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ABSTRACT Sustainable development can only be achieved with an innovative improvement from the way we currently analyze, 
design, build and manage our urban spaces. Current digital analysis and design methods for cities, such as visibility analysis, 
deeply rely on mapping and modeling techniques. However, most methods fall short of depicting the real visual landscape in the 
urban realm and this could bring a significant error in visibility calculations which may lead to an improper decision for urban 
spaces. The technical development of light detection and ranging(LiDAR) technology introduces new approaches for urban study. 
LiDAR utilizes point clouds including thousands or even millions of georeferenced points, and thus can support 3-D digital 
representation of urban landscape with detailed information and high resolution. Besides the superiority in representing urban 
landscape, LiDAR point clouds also has a clear advantage in quantitative analysis and provides better visibility than traditional 
models. In this paper, we first introduced a novel approach to map visibility in the urban built environment involving vegetation 
data directly using airborne LiDAR point clouds. This approach calculates neighborhood statistics for occlusion detection. Then 
we presented 2 case with different scenarios showing how our approach can be used to obtain a precise visibility in an urban area 
in the Netherlands. At last, we discussed how point clouds based visibility models can be further explored and can better assist 
urban design. 

INDEX TERMS visibility analysis, airborne LiDAR, urban area, built environment, point cloud, visual environment 

 

 

I. INTRODUCTION 

Urbanization is increasing across the globe, with recent UN 
statistics confirming that more than half the world’s population 
live in urban areas [1]. More than two-thirds of the world’s 
population will live in urban areas by 2050. While many 
benefits from efficient and modern cities are well understood, 
this rapid urbanization also risks urban sustainability. One risks 
is devastation of city images. With rapid urbanization, 
particularly in China, mushrooming high-rise buildings haven’t 
been well organized or planned in urban spaces. This has 
severely deteriorated city visual environments, mostly due to 
poor visual management. If we wish to shape an visually 
enjoyable urban landscape, it is important for designers and 
administrators to understand how the physical aspects of a 
landscape, such as the visual properties, are perceived. A good 
visual management could be based on results of a reliable 
quantitative visual analysis which can reveal current visual 
issues in an urban space.  

Visibility analysis for urban spaces is a fundamental process 
for building or protecting city images [2-5]. Several previous 

studies have established that 90% of transmitted information in 
the human brain is from visualization, hence we feel the world 
through our eyes. Consequently, urban visual environments are 
crucial for people to know a city. Reliable visibility results can 
help planning or managerial decision making for better visual 
environments [6]. Well-designed visual environments can help 
citizens to be happy and relaxed in their daily life and can also 
help create a sustainable city. However, it remains challenging 
for urban management to depict visual implications due to 
increasingly complicated urban environments. 

Geographic information systems (GISs) have become 
common tools to explore human visual space [7-10]. However, 
most modern GIS based visual analyses have limitations in urban 
spaces. Most GISs are based on two (2-D) or 2.5 (2.5-D) 
dimensional models [11-13], which tend to only poorly represent 
real urban space details, whereas accurate visibility models 
require extremely detailed spatial information for urban three-
dimensional (3-D) objects. Light detection and ranging (LiDAR) 
point cloud data offers opportunities to compensate for 
disadvantages associated with from traditional analyses [14, 15]. 
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LiDAR technology has investigated for decades, with many 
studies in archaeology [16, 17], construction[18], visualisation 
[19-21], etc. However, employing LiDAR point clouds for urban 
space visibility analyses is a new and rapidly developing research 
area worldwide. Compared to visualisation research which 
focuses on rendering a emulated world in a digital way, visibility 
analyses aim at finding visible areas from a single or multiple 
observation points. Point cloud data offers several benefits for 
visibility analysis, and could be much more flexible and efficient 
than previous models. 
• Mapping visibility directly from point clouds can skip 

the process of generating surface object/vector or 
grid/raster representation models. They can be employed 
directly for visibility analysis, significantly reducing 
analysis time and computational requirements.  

