compute the scanner-point distances for
every point, and store this into the ’Red’ and ’Green’ color fields of
the LAS files where the ’Red’ field contains the distance rounded to
the nearest meter, and the ’Green’ field contains the added distance
in millimeters on top of the distance in meters. Therefore, when con-
verted into the same unit and summed, the total of the ’Red’ and
’Green’ fields yields the total distance between the LIDAR scanner’s
exit aperture and the point. The C# implementation was performed in
Microsoft Visual Studio 2017.

• Python: The Python programming language was utilized for most of
the coding, including the projection of points from the RD coordinate
system to geographic coordinates in WGS84, the conversion to the 2D,
3D, and 4D DGGS Morton codes, and the posting to and retrieval from
the database. The Python version used is 2.7.

• PostgreSQL/pgPointCloud: As a database engine, the open-source
PostgreSQL database and its extension for the storage of point clouds,
pgPointCloud, was utilized. pgPointCloud provides two data types, namely
PcPoint and PcPatch, for storage of points in a flat table (one row per
point) or a blocks table (a collection of points in every block/patch),
respectively.

57

58 implementation

• FME: The Feature Manipulation Engine suite of software was used to
create a translation to convert the points into a vario-scale 3D Tiles
tileset for display in Cesium JS.

• Cesium JS: As a front-end open-source library for 3D geospatial visu-
alization, Cesium JS was used for the creation of the 3D point cloud
viewer. The point clouds are converted into the relatively new 3D
Tiles format for streaming massive heterogeneous points, that can be
consumed by Cesium.

4.1.2 Hardware

All tests during this research were carried out on a Windows 7 Intel Core
i7-2820QM CPU with a speed of 2.30 GHz, 8 GB Random Access Memory
(RAM), and a 64-bit operating system.

DGGS’s and point clouds, due to their vast sizes, are inherently well-suited
for big data infrastructures and cluster computing engines such as Apache
Spark, a high-performance framework with built-in modules for streaming,
SQL, machine learning and graph processing. At its core, Spark utilizes a
data structure known as a Resilient Distributed Dataset (RDD), an immut-
able, distributed collection of elements that are divided into logical parti-
tions, each of which could be located on a different node (i.e. computer)
of the cluster. RDD’s are resilient in the sense that they keep a record of
the transformations used to build them and this can be used to recompute
lost data which ensures fault tolerance. Immutable means that once created,
they cannot be changed, only copied into another RDD. Transformations on
RDD’s are lazily evaluated (only at runtime). Therefore, running the exact
same analysis across a cluster of machines is expected to yield much faster
execution times than those provided in this research. Although this is ideal,
it is outside the scope of this thesis.

4.1.3 Data

The datasets used in this research include two mobile LIDAR scans of the
Forepark area in the Hague, Netherlands. The scans were performed as a
part of the Fugro DRIVE-MAP project, in which a vehicle simultaneously
collects accurate 3D data and imagery of an area. The first scan was taken
in 2010 and the second one was acquired in July 2016. As there was only
one laser scanner at the time, the first scan has a lower density of points
than the second one. Therefore, taken together, these two datasets of the
same area can be used to identify changes between the points clouds at
two different moments in time, and can also be used for the purposes of
vario-scale visualization. The area of Forepark is approximately 0.83 square
kilometers.

As a DGGS is inherently global, for the purpose of handling point clouds
it does not really matter where the point cloud is coming from. The same
procedure followed in this research can be used on a point cloud originating
from any area on the Earth, both above or below the surface. Table 4.1 shows
some more details about the two datasets used.

4.2 computing point precisions 59

Dataset File Size Number Of Points
2010 5.44 GB 162,918,748

2016 6.64 GB 198,365,000

Table 4.1: Details about the datasets used in this thesis

4.2 computing point precisions

In order to assign a point observation to a DGGS cell, first its (continuous)
precision needs to be determined in the units of its original CRS/projection,
and stored as an attribute of that point. The original CRS in which the Fu-
gro point clouds are captured is the Dutch RD system, with units in meters.
Each point acquired in the Fugro DRIVE-MAP project is time-stamped with
its acquisition time, given in GPS Time. Furthermore, the trajectory of the
car that collected the points is known along with the times when the car
was at each point on the trajectory; this is stored in a file named poses.ipz for
each scan (i.e. there is a separate poses.ipz file for the 2010 and 2016 scans).
The IPZ format comes from the manufacturer of the old DRIVE-MAP sys-
tem. The scanner-point distances can be computed based on matching the
time component, and using the known direct linear relationship between
distance from the scanner’s exit aperture and the size of the beam footprint
(provided in Table 4.2), the diameter of the beam footprint can be calculated
at the exact location where the beam hit the point. C# was used to perform
this procedure. This gives an indication of the ’true’ location of the point,
which could be anywhere within the ’block’ of spatial uncertainty given by
the beam footprint; furthermore, any repeated measurements of the same
point will likely fall somewhere in the same area. The distinction between
precision and accuracy is important to note here.If a point’s accuracy is to
be determined, the centroids of every DGGS cell (in n-dimensions) are usually
computed and assumed to be the ’true’ location of the point, and then the
distances from the measured/observed location and the centroid are taken
to be the accuracy [Amiri et al., 2015b].

The scanner utilized for capturing the point clouds of Forepark is a Riegl
VQ-250 scanner featuring a high speed, non-contact profile measuring sys-
tem with a narrow infrared laser beam and a fast line scanning mechanism,
enabling a full 360 degree beam deflection without any gaps. It is optimally
suited for mobile mapping from a variety of moving platforms, such as cars,
ships, boats, and railways, similar to what is being done in the DRIVE-MAP
project.

Distance Beam Footprint Width
Exit aperture 7 mm

50 m 18 mm
100 m 36 mm

Table 4.2: The laser beam footprints at various distances from the Riegl VQ-250

LIDAR scanner. A direct linear relationship exists between the distance
and width of the beam footprint.

60 implementation

4.3 tiling the las files

With some testing, it can be determined that tiling the entire point cloud files
into smaller chunks for subsequent processing yields significantly faster ex-
ecution times than operating on the entire point cloud as one LAS file. For
example, the size of the entire 2010 dataset for the Forepark area is 5.44

GB and contains 162,918,748 points. Breaking this up into tiles of different
sizes will significantly reduce the processing time for the point cloud than
operating on it in its entirety at once. This can be seen in Table 4.3, where
for the 2010 point cloud a tile size of 5,000 points each yields an estimated
processing and loading time of approximately 31 hours, whereas a tile size
of 40,000 points yields an estimated time of 233 hours, almost 8 times longer.
The numbers provided are for one of the 4 bulk-loading methods tested (see
Section 4.5). It is interesting to note that the total execution time for both the
Morton conversion and bulk loading into the database actually increases as
tile sizes go lower than 5,000 points each. Therefore, choosing an appropri-
ate tile size is extremely important for fast execution.

Points/Tile Number Of Tiles File Size (KB) Est. Total Time (Hrs.)
40,000 4,073 1,329 233.25

8,000 20,365 266 38.91

5,000 32,584 167 30.98

4,000 40,730 134 31.85

500 325,838 17 34.93

Table 4.3: File sizes and processing times (Morton conversion and bulk loading com-
bined) for chunks of the 2010 point cloud. A tile size of 5,000 points per
tile provides the most optimal processing times.

The actual tiling operation was then performed using the lassplit function
in LasTools, which splits an input file into a set of output files (tiles), with a
maximum size parameter of 5,000 points per tile.

4.4 morton conversion

Prior to the Morton conversion, the points were projected from their ori-
ginal CRS’s into the reference ellipsoid used by the DGGS implementation,
WGS84, using the PyProj library (see Figure 3.7 for an illustration).

The Morton conversion itself was made using the procedure followed in
Section 3.2, extended into 3D DGGS. Figure 4.2 provides visualizations of
the Morton SFC (in 2D) traversing the entire Earth, at resolutions 5 and 6.
Both 2D and 3D Morton codes were calculated for every point: the 2D code
for performing change identification using the cells of a DGGS, and the 3D
code for the purposes of querying and visualization with 3D Tiles. Only the
full-resolution codes were computed, thereby eliminating the need to store
the differences between the discrete and continuous representations of space
and time as additional attributes for every point. For the highest possible
resolution, a resolution of 32 was used as this provides close to millimeter-
level precision, and is enough to uniquely distinguish every point in space
and in time (see Table A.1). Moreover, there are already many existing

4.4 morton conversion 61

computer systems that are based on 32-bit storage for numbers. The full-
resolution codes originate from the whole Earth. As the study area is very
small, especially when viewed at from national, regional, or global scales,
most of the digits in the front of the codes are identical. Therefore, if in
case only datasets from a smaller region are to be used for a project, there
is no need to use/store the entire sequence of numbers originating from the
whole Earth; only those numbers distinct to each and every point beginning
at a certain position (i.e. certain resolution DGGS cell) in the full resolution
Morton code until its end can be used and/or stored, to speed up processing
and reduce storage overhead. The first number in the Morton code indicates
the icosahedron rhombus face on which the point is located. Therefore, all
points on any one face can be easily retrieved by selecting all Morton codes
having the same first digit. For all of the points in the study areas used for
this thesis, this number is 4 (see Figure 3.3).

The Morton conversion showed a linear relationship between the number
of points and the total time needed to acquire the Morton codes for those
points, as shown in Figure 4.1. For the 2010 dataset with 162 million points,
the conversion took approximately 420 minutes, or 7 hours, and for the 2016

dataset with 198 million points, it took approximately 510 minutes, or 8.5
hours.

Figure 4.1: The linear relationship between the number of points and amount of
time needed to obtain their Morton codes.

Figure 4.2: Ellipsoidal SFC’s at resolutions 5 (left) and 6 (right) of an icosahedral
rhombus DGGS. There exists a separate SFC at every resolution of a DGGS.

62 implementation

4.5 loading of data

The nature of point cloud data is such that there is just so much of it.
This not only poses an overhead for storage but also for retrieval of the
data from a database. Furthermore, point clouds are growing in popularity
and size every year, and modern technologies have the potential to generate
massive point clouds of 10E12 or 10E15 points, each with their own unique
attribute values [van Oosterom et al., 2014]. Therefore, the operations that
are performed on point clouds need to be scalable so as to not fail or deliver
slow response times for large point clouds. For example, the Dutch AHN2
national point cloud is stored and distributed in 60,000 LAZ files, and for
simple query purposes storing this dataset as files is not an efficient use
of resources [van Oosterom et al., 2014]. This necessitates the need for a
DBMS solution. A DGGS is ultimately a large spatial, or in this case spatio-
temporal, database. Moreover, a DGGS can be used not only for handling
point clouds, but also for incorporating vector and raster data sources in a
single framework. If users want to combine different types of data in their
queries, a standardized and generic DBMS solution is preferable to file-based
solutions [van Oosterom et al., 2014]. Therefore, it is essential to utilize a
DBMS for the management and storage of DGGS data.

Examples of existing DBMS’s that allow for point cloud storage include
Oracle and PostgreSQL, with the sdo pc and PCPOINT/PCPATCH data types,
respectively. For this research, the open-source pgpointcloud extension for
PostgreSQL, with its in-built PCPOINT/PCPATCH data types, was used.
Both DBMS’s allow for the storage of points as either a flat table or a blocks
table (see Section 4.6).

A new database named ’dggs’ was created in PostgreSQL that would
ultimately store the test datasets. A variety of methods can be used to load
data into the database. It is quicker and more efficient to store the data
from the Python script directly into the database rather than have to first
create LAS/LAZ files with attributes such as the 2D, 3D, or 4D Morton code,
continuous point precision, or DGGS discrete resolution, and then load the
files into the DBMS. Moreover, the Morton codes are large numbers; 2D, 3D,
and 4D full-resolution Morton codes (resolution 32) are all 33 digits long
(one digit for the face number and the other digits/letters for the actual
Morton code). There does not exist any in-built attribute in the LAS file
format specification that is capable of storing such a large number in one
field. If the Morton codes are to be stored directly into LAS files first, then
they would have to be broken up into multiple smaller components, and
each of these would have to be stored in a separate attribute in every chunk
of a LAS file. This poses potential problems for data management and is an
error-prone process that can be avoided by using Python to connect to and
store point data in a database directly.

