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Abstract 
The Jewish cemetery in The Hague is a listed national monument of The Netherlands and is a document 

of the Jewish heritage in the area. The site is occupied by more than 10.000 people buried there. Only 

2.860 can be located on the ground as they are marked with a gravestone on their surface top. The 

spatial positions of the remaining unmarked burial locations are of high interest to cemetery 

management and the Jewish community. As a physical inventory is not possible, non-invasive methods 

are preferred. Ground Penetrating Radar (GPR) is a technology that has been successfully applied to 

detect sub-surface features. A survey with multiple sensors, including GPR, was undertaken on two 

sample areas of the cemetery. The conventional method to analyse the collected data sets is the 

interpretation of vertical and horizontal visualisations. This method required expert knowledge. 

An alternative approach is to integrate the GPR data into a Geographic Information System (GIS) in the 

form of a 3D-point cloud. The data assessment was supported by applying the deep learning algorithm, 

PointCNN, that performs an automated classification of the points to segment the burial locations as 

features of interest. In this research, various classification models were created, applied, and evaluated 

to their usability. Furthermore, additional data sets were combined with the classified point clouds to 

incorporate more information to identify the unmarked burials. 

The applied method highlights the advantages of a GIS for this spatial analytical task and reveals some 

vulnerable points in the application of deep learning. Therefore, the workflow in this research project 

will have to undergo adaptations as recommended at the end of the report. 
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1 Problem and Context 

1.1 Introduction 
Land as property has always been a valuable entity. However, the fact that the terrestrial surface is 

limited, and the vast increasing world population is pilgriming towards the urban areas does require a 

reformation on the actual land management policies. Where horizontal growth is no longer an option, 

the third dimension becomes key to optimising land resources for economic and social development in 

metropolitan areas (Ng and Choy, 2018). Within this situation, cemeteries regularly come under 

pressure. Because surrounding development projects usually enclosed the graveyards, preventing any 

extension and creating an immense increase of property value (Goodman and Piro, 2013). The growth 

of the population is causing additional stress with a higher demand for the use of the burial grounds. 

The organisation of those sites needs to adapt to that circumstance. If the funeral rites and geological 

properties allow, creating underground catacombs can be a potential solution. Such an approach has 

been already realised in the city of Jerusalem, reviving the practice of underground tombs (Nos.nl, 

2018). 

 

In addition, it can also be a knowledge gap that is hindering the management of a cemetery from using 

the available space to its total capacity. Older graveyards are regularly lacking information on their 

spatial occupation. Historical burial sites are often missing headstones or site markers. One reason can 

be vandalism or the simple diminishing over time (Goodman and Piro, 2013). Another cause can be the 

missing financial background of the bereaved to establish a permanent site marker. Efforts have been 

made to close this gap by detecting and documenting those unmarked burial locations without infringing 

any religious policies. As a result, remote sensing technology has been the primary choice as they 

prevent the labour-intensive and ethically delicate search by excavation. Multiple researches showed 

that Ground Penetrating Radar (GPR) is the most effective archaeological application in finding and 

mapping unmarked graves via remote sensing (Doolittle and Bellantoni, 2010). Other studies relativise 

this statement by concluding that the GPR application does not provide a reasonable success rate of 

grave detection due to the dependency of soil parameters (King, Bevan and Hurry, 1993). However, 

the exploitation of the underground data by GIS capabilities is at its early stages. 

 

GPR is a geophysical technology to explore the subsurface in shallow depths in a high resolution that 

has been under constant development since the 1970s (Unumandakh, Amarsaikhan and Sato, 2007). 

It can detect underground anomalies or disturbance signatures in a minimum of time while avoiding any 

disturbance of the assessed soil. Followed by data post-processing techniques, it is possible to interpret 

the results to discover potential burials. (Bevan, 1989). Until today, the GPR data made tremendous 

development in their quantity and quality. Starting from vertical single 2D radargram slices presenting 

the results of one applied wavelength up to the 3D volumes visualisation derived from stepped 

frequency measurements. Those developments improve the usability and reliability of the technology 

and open the door to new options for data usage. (Bevan, 1989) 