• Point cloud data generally has high density and high 
accuracy, commonly more than 10 points/m2 up to 
1000 points/m2. This allows precise and accurate data 
usage for visualisation and analysis, with significantly 
improved visibility analysis. 

• Traditional surface models neglect vegetation due to 
difficulty representing trees or shrubs, etc. However, tree 
and related impact on visibility analysis cannot be 
ignored, particularly in summer time when trees can 
partially block lines-of-sight (LoSs). Point cloud data 
provide considerably more detailed information than 
traditional raster data or digital elevation model (DEM), 
hence it is much easier to represent and analyse 
vegetation effects. 

• Point clouds can be organized in different levels of 
details (LoDs), which can considerably improve analysis 
execution speed [22, 23]. 

The four most common techniques for LiDAR visibility 
analyses include surfaced based, voxel based, hidden point 
removal, and ray-tracing approaches [24], and their application 
have been well studied for many scenarios. Some applications 
focused on natural environments [25-27] or suburban areas [28] 
with few or no artificial constructs. Several discussed the 
visibility in built environments [29], but neglected visual impacts 
from urban vegetation. Generally, only one observation point 
within any test site was analysed. Thus, visibility for built 
environments considering both buildings and vegetation using 
point clouds with multiple observers requires further discussion 
and research.  

In our previous study[14], we generated a solid cube for each 
point to represent the visual obstruction. The data we used is a 
mobile point cloud. The process of cube generation is really time 
consuming. And the approach extremely depends on the integrity 
and consistency of the input data, a mobile point cloud has a 
defect that upper parts of urban objects are not complete, this 
would result in unreliability and inaccuracy. Conversely, in 
airborne point clouds, the roof information is relatively complete, 
but the density of facade points is too low to block the line of 
sight. However, we can still distinguish the space occupied by 
buildings through the rooftop information[20]. 

Therefore, we propose a visibility analysis approach 
employing occlusion detection with airborne LiDAR point 
clouds to thoroughly analyse urban space visibility considering 
both buildings and vegetation. What we are interested is the 
intervisibility between observers and target landscapes in a 

digital urban area represented by massive points. The 
intervisibility reveals that if an observe can see the target. This 
paper provides a brief review of recent visibility analysis studies 
(part 1) and introduces the proposed point cloud based visibility 
analysis methodology (part II). We then analyse 2 relevant cases 
(part III and part IV ), and finally summarize and conclude the 
paper with some suggestions for future work (part V). 

II. METHODOLOGY 

This paper introduces a point cloud based method offering a 
comprehensive visibility result for urban planning and urban 
design, as shown in FIGURE 1. Proposed visibility analysis 
method workflow. A viewpoint is defined as the location where 
observers see from. A target point represents an object which 
plays a significant role in the urban visual environment. This 
object can be a building with histories considered as a feature in 
the city, and it should be more exposure in urban spaces to 
promote the city image. 

 
FIGURE 1. Proposed visibility analysis method workflow 

A. Data Preparation 

Airborne LiDAR point clouds should be well classified into 
ground, buildings, vegetation, and other points. Building and 
vegetation points are extracted as obstructions for visibility 
analysis. This study considered the view from pedestrians, hence 
viewpoints were extracted from ground points with a proper 
distance to reduce the calculation time and added with eye height. 
A target was a specific feature in the study area, which was 
considered to be a featured landscape to improve or preserve the 
current urban image. For quantitative analysis, targets were 
discretized into points. Initial sight lines were straight lines 
comprised two vertices representing the viewpoint and target 
point to which visibility was determined. 

B. Occlusion Detection for Calculating Visibility 

We created a set of search points derived from LoSs between 
viewpoints and target points, and used sight lines with certain 
increments to track along the LoS and detect occlusions.  

Airborne LiDAR point cloud data were the base information 
for the proposed approach, but building details are poorly 
collected from airborne sensors. Only roofs, vegetation, and 
ground are well presented in airborne point clouds, whereas 
building and vegetation complexities are quite different for 
obstructions for visibility analysis.  
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Therefore, we propose two strategies for building and 
vegetation occlusion detection. The main occlusion detection 
concept is to detect obstacle point densities in a given area. If 
obstacle point density exceeds some threshold, then this area can 
be considered occlusive, i.e., LoSs cannot pass through this area. 