Psycopg2 is the most popular PostgreSQL adapter for the Python pro-
gramming language. Most of the features of PostgreSQL can be used via
this module that was designed for heavily multi-threaded applications that
create and destroy lots of cursors and make a large number of concurrent
inserts and updates [Python Software Foundation, 2018]. Psycopg2 also fea-
tures client-side and server-side cursors and asynchronous communication.

4.5 loading of data 63

Large tables can have over 10E12 rows of points, and inclusive of any
indexes defined on them can occupy over 400 GB of disk space. When insert-
ing data into tables that will eventually become this large, it is important
to choose a procedure that allows for the fastest insertion times possible,
taking into account memory and disk spaces on the machine on which the
insertion is taking place. These can be achieved using bulk-loading instead
of loading a single point in every insertion query.

The most naive way of loading data would be to run an individual insert
operation for every point, one at a time, into the database. This requires Py-
thon to communicate with the database server once for every point, thereby
initiating as many query executions as points. This is an extremely slow pro-
cess, and for only the 162 10E6 points that are a part of the 2010 test dataset
for this research, is expected to take close to 25 days. Of course, this is
something to be avoided at any cost. Another slightly faster method would
be an executemany operation, which is essentially the same as the former,
but combines multiple INSERT statements into one giant list of INSERT
statements (each with only one row in the VALUES clause), and executes
them all. This is not performance-optimized and suffers from exception-
ally slow response times, much like its predecessor. Moreover, the Python
community itself does not recommend usage of this method. A third way
of loading data would be to formulate a Structured Query Language (SQL)
INSERT statement with a very large VALUES clause as a string and send
this to the database server once for every group of chunks/tiles of point
cloud data. So, if the whole point cloud is broken up into tiles of 1,000

points each, data from several hundred of these tiles can be combined into
the VALUES clause of an INSERT statement, and an INSERT query can be
formulated and posted to the database for all of these points. The VALUES
clause allows for such a kind of operation, as multiple rows of data to insert
can be incorporated into the clause. This is much faster than the previous
two approaches. Table 4.3 shows some statistics regarding the insertion of
points into the database using this method.

As is evident, a tile size of 5,000 points per tile provides the fastest pro-
cessing and loading times. It is clear that the times drop significantly when
utilizing tiles of less than 10,000 points each, but go up again after making
tiles of fewer than 5,000 points each. However, these times are still not fast
enough; loading a set of 32,584 files containing a total of 162 10E6 points
would take approximately 31 hours with such a tile size. Other tile sizes,
for example, 40000, 8000, and 500, would take respectively, 233, 39, and 35

hours. This is clearly something to be avoided, even if it is faster than the
earlier two methods. Furthermore, with this method, only at most about
800,000 points can be inserted at any one time without crashing the process,
because there are limits to query size. So, for 162 10E6 points, this would
require more than 200 post operations.

The fastest way to bulk-load data from Python to PostgreSQL comes from
the SQL command dedicated to bulk-loading and unloading of data, COPY.
COPY allows one to either use an in-memory string of data for input, or load
data from an existing file on disk such as a Comma Separated Values (CSV)
file. It would be far better if the data is loaded from memory so as to not
have to write to an external file first, read the entire file into memory again,
and then post the data. If the data is to be read into memory anyway while
copying from a file, there is no gain made by first writing the data to a file.

64 implementation

Therefore, data was written to memory as a StringIO object and then posted
to the database. It was found that COPY reduced the loading time to only 6

seconds per 1,000,000 points. This means that the loading time for the entire
dataset (of 162 10E6 points) would be only 17 minutes. This is currently the
fastest existing implementation, given the limitations of Psycopg2, Python,
PostgreSQL, and the machine on which the loading has been tested. A tile
size of 5,000 points was used, and for every 5 10E6 points (or 1,000 tiles) an
insertion query was executed. This approach provides for rapid insertion
and fewer overall posts.

4.6 storage of points

Points can be stored in either a flat table, with one point and its properties
per row, or as a blocks table, with a collection of points that are nearby in
space and/or time in one block. PgPointCloud provides the PCPOINT data
type for use in a flat table, and the PCPATCH data type for use in a blocks
table.

If blocks are to be used, there are two possible approaches as to how they
can be used:

1. The blocks could be made to have a maximum size limit, to avoid hav-
ing large inconsistencies in the number of points in between blocks.
In this case, if there are too few points in a block, the block’s size can
be extended to incorporate a larger range on the Morton curve and
thereby more points, however this approach will likely lead to over-
lapping blocks that contain the same points. The cells of 3D DGGS are,
however, non-overlapping and form a complete partition of volumet-
ric space. Each 3D DGGS cell can have a different number of points,
and this can potentially vary significantly in-between cells. Therefore,
extending some blocks until a threshold is met and not others is not a
suitable method for use with DGGS.

2. A block could be made to hold as many points as are physically con-
tained in that block without any maximum threshold. This approach
ensures that every point is assigned to only a single DGGS cell. This is
preferred over the first approach because then the DGGS structure itself
can be exploited to generate the blocks. Furthermore, the tiles that are
a part of 3D Tiles are usually non-overlapping volumes that, similar
to 3D DGGS, form a complete partition of volumetric space both above
and below the Earth. Every block can then be also treated as a tile in a
3D Tiles tileset. Storage of the points as non-overlapping blocks rather
than as a flat table, therefore, provides a 1-1 relationship between a
block and a 3D DGGS cell, and a block and a 3D Tile.

However, blocks are only really useful if their geometries can be created
and indexed with a spatial index such as an R-Tree. This greatly aids the
query procedure as first the query will determine the blocks intersecting the
query region by comparing the geometry of the query region with only the
bounding box of the block, and not the block’s geometry itself. The construc-
tion of geometries on blocks is a rather time-consuming procedure. If the
cells of a DGGS themselves are exploited to create the blocks, with points

4.6 storage of points 65

assigned to the closest 3D DGGS cell as to their precision, most of the blocks
are expected to contain only one point, because the cells to which they
are assigned are so very small in size. For example, for the 2010 dataset,
the number of total points is 162,918,748 and the number of total blocks is
162,883,995. Therefore, approximately 99.97% of the points are falling into
only one block each directly based upon their discrete precision. The points
could theoretically be ’moved’ to a block/3D cell at a lower resolution/pre-
cision. However, the use of blocks necessitates the need for two queries to
be run on the data: first, to select all the blocks intersecting the query region,
and second, to select all the points falling into those blocks. It also requires
storing a separate flat table containing unique per-point properties anyway,
so creating a blocks table will only add to existing storage overheads. The
creation of the blocks table, much less the creation of any geometries, is
itself a time-consuming process.

With a flat table, only one query is needed, one that operates on the points
directly. Properties which are unique to every point, such as its continuous
precision (i.e. importance) can be stored in their own separate fields. With
the use of the query procedure described in Section 4.7, no construction
and/or comparison of geometries is needed, and the Morton codes of the
points themselves can be used to retrieve all of the points in the cells over-
lapping the query region. Because of the above justifications, a flat table
approach was utilized for this thesis.

Storage of a 2D DGGS Morton code requires 2 bits per digit (level), because
each digit can take the values 0-3. Storage of a 3D DGGS code requires 3 bits
per digit, with values from 0-7, and with 4D DGGS this requires 4 bits per
level, with values from 0-F (with two groups of hexadecimal digits, 10 with
hex numbers from 0-9 and 6 with hex numbers from A-F). Furthermore,
storing the initial top-level rhombus face number (1 out of the 10 options)
requires 1-4 bits itself. Therefore, the total number of bits required to store a
full-resolution (i.e. resolution 32) Morton code is 64 bits in 2D, 96 bits in 3D,
and 128 bits in 4D exclusive of the rhombus face number. Inclusive of the
face number, this could be 4 bits larger. 2D, 3D, and 4D (if the hexadecimal
system is used) DGGS full-resolution Morton codes are 32 digits long, ex-
clusive of the rhombus face number. Therefore, the maximum number of
bits needed at resolution k is 4 + (n * k) for n dimensions, whereas the max-
imum number of digits is k + 1 for 2D, 3D, and 4D (if hexadecimal is used).
Of course, the number of bits needed will decrease for smaller resolutions.
As a consequence, the only two numeric PostgreSQL data types capable of
storing such large numbers are DECIMAL and NUMERIC. The codes could
also be stored as strings in a TEXT data type field. The TEXT data type was
ultimately used, and it provides a variable storage size and allows for easy
string manipulation on the Morton codes. For example, to find the parents
or children of a rhombus, simple truncation or concatenation of the Morton
codes is needed, and storing the codes as strings allows for such operations
without introducing any additional overhead. If the codes are stored as
numeric values, a type-cast to text and back to numeric would have to be
performed. This is something to be avoided if fast query execution times
are desired.

Unfortunately, as an icosahedral rhombus tessellation has 10 faces, storing
the face number necessitates up to 4 bits of storage, thereby wasting 6 other
possible values (4 bits is 16 possible values, while only 10 - the numbers 0 to

66 implementation

9 - are being used). In 2D and 3D DGGS, however, this is only the situation
with the first number in the location code. For all numbers after the first
number, no bits are wasted.

As point clouds acquired in two different years are being analyzed (2010

and 2016), one would either have to store a flag variable (i.e. field) indic-
ating the year for every point or block, but this would necessitate storing
redundant information and is undesirable. What is better is to store the
point clouds from 2010 and 2016 in completely separate flat tables. There
would then be no need to store the year along with every point record, since
the points from different years are stored in separate tables themselves. Fur-
thermore, as the points are spaced 6 years apart in time, the 4D Morton
codes of points at (approximately) the same X, Y, Z location but taken in the
two different years are significantly different from one another. The attrib-
utes that need to be stored per point include the full-resolution 2D and 3D
Morton codes, discrete DGGS resolution, and (continuous) point precision.
With the full-resolution Morton code, storing the latitude, longitude, and
height values for every point is unnecessary as the code encodes the point’s
location up to an exceptionally high level of detail and can be decoded to
yield these values. Using Psycopg2’s COPY FROM command, the insertion
into the flat table took only 6 seconds for every one 10E6 points, approxim-
ately 17 minutes for all of the 162 10E6 points in the 2010 dataset, and only
slightly longer for the 198 10E6 points in the 2016 dataset (with a tile size of
5,000 points per tile).

4.7 querying a DGGS

Once the points are stored into separate flat tables, a B-Tree index was
created on the 3D Morton code to allow for faster retrieval. A B-Tree is a
self-balancing tree structure that maintains data in a sorted order and allows
for searches, sequential access, insertions, and deletions in logarithmic time
[Comer, 1979]. Although the index itself takes up several GB’s of disk space,
it’s creation is a one-time process. Making an index on the full-resolution
Morton code, however, does not make much sense, because the the cells at
resolution 32 are so very small that they reduce to a 0-D point geometry.
Querying these ’fake’ cells at such a high resolution would essentially mean
that we are querying the points directly. In DGGS, however, the cell is the
fundamental unit of spatial analytics [Amiri et al., 2015b], and the opera-
tions that are performed using a DGGS (see Section 3.6) are all cell-based
processes.