1.2 Problem description 
The detection of unmarked burial sites with a ground penetrating radar is not as simple as it sounds to 

someone without a background in this topic. However, variables like the dielectric properties of the 

buried objects and their surrounding soils determine the chances of successfully exploring the 

underground structure (Doolittle and Bellantoni, 2010). In addition, developed data post-processing 

steps (e.g., parameter approximation, filter application, topographic correction) simplify the 

interpretation to a certain degree. 
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Software applications, provided mainly by the sensor manufacturers, enable the examination of the 

data in 2D vertical radargram slices (Figure 1) or voxel volume visualisation derived by interpolation 

between the radargrams. The latter requires narrowly spaced profiles to display horizontal amplitude 

slices (Figure 2) (Mohamed et al., 2020). Grasmueck and Green highlight the advantages of 3D-GPR 

compared to the individual 2D approach due to the increased resolution and details of the underground 

features (Grasmueck and Green, 1996). 

 

 
Figure 1: Example of a radargram profile across an intact 
coffin recorded at the White Rock Cemetery in Pineville, 
Louisiana (Goodman and Piro, 2013) 

 
Figure 2: A volumetric voxel model displaying the GPR data of an 
archaeological site (Mohamed et al., 2020). 

 

To this stage, few studies have been conducted to assess GPR data in a 3D point cloud data 

representation. The successful combination of 2D or 3D GPR data and 3D terrestrial data has been 

done in several projects. They concentrate primarily on the (sub-)surface documentation of service 

utilities in urban environments (Tabarro et al., 2017; Wolf et al., 2018; Merkle, Frey and Reiterer, 2021). 

The partition of the 3D point cloud in horizontal cross-sections is necessary as the visualisation of the 

content as a whole is not practical for any analysis (Merkle, Frey and Reiterer, 2021). Several efforts 

have been recently made to overcome this step backwards from a dimensional perspective. One is the 

extraction of GPR anomalies in a Geographic Information System (GIS) by transforming them into a 

vector format feature. However, even though the improvement of interpreting the GPR data is 

significant, it needs to be mentioned that the mapping process is complex and labour-intensive 

(Poscetti, Zotti and Neubauer, 2015). 

Goodman and Piro present a research project to extract required volumetric areas based on their 

reflection signal value. With a set threshold value, it is possible to render isosurfaces representing 

discrete anomalies in three dimensions (Figure 3) (Goodman and Piro, 2013). 

 
Figure 3: In this example, the isosurfaces shows discrete anomalies 
indicative of marked/unmarked burial (Goodman and Piro, 2013).  
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The two above mentioned methodologies, using GIS capabilities for visualisation and the classification 

via isosurfaces, demonstrate the potential of 3D GPR data. Tischler et al. are predicting a new era of 

GPR data analysis by integrating them with other georeferenced data and using the functionalities 

provided by a GIS (Tischler, Collins and Grunwald, 2002). Moreover, combining additional data (e.g. 

topographic data) will increase the analysis’s efficiency and build integrity to its results (Merkle, Frey 

and Reiterer, 2021). 

 

In recent years machine learning, artificial intelligence, and deep learning has been prominent keywords 

in data sciences. Deep learning is also used by the geospatial industry, especially for raster data 

examination. Various research projects have been conducted to exam numerous types of applications. 

Most of them use pattern recognition to select and interpret features of interest (e.g., traffic sign 

detection, road condition monitoring, floral species determination). The application on spatial three-

dimensional data sets has not been investigated in-depth yet, but the first results were promising. For 

example, the segmentation of 3D point clouds based on pre-trained models. Those training scenarios 

are derived by terrestrial or aerial LIDAR technology (Remondino and Golkar, 2019). The results have 

potential for future applications but underline at the same time their dependency on the complexity of 

the used training data sets (Malinverni et al., 2019). 

 

This research will apply these methodologies to detect sub-surface anomalies of GPR data collected 

on a graveyard located in The Hague /The Netherlands. The data acquisition will correspondingly cover 

the terrain topography and the subsurface of the cemetery using aerial photography and GPR. Both 

data sets will undergo post-processing (filter, corrections, transformation, etc.) in separate software 

packages before the integration into the GIS will be carried out. The primary objective is the 

development of a deep learning algorithm to classify the GPR data in a 3D point cloud representation. 

Subsequently, a similar method will be applied to different forms of data representation like raster and 

voxel visualisation. Finally, the results will be evaluated. 

In addition, historical data will be processed and included in the GIS. 

Combining the above-listed information will substantiate the visual analysis to detect unmarked burial 

sites in the study area. 