1) STRATEGY FOR BUILDING POINTS 

Building roof information is relatively complete in airborne 
LiDAR point clouds, but facade point densities are generally too 
low to block LoS. However, we can still distinguish space 
occupied by buildings using rooftop information [20]. Since 
there are insufficient side points (see FIGURE 2), we assumed 
that if there were sufficient rooftop points above a certain space, 
this space was occupied by a building. Space under rooftop 
points were considered as LoS obstacles.  

Suppose there are a point cloud of building rooftops and a set 
of search points generated along an LoS between a viewpoint 
and a target point. First, we find building points above the current 
search point, which are considered as obstacle candidates. 
Occlusion detection for building points entails counting the 
number of candidate obstacle points surrounding a search point 
on the XY plane(see FIGURE 3). If this number exceeds a 
threshold, then this LoS is blocked and is marked as invisible. 

 
FIGURE 2. Typical missing building side points from an airborne LiDAR 
point cloud 

 

 
(a) 

 
(b) 

FIGURE 3. Proposed occlusion detection strategy for building points: (a) 
selecting obstacle candidates from identified building points, (b) searching 
along the sight line to detect occlusions in the XY plane 

2) STRATEGY FOR VEGETATION POINTS 

In contrast, vegetation is relatively complete in airborne LiDAR 
point clouds, with tree crowns and trunks generally well 
presented. Thus, vegetation points are sufficiently detailed to 
directly conduct occlusion detection. A 3D detection sphere is 
generated for each search point and LoS visibility calculated 
according to the number of points inside the sphere. If sufficient 
points occur within any detective sphere whose centre is an LoS 
search point, the sphere is classified as occlusive (see FIGURE 
4), and the LoS is marked as invisible. 

 
FIGURE 4. Proposed occlusion detection strategy for vegetation points 

C. Algorithmic Steps of Visibility Analysis 

We implement the proposed algorithm in Python. FIGURE 5 
shows the analysis process assuming a line of sight , 
building point cloud ஻ , and vegetation point cloud ௩ . The 
corresponding algorithmic steps are as follows. 
(1) Create a set of searching points ௌ , the creation is 

according to the value of search range ଴, the number of 

ௌ equals to ௅௢ௌ ଴, where ௅௢ௌ is the length of current 
LoS; 

(2) For each search point ௜ ௌ , perform following steps 
from the viewpoint: 
a) set up an empty list of obstacle candidates ஼; 
b) find obstacle candidate building points with z > z( ௜) 

(FIGURE 3(a)), and save candidates to ஼; 
c) create a k-D tree representation ஻  for XY 

coordinates of ஼ , then count ஻  neighbours to 
identify the number of candidates within radius ଴ 
around ௜, record this number as ୧;  

d) if ௜ ଴ , the algorithm terminates and  is 
coded as 0 and marked as invisible; if ௜ ଴, then 

, and repeat step 2 until the detection circle 
of the last search point (i.e., the target point) is 
identified as not occlusive, hence  is determined 
to be visible and coded as 1; 

(3) if  is coded as 1 in step 2, create a k-D tree 
representation ௩ for ௩; 

(4) For each search point ௝ ௌ , perform following steps 
from the viewpoint: 
a) count neighbours for ௩  to identify occlusion 

candidates within radius ଴  around ௜ , record this 
number as ୧; 

b) if ௝ ଴ , the algorithm terminates and  is 
recoded as 0 and marked as invisible; if ௝ ଴, 
then , and repeat step 4 until the detection 
circle of last searching point (i.e., the target point) is 
identified as not occlusive, hence  is determined 
to be visible and the value remains 1; 
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As discussed above, the number of points within a search 
range around a search point ௜  is considered for judging 
occlusion. If the number exceeds some threshold depending on 
the point cloud density, the search point is considered to be inside 
a building, i.e., occluded. Consequently, the corresponding  
is marked as invisible and visibility analysis stops for that LoS. 
In contrast, if the number fails to reach the threshold, the search 
range around ௜  is considered as non-occlusion and analysis 
continue to the next point ௜ାଵ . Time complexity of the 
algorithm is O(n2logn), where ‘n’ represents the number of input 
LiDAR points. 