The power of a DGGS comes from the fact that real-world observations
that have been mapped to a DGGS structure can be ’moved’ up or down the
hierarchy to obtain a finer/coarser representation of the same observation
at a higher/lower LOD. This process does not add to the error present in
the original data; we are only retrieving a representation of an observation
at a lower (or higher) LOD. Therefore, even though all of the points have
been stored with a full-resolution Morton code that is 33 digits long, for the
purpose of querying an index was added on only a truncated full-resolution
Morton code. This can be an arbitrarily defined number of digits long and
application-specific. It is dependent on the resolution of a DGGS that needs

4.7 querying a DGGS 67

to be used to perform the analysis at hand. The decimation of observations
to a lower level in the hierarchy is made by simply truncating the Morton
codes to a specific length (since the length of the Morton code indicates the
resolution). For the purposes of this thesis, a resolution of 17 was used, at
which the cells have an inter-cell spacing of 53 meters and an area of 2,969

square meters on the ellipsoid. This was chosen so as to get a reasonably
average number of cells (not too many, not too few) to cover the study area
of Forepark. Therefore, in the index creation SQL command, a substring of
the full-resolution Morton codes was used up to the 18th digit (yielding a
representation of points with codes that are 18 digits long; i.e. one digit for
the face number and the other digits comprising the actual code). The B-Tree
index creation took approximately 22 minutes on a table of 162 10E6 points,
and only slightly longer for the 2016 table. It is important to mention here
that creating a B-Tree on a numeric Morton code column takes slightly less:
17 minutes for the 2010 table. However, the advantages provided by storing
the Morton codes as a string (i.e. text) clearly surpass those provided by
storing it as a numeric value. Next, the flat tables were also clustered based
upon the substring (at resolution 17) and not the full-resolution Morton
code. This physically reorders the data in the table based on the index
information, so that the amount of disk pages to be fetched is reduced.
Once an index has been created on a truncated Morton code, spatial or
spatio-temporal queries can be performed at the particular level to which
the codes have been truncated. This means that coarser-resolution cells can
be used as a filter for spatial queries at higher resolutions.

A possible method of querying a DGGS would be to first compare the geo-
metries of all cells at a particular resolution with the geometry of the query
region, to see which ones intersect. This can be speeded up by adding an
R-Tree index on the cell geometries so only bounding boxes are compared,
as explained earlier. However, the comparison of cell geometries, much less
their construction and storage in a DBMS, is a costly procedure, and can be
avoided completely. Moreover, a DGGS based query does not require any
storage of cell geometries, because the points have the same Morton codes
as their assigned cell and they can be queried directly based upon these
codes.

The query procedure utilized for this thesis was performed using Python
and is as follows:

1. A query region in minimum and maximum latitude, longitude, and
height coordinates on the WGS84 ellipsoid is defined. Figure 4.3 shows
an example illustration of a query polygon.

2. An equally spaced grid of points in latitude/longitude (2D) and/or
height (for 3D) is created inside this query region where the spacing
between the points is small enough so as to encompass all of the cells
that overlap the query region. This inter-point spacing is different
for every resolution of a DGGS, because the inter-cell spacing is also
different for every resolution. For best performance, the inter-point
spacing should be set to a value such that it is not too small to result in
too many points, but also not too large so that some cells are ’skipped’.

3. The Morton codes of these points are found. As the Morton codes of
the cells are the same as their contained points, this also means that
the Morton codes of the cells that overlap the query region are found.

68 implementation

4. As there can be more than one point inside a cell in the created grid,
duplicate Morton codes are removed. This yields a set of codes that
represent all of the cells overlapping the query region, without any
duplicates.

5. All of the points having the same Morton codes as these cells are then
retrieved from the DBMS. This retrieval is relatively fast as the flat
table has been indexed with a B-Tree on a substring of the Morton
code. The retrieval is only done using a truncated version of the full-
resolution Morton code; that is, the full-resolution codes are retrieved,
but they are only retrieved using a decimated version of the codes.
The attributes retrieved include the 2D and 3D Morton codes and the
continuous precision (used for vario-scale visualization, discussed in
Section 5.1).

6. The retrieved full-resolution Morton codes are then decoded back into
their latitude, longitude, and height values on the WGS84 ellipsoid, and
these decoded coordinates can then be visualized as points. With the
decoded values, distance and/or algebraic operations in geographic
space can be easily performed, or the points could be projected onto a
map projection to work with units such as feet or meters.

Figure 4.3: Visualization of the query procedure used for this thesis to retrieve point
observations in a query region.

This yields a set of all of the points falling into all the cells that intersect
the query region.

Although for the purpose of this thesis latitude, longitude, and altitude
information was not stored alongside every point as additional attributes,
this can be performed as-needed for other applications. Storing these co-
ordinates as additional attributes makes it unnecessary to decode the selec-
ted Morton codes from Step 5 of the query procedure. The points would
then have to be selected based on their indexed and clustered Morton codes,

4.7 querying a DGGS 69

but only the latitude, longitude, and altitude coordinates would have to be
retrieved from the DBMS. This results in faster visualization and/or other
applications towards which geographic coordinates can be directly utilized,
such as distance operations. However, as there are additional attributes to
store in the DBMS, more overhead is posed for the loading procedure ex-
plained in Section 4.5.

4.7.1 Exact match

For some applications, an exact match might be desired to select only the
points falling perfectly into the n-D query region. It is then a simple matter
of reducing the superset of points retrieved in the previous step into a set
of points falling perfectly within the query region through comparison of
the latitude, longitude, and height values of the retrieved points with the
minimum and maximum latitude, longitude, and height values of the query
region to determine whether a point is inside or outside of the query region.
This requires no comparison of geometries, only of simple numeric values.
However, this additional step is application-dependent and might not be
required at all times.

4.7.2 Index On Full Key

If a B-Tree index is added on the full-resolution Morton code rather than
on a truncated Morton code, the index itself will be very large. This is
because the full-resolution keys are unique to each and every point. Only
when they are truncated to a lower level in the DGGS hierarchy are there
many duplicate keys as the cells become larger and larger. Moreover, if an
index is added on the full-resolution code, the query procedure stated in
4.7 cannot be utilized. At full-resolution, the cells become infinitesimally
small so as to behave like points. A regular grid of points equally spaced in
latitude, longitude, height above/below the ellipsoid, and/or time will not
encompass all of these infinitesimally small cells and therefore there will be
several points left unreturned by the query. Moreover, the spacing between
the points would also have to be made to be very small, and this will also
pose an overhead for the creation of an index and query execution time, as
the query would have to retrieve points directly (without using the cells to
retrieve the points). Moreover, if any kind of spatial analysis such as change
detection is to be performed across a study area, it would make more sense
to use cells which are not in the range of a square-millimeter (i.e. at full-
resolution) in size to perform such a kind of analysis. A resolution that
provides cells which are sufficiently large (but not too large) for the analysis
at hand should be used. Therefore, adding an index on a truncated Morton
code and performing analysis at that respective resolution would allow one
to exploit the equal-area nature of a DGGS cell and its power of moving an
observation to any level in the hierarchy to perform the intended spatial
analysis.

5 RESULTS

This chapter provides an overview of the results of this research in relation
to the research questions posed in Chapter 1.

5.1 web visualization

The goal of this section is to provide an answer to the sub-research question:
”How can a variable-scale structure be implemented to support smooth zoom in
DGGS?”

A prototype viewer was developed using the Cesium frontend Javascript
API along with Node.JS, a Javascript runtime built on Google Chrome’s
V8 Javascript engine that allows the execution of Javascript code server-
side. In the past, Javascript was used as merely a client-side language to
add functionality to dynamic web pages that also used HTML and CSS.
Node.JS allows server-side execution of Javascript code, with scripts run-
ning on a web server that respond to requests from the client and pro-
duce a response customized for each user’s (client’s) request. Javascript
uses an event-driven, non-blocking asynchronous I/O model, allowing high
throughput and scalability for web applications that are built using it. The
user can draw a 3D bounding box in WGS84 coordinates, and make a request
to the server to retrieve all of the points from the DBMS that are physically
contained within the box. As the user can draw any arbitrary box, the al-
gorithm first converts the query window into a latitude, longitude, altitude
aligned box. It then sends these bounding coordinates to the server, which
feeds them as arguments into a Python script. Python can be executed from
a Node.JS server using Python Shell. A Python script is then triggered,
which connects to the PostgreSQL database server where the points are
stored as a flat table, and the query procedure described in Section 4.7 is
performed.

The full-resolution Morton codes retrieved at the end of the query pro-
cedure were then decoded into their latitude, longitude, and height values
(above or below the surface) on the WGS84 ellipsoid using the procedure
outlined in Section 3.3. The full-resolution code allows for accessing the
3D position of a point at an extremely fine LOD. These points can then be
used for web visualization in 3D Tiles. More information about 3D Tiles is
provided in Section 3.5.2.

There are many different methods that can be used in order to allow for
smooth zoom in/zoom out; these are simply different existing implementa-
tions. The geometric error property of a 3D tile can be used. Geometric error
is a non-negative number (i.e. greater than or equal to 0) in meters, intro-
duced if a tile is rendered and its children are not. At runtime, the geometric

70

5.1 web visualization 71

error is used to compute Screen Space Error (SSE), i.e., the error measured
in pixels. The SSE determines if a tile is sufficiently detailed for the current
view or if its children should be considered [Analytical Graphics Inc., 2018].
Therefore, a pre-processing process can be performed to put the high import-
ance points into tiles with a lower geometric error and the low importance
points into tiles with a higher geometric error. The points retrieved from the
previous step are then sorted according to importance (i.e. low importance
to high importance). They are then grouped into blocks/tiles and input
into an FME translation that creates a 3D Tiles tileset. This means that the
high importance points are always rendered (i.e. both closer to and farther
from the observer position) as they have a lower geometric error, and the
low importance points are only sometimes rendered (i.e. when closer to the
observer position). Although this approach does not allow for true-smooth
zoom, it is sufficiently close. Moreover, the magnitude of smooth zoom that
can be achieved can be increased by creating more tiles. The more the num-
ber of tiles, the larger the smooth zoom effect. The reason this approach
does not allow for true smooth-zoom is because a single geometric error
value is used for all of the points inside a tile. However, the importance is
distinct for each and every point. In order to get a true smooth-zoom visu-
alization, a unique per-point property named ’importance’ would have to be
stored, and this can only be done using the Batch table of a .PNTS file. Unfor-
tunately, there are no existing open-source tools that allow for manipulating
the data stored in the batch table of a .PNTS file in 3D Tiles. Furthermore,
the data in the batch table is stored in binary form and cannot be modified
using a simple text editor.

Another property that can be set to allow for smooth zoom is a vari-
able named cesium priority, in FME. This attribute allows for control of LOD,
and can be used to change the relative placement of features within the
tile hierarchy. Features with a higher priority value will be closer to the
top of the 3D Tiles tree, meaning that they will be rendered from higher
zoom levels than features with a lower value. For example, points with a
higher cesium priority value will be rendered first, before points with a lower
cesium priority value, as the user zooms in from a smaller scale to a larger
scale (i.e. larger area to smaller area, or global to continental or nationwide
scales). If only the most important (most precise) points are to be displayed
when zoomed far out, the inverse of the importance values needs to be used.
This is because more important points are more precise, and therefore their
precision is a smaller number than lesser important points; however, larger
cesium priority values are rendered first, so to put the most important points
at the top of the 3D Tiles tree structure, the inverse of their importances
needs to be used. This can be done by setting the cesium priority attribute
to a large value such as 100 divided by the continuous point precision (i.e.
area of the LIDAR beam footprint in square meters or square millimeters, for
example).

Other methods also exist; however, this thesis has utilized the geometric
error property of a 3D tileset. Figure 5.1 shows a visualization of a 3D
DGGS query result using Google Earth. The DGGS-based Morton codes stored
in the DBMS were queried on-the-fly according to the procedure described
in Section 4.7, decoded, converted into 3D Tiles, and visualized in a web
browser using Cesium. However, as Google Earth provides a readymade
3D building and terrain model for the study area, for illustration purposes
it has been shown instead of Cesium in Figure 5.1.

72 results

Figure 5.1: A 3D DGGS query result visualized in Google Earth. This particular 3D
query returned only one DGGS cell at resolution 17, and its shape clearly
resembles that of a rhombus. The query selected all points in all cells
overlapping a 3D bounding box in between 42 and 45 meters above the
WGS84 ellipsoid.