 

The following section will present the research objectives more in detail. Secondly, the theoretical 

background is listed. The applied research method and the results of its application are elaborated 

before the conclusion of this research is drawn.  
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2 Research objectives, questions, and scope 

2.1 Research objectives 
The objective of this research is to gain information out of three-dimensional subsurface data. It will 

explore the data processing possibilities within a GIS. The focus is set on developing an automated 

data classification to segment data representing underground anomalies. Therefore, this method will 

help the visual interpretation of subsurface properties. Moreover, a workflow will be created for 

1) remotely detecting and identifying subsurface objects and properties, 2) integrating multiple data 

types (layers), and 3) the application in other fields of interest. 

2.2 Aim and research questions 
The target of this research is the classification and visualisation of GPR data in a GIS. For this, spatial 

data collection at the Jewish Cemetery in The Hague took place. Their interpretation will aim at the 

detection of unmarked burials at the site. As a supplement, topographic data will be generated and 

integrated into the system. Automated classification via a deep learning framework will be explored on 

the GPR data for the segmentation part. 

 

Based on this, the main research question is: 

 

“To what level is the classification by deep learning and visual interpretation of Ground Penetrating 

Radar data possible in a GIS?” 

 

Four sub-questions are generated to help in answering this central question: 
 

• What GPR data representation format (3D point cloud, raster, voxel) is suitable for a GIS 

interpretation? 
 

• Can the generated deep learning results (e.g., pattern/value detection and extraction) enhance 

the interpretation of subsurface data to detect unmarked burials? 
 

• How can topographical survey data be beneficial for the interpretation process of subsurface 

data? 
 

• To what extent do historical data sets of the research area support data interpretation of GPR 

data to detect unmarked graves? 

2.3 Scope of research 
The focus of this project is the development of the automated classification of 3D data sets in a GIS. 

For this purpose, GPR data were collected from multiple sample areas on the Jewish cemetery in The 

Hague. The entire dimension of the graveyard covers about 6,2ha. The acquisition of the GPR data and 

their post-processing requires expert knowledge. The faculty of Civil Engineering and Geosciences of 

the TU Delft is providing the equipment and knowledge transfer. In addition, topographic surface data 

sets and historical data will be collected to complement the GPR data. The topographic data will be 

limited to the corresponding sample areas of the site. The research on historical data sources lead to 

the Foundation of the Jewish Cemetery in The Hague (Stichting Instandhouding Joodse begraafplaats 

‘s-Gravenhage) and the author of the of the book ‘De joodse begraafplaats an de Scheveningseweg in 

Den Haag – Geschiedenes en Restauratieverslag’ (Enthoven, drs. Francine Puttmann et al., 1992). 

The historical archive of the municipality Den Haag (Haags Gemeentearchief), and the provider of 

geospatial data sets Dotka, also contributes information in the form of aerial images documenting the 

area’s historical development. 
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A classification of the topographic surface properties would enhance the adjustments during the post-

processing phase of the GPR data, but this will not be a priority of this project due to time restrictions. 

2.4 Hypothesis 
The hypothesis of this research is that GPR and topographic data provide valuable information to 

remotely detect unmarked burial sites. Deep learning methods applied in a GIS will enhance the 

identification of the burial locations by classifying the GPR data. The process will be based on the GPR 

data properties. It is expected that the quality of the results strongly depends on the spatial resolution 

and the intensity sensitivity of the GPR data. Another parameter to consider is that the deep learning 

methodology relies on the training data’s quality. This fact is one critical part of the project and will be 

essential for a successful implementation. 

 

The research hypothesis will be tested at the Jewish Cemetery in The Hague. Gained knowledge of the 

underground layout will support the cemetery’s management for future activities and help cross-

reference it with existing records in the archives. 

Furthermore, a successful development of the workflow will allow an application in different applications 

and scales. 
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3 Theoretical background 

3.1 Deep learning 
Thinking machines have stimulated people’s imagination even before the first programmable computer 

was developed (Menabrea and Lovelace, 1842). In present times the terms artificial intelligence (AI), 

machine learning (ML), and deep learning (DL) are omnipresent as those systems are in use by many 

daily life applications. As the use fields appear to be infinite, research on this matter will be active 

(Bengio, Goodfellow and Courville, 2017). However, deep learning is only one subcategory in AI 

technology and represents one single style embedded in multiple learning concepts (Figure 4). 