 
FIGURE 5. Workflow for the proposed visibility analysis algorithm  

D. Cumulative Visibility 

We propose a vector based analysis called cumulative visibility, 
based on the cumulative viewshed concept [30]. In contrast with 
raster based cumulative viewshed, cumulative visibility is 
derived from vector sight lines. Hence the result for each discrete 
visibility calculation is either positive or negative, 
conventionally coded as 1 or 0 for visible or invisible LoS, 
respectively. Viewpoints for a visible LoS are also coded as 1. 
Thus, the maximum visibility value for a visible viewpoint = 1 if 
there is only one target point, but a viewpoint may see more than 
one target point if there are multiple target points. Thus, 

cumulative visibility for a viewpoint measures how many target 
points can be seen from the viewpoint. 

III. MATERIALS 

A. Experimental Study Areas  

Two cases are selected for testing our proposed analysis to see if 
the algorithm is effective in different urban morphologies. Case 
1 and Case 2 belong to Delft and Rotterdam, the Netherlands 
respectively.  

Case 1 is a small area of the Delft University of Technology 
(located in Delft, The Netherlands) was chosen as the study area, 
in particular the tower dome for the Bouwkunde (BK, Faculty of 
Architecture and the Built Environment) building. Buildings in 
case 1 are multi-storeyed, the average height of buildings within 
is about 20m.The dome has a beautiful shape and high volume, 
and can be seen from large distances in the surrounding urban 
areas, since its elevation ≈ 28.5 m.  

Case 2 is located in an urban area around the Rotterdam 
Centraal railway station which is the main railway station of the 
city Rotterdam in South Holland, Netherlands. There are several 
high-rise buildings located in this area. The average height of 
buildings within is about 50m. The building of Houthoff 
Rotterdam is considered as the target in our analysis. The 
building top’s elevation is 110m. 

FIGURE 6 shows two experimental study areas and FIGURE 
7 illustrates the viewing target in two cases. 

B. Input Point Clouds 

The origin airborne LiDAR data of both 2 cases was downloaded 
from AHN3 (ref: www.ahn.nl, see FIGURE 8). As a mature 
product, the AHN point cloud is well classified into ground, 
building, vegetation, etc., the procedure of classification 
combines with automatic and manual manners[31]. Then we 
could easily extract points in the different classifications.  

The area of case 1 is 300×300 m, and the area of case 2 is 
1400×450 m. Both are small areas with numerous points. There 
are 2,581,639 points in the original point cloud of case 1 and 
9,143,402 points of case 2, Table 1 shows the number of points 
in each category. Ground points are used to generate viewpoints, 
but the original ground points were too dense and redundant. We 
reduced the ground points randomly to 5 m minimum for case 1 
and 10 m minimum for case 2, and added an extra-height to these 

 
(a) CASE 1           (b) CASE 2 

FIGURE 6. Top views of experimental study areas to implement the proposed analysis (downloaded from Google maps) 
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points. Target points are evenly extracted from the surface of the 
dome such that every target point had an equal chance to be seen. 
The total number of viewpoints, number of targets and number 
of construct lines between viewpoints and targets in different 
cases can be found in Table 2. FIGURE 8 shows the input data 
distribution. 

FIGURE 9 compares point cloud models with and without 
vegetation to evaluate visual impacts from vegetation in urban 
areas. Model 1and Model 3 contain building points only, Model 
2 and Model 4 contains building and vegetation points. 

 
(a) Case 1 (taken by the author) 

 
(b) Case 2 (from Google) 

FIGURE 7. Street view of two cases with the selected target outlined in red. 
 