5.2 dggs for temporal analysis

To provide a visual indication of the areas in a point cloud where the most
changes have taken place, a separate dataset is needed at two different mo-
ments in time. For this thesis, two datasets of the same area - one taken in
2010 and the other in 2016- were used (see Table 4.1). The datasets are stored
in two separate flat tables and are queried using the procedure outlined in
Section 4.7.

Two queries are made in a user-defined latitude, longitude aligned poly-
gon, one for the 2010 and one for the 2016 dataset. The points are retrieved
at resolution 17 of the DGGS. The attribute retrieved is the full-resolution
2D Morton code. As both flat tables have been indexed (using a B-Tree)
and clustered based upon a substring at resolution 17 of their Morton codes,
this retrieval is very fast, even for tens of 10E6 of points. Then, the codes
are grouped into chunks based upon their truncated Morton codes at resolu-
tion 17. This grouping process (known colloquially as binning) ensures that
every point in the same 2D DGGS cell at this resolution is put in the same
chunk. As arrays or lists are used to work with the retrieved points, this bin-
ning process is exceptionally fast and scalable. Once the points are grouped,
the point density is calculated in each chunk by dividing the total number
of points by the area of a cell. Figures 5.2 and 5.3 show the point density
per cell in the 2010 and 2016 datasets, respectively, in a sample query region.
The differences in the densities (2016 - 2010 dataset) are then visualized on a
cell-by-cell basis as shown in Figure 5.4. Unfortunately, the datasets greatly
differ from one another in the distribution of points across the study area;
that is, there exist areas with many points in the 2010 dataset, but only a
few to no points in the 2016 dataset, or many points in the 2016 dataset
but only a few to no points in the 2010 dataset. Therefore, there exist some
DGGS cells (in light gray in the figures) that contain no points. Only cells
containing points in both the datasets are shown in Figure 5.4. It can be

5.3 comparison of DGGS with conventional reference systems 73

readily observed that the 2016 dataset is in general more dense than the
2010 dataset.

A clear benefit of a DGGS-based approach in this application is that equal-
area cells are being used to conduct the analysis.

Figure 5.2: Point density in the 2010 dataset in a small subset of the study area.

Figure 5.3: Point density in the 2016 dataset in a small subset of the study area.

5.3 comparison of DGGS with conventional
reference systems

This section provides an answer to the sub-research question ”What are the
advantages and disadvantages of using a DGGS as compared to using conventional
CRS’s?”

It provides a detailed overview of the similarities and differences, and ad-
vantages and disadvantages of utilizing a DGGS as compared with conven-
tional CRS’s, map projections, and datums. More specifically, four separate
systems are compared with a DGGS: the latitude/longitude graticule, ITRS,
ETRS, and the Dutch RD system. The motivation for this section stems from
the question,

”Can we simply discontinue the use of existing standard coordinate reference
systems and switch to DGGS?”

74 results

Figure 5.4: The difference in point densities in between the two years. Only cells
containing points in both datasets are shown. The use of equal-area cells
makes such a kind of spatial analysis more meaningful.

The Dutch system is studied as this research is being carried out in the
Netherlands. The motivation for this comparison stems from the lack of any
previous studies on this topic. Although the use of DGGS’s goes back until at
least the mid-20th century, they were released as a new standard by the OGC

only in October 2017. They are only in their far early stages of commercial
use as of this writing, and much of the conventional spatial community is
finding it hard to comprehend the advantages of a DGGS as opposed to a
conventional CRS.

Some general differences between traditional CRS’s and DGGS’s include:

1. In standard CRS’s, coordinates are given as linear measurements along
an axis, whereas in DGGS they are locations along an n-dimensional
SFC. Although many DGGS’s are based on equal-area projections, the
coordinates are ultimately converted into geographic coordinates that
are encoded into SFC codes. Therefore, coordinates in standard CRS’s
are simple integer or floating point numbers, whereas those in DGGS

are cell ID’s along a SFC.

2. Standard CRS’s contain coordinates on a flat projected plane, whereas
DGGS’s use coordinates on a spherical/ellipsoidal surface. For ana-
lysis on continental or global scales, where the curvature of the Earth
becomes an important factor to consider, DGGS’s allow for better pre-
servation of error.

3. One can apply algebraic operations (addition, subtraction, multiplica-
tion, division) on standard coordinate values, and find distances between
two points. With DGGS, however, direct distances between two points
on the SFC cannot be found unless a decode is performed. Angles and
surface areas are also better computed in coordinate space. Coordin-
ates are more apt for computations.

4. Standard CRS’s are single-resolution, whereas DGGS’s are multi-resolution,
thereby allowing observations to be studied and analyzed at any dis-
crete LOD.

5.3 comparison of DGGS with conventional reference systems 75

5.3.1 Latitude and longitude

The latitude/longitude graticule is also a DGGS, as it subdivides the surface
of the Earth into a set of cells that are regularly spaced apart at equal incre-
ments of latitude and longitude. These cells can be further refined by smal-
ler equal increments of degrees to generate a hierarchy of cells. However,
equally-spaced grid lines become increasingly distorted in area and shape
as one moves north or south from the Equator; the distortion increases even
further with the use of an ellipsoid instead of a sphere as a model for the
Earth. The top and bottom rows of cells (that touch the poles) are not quad-
rilaterals but instead triangles (as they converge onto the poles), and the
poles, which are points, become lines. This is precisely why special grids
have been implemented for polar regions [Sahr et al., 2003]; for example, the
UTM system uses the Universal Polar Stereographic (UPS) system for map-
ping polar regions. Therefore, this is not an equal-area system. Moreover,
implementing a SFC-based indexing technique becomes even more challen-
ging, as in theory there can be infinitely many SFC codes for the North and
South poles. Furthermore, geostatistical analysis loses its efficacy as non-
equal area cells are being used. These problems have been instrumental to
the growth of equal-area DGGS’s as an alternative to mapping and modeling
the Earth.

5.3.2 The Dutch Rijksdriehoeksstelsel (RD) system

Pros

• The RD system has a history dating from the 19th century [van der
Marel, 2016]. As such, many existing geospatial databases and paper
documents in the Netherlands are based on the RD [Geonovum, 2014].

• Despite some recent efforts for a transition to the European standard
ETRS, the RD remains the most commonly used system. The transition
to ETRS itself will be a complicated process that will require the in-
volvement of all stakeholders [Geonovum, 2014], and will likely take
a couple of decades. With DGGS, this will be an even more intensive,
long, and complicated process. Furthermore, this will likely also be
financially burdensome.

• Many users already find it difficult to work with geographic coordin-
ates and rather prefer grid (map) coordinates. With DGGS the user
needs to work with something completely different, cell indices, thereby
introducing a new form of coordinate representation that will require
a certain level of understanding of how SFC’s work and how DGGS’s
are constructed.

• RD is linked to ETRS through a transformation procedure named RD-
NAPTRANS, which allows users to convert their coordinates to ETRS or
keep working with RD. The availability of this transformation means
that users can choose to work in whichever of the two systems they
prefer. For example, users of GPS or Global Navigation Satellite Sys-
tem (GLONASS) can work with geographic coordinates in ETRS. How-
ever, this necessitates the need to maintain separate databases for RD

76 results

and ETRS. In the current working version of ISO 19152 LADM, for
example, coordinates in both systems are stored as two separate attrib-
utes [Buren et al., 2008]. This leads to the need for multiple systems
and duplicate storage, risk of error in transformations back and forth
between the two systems, and possible ambiguity in an international
context. According for changing coordinates in databases due to the
movement of tectonic plates is already a big challenge in standard
CRS’s. DGGS, on the other hand, are not yet implemented in conven-
tional software, and are not widely used reference systems in the geo-
spatial community [Open Geospatial Consortium, 2017a].

Cons

• RD is based on an oblique stereographic double projection, a conformal
projection [van der Marel, 2016], whereas the majority of DGGS’s util-
ize equal-area projections that are better suited for cartographic and
geodata analytics purposes where each individual cell has an equal
probability of contributing to an analysis.

• Although RD has now also been defined for the North Sea area in
addition to the mainland Netherlands, it is, at least as of this writing,
not used for marine applications.

• RD requires a ”correction grid” to correct the local distortions in the
grid coordinates as the planar grid has been based on triangulated geo-
detic networks established more than 100 years ago. Unfortunately,
the correction grid is not supported by most existing GIS software,
and the oblique stereographic double projection is considered obsol-
ete [van der Marel, 2016]. If a user fails to utilize the correction grid,
results will be erroneous; distortions in X and Y coordinates could
reach up to 25 centimeters.

• RDNAPTRANS is supported by only a few GIS software packages.
For example, the open-source QGIS software does not support RD-
NAPTRANS.

5.3.3 European Terrestrial Reference System of 1989

Another alternative for GIS users in the Netherlands is the European ETRS

1989 system that uses geographic coordinates on the ETRS datum.

Pros

• Being the standard CRS for Europe, it is the reference system of choice
for most global geospatial projects in Europe.

• ETRS is fixed to the stable part of the Eurasian tectonic plate, making
it opportune for high-precision mapping and land surveying applica-
tions. There is usually no need to publish movements of coordinates
over time in ETRS, as velocities can be at most a few millimeters per
year; just the coordinates themselves are sufficient.

5.3 comparison of DGGS with conventional reference systems 77

• Similar to the RDNAPTRANS procedure, many other countries have
also implemented transformations between their own systems and
ETRS through the use of GPS.

• Eurocontrol, the European air safety and traffic management organ-
ization, has adopted ETRS as the European realization of WGS84 for
aviation applications, and several other organizations such as Euro-
Geographics, Eurostat, the European Union, European Environment
Agency and the Open GIS Consortium have recommended using ETRS

for continental Europe.

• The European Union has mandated ETRS as a CRS for INSPIRE [IN-
SPIRE TWG CRS/GGS, 2017], an initiative facilitating exchange, com-
bining and use of environmental geographical information for all Mem-
ber States of the European Union by defining new standards for GI as
well as setting up geodata infrastructure.

• ETRS is also defined for the sea, unlike RD, which is only defined for
the mainland Netherlands.

• ETRS has been tied to ITRS (the most accurate terrestrial reference frame
to date) in the year 1989. Therefore, ITRS coordinates can be derived
from ETRS coordinates and vice-versa, in case the user wants to work
with coordinates in an international setting.

• ETRS is implemented in almost all popular GIS software.

• With the growth and popularity of applications such as Google Earth,
and with the use of GPS, the generic public is becoming more aware
than ever before of working with geographic coordinates, and this is
making them more competent in working with ETRS.

Cons

• Geodata exchange in Europe in ETRS is uncommon, as most countries
are still using their own national systems. For example, Belgium uses
the Belgian Lambert 2008 and 1972 projections [Voet, 2011], and France
uses a Lambert conformal conic projection named Lambert-93.

• The user will typically be working with geographic coordinates, which
are not suited for computations in planar space such as distances,
lengths, or areas. However, the user is free to convert these coordin-
ates into grid coordinates in any map projection. This can be prob-
lematic as different municipalities or regions in a country could po-
tentially use their own unique map projections for use with ETRS, and
geospatial analysis conducted on a nationwide scale will suffer from
the problems of dissimilar data integration.

5.3.4 International Terrestrial Reference System

78 results

Pros

• ITRS is the most accurate terrestrial CRS to date. It can be used to
study the movements of features on the Earth’s surface as it takes
into account tectonic plate movement and regional subsidence. Every
ITRS realization, known as an ITRF, contains positions and velocities
of reference stations across the world that have been surveyed and
measured.

• ITRS is an ECEF system with 3D Cartesian coordinates, and these can
be transformed into latitude, longitude, height triplets on any ellips-
oid, such as GRS80 or WGS84. Both GRS80 and WGS84 are linked to ITRS

[van der Marel, 2016]. Every DGGS is also linked to some model of the
Earth. So, if it is linked to the same ellipsoid as the ITRF, coordinates
in both systems can be used in tandem.