 

 
Figure 4:Venn diagram representing the hierarchical learning concepts of AI technology (Author). 

 

According to Chang and Lin, deep learning is a machine learning sector that automatically selects 

and extracts features from data sets (Chang and Lin, 2011). Even though it emerges as a relatively 

new technology, DL has a long development history, starting in the ’40s of the last century. The 

hypothesis did undergo multiple phases starting from cybernetics (1940-1960’), over connectionism 

(1980-1995), to the renaissance as deep learning (2006-present) (Bengio, Goodfellow and 

Courville, 2017). Two significant developments triggered the stated rebirth. First, there is the 

remarkable improvement of the computing power of hard- and software components. This fact 

allowed the models to expand in size and complexity. And secondly, the availability of a suitable 

amount of training data is a central foundation of the DL concept. Since the advent of Big Data, 

numerous data sets are existing to train models and apply them. Machine learning can be separated 

into two learning theories, the supervised and the unsupervised models. Deep learning requires 

labelled training data to teach the algorithm and is therefore learning in a supervised manner. The 

setup of DL references the structure and the functionality of a brains neural network, the learning 

process is based on the analysis of the provided data (Thakur et al., 2019). One definition of DL is 

given by (Patterson and Gibson, 2017) in, ‘Deep learning as a neural network with a large number 

of parameters and layers in one of four fundamental network architectures.’. Those four 

architectures are: 

 

• Unsupervised pre-trained networks 

• Convolutional neural networks 

• Recurrent neural networks 

• Recursive neural networks 

 

The automatic extraction of features is one area where DL unfolds its full capability and advantage 

compared with conventional machine learning. In this process, the network selects properties of a 

dataset as parameters to classify the data consistently. This development made it obsolete to label 

manually large feature sets for data classification and exceeded the traditional processes in terms of 

speed and accuracy. 



Theoretical background  7 

 

Convolutional neural networks and recurrent neural networks are DL architectures in use in multiple 

fields. Examples of such areas are recognising faces in imagery, bioinformatic data classification, and 

sound analytics. The examination of written words as discrete textual units is yet another DL application 

facilitating our daily lives (Patterson and Gibson, 2017). 

The neural network architecture is described as a network constructed by several simple connected 

processors named ‘neurons’ (Schmidhuber, 2015). The figure below sketches an overview of the 

relationship between the three main components of such a network: the input layer, the hidden layers, 

and the output layer (Figure 5). 

 

 
Figure 5: Schematic representation of the layered structure in a neural 
network design (Sorokina, 2017) 

 

3.1.1 Convolutional Neural Networks (CNN) 

Convolutional neural networks are designed to learn higher-order features in the dataset through 

convolutions. The successful implementation in computer vision (e.g., image recognition) is one 

example where its potential got acknowledged by the public (Patterson and Gibson, 2017). A standard 

CNN is a composition of an input layer, convolutional layer, pooling layer, and fully connected layers. 

 

The convolutional layer is always the first hidden layer in a CNN and acts as a filtering entity to 

determine output features. Compared to the input layer, the filter is of smaller spatial size and extracts 

compressed information of the input (Ke et al., 2018). 

 

The pooling layer successes the convoluted layer and reduces the spatial size. This downsampling filter 

enhances the data processing steps on one side and supports the detection of characteristic features 

in the input layer on the other side. The latter is also maintaining the training process of the model 

(Dasgupta et al., 2018). The pooling layer does compute a fixed function of the input layer and thus 

does not involve any parameters. Commonly, the pooling layer uses a max operation (max pooling) and 

extracts the maximum value in the predefined filter matrix. Another function used in a pooling layer is 

computing the average value of the filter region as an output feature. 

The finishing part of the network is the fully connected layer. It serves as a class scoring unit used for 

the output layer at the end of the network. The layer’s dimension is defined by [1x1xN], where N is the 

number of evaluated output classes. Each neuron of this layer is connected with each neuron of the 

previous layer. Fully connected layers transform the input data based on the activations of the input 

volume and parameters (e.g., weights, biases etc.) (Patterson and Gibson, 2017). 
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Figure 6: Conceptual structure of a convolutional neural network consisting of the input layer, convolutional layer, pooling layer, and fully 
connected layer (Biswal, 2020) 

 
The efficacy of CNN is based on the regular grid structure of the assessed data sets (e.g. images, 

sound) (Malinverni et al., 2019). The focus on information on the grid through a small filter allows the 

detection of variations like edges and corners for a robust classification (Winiwarter et al., 2019). On 

the contrary, tabular data sets from a relational database management system (RDBMS) that do not 

have any spatial relationship can be examined via a CNN. The columnar data are exported with a fixed 

materialised view and provide the required structure (Patterson and Gibson, 2017). 