 
 

 
(a) Case 1 

 
(b) Case 2 

FIGURE 8. Input data for the proposed analysis case study 

 

 

TABLE 1.  
CLASSIFICATIONS OF ORIGINAL POINT CLOUD 

Study 
Case 

Category Ground Vegetation Buildings Water 
Whole 
Dataset 

CASE 1 

Number of 
points 

1,074,195 529,167 978,238 39 2,581,639 

 ௠௔௫(m) 1.555 28.495 52.911 - 52.911ܪ

 ௠௜௡(m) -3.346 -1.706 -0.313 - -3.346ܪ

CASE 2 

Number of 
points 

4,171,535 1,571,307 3,400,560 - 9,143,402 

 ௠௔௫(m) 4.648 46.534 153.644 - 52.911ܪ

 ௠௜௡(m) -6.323 -2.471 -5.829 - -3.346ܪ

 .௠௜௡ means the lowest elevationܪ ,௠௔௫ means the highest elevationܪ *
 

TABLE 2 
NUMBER OF VIEWPOINTS, TARGET POINTS AND CONSTRUCT LINES 

Study 
Case 

Number of 
Viewpoints 

(N௏) 

Number of 
Target Points 

(N்) 

Number of Construct Lines between 
Viewpoints and Target Points 

(N௏ ൈ N்) 
CASE 1 3,184 40 127,360 
CASE 2 4,304 5 21,520 

 

 

 
(a) Model 1 

 
(b) Model 2 

 
(c) Model 3 

 
(d) Model 4 

FIGURE 9. Comparison point cloud models including (a) and (c)building 
points only; (b) and (d) building and vegetation points 

C. Parameter Determination 

1) EYE HEIGHT FOR VIEWPOINTS 

Since we considered public spaces within the city, ground points 
(outdoor space) were used to generate viewpoints. Ground points 
have been downsized by enlarging average point spacing to 5 m 
in case 1 and 10 m in case 2. Then we added height of 1.6 m as 
average eye level.  

2) SEARCH RANGE 

Since the resolution of input data of two cases is the same, we 
used case 1 to discuss the proper parameters for visibility 
analyses.  
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The search range ଴ should not be too large or too small for 
analysis. If the range is too large, there may be too much noise; 
and if too small, there may be insufficient obstruction points 
inside the search range for occlusion detection. Thus, ଴ should 
be a reasonable value to obtain an accurate and reliable result. 

Human eyes can distinguish an 0.3 m diameter object up to 
maximum 1 km distance[32]. This study had longest sight line 
between viewpoint and target ≈ 225 m in case 1 and 740 m in 
case 2, i.e., considerably less than 1 km. FIGURE 10 shows 
demonstration results from a solid model for several ଴ around 
0.15 m to identify an optimal ଴ for this case. Point cloud with 

଴  = 0.15 m was closest to the demonstration model. Thus, 
search range with diameter 0.3 m (i.e.., ଴  = 0.15 m) was a 
suitable choice for both 2 cases. 

 

FIGURE 10. Visibility maps of case 1: (a) demonstration solid model; and 
building point clouds with (b) ࢘૙ = 0.10 m, ࢔૙ = 11; (c) ࢘૙ = 0.15 m, ࢔૙ = 
14; and (d) ࢘૙ = 0.25 m, ࢔૙ = 15. Red and blue represent invisible and 
visible areas, respectively.  

 

3) OCCLUSION THRESHOLD 

The threshold to identify a occlusive search range should be 
assigned based on point density. CloudCompare v2.6.3, a 3D 
point cloud processing software[33], is used to calculate 
obstruction point density, with average building point surface 
density ≈ 14.2 points/πr0

2. Therefore, we set building point 
occlusion threshold ଴ = 14. Similarly, average vegetation point 
density = 18 points/πr0

3 and hence vegetation point occlusion 
threshold ଴ = 18. 

IV. RESULTS 

A. Case 1: Multi-Storeys Buildings 

1) VISIBILITY MAP 

FIGURE 11 shows the proposed visibility analysis implemented 
for models 1 and 2 (see figure 8) and visualized on ArcGIS 
Desktop[34]. The algorithm implemented for model 1 and model 
2 had differences on steps according to the classification of input 
points. Steps 1 and 2 were applied to model 1, whereas all 
algorithmic steps (i.e., steps 1–4) were run on model 2. Visible 
areas in model 2 (576) shrunk dramatically compared with model 

1 (1676) due to vegetation effects, i.e., only approximately one-
third of visible areas from model 1 remained visible in model 2 
(see FIGURE 11). 
 