Cons

• ITRS uses geographic coordinates. For industrial workers such as those
in the construction industry, for example, projected coordinates in
units such as meters or feet are usually desired. This necessitates the
conversion and/or datum transformation of ITRS coordinates into a
suitable map projection (such as UTM) for use with ITRS, or into topo-
centric coordinates, which could introduce a certain degree of error.

• As it takes into account plate motion, a dynamic correction grid is
needed to deal with deformations due to geological forces. Station
positions and velocities need to be continuously updated for each real-
ization, and so do geospatial databases. This requires additional in-
vestment of time, money, and effort.

5.3.5 DGGS

Finally, the pros and cons of DGGS are listed.

Pros

• As has been demonstrated in this thesis, a DGGS is an ideal structure
to use for indexing, clustering, and querying global point cloud data.

• Some spatial analysis, such as adjacency or nearest neighbor queries,
can be more efficiently executed by computer algorithms operating
on a regular cell structure as in a DGGS where coordinates are stored
as locations along a SFC in arrays than on geometric features whose
coordinates are stored as floating-point numbers [Lott, 2017]. Array/l-
ist storage and manipulation is also scalable; i.e. storing point ob-
servations in an array with their Morton codes and other attributes,
and performing aggregation, grouping, sorting, filtering, mapping, or
other similar tasks on these observations using the Morton codes is
an extremely scalable procedure, and can be used to perform tasks

5.3 comparison of DGGS with conventional reference systems 79

such as computing the mean, median, maximum, minimum, or modal
values of these attributes in every containing DGGS cell. These are pre-
cisely the kinds of operations that are now being standardized as a
part of the DGGS Modeling Language [Peterson, 2018]. Examples of
attributes that can be stored along with every point include intens-
ity, color, elevation, or classification, and cell-by-cell analysis can be
performed using SFC codes along with these attributes; computing sys-
tems are adept at such kinds of cell-based operations. With respect
to this thesis, examples of such operations include finding the mean
point density within every cell by grouping and mapping all obser-
vations on a cell-by-cell basis using their Morton codes. The other
attributes listed above could also be analyzed statistically using the
Morton codes.

• The vast majority of DGGS’s utilize equal-area cells, which allow for
uniform coverage of data in an area of interest, and a hierarchy of
resolutions, which allow the encoding of observations acquired at any
level of detail. The user is free to choose a cell size or resolution that
is most applicable for the task at hand.

• If all geodata is aligned to the same global grid, the cost introduced
by repeated projections and datum transformations on the data in the
form of error and affected outcomes is kept to a minimum. With DGGS,
the user needs to only map the data once at a particular level in the
hierarchy; all further operations involve not error-introducing projec-
tions, but array processes using set theory. The cost of data integration
is also largely reduced.

• Once the orientation of the polyhedron is defined with respect to the
model of the Earth, the location of the cells remains constant. This
is ideal for change detection applications where changes in the exact
same area/volume on the Earth’s surface need to be studied. Over
time, the locations of observations will ’march’ across the DGGS, and if
appropriate metadata is stored alongside every observation, either the
cells can be queried for a particular set of observations, or an observa-
tion for the set of associated DGGS cells.

• DGGS further the ’Digital Earth’ vision as conceptualized by former
United States vice president Al Gore, who imagined a digital repres-
entation of the Earth with all kinds of data describing georeferenced
observations on its surface attached to it in an integrated knowledge
framework. DGGS’s are optimal tools for geodata integration from vari-
ous sources, regardless of their resolution or dimensions.

• DGGS were recently approved as an official OGC standard for interop-
erability. This provides a strong foundation for their use and imple-
mentation.

• DGGS can be used to work with data stemming from any location on
Earth (2D), both above and below the surface (3D), and acquired at
different times (4D), as demonstrated in this thesis. In theory, they can
be extended into infinitely many dimensions; a 3 and 4 dimensional
DGGS was introduced and studied in this thesis. Moreover, they could
even be used on other celestial bodies, such as the Moon or Mars.

80 results

Cons

• Classical algebraic operations (addition, subtraction, multiplication,
comparisons, etc) are not possible as cell indices on SFC’s are being
used. Distances or directions between DGGS SFC-encoded observa-
tions cannot be found without performing a decoding operation first.
The only possible operations are cell navigation and spatial relations
between two geometries as described by the DE-9IM. Coordinates are
better suited for computations.

• There are already many existing reference systems and ways for nota-
tion of coordinates, and these can cause a lot of confusion; introdu-
cing another approach to encoding coordinates could potentially make
things worse, as the number of options increases. Moreover, there are
many different kinds of DGGS’s themselves.

• SFC codes can become rather long, especially when working at ex-
tremely high resolutions. If the study area is small, however, there
is no need to store the entire sequence of numbers originating from
the whole Earth (only a part of the code beginning at a particular level
in the hierarchy and ending at a level that is sufficient to differentiate
observations is needed). For continental or global scales, though, this
poses a problem. For high-precision applications, such as surveying
or positioning, where high-precision codes are needed, lengthy codes
might not be particularly useful.

• A slight disadvantage could also be that, due to their innate discrete
nature, an observation’s spatial uncertainty could be grossly misrep-
resented after assignment to the closest DGGS cell, if the difference
between the cell’s area and the amount of spatial uncertainty of that
observation is considerably large. Furthermore, once the orientation
of a polyhedron is defined, the location of all DGGS cells are fixed. If
a point does not fall in the center of a containing DGGS cell (which
is very likely), its area of spatial uncertainty could be misrepresented
due to it being assigned to a cell that physically contains the point
but that only partially overlaps with the beam footprint (a polygonal
region representing the spatial uncertainty) at that point. This is less
of a problem for observations with relatively low spatial uncertainties
(such as points in a point cloud), since the difference in cell areas at
higher resolution DGG’s is much lower than that at lower resolution
DGG’s.

• DGGS’s by themselves do not account for tectonic motion and other geo-
logical forces, like ITRS. The n-D cells are fixed in location as relative
to an Earth model once the orientation of the polyhedron is defined.
DGGS internally ’depend’ on systems such as ITRS to provide them ref-
erence station position and velocity information. Every DGGS is based
upon a conventional CRS and/or datum. Therefore, DGGS’s cannot be
used by themselves if information about the system on which they are
based is not available. In practice, however, DGGS’s are usually based
upon popularly used reference frames such as the ITRS, for which all
associated information is available.

• Although this might change in the future, DGGS are not currently im-
plemented in conventional GIS software.

5.3 comparison of DGGS with conventional reference systems 81

• Understanding how a DGGS works itself can be a daunting task for a
novice. To fully understand and be able to use DGGS, one requires a
reasonable level of understanding of mathematics, geodesy, databases,
and geometric concepts such as set theory.

After the above considerations, it is the author’s view that DGGS are more
likely to be used alongside standard CRS’s, and are not a replacement for them.
When there is a need to integrate different kinds of geospatial data (such
as vector, raster, and point cloud) into one solution, DGGS’s offer a viable
alternative as they bridge the divide between these various kinds of data.
Any of these kinds of data can be mapped onto a DGGS. DGGS’s are in no
way a replacement for existing CRS’s, as these are better suited for distance
or area computations.

It must also be stated that a DGGS is not a tool for point cloud alignment.
That is, if the task is to resolve the discrepancies between point clouds that
are based in different CRS’s (i.e. align point clouds so that they ’fit’/’match’
one another by moving one of the point clouds a certain distance one way
and another point cloud a certain distance another way), DGGS’s are not a
solution. Alignment in this context implies concepts such as distance (an-
d/or direction), and DGGS’s cannot be used directly to calculate distances
between observations. The observations are encoded using SFC codes, which
cannot be directly used for calculating distances on a sphere or an ellips-
oid. The codes themselves need to first be decoded into latitude, longitude,
and altitude values that are then used for the distance calculation. This
means that a DGGS itself is not used. Computations such as distance an-
d/or direction are much better performed using a standard map projec-
tion/ CRS. A DGGS is not meant for navigation, rather for data analytics
purposes. Integrating point cloud data into a DGGS assumes that the point
clouds are already aligned, and a DGGS provides a fundamentally critical,
seamless common reference frame for storing, analyzing, and visualizing
the data. Therefore, a DGGS does provide a common reference frame, but
it cannot be directly used for any distance-based operations. The only ex-
ception to this is if a hexagonal DGGS is used on a spherical Earth model.
Hexagons provide for uniform adjacency [Sahr et al., 2003]. When hexagons
are inverse-projected from a polyhedron onto a sphere, they maintain their
uniform adjacency, and as the inter-cell spacing is known beforehand for
all resolutions, the distances between hexagon centroids at all resolutions
are also known. Therefore, distance-based calculations between hexagon
centroids can be performed on a spherical Earth model. However, a SFC

might not be directly usable for performing this calculation, unless a de-
code is performed.

So, the author does not conclude that the geospatial community in the
Netherlands can simply switch to a DGGS and discontinue the use of RD or
ETRS. It is rather more likely for DGGS’s to be used as an alternative to these
existing CRS’s. The full-fledged adoption of DGGS could take several decades,
as DGGS’s are only in their very early stages of commercial use. Their use is
also dependent to a large extent on the application at hand. For example, for
indexing and clustering global point cloud data or for visualizing changes
in spatio-temporal point clouds over time, as has been done in this thesis,
their use makes perfect sense.

6 CONCLUS ION

My thesis offers several innovative aspects of study. To-date, there have
been no studies on using point clouds with DGGS. Moreover, the DGGS I
ultimately chose (an icosahedral rhombus DGGS) has also never in previous
academic literature been applied to the indexing of any kind of spatial data.
There were many aspects of this topic that posed a challenge for me as I
began my research. First, simply understanding the mathematics and sci-
ence behind DGGS’s was a challenge by itself. After a thorough academic
literature review of around 3 months, I came to know that the use of DGGS’s
with point clouds is non-existent. There has been no similar research per-
formed in academia or industry on integrating point clouds with varying
locations, times, and densities. Moreover, as DGGS’s have only been used in
2 dimensions to-date, it was scientifically stimulating to ponder how they
could be extended into 3D and 4D. However, with sufficient thought and
research, I was able to think of a way to extend them into higher dimen-
sions to truly harness the multi-dimensional nature of point cloud data. To
my knowledge, this is the first-ever conceptualization of higher dimensional
DGGS’s made. Third, there does not exist much research on generating a
SFC through the cells of a DGGS to index and cluster (in a DBMS) and then
later query spatial observations, and no research on the utilization of the
hierarchical nature of DGGS’s to yield a vario-scale visualization of massive
amounts of points in a web browser. Finally, there also exists no in-depth
comparison of DGGS’s with conventional CRS’s. Therefore, these are all new
aspects of DGGS’s being introduced by this thesis. With this thesis, I hope
to provide not only the university but also the wider geospatial community
with a detailed overview of the applicability of DGGS’s to handling point
clouds and the pros and cons of using DGGS’s as opposed to conventional
CRS’s.

This section provides an answer to the main research question of this
thesis posed in Chapter 1, that reads as follows:

To what extent can a Discrete Global Grid System be used to handle point
clouds with varying locations, times, and densities/levels of detail?

It can be concluded that a DGGS is an ideal reference system for the integ-
ration of point clouds coming from varying locations, having varying initial
levels of detail, and acquired at different times. A fundamental requirement
in the creation of the OPCM is a common underlying reference frame for the
access, storage, processing, integration, analysis, and visualization of global
point clouds. Moreover, a scalable approach to big geospatial data analytics
is needed. DGGS’s provide a scalable approach to spatial analysis as every
operation conducted inside a DGGS is an array process using set theory and
the DE-9IM.