 

3.2 Point cloud features 
Point clouds in their present representation emerged in the early stage of the 2000s’ with the 

introduction of automated active light-sensing technology (light detection and ranging [LIDAR]). The 

acquisition of 3D points in sub-millimetre precision, in large amounts and at a meagre cost of time, 

created an enthusiasm of a new era where traditional survey methodologies (e.g., photogrammetry) 

seemed to be redundant and fated to vanish. The disillusion followed promptly with realising that 

processing the voluminous data sets with their indiscrete points does not only require high-performance 

hardware. The processing software also did not have the capacities (algorithms) to automatic obtain 

valuable information. In the preceding two decades, several developments in the field of point clouds 

improved the acquisition and processing procedures. This includes the renaissance of the 

photogrammetric method through dense image matching (DMI) algorithms and the detection of primitive 

features (e.g., plane, cylinder, etc.). However, the automated interpretation of point cloud data is 

disadvantaged compared with the production developments in quantity and quality. 

Point cloud data have a solid semantic representation and hold statistical properties unaffected by 

certain transformations. The data can be classified into two conventional types, intrinsic and extrinsic 

features. A simple classification with human interaction involved can provide a solution for elementary 

problems. However, it is considered not suitable for more complex scenarios (Chen et al., 2020). 

3.2.1 Deep learning applied to 3D data features 

With the afore in mind, using a CNN to segment point cloud features seems contradictory due to their 

architectural characteristics. An enormous number of points, distributed in a three-dimensional space 

in an irregular, non-gridded manner, and that with varying density is not suitable to be assessed by a 

supervised CNN. According to Malinverni et al., the status quo of processing point clouds is the labour-

intensive creation of 3D models by domain experts. The general workflow includes the following steps 

(Malinverni et al., 2019): 

1. Identifying architectural elements of interest via visual assessment. 

2. A representation as a parametric 3D object for each element 

3. The accurate placement of the 3D object into a 3D scene. 

4. Classify the placed element according to the requirements of the domain and annotate 

additional information of various types. 
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To accelerate this process and to avoid the quality loss due to generalisation, an automated workflow 

is needed to enable a direct conversion from point cloud data into a profound output. 

Zhang et al. is stating that deep learning algorithms can learn how to segment feature representations 

from 3D point clouds (Zhang et al., 2018). 

One key element is to introduce a type of spatial structure to the data. Several research projects tried 

to solve this issue by transforming the point cloud into various 2D regularised representations. For 

example, Hu and Yuan (2016) examined the option to label every single point of the cloud based on its 

rasterised neighbourhood. Subsequently, the accumulated images were used for digit recognition and 

classification via a CNN (Hu and Yuan, 2016).  

The similar idea is to create textured 3D models from the point cloud as a source for 2D segmentation. 

Supervised machine learning on such data was applied successfully to classify 3D cultural heritage 

models (Grilli, Özdemir and Remondino, 2019). 

An alternative approach to structure the data is the transformation into voxel format. A standard 

technique is assigning the average value of the points to the enclosing single grid cell block. Then, the 

resulting 3D grid is labelled via a 3D CNN through upscaling techniques (Badrinarayanan, Kendall and 

Cipolla, 2017). 

 

So far, the stated procedures have the method in common to translate the irregular point cloud into a 

suitable isotropy data structure. However, recent research has shown that a CNN can directly be applied 

to the unordered 3D features of a point cloud. Qi et al. introduced PointNet, where symmetric functions 

are employed to the input data to achieve stability (Qi, Su, et al., 2017). The enhanced version, 

PointNet++, describes the local structures amongst the point using the PointNet function in a 

hierarchical manner (Qi, Yi, et al., 2017). DeepSets (Zaheer et al., 2017) and SO-Net (Li, Chen and 

Lee, 2018) are other systems following a similar approach but do not gain the output quality of 

PointNet++ (Chen et al., 2020). Li et al. promote feature learning with an X-transformation from the 

input point clouds to, 1.) assign weights based on the input features and 2.) permutate the points in an 

order with latent and canonical properties (Figure 7). PointCNN uses this technique based on the help 

of graph structures to facilitate the learning process (Li et al., 2018). 