TABLE 3.  
VISIBILITY STATISTICS FOR THE PROPOSED APPROACH ON MODELS 1 AND 2 

(SEE FIGURE 9) 

 
Number of visible 
viewpoints ( ௏ܰ௏) 

௏ܰ௏

௏ܰ ∗
 

Cumulative visibility 
Maximum Minimum Mean 

Model 1 1676 52.64% 20 1 13.17 

Model 2 576 18.09% 20 1 9.79 

* Number of total input viewpoints in Case 1, ࢂࡺ ൌ ૜૚ૡ૝. 

 
(a) 

 

 

 
(b) 

 

 

FIGURE 11. Visibility maps of case 1 from the proposed analysis method 
for (a) model 1 and (b) model 2 (see Figure 8). 

 
FIGURE 12. Overlapped visibility maps of case 1 from Figure 11 (visible 
points only) 

2) OVERLAPPED VISIBILITY MAPS 

FIGURE 12 shows the visible points for the two visibility maps 
from FIGURE 11 overlapped. Most model 1 visible points 
occurring inside areas covered by vegetation are marked as 
invisible in model 2. De Vries van Heijstplantsoen Park can be a 
good location to enjoy the view of our target landscape if there 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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are no trees inside. When considering vegetation in model 2, lush 
green vegetation in the park has become the most obstruction of 
vision. As a result, we can hardly see the dome from the park. 
Due to the road greening has blocked the sight lines, model 2 
points are relatively concentrated close to buildings, whereas 
model 1 visible points have a spread distribution. 

3) CUMULATIVE VISIBILITY 

FIGURE 13 shows cumulative visibility for models 1 and 2, with 
corresponding statistics in Table 4. Maximum for both models = 
20, i.e., half the target points. Thus, a single viewpoint can see 
no more than half the dome at any time. FIGURE 13 (a) shows 
that model 1 viewpoints close to the tower did not achieve high 
cumulative visibility, high cumulative visibility points are 
located in areas far from the tower. Thus, viewing from larger 
distance achieved better target view, consistent with the D/H 
ratio proposed by Yoshinobu [35]. The cumulative visibility of 
visible viewpoints in FIGURE 13(b) shows that model 2 is not 
significantly different regarding distance viewing. Thus, 
vegetation doesn’t make a significant difference to the value of 
cumulative visibility. Figure 13(b) also shows that the best 
viewing location is two streets named Michiel de Ruyterweg and 
Julianalaan respectively and also two plazas belonging to the BK 
building. These two streets are both located to the west of the 
building (see FIGURE 6(a)). 

 
(a) 

 
(b) 

FIGURE 13. Cumulative visibility maps of case 1 for (a) model 1 and (b) 
model 2 (see Figure 8) 

B. Case 2: High-Rise Buildings 

1) VISIBILITY MAP 

The process of analysing case 2 is identical to case 1. Steps 1 and 
2 of proposed algorithm described in part II were applied to 
model 3, whereas all algorithmic steps were run on model 4. 
FIGURE 14. Visibility maps of case 2 from the proposed 
analysis method for (a) model 3 and (b) model 4 (see Figure 
shows visibility results of case 2. Because the target is high 
enough to be seen, the selected building top is highly visible 
within study areas from ground level. There are continuous 
visible areas along Weena Street in both model 3 and model 4, it 
means that people can enjoy a good view of the building top from 
this street. Visible areas in the model with vegetation haven’t 
drop obviously compared to the model with only building points. 
The change of visible areas of case 2 is quite different from the 
situation of case 1. The difference contributes to the different 
vegetation conditions. Trees in case 1 are much more abundant 
in case 2, as a result, trees have a great impact on the visibility 
result in case 1. 
 