Indubitably, DGGS’s transcend map projections and can be used as a com-
mon reference frame to integrate data from many different projections, datums,

82

conclusion 83

ellipsoids, and CRS’s. Moreover, the reference frame is global, allowing for
the encoding of any location on Earth. It is also seamless, without any
boundaries. One of their main uses in this thesis is with regards to the in-
dexing, clustering, and querying of global point cloud data. For analysis
at scales where the curvature of the Earth becomes a determining factor,
DGGS’s are more optimal than map projections. The fundamental difference
between a standard map projection/CRS and a DGGS is in its operation; error-
prone data needs to be mapped into a DGGS only once, without the need to
apply repeated error-introducing map projections and datum conversions.
With their multi-resolution hierarchical framework, observations can be rep-
resented at any discrete LOD. DGGS’s allow for unconventional cell-based
spatial analysis methods in sharp contrast to existing standard coordinate
computations. Furthermore, they can be extended into n-dimensions using
an n-dimensional SFC, as has been shown in this thesis; this allows us to fully
harness the power of the multi-dimensional nature of point cloud data.

DGGS’s by definition are discrete, so they allow for the encoding of vector
features, raster cells, and points in a point cloud at a fixed set of discrete
resolutions. They are precision-encoding systems so the area of a DGGS cell
to which an observation has been assigned should approximately be the
same as the spatial uncertainty of that observation. Due to their discrete
nature, a slight disadvantage is that this leads to a certain loss in the encod-
ing of precision (which is continuous) as the observation is assigned to the
closest discrete cell. The area of the assigned DGGS cell might differ signific-
antly from the spatial uncertainty of that observation; this is especially true
for observations with a very large spatial uncertainty that are assigned to
lower resolution DGGS cells; for points in a point cloud, however, it is not
a critical issue, because points usually do not have extremely large spatial
uncertainties. In order to achieve a true vario-scale visualization of points,
the precision of a point can be used as its importance, as more precise points
are shown at both smaller and larger scales and are stored in higher levels
(larger cells) of the structure. Points which are not very precise are also not
very important, and therefore during visualization they should be shown
only at larger scales (i.e. when zoomed in sufficiently close). Most of the
points will fall somewhere ’in between’ the layered discrete set of cells con-
stituting a DGGS, as precision is a continuous variable and not limited to
discrete values. However, this added continuous dimension can be used to
visualize the points in a web browser using a perspective view query using
smooth zoom. Although in this thesis only a pseudo-smooth zoom effect
was reached, this is only due to an implementation issue with 3D Tiles, as
there are no open-source tools that allow for storing and working with per-
point properties in the batch table of a .PNTS file.

As the n-D cells are fixed in position relative to the Earth model once the
orientation of a DGGS is specified, a DGGS provides a framework where one
of the three fundamental questions of big geospatial data analytics can be
answered: ”How has it changed?” [Purss, 2016]. Over time, the observations
will march across the DGGS, and if appropriate metadata is stored alongside
the observations, they can be queried for all of the cells in which they were
present throughout a course of time. In this thesis, ’moving’ observations
were not studied, however point clouds taken in two different years (spaced
6 years apart) were analyzed for changes using a DGGS structure.

84 conclusion

Another contribution of this thesis is to the study of the similarities and
differences, and advantages and disadvantages, of DGGS’s in contrast with
conventional CRS’s. Although DGGS’s have their own limitations, when it
comes to indexing, clustering, and conducting analysis on global point
cloud data their use makes perfect sense. Their hierarchical, multi-resolution
nature allows the possibility of moving point observations up or down the
hierarchy without increasing the error in the original point observations.
Some major limitations are that algebraic operations or computations can-
not be easily performed and SFC codes can become rather long. Regardless,
they serve as an attractive alternative to conventional CRS’s.

With the above considerations, it can be concluded that a DGGS is an ideal
reference frame to handle varying point clouds.

6.1 problems faced in research

Although in general the research questions were answered exceptionally
well, there were also some problems faced throughout the course of the
research. Most of these are implementation-related and are not conceptual/-
theoretical. A list of some of them follows:

• The visualization of the mean HD per containing DGGS cell requires the
creation of the cell geometries themselves. The only freely provided
tool that allows for the creation of these cells as a KML file or shapefile
is DGGRID. Unfortunately, as cells at a relatively high resolution (20)
are being used to perform the analysis, the generation of the geomet-
ries of these cells for the whole Earth would take an extremely long
time. Furthermore, there is no working functionality to clip the DGG

layer by a clipping polygon, so that only those cells intersecting the
study area are being generated.

• For achieving true smooth zoom, a unique per-point importance prop-
erty needs to be stored. The batch table (and not the feature table) of a
3D Tiles point cloud (.PNTS) file is where per-point properties reside.
However, as 3D Tiles is still under development, there do not exist any
free or open-source tools that allow for manipulating the data stored
in the batch table of a .PNTS file. This being said, an almost true level
of smooth zoom was achieved in this thesis, using some other prop-
erties of a 3D Tiles tileset. Moreover, the effect can be increased by
creating more tiles.

• The loading into the DBMS was in general fast, given the limitations
of the Intel Core i7-2820QM CPU on which it was tested. However,
utilizing an even better performance, network, or memory optimized
CPU is expected to speed up the process significantly.

• As the cells in 2D DGGS are all of the same area, it makes sense to make
them all of the same volume in 3D. However, as the amount of space
expands outwards (almost linearly) as a function of distance from the
center of the Earth, the volume of the cells is not the same within a DGG

in a 3D DGGS. To achieve a sufficiently close level of equal-volume cells
throughout a resolution would require excessive additional manipula-
tion such as the addition of more cells or removal of existing cells at

6.2 future work 85

different distances from the center of the Earth model. This introduces
many potential challenges for DGGS’s, including a potential loss of the
hierarchical nature of the cells, which is key. For example, adding
more cells at higher elevation levels within a DGG and not at other
levels would mean that the parent-child relationships get affected (if,
for example, one of the newly added cells falls into two parent cells
and not one), and it becomes tedious to use the beneficial characterist-
ics of the subdivision shapes for any practical purpose (for example,
using the aperture 4, congruent and nested nature of a rhombus tessel-
lation to index global point cloud data). For point clouds, which are
usually acquired close to the surface where the volumes are roughly
identical, this is not a big issue, but for other observations that span a
larger range of elevation values this could be problematic.

6.2 future work

This section presents some recommendations on future work.

6.2.1 Utilization of a different DGGS

As mentioned in Section 2.5, many kinds of DGGS’s exist, each with their
own unique advantages and disadvantages. The hexagon could be invest-
igated as a spatial partitioning method due to its maximal compactness,
uniform adjacency, and shape that more closely resembles the footprint of
a LIDAR beam than a rhombus. The octahedron could be tested as a poly-
hedron, and although it is a worser approximation of the Earth than an
icosahedron, it has the advantage of having 8 faces, which makes it easy to
align with the latitude, longitude graticule [Dutton, 1996], and provides for
lesser storage, as 3 bits are needed to store face numbers and no bits are
wasted during index assignment. Furthermore, some of the Archimedean
polyhedrons are even better approximations of the Earth than the Platonic
polyhedrons; examples of these are the rhombicosidodecahedron, truncated
icosidodecahedron, or snub dodecahedron (see Figure 2.3); although the
construction of a DGGS on these polyhedrons is much more complicated due
to them having multiple shapes, and their use in commercial implementa-
tions is limited, they present an interesting alternative choice of options
worthy of exploration.

6.2.2 Utilization of a different SFC

Within this thesis, the Morton SFC was utilized for indexing, clustering,
and retrieval of point cloud data. However, many different SFC’s exist, each
with their own unique properties. The key difference is in their method of
mapping n-dimensional space to a 1-dimensional line. The Morton curve
has the advantage that it is relatively easy to program, although in the con-
text of a DGGS many complicated mathematical formulae need to first be
implemented in order to encode and decode a Morton code for a point loc-
ation. DGGS’s can work with any kind of SFC’s, and examples of such other
curves are the Hilbert, Gray, Sierpinski, and Cantor SFC. In particular, the

86 conclusion

Hilbert curve preserves spatial locality far better than the Morton curve and
could also be investigated on a DGGS structure, although it is more complic-
ated to program.

6.2.3 Using a DGGS to study moving observations

A point, although a 0-dimensional object, can also be represented as a
polygon whose area represents that point’s spatial uncertainty (as has been
done in this thesis). As observations will move across the DGGS reference
frame due to geophysical processes such as erosion, orogenesis, volcanic
activity, or tectonic motion, they will ’visit’ different DGGS cells over the
course of time. If a DGGS is tied to a model of the Earth such as the GRS80

ellipsoid, which is also the base for the ITRS, then the information regarding
the speed and direction of movement or deformation can be acquired from
the ITRS. If this is stored alongside every point observation, then it is possible
to retrieve the cells visited by the point over time, or the points that fell into
a cell at any given moment in time. The handling of such dynamic and/or
unpredictable datasets is a viable topic for further research [Amiri et al.,
2015b].

6.2.4 Implementing a distance or direction metric on a DGGS

The cell indices in DGGS’s are locations along a SFC. However, as has been
stated earlier, SFC codes cannot be directly used to compute distances between
point observations on a sphere or an ellipsoid unless a decoding operation
is performed. If a SFC code is decoded into its latitude, longitude, and
height coordinates, standard great-circle or Vincenty formulae can be used
to compute distances between points, but this means that a DGGS itself has
not been used for these calculations. It would be phenomenal if a distance
metric was introduced on a DGGS structure directly, that allows the compu-
tation of geodesic distances using, for example, the Morton SFC codes. The
same can be said about directions between two DGGS-based Morton-encoded
points. These are precisely the kinds of benefits standard CRS’s have over
DGGS’s, and what would propel one to use a standard CRS in favor of a DGGS.
Using a DGGS structure directly for this task might not be possible, but an
attempt can be made. Other SFC’s could be tested to see if they are better fit
for the computation of distances.

6.2.5 Standardization of a 3D and/or 4D DGGS

The OGC DGGS Abstract Specification is an excellent first step to standard-
ization and interoperability of various 2D DGGS implementations. As there
currently does not exist any implementation of a 3D or 4D DGGS, this thesis
aspires to promote the use of such higher-dimensional DGGS’s and provides
for an approach to how the distance of a point from the surface of the Earth
model and the time at which a point was acquired can be incorporated into a
DGGS structure, thereby turning it into a 3D and/or 4D DGGS. This results in
much faster spatio-temporal queries. However, there is an additional need
for standardization of such higher-dimensional DGGS’s. For example, with
respect to time, there are several aspects that can be standardized, such as

6.2 future work 87

the use of leap seconds, amount of temporal refinement applied at differ-
ent DGGS resolutions, the choice of which system to use (i.e GPS Time or
other system), which end value to use for the time range, temporal CRS’s
or whether or not to use time zones. With 3D DGGS, the conceptualization
proposed in this thesis could be considered for standardization. Moreover,
different Earth models need to be taken into account, not only mathematical
formulations such as the sphere or ellipsoid but also physical ones like the
geoid.

6.2.6 Using parallel processing

Due to their vast sizes, DGGS’s are inherently well-suited for scalable, dis-
tributed, HPC infrastructures. The algorithms and/or spatial analysis per-
formed in a DGGS is conducted as an array process using set theory an-
d/or the DE-9IM. This is a scalable approach to spatial data manipulation.
Moreover, the nature of point cloud data is such that there is just so much of
it. Amazon Web Services (AWS) can be used to run a HPC cluster of nodes in
the cloud in a parallel and distributed manner. AWS provides various kinds
of servers on demand, optimized for specific purposes, such as memory, net-
work, computation or storage. HPC workloads on AWS run on these servers,
powered by Amazon Elastic Compute Cloud (EC2). All of the tests in this
thesis have been run on a single node (computer); using a cluster of nodes
is expected to significantly speed up execution times.

B IBL IOGRAPHY

Ali M. Amiri, Faramarz Samavati, and Perry Peterson. Categorization and
conversions for indexing methods of discrete global grid systems. ISPRS
International Journal of Geo-Information, 4(1):320–336, 2015a.

Ali-Mahdavi Amiri, Troy Alderson, and Faramarz Samavati. A survey of
digital earth. Computers and Graphics, 53:95–117, 2015b.