 

 
Figure 7: The upper section demonstrates the convolution on structured (gridded) data where each iteration reduces the resolution of 
the patch and increases the number of channels (visualised by the dot thickness). The below section describes the X-Convolution 
(transformation) function to ‘gain’ or ‘project’ the neighbours’ properties to less representing points with supplemented information 
load (Li et al., 2018). 
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One characteristic behaviour of a convolution layer is the dependency of the output on the inputs point 

order. That is the main barrier for a convolution operation on points from a point cloud. The 

transformation function assigns a random order to the input points to achieve an order-independent 

feature. Points within the point cloud are functioning as representative points that define the local 

neighbourhood. Those points need to be suitable for either the ‘projection’ (classification) or 

‘aggregation’ (segmentation) of the information. For this, a random-down sampling or corresponding 

farthest-point function is applied to the input data. The 𝒳-Convolution transformation matrix operates in 

the created local environments to collect the neighbouring points together with their associated features 

for convolution (Li et al., 2018). The algorithm is described in the equation below: 

 

𝑭𝑝 =  𝒳−𝐶𝑜𝑛𝑣(𝑲, 𝑝, 𝑷, 𝑭) = 𝐶𝑜𝑛𝑣(𝑲, 𝑀𝐿𝑃( 𝒳 − 𝑝) × [𝑀𝐿𝑃𝛿(𝒳 − 𝑝)𝑭] 

 

𝑷 = ( 𝑝1, 𝑝2, . . , 𝑝𝑘) are the neighbouring points with the corresponding features 𝑭 = (𝒇𝟏, 𝒇𝟐, … 𝒇𝒌). The 

trainable kernels are represented by the variable 𝑲. Based on these parameters, the ‘projected’ or 

‘aggregated’ features 𝑭𝑝 will be convoluted on the representative point 𝑝. Table 1 defines the 

parameters and processing steps in more detail. 

 

 
Table 1: 𝓧-Convolution operation parameter and description (Li et al., 2018). 

 
Chen et al. evaluated PointCNN in comparison with other segmentation and classification procedures. 

It appeared to be robust in the application and achieved a high efficiency. Furthermore, the necessary 

training effort for the algorithm was to a lesser extent than for the other assessed systems (Chen et al., 

2020). 

3.3 Automatic data analysis of GPR data 
The automated processing of GPR data to detect and classify distinctive features, like subsurface 

objects or soil properties, has been investigated in multiple studies. Most research concentrate on the 

analysis of the 2D-radargrams (B-scans) (Figure 1) and (Figure 8). Those two-dimensional raster 

presentations are part of the conventional, manual interpretation of subsurface data. Next to data 

quality, the accuracy of the result also depends on the examiner’s knowledge and experience. The 

computerised detection of buried objects (e.g., landmines), appearing as hyperbolas in the GPR 

images, has been explored by Gader et al. by applying a rule-based feature extraction and adaptive 

whitening process. A Hidden Markov Model (HMM) facilitated noise reduction in the radargram images 

(Gader, Lee and Wilson, 2004). Subsequently, the system was improved by adding an adaptive pre-

processing unit to an HMM sensor, followed by a corrective training component and background model 

identifier. As a result, the recognition performance could be increased to 50% (Frigui, Ho and Gader, 

2005). An alternative workflow was created by Pasolli et al. as a combination of pre-processing, 

segmentation, object (pattern) recognition and material recognition. To classify the materials of the 

detected objects, a Support Vector Machine (SVM) was utilised. A performance increase in object 

detection was discovered by using synthetic images, where the background noise has been removed, 

as input data and the hyperbolas vectorised (Pasolli et al., 2009). 
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A real-time GPR application to detect land mines was introduced by Kovalenko et al. that operates on 

one dimension. The method solely uses the single wave signals (A-scan) detected by the GPR receiver. 

It performs its analysis based on waveforms representing different classes of buried objects (Kovalenko, 

Yarovoy and Ligthart, 2007). 