 
(a) 

 
(b) 

FIGURE 14. Visibility maps of case 2 from the proposed analysis method 
for (a) model 3 and (b) model 4 (see Figure 8). 

 
TABLE 4.  

VISIBILITY STATISTICS FOR THE PROPOSED APPROACH ON MODELS 1 AND 2 

(SEE FIGURE 8) 

 
Number of visible 
viewpoints ( ௏ܰ௏) 

௏ܰ௏

௏ܰ ∗
 

Cumulative visibility 
Maximum Minimum Mean 

Model 1 1613 37.48% 4 1 2.26 

Model 2 1279 29.72% 4 1 2.18 

* Number of total input viewpoints in case 2, ࢂࡺ ൌ ૝૜૙૝. 

2) OVERLAPPED VISIBILITY MAPS 

FIGURE 15 shows the visible points for the two visibility maps 
from FIGURE 14. The result shows that 334 model 3 visible 
points occurring inside areas covered by vegetation are marked 
as invisible in model 4, the decreasing number of visible points 
in case 2 is much less than case 1. Because of sparse vegetation 
along the west side of Weena Road, there is a very subtle change 
of visible areas within these road sections. 

3) CUMULATIVE VISIBILITY 

FIGURE 16 shows cumulative visibility for models 3 and 4, with 
corresponding statistics in Table 4. The table indicates that 
maximum for both models = 4. FIGURE16(a) shows that 
viewpoints close to the building did not achieve high cumulative 
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visibility. Viewpoints with high cumulative visibility are mostly 
located in the west side of Weena Road, where is quite far from 
the target building. This situation is very similar to case 1. Also, 
the approximate distributions of cumulative visibility of model 3 
and model 4 indicates that vegetation indeed can’t effect the 
cumulative visibility evidently. 

V. DISCUSSION 

A. Vegetation Impact for Visibility Analysis 

The case study verified that vegetation in urban spaces can have 
a dominant impact for visibility analysis when the viewpoint is 
selected from ground, creating significant obstruction between 
observers and enjoyable landscapes in very green environments. 
The result of cases with different urban scenarios reveals 
sidewalk planting could be the biggest visual obstacles. 

Therefore, traditional visibility analyses that only consider 
buildings could fail to represent real visibility. Since vegetation 

has become a crucial element in modern urban spaces, including 
vegetation in visibility analysis will help obtain reliable visibility 
maps. The proposed approach improves visibility map accuracy 
by explicitly considering vegetation in contrast with traditional 
viewshed or visibility analysis that neglects vegetation. 

B. The Proposed Visibility Analysis Accuracy 

Figure 13 shows typical pictures for viewpoints at the indicated 
locations. Point cloud models with vegetation were quite reliable 
compared with empirical views, providing visibility close to the 
real case. Thus, the proposed visibility analysis approach using 
LiDAR point clouds to obtain detailed and reliable results 
without modelling provides realistic visibility maps. 

C. Potential Applicability for Urban Design 

There are many potential applications for LiDAR point cloud 
based visibility analysis in urban design. Accurate quantitative 
visibility maps will be very useful for many purposes, e.g. 

 
FIGURE 15. Overlapped visibility maps of case 2 from Figure 14 (visible points only) 

 

 
(a) 

 
(b) 

FIGURE 16. Cumulative visibility maps of case 2 for (a) model 3 and (b) model 4 (see Figure 8) 
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cumulative visibility analysis can help to identify optimal 
location(s) to enjoy landmarks or enjoyable sites, and space 
between viewing locations and landmarks could be reasonably 
controlled to protect the view. The proposed analysis can also 
provide major indicators to enrich urban space quality by 
subsequently assessing view based environmental enhancement. 

Blue points in our results (see FIGURE 17) can be considered 
as suitable viewpoints to enjoy a better view of the dome. Thus, 

spaces between those viewpoints and the dome could be 
controlled to preserve the current view. Yellow points are 
invisible viewpoints due to vegetation. Some of these viewpoints 
could become visible if the trees were well trimmed or sensibly 
removed. Red points are blocked by buildings, which would 
normally leave little opportunity to improve visibility, but such 
changes could be considered in cases where building changes are 

 
(a) Case 1 

 
(b) Case 2 （photos downloaded from Google） 

FIGURE 17. Visibility map for case 1 and case 2 as well as some typical viewpoint photos 
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already proposed (e.g. removing an old building and replacing 
with differently shaped building). 