Ali-Mahdavi Amiri, Troy Alderson, and Faramarz Samavati. Data manage-
ment possibilities for aperture 3 hexagonal discrete global grid systems.
2016.

Analytical Graphics Inc. 3d tiles, 2018. URL https://github.com/

AnalyticalGraphicsInc/3d-tiles.

ASPRS. Laser (las) file format exchange activities,
2013. URL https://www.asprs.org/committee-general/

laser-las-file-format-exchange-activities.html.

Jianjun Bai, Xuesheng Zhao, and Jun Chen. Indexing of the discrete global
grid using linear quadtree. ISPRS Workshop On Service And Application Of
Spatial Data Infrastructure, pages 267–270, 2005.

John Bartholdi and Paul Goldsman. Continuous indexing of hierarchical
subdivisions of the globe. International Journal of Geographical Information
Science, 15(6):489–522, 2001.

S. Boriah, V. Kumar, M. Steinbach, C. Potter, and S. Klooster. Land cover
change detection: A case study. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 857–865.
ACM Press, August 2008.

Joop Van Buren, Ebrahim Hemmatnia, Chrit Lemmen, and Peter Van Oost-
erom. Europees coöordinatensysteem is voor nederland vooral een kans.
Geodata-inwinning; Special of Geo-Info and Vi Matrix, pages 20–23, 2008.

CloudCompareWiki. Global shift and scale, April 2016. URL
http://www.cloudcompare.org/doc/wiki/index.php?title=Global_

Shift_and_Scale.

James Clynch. Earth coordinates, February 2006. URL https:

//web.archive.org/web/20150418092513/http://www.sage.unsw.

edu.au/snap/gps/clynch_pdfs/coorddef.pdf.

Douglas Comer. The ubiquitous b-tree. Computing Surveys, 1I(2):121–137,
1979.

Peter Dana. Introduction to geodetic datums, 2017. URL https://www.

colorado.edu/geography/gcraft/notes/datum/datum_f.html.

G. de Haan. Scalable visualization of massive point clouds. Management of
massive point cloud data: wet and dry, pages 59–67, 2010.

Geoffrey Dutton. Encoding and handling geospatial data with hierarchical
triangular meshes. 1996.

88

https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html
https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html
http://www.cloudcompare.org/doc/wiki/index.php?title=Global_Shift_and_Scale
http://www.cloudcompare.org/doc/wiki/index.php?title=Global_Shift_and_Scale
https://web.archive.org/web/20150418092513/http://www.sage.unsw.edu.au/snap/gps/clynch_pdfs/coorddef.pdf
https://web.archive.org/web/20150418092513/http://www.sage.unsw.edu.au/snap/gps/clynch_pdfs/coorddef.pdf
https://web.archive.org/web/20150418092513/http://www.sage.unsw.edu.au/snap/gps/clynch_pdfs/coorddef.pdf
https://www.colorado.edu/geography/gcraft/notes/datum/datum_f.html
https://www.colorado.edu/geography/gcraft/notes/datum/datum_f.html

Bibliography 89

ESRI. Lidar point classification, November 2017a. URL http:

//desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/

lidar-point-classification.htm.

ESRI. Understanding spatial relations, 2017b. URL http://edndoc.esri.

com/arcsde/9.0/general_topics/understand_spatial_relations.

htm.

ESRI. What is lidar intensity data?, April 2017c. URL http:

//desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/

what-is-intensity-data-.htm.

ESRI. What is lidar data?, October 2017d. URL http://

desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/

what-is-lidar-data-.htm?_sm_au_=iHVsN7PqnnTDftJR.

European Data Portal. Benefits of open data, August 2017. URL https://

www.europeandataportal.eu/en/using-data/benefits-of-open-data.

European Environment Agency. Inspire, 2017. URL https://www.eea.

europa.eu/about-us/what/seis-initiatives/inspire-directive.

Kenneth Foote and Donald Huebner. More about gis error, accuracy,
and precision, 1995. URL https://www.e-education.psu.edu/geog469/

node/262.

Geonovum. Van rd naar etrs89: kans of dreiging, 2013. URL https://docs.

google.com/file/d/0B2JKk84LeoLJYzZlNkVDRTk4Y2s/edit.

Geonovum. Onderzoek overstap rd naar etrs89, 2014.
URL https://www.geonovum.nl/onderwerp-artikel/

onderzoek-overstap-rd-naar-etrs89.

M.J.E. Golay. Hexagonal parallel pattern transformations. IEEE Transactions
on Computers, C-18(8):733 – 740, 2000.

Michael Goodchild. Citizens as sensors: the world of volunteered geo-
graphy. GeoJournal, 69:211–221, 2007.

C. Gotsman and M. Lindenbaum. On the metric properties of discrete space-
filling curves. IEEE Transactions on Image Processing, 5:794–797, 1996.

Matthew Gregory, A. Kimerling, Denis White, and Kevin Sahr. Comparing
geometrical properties of global grids. Cartography and Geographic Inform-
ation Science, 26(4):271–288, 1999.

Matthew Gregory, A. Kimerling, Denis White, and Kevin Sahr. A compar-
ison of intercell metrics on discrete global grid systems. computers, envir-
onment and urban systems. Computers, Environment and Urban Systems, 32

(3):188–203, 2008.

Erika Harrison, Ali Mahdavi-Amiri, and Faramarz Samavati. Optimization
of inverse snyder polyhedral projection. In International Conference on Cy-
berworlds (CW), pages 136–143. IEEE Computer Society, October 2011.

Chris Hopkinson. The influence of flying altitude, beam divergence, and
pulse repetition frequency on laser pulse return intensity and canopy fre-
quency distribution. Canadian Journal Of Remote Sensing, 33:312–324, 2007.

http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/lidar-point-classification.htm
http://edndoc.esri.com/arcsde/9.0/general_topics/understand_spatial_relations.htm
http://edndoc.esri.com/arcsde/9.0/general_topics/understand_spatial_relations.htm
http://edndoc.esri.com/arcsde/9.0/general_topics/understand_spatial_relations.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-intensity-data-.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-intensity-data-.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-intensity-data-.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-lidar-data-.htm?_sm_au_=iHVsN7PqnnTDftJR
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-lidar-data-.htm?_sm_au_=iHVsN7PqnnTDftJR
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-lidar-data-.htm?_sm_au_=iHVsN7PqnnTDftJR
https://www.europeandataportal.eu/en/using-data/benefits-of-open-data
https://www.europeandataportal.eu/en/using-data/benefits-of-open-data
https://www.eea.europa.eu/about-us/what/seis-initiatives/inspire-directive
https://www.eea.europa.eu/about-us/what/seis-initiatives/inspire-directive
https://www.e-education.psu.edu/geog469/node/262
https://www.e-education.psu.edu/geog469/node/262
https://docs.google.com/file/d/0B2JKk84LeoLJYzZlNkVDRTk4Y2s/edit
https://docs.google.com/file/d/0B2JKk84LeoLJYzZlNkVDRTk4Y2s/edit
https://www.geonovum.nl/onderwerp-artikel/onderzoek-overstap-rd-naar-etrs89
https://www.geonovum.nl/onderwerp-artikel/onderzoek-overstap-rd-naar-etrs89

90 Bibliography

ICSM. Datums 2: Datums explained in more detail, December 2016. URL
http://www.icsm.gov.au/mapping/datums2.html.

INSPIRE TWG CRS/GGS. Inspire specification on coordinate reference
systems - guidelines, 2017. URL https://inspire.ec.europa.eu/

documents/Data_Specifications/INSPIRE_Specification_CRS_v3.0.

pdf.

Nick Johnson. Damn cool algorithms: Spatial indexing with quadtrees and
hilbert curves, November 2009. URL http://blog.notdot.net/2009/11/

Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves.

Mathias Lemmens. Point clouds (1), 2014. URL https://www.

gim-international.com/content/article/point-clouds-1.

Charles Loop and Jim Blinn. Rendering vector art on the gpu, Oc-
tober 2017. URL https://developer.nvidia.com/gpugems/GPUGems3/

gpugems3_ch25.html.

Roger Lott. Lats and longs, wgs84 or dggs?, 2017. URL http://www.ee.co.

za/article/lats-longs-wgs84-dggs.html.

D. Lu, P. Mausel, E. Brondizio, and E. Moran. Change detection techniques.
International Journal Of Remote Sensing, 25(12):2365–2401, 2004.

O. Martinez-Rubi, S. Verhoeven, M. Van Meersbergen, M. Schûtz,
P. Van Oosterom, R. Gonçalves, and T. Tijssen. Taming the beast: Free
and open-source massive point cloud web visualization. Capturing Reality
Forum 2015, 23-25 November 2015, Salzburg, Austria, 2015. URL http://

resolver.tudelft.nl/uuid:0472e0d1-ec75-465a-840e-fd53d427c177.

Martijn Meijers. Variable-scale Geo-information. PhD thesis, Delft University
of Technology, 2011.

Harvey Miller. Tobler’s first law and spatial analysis. Annals of the Association
of American Geographers, 94(2):284–289, 2004.

Daniel G. Montaut, Michael Roux, Raphael Marc, and Guillaume Thibault.
Change detection on point cloud data acquired with a ground laser scan-
ner. In ISPRS Workshop - Laser Scanning, pages 1–6, September 2005.

Mircea Neacsu. Wgs84 or grs80, 2011. URL https://www.uvm.edu/giv/

resources/WGS84_NAD83.pdf.

Pascal Neis and Alexander Zipf. Analyzing the contributor activity of a
volunteered geographic information project — the case of openstreetmap.
ISPRS International Journal of Geo-Information, 1(2):146–165, 2012.

NPS. Time systems and dates - gps time, April 2016. URL www.oc.nps.edu/

oc2902w/gps/timsys.html.

Judy M. Olson. Map projections and the visual detective: How to tell if
a map is equal-area, conformal, or neither. Journal of Geography, 105(1):
13–32, 2006.

Open Data Diliman. Open data diliman, October 2017. URL https:

//opendata.upd.edu.ph/doku.php?id=exemptions.

http://www.icsm.gov.au/mapping/datums2.html
https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_Specification_CRS_v3.0.pdf
https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_Specification_CRS_v3.0.pdf
https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_Specification_CRS_v3.0.pdf
http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
https://www.gim-international.com/content/article/point-clouds-1
https://www.gim-international.com/content/article/point-clouds-1
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch25.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch25.html
http://www.ee.co.za/article/lats-longs-wgs84-dggs.html
http://www.ee.co.za/article/lats-longs-wgs84-dggs.html
http://resolver.tudelft.nl/uuid:0472e0d1-ec75-465a-840e-fd53d427c177
http://resolver.tudelft.nl/uuid:0472e0d1-ec75-465a-840e-fd53d427c177
https://www.uvm.edu/giv/resources/WGS84_NAD83.pdf
https://www.uvm.edu/giv/resources/WGS84_NAD83.pdf
www.oc.nps.edu/oc2902w/gps/timsys.html
www.oc.nps.edu/oc2902w/gps/timsys.html
https://opendata.upd.edu.ph/doku.php?id=exemptions
https://opendata.upd.edu.ph/doku.php?id=exemptions

Bibliography 91

Open Geospatial Consortium. Discrete global grid systems domain working
group, October 2017a. URL http://www.opengeospatial.org/projects/

groups/dggsdwg.

Open Geospatial Consortium. Ogc announces a new standard that improves
the way information is referenced to the earth, October 2017b. URL http:

//www.opengeospatial.org/pressroom/pressreleases/2656.

Open Knowledge International. What is open data?, October 2017.
URL http://opendatahandbook.org/guide/en/what-is-open-data/?_

sm_au_=iHVsN7PqnnTDftJR.

Patrik Ottoson and Hans Hauska. Ellipsoidal quadtrees for indexing of
global geographic data. International Journal of Geographical Information
Science, 16(3):213–226, 2002.

Perry Peterson. Digitalearth canada. In International Conference on Cyber-
worlds (CW). PYXIS, March 2018.