 

CNN’s emergence in image processing applications was consequently used on GPR B-scan raster 

images (Figure 1) for their interpretation enhancement. Ozkaya et al. present a tailored solution named 

Convolutional Support Vector Machine (CSVM), like CNN, a series of convolution and pooling layers, 

but with the difference that an SVM filter is used to generate input feature maps. Several CSVM models 

were tested and showed the ability to automatically calculate the shape of the buried object and the soil 

type (Ozkaya et al., 2020). One step further from a dimensional perspective is the method combining 

multiple B-scans from a multichannel GPR to form intersectional C-scans and D-scans with individual 

layer orientation (Figure 8). The combination of the layers creates a 3D GPR data representation. Based 

on this, a feature can be reviewed at various vertical and horizontal slice images. Finally, collating all 

those representations in one standardised 2D-image format serves as input data to a CNN (Figure 8). 

The introduction of more perspectives decreased false predictions compared with the processing of 

single framed 2D data sets and, therefore, strengthened the system’s robustness (Kim et al., 2021). 

 

  
Figure 8: LEFT - Multichannel GPR (Channel#N) with the representation of the orthogonal scan planes B, C, and D. MIDDLE and RIGHT – 
(a) 3D data block and (b) combination of 1 B-scan and 2 C scan images (Kim et al., 2021). 

 
As stated at the beginning of this chapter and based on the literature review, most systems are founded 

on classifying one or multiple 2D GPR images. Also, the integration in a GIS is part of only a few 

research projects. GIS has been mainly used to present and disseminate results, but not for the actual 

processing (Tabarro et al., 2017). An approach based on 3D point cloud as input data for a CNN was 

not investigated yet and is therefore appropriate for this research as a novum. 
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4 Methodology 
This section will introduce the methodologies that were applied during this research project. First, data 

sourced by multiple sensor systems and formats will be collected, transformed, and integrated into one 

system. Then, data processes will be developed to explore their functionality for identifying unmarked 

burial sites. Those last steps will be taken for different input data formats, namely 3D point cloud-, and 

raster- format. An evaluation of the results will follow by reference data sets. 

The sub-questions will be separately examined and evaluated. 

This section begins with the presentation of the study area. The available data sets and the workflow 

with applied software will be presented subsequently. 

4.1 Case study area 
The Jewish Cemetery in The Hague is placed right opposite the Peace Palace and thus belongs to the 

historic part of the city (Figure 9). Founded in 1694, it was located on the north-western edge of the 

existing settlement area on one side and adjoining the dune area on the other (Annex A, Figure 30). 

The cemetery is a national monument of the Netherlands managed and maintained by the foundation 

for the Preservation of the Jewish Cemetery in The Hague (Stichting Instandhouding Joodse 

begraafplaats’ s-Gravenhage). 

 

 
Figure 9: Location of the research area, the Jewish Cemetery in The Hague (Author). 

 

According to the records, there are more than 10,000 people buried. However, only 2,860 tombstones 

indicate the position and provide further details of the deceased. Several reasons caused this 

discrepancy. One is that tombstones were not affordable to most of the Jewish community. Another 

cause is the natural disappearance over the last centuries. Many markers got lost during the second 

world war as the German army used the stones for trench construction and as base plates for military 

equipment (e.g., ant-aircraft guns). Moreover, at the end of the German occupation, a British airstrike 

in this area also decimated their amount (Foundation Jewish Cemetery, 2021). 

 

Since the middle of the 1980s, comprehensive restoration activities were initiated by the foundation 

established in 1984. A throughout documentation campaign (Figure 10) of the remaining tombstones 

occurred between 1986 and 1988, resulting in a register accessible to the public (Founation Jewish 

Cemetery, 2021). 
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Today the cemetery is only used exceptionally since its capacity reached its limit at the beginning of the 

last century. Given the Jewish tradition that no graves or tombstones can be removed, a second area 

serves as a graveyard for the Jewish community. 

 

 
Figure 10: Overview layout displaying the location of the existing tombstones and higher vegetation (Enthoven, Drs. Francine Puttmann 
et al., 1992). Indication of research sample areas (blue and red) (Author). 

 

As noted in the scope, due to its size, the total area of the cemetery does not allow an examination in 

this project. 