From the result, we can see that vegetation plays a significant 
role in urban visual environments, especially in a green 
environment with narrow roads. Trees could be a huge obstacle 
between observers and beautiful landscapes, to deal with this 
kind of situation, trees might be removed carefully by the 
authority according to a reliable visibility result. But in a 
different scenario, if there is a visually unpleasant object inside 
an urban area, trees can be a perfect cover for this. Overall, trees 
could be positive or negative in urban visual landscape. A 
visibility analysis considering vegetation can help us to quantify 
the visual impact of vegetation in urban environments, and the 
quantitative results are considerably helpful for rationally 
shaping a city with a pleasant visual landscapes.  

D. The Use of K-D Trees 

We used k-d trees to reduce execution time to re-construct point 
cloud data for occlusion detection, achieving computation times 
a small as 155 fold less than previously. Thus, the system 
required only 0.2–0.5 s to computing visibility for a single LoS. 
The Python based Scipy ecosystem of open-source software was 
used to construct k-d trees and for range searching. 

E. Limitations 

Although the proposed point cloud based visibility analysis 
improves visibility map quality, it also requires a significantly 
large and well classified dataset for analysis. For the analysis of 
Vegetation blockage should also consider a strategy to represent 
vegetation semi-transparency. Even a leafy tree fails to entirely 
block LoSs, and seasonal differences should also be considered. 
Thus, it is inaccurate to simply define sight lines passing through 
trees as just visible or invisible, intermediate state(s) should be 
considered. 

All computations were conducted on a consumer level PC 
with Intel® Core i7 3.19 GHz CPU, 16 GB RAM, and 
Windows® 10, 64 bit operating system. Total time to calculate 
visibility for model 2 = 892 minutes (127,360 construct lines 
with 1.5 million points) and for model 3 = 1024 minutes (20,655 
construct lines with 5 million points). Although implementing 
the k-d tree algorithm in Python significantly improved 
computation efficiency, it remains too large, particularly if a 
whole urban area needed visibility analysis. Increased input data 
complexity and size may mean days or even weeks to calculate 
using the current algorithm. 

VI. CONCLUSIONS 

Quantitative 3D visual space analysis is critical to understanding 
urban built environment visual characteristics. This study 
proposed an airborne LiDAR point cloud based visibility 
analysis approach to not only quantify visibility in urban space 
but also measure visual impacts from vegetation. The main 
concept for the proposed visibility analysis is to detect occlusion 
along sight lines between the viewpoint and target. We also 
proposed cumulative analysis to find viewing locations that 
provide better target views. We implemented the proposed 
approach for two cases with different urban areas to verify the 
approach and highlight advantages. Results showed that our 
algorithm is available for both urban scenarios with multi-storey 

buildings and high-rise buildings, in another word, our algorithm 
has the potential for widespread use. 

The proposed analysis more effectively simulated real spatial 
visibility compared with traditional analyses that generally 
neglect vegetation impacts. Mapping cumulative visibility 
distribution identified and quantified visual characteristics for 
any location in urban spaces. The analytical and visualized result 
could help to better understand urban morphology and provides 
a reliable reference for urban planning or design decision making. 

There were several limitations in the proposed analysis. Future 
research will apply the proposed approach to a more complex 
urban environment, identifying visual properties for large scale 
urban spaces and essential features behind the urban form. Also, 
we will alter the type of targets and viewpoints in future case 
study, for instance, visibility between two buildings from upper 
floor level. The approach should extend vegetation treatment to 
non-binary states (i.e., partial visibility), and include buildings 
with underpasses or tilted walls and bridges. Faster data 
processing should be investigated through reducing data 
redundancy. Well-organized point clouds and levels of detail 
(LoDs) will help filtering irrelevant information from the 
analysis. 
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