Norbert Pfeifer. Point clouds from calibration to classification, 2018. URL
https://3d.bk.tudelft.nl/pdfs/pcp2018/pcp2018_NorbertPfeifer.

pdf.

D. Pfoser, Y. Tao, K. Mouratidis, M. Nascimento, M.F. Mokbel, S. Shekhar,
and Y. Huang. In Advances in Spatial and Temporal Databases, page 25.
Springer, August 2011.

Stella Psomadaki, Peter van Oosterom, Theo Tijssen, and Fedor Baart. Us-
ing a space filling curve approach for the management of dynamic point
clouds. ISPRS Annals Of The Photogrammetry, Remote Sensing, And Spatial
Information Sciences, pages 107–112, 2016.

Matthew Purss, Robert Gibb, Faramarz Samavati, Perry Peterson, J An-
drew Rogers, Jin Ben, and Clinton Dow. Discrete global grid systems
abstract specification, October 2017. URL http://www.opengeospatial.

org/docs/as.

Matthew B.J. Purss. Discrete global grid systems a new way to manage ‘big
earth data’, 2016.

Python Software Foundation. psycopg2 2.7.3.2, 2018. URL https://pypi.

python.org/pypi/psycopg2.

QPS. Utc to gps time correction, January 2018. URL https://confluence.

qps.nl/qinsy/en/utc-to-gps-time-correction-32245263.html.

Felix Rohrbach. Lidar footprint diameter, October 2015a. URL http://

felix.rohrba.ch/en/2015/lidar-footprint-diameter/.

Felix Rohrbach. Point density and point spacing, October 2015b. URL http:

//felix.rohrba.ch/en/2015/point-density-and-point-spacing/.

Nathan Rooy. Calculate the distance between two gps points with python
(vincenty’s inverse formula), December 2016. URL https://nathanrooy.

github.io/posts/2016-12-18/vincenty-formula-with-python/.

Sacred Geometry. Archimedean solids, 2017. URL http://www.

sacred-geometry.es/?q=en/content/archimedean-solids.

http://www.opengeospatial.org/projects/groups/dggsdwg
http://www.opengeospatial.org/projects/groups/dggsdwg
http://www.opengeospatial.org/pressroom/pressreleases/2656
http://www.opengeospatial.org/pressroom/pressreleases/2656
http://opendatahandbook.org/guide/en/what-is-open-data/?_sm_au_=iHVsN7PqnnTDftJR
http://opendatahandbook.org/guide/en/what-is-open-data/?_sm_au_=iHVsN7PqnnTDftJR
https://3d.bk.tudelft.nl/pdfs/pcp2018/pcp2018_NorbertPfeifer.pdf
https://3d.bk.tudelft.nl/pdfs/pcp2018/pcp2018_NorbertPfeifer.pdf
http://www.opengeospatial.org/docs/as
http://www.opengeospatial.org/docs/as
https://pypi.python.org/pypi/psycopg2
https://pypi.python.org/pypi/psycopg2
https://confluence.qps.nl/qinsy/en/utc-to-gps-time-correction-32245263.html
https://confluence.qps.nl/qinsy/en/utc-to-gps-time-correction-32245263.html
http://felix.rohrba.ch/en/2015/lidar-footprint-diameter/
http://felix.rohrba.ch/en/2015/lidar-footprint-diameter/
http://felix.rohrba.ch/en/2015/point-density-and-point-spacing/
http://felix.rohrba.ch/en/2015/point-density-and-point-spacing/
https://nathanrooy.github.io/posts/2016-12-18/vincenty-formula-with-python/
https://nathanrooy.github.io/posts/2016-12-18/vincenty-formula-with-python/
http://www.sacred-geometry.es/?q=en/content/archimedean-solids
http://www.sacred-geometry.es/?q=en/content/archimedean-solids

92 Bibliography

Kevin Sahr. Location coding on icosahedral aperture 3 hexagon discrete
global grids. Computers, Environment and Urban Systems, 32(3):174–187,
2008.

Kevin Sahr, Denis White, and A. Kimerling. Geodesic discrete global grid
systems. Cartography and Geographic Information Science, 30(2):121–134,
2003.

Markus Schûtz. Potree: Rendering Large Point Clouds in Web Browsers,
2016. URL https://www.cg.tuwien.ac.at/research/publications/

2016/SCHUETZ-2016-POT/.

John Snyder. An equal-area map projection for polyhedral globes. Carto-
graphica, 29:10–21, 1992.

John Snyder. Flattening the earth : two thousand years of map projections. Uni-
versity of Chicago Press, 1993.

John Snyder and Philip Voxland. An album of map projections, 1989. URL
https://pubs.er.usgs.gov/publication/pp1453.

Christian Strobl. Dimensionally Extended Nine-Intersection Model (DE-
9im). In Encyclopedia of GIS, pages 240–245. Springer, 2008.

Mike Tully. Just how accurate is lidar?, December 2012. URL https://

aerialservicesinc.com/2012/12/just-how-accurate-is-lidar/.

Hans van der Marel. Reference Systems For Surveying And Mapping. Faculty of
Civil Engineering and Geosciences, Delft University Of Technology, 2016.

Peter van Oosterom. Variable-scale topological data structures suitable for
progressive data transfer: The gap-face tree and gap-edge forest. Carto-
graphy and Geographic Information Science, 32(4):331–346, 2005.

Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Horham-
mer, Siva Ravada, Theo Tijssen, Mike Horhammer, and Martin Kodde.
Point cloud data management. 2014.

Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Horham-
mer, Daniel Geringer, Siva Ravada, Theo Tijssen, Martin Kodde, and Ro-
mulo Goncalves. Massive point cloud data management: Design, im-
plementation and execution of a point cloud benchmark. Computers and
Graphics, 49:92–125, 2015.

Edward Verbree, Martin Kodde, and Peter van Oosterom. Ogc 1703 open
point cloud map, October 2017.

Pierre Voet. Geodetic infrastructure in belgium, June 2011. URL http://

www.clge.eu/documents/events/93/infrastructure_belgium.pdf.

Ruisheng Wang, Jiju Peethambaran, and Dong Chen. Lidar point clouds
to 3-d urban models: A review. IEEE Journal Of Selected Topics In Applied
Earth Observations And Remote Sensing, 11(2):606–627, 2018.

Denis White. Global grids from recursive diamond subdivisions of the sur-
face of an octahedron or icosahedron. Environmental Monitoring And As-
sessment, 64(1):93–103, 2000.

https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://pubs.er.usgs.gov/publication/pp1453
https://aerialservicesinc.com/2012/12/just-how-accurate-is-lidar/
https://aerialservicesinc.com/2012/12/just-how-accurate-is-lidar/
http://www.clge.eu/documents/events/93/infrastructure_belgium.pdf
http://www.clge.eu/documents/events/93/infrastructure_belgium.pdf

Bibliography 93

Denis White, Kevin Sahr, A.J. Kimerling, and L. Song. Comparing area
and shape distortion on polyhedral-based recursive partitions of the
sphere. International Journal Of Geographical Information Science, 12(8):805–
827, 1998.

Wen Xiao, Bruno Vallet, and Nicolas Paparoditis. Change detection in 3d
point clouds acquired by a mobile mapping system. ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 64:331–336,
2013.

Xuesheng Zhao, Jianjun Bai, Jun Chen, and Zhilin Li. A seamless visu-
alizaton model of the global terrain based on the qtm. In Advances In
Artificial Reality And Tele-Existence, pages 1136–1145. Springer, November
2006.

A APPEND IX

a.1 DGGS statistics table

Resolution Number Of Cells Area (Sq.m.)
0 10 51,006,562,172,409

1 40 12,751,640,543,102

2 160 3,187,910,135,776

3 640 796,977,533,944

4 2,560 199,244,383,486

5 10,240 49,811,095,871

6 40,960 12,452,773,968

7 163,840 3,113,193,492

8 655,360 778,298,373

9 2,621,440 194,574,593.2
10 10,485,760 48,643,648.31

11 41,943,040 12,160,912.08

12 167,772,160 3,040,228.02

13 671,088,640 760,057.0049

14 2,684,354,560 190,014.2512

15 10,737,418,240 47,503.5628

16 42,949,672,960 11,875.8907

17 171,798,691,840 2,968.972675

18 687,194,767,360 742.2431688

19 2,748,779,069,440 185.5607922

20 10,995,116,277,760 46.39019805

21 43,980,465,111,040 11.59754951

22 175,921,860,444,160 2.899387378

23 703,687,441,776,640 0.724846845

24 2,814,749,767,106,560 0.181211711

25 11,258,999,068,426,200 0.045302928

26 45,035,996,273,705,000 0.011325732

27 180,143,985,094,820,000 0.002831433

28 720,575,940,379,279,000 0.000707858

29 2,882,303,761,517,120,000 0.000176965

30 11,529,215,046,068,500,000 0.000044241

31 46,116,860,184,274,000,000 0.000011060

32 184,467,440,737,096,000,000 0.000002765

Table A.1: Whole-Earth statistics about the first 32 resolutions of an icosahedral
rhombus 2D DGGS.

94

	1 Introduction
	1.1 Open Point Cloud Map
	1.2 Problem Statement
	1.3 Scientific Relevance
	1.4 Research Questions
	1.5 Research Scope
	1.6 Overview of Results
	1.7 Overview of Thesis

	2 Theoretical Background and Related Work
	2.1 Coordinate Reference Systems
	2.2 Map Projections
	2.3 Datums
	2.4 Earth Models
	2.5 Discrete Global Grid Systems
	2.5.1 Base Polyhedron
	2.5.2 Polyhedron Orientation
	2.5.3 Subdivision Shape
	2.5.4 Refinement Ratio and Transformation

	2.6 Indexing Strategies
	2.6.1 Quadtrees
	2.6.2 Pyramid And Path Addressing
	2.6.3 Space Filling Curves

	2.7 Dimensionally Extended 9-Intersection Model
	2.8 Icosahedral Snyder Equal Area (ISEA) Projection
	2.9 Point Clouds
	2.9.1 An Additional Dimension
	2.9.2 Variable-Scale Visualization With DGGS
	2.9.3 Change Identification With DGGS

	2.10 Other Considerations

	3 Methodology
	3.1 Quantization
	3.2 Morton Indexing On A Curved Surface
	3.2.1 Extensions to 3D and 4D DGGS
	3.2.2 Order of dimensions
	3.2.3 Storage of Morton codes
	3.2.4 SFC code convergence

	3.3 Decoding a Morton code
	3.3.1 2D DGGS
	3.3.2 3D and 4D DGGS

	3.4 Change visualization
	3.5 Point cloud web visualization
	3.5.1 Comparison of existing solutions
	3.5.2 3D Tiles

	3.6 Analysis in a DGGS

	4 Implementation
	4.1 Tools And Data
	4.1.1 Software
	4.1.2 Hardware
	4.1.3 Data

	4.2 Computing point precisions
	4.3 Tiling the LAS files
	4.4 Morton Conversion
	4.5 Loading Of Data
	4.6 Storage of points
	4.7 Querying a DGGS
	4.7.1 Exact match
	4.7.2 Index On Full Key

	5 Results
	5.1 Web Visualization
	5.2 DGGS For Temporal Analysis
	5.3 Comparison of DGGS with conventional reference systems
	5.3.1 Latitude and longitude
	5.3.2 The Dutch Rijksdriehoeksstelsel (RD) system
	5.3.3 European Terrestrial Reference System of 1989
	5.3.4 International Terrestrial Reference System
	5.3.5 DGGS

	6 Conclusion
	6.1 Problems Faced In Research
	6.2 Future Work
	6.2.1 Utilization of a different DGGS
	6.2.2 Utilization of a different SFC
	6.2.3 Using a DGGS to study moving observations
	6.2.4 Implementing a distance or direction metric on a DGGS
	6.2.5 Standardization of a 3D and/or 4D DGGS
	6.2.6 Using parallel processing

	A Appendix
	A.1 DGGS Statistics Table