The objective to use a deep learning algorithm to classify data requires a training data set to start. For 

this purpose, two sample areas (Area AB) are needed to cover both types of sub-terrain, known and 

unknown. For example, that can be along a line of known (marked) burial sites and a (partially) empty 

patch or along a known line with an alleged open area (e.g., access path) adjacent. Such a hybrid style 

will be beneficial to 1) train the algorithm based on the set classification [Area AB1] and 2) evaluate the 

results on a similar segment [Area AB2]. Images of the two patches with their spatial location and 

dimensions are in Figure 31 (Annex B). 

 

Area C1 contain complete unknown properties of the underground occupancy and will be assessed by 

the model. According to local information the plot was a former gardening patch and is located 

southwest of the entrance. All three sample areas are indicated in Figure 10. 

4.2 Data collection, processing, and integration 
Different data sources are used for this research, as listed below. The majority is accumulated on the 

site by surveys with various sensor systems. Additionally, historical data are added to the collected 

information to enhance interpretation. A general overview of the workflow is displayed in Figure 11 

below. 
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Figure 11: General methodology workflow from data collection to model evaluation (Author) 

4.2.1 Ground Penetrating Radar (GPR) data 

Remote sensing technology is employed at the TU Delft Faculty of Civil Engineering and Geosciences 

research projects. They use the GPR sensor pulseEKKO GPR by Sensors & Software Inc. The applied 

frequency of the sensor in this project is 500 MHz. According to the literature and the fabricators 

directive, this wavelength is suitable for forensic and archaeological investigation. It is a compromise 

between the data resolution and ground penetration depth. The pre-selected areas (AB1 and AB2) data 

acquisition was executed in a grid spaced approach covering the corresponding area. The survey 

resulted in 40 and 24 single scan lines at a 0,25m spacing. For efficiency reasons, the lines were 

collected in a ‘zigzag`-pattern, meaning that every second line was measured towards the grids 

baseline. A graphical overview of the survey setup AB1 is located below in Figure 12. 

 

 
Figure 12: Overview GPR survey set up for sample area AB1 (not to scale) with dimension line width (detail image) (Author). 

 

The post-processing of the raw data was performed with the software EKKO_Project (Version 6). The 

package is equipped with various filter options to increase data quality. As a result, negative impacts 

caused by effects like attenuation and environment noise (e.g., Nyquist noise) could be minimised. The 

settings of the applied filter parameter are also helpful to highlight the signals of interest (e.g., reflection 

hyperbolas) in the 2D-radargram (B-scan) Figure 13. The B-Scans (24 lines) of the survey area AB2 

are displayed in Annex A (Figure 32 and Figure 33). 
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The GPR data sets need to undergo a three-dimensional spatial correction as their collection occurred 

without accompanying documentation of the spatial position and elevation of the sensor. The 3-

parameter transformation (2 translation and 1 rotation) for the horizontal adjustment is based on the 

GPS measurements on each corner of the two grids and individual tie-points (see 4.2.2). 

 

A correction of the vertical dimension is applied on a line-by-line basis (Figure 13). The reason for this 

is that the GPR data are defined along a local horizontal surface line, where neither topographic 

properties (height differences) nor datum-based elevations are embedded. The matching vertical profile 

obtains the topographic parameters for the line adjustment. Those values are, in turn, extracted from 

the georeferenced topographic surface data (see 4.2.3). 

 

Additional processing steps include the application of various filter to emphasize the data signal 

information. Such filters remove unwanted low frequencies from the GPR trace (Dewow) or apply 

functions of increasing gain (SEC2) to counteract the attenuation effect on the signal. A signal velocity 

of 0,100m/ns is used to determine the vertical distance (depth) of the reflections and transmissions. 

 

 
Figure 13: 2D GPR radargrams (B-scans) of survey Line #0 sample area AB1 of unprocessed raw data (left side) and after the application 
of filter and topographic correction (right side) (EKKO_Project ject line view, Author) 

 
The processed GPR data grids can be provided in various spatial formats to export for further usage. 

At the beginning of this project, it was intended to obtain a topographically corrected point cloud as an 

input data set for the subsequent classification process via deep learning. This was not possible due to 

technical problems which will be elaborated later in section 6.3. As a result of those issues a dataset 

was used instead where a list (CSV - data format) included the point cloud data with the assigned 

attributes. The points are a result of an interpolation between all scan-lines (B-scans) creating a block-

shaped point cloud with an average density of 125.000 points per cubic meter (Annex G, Figure 36).  

4.2.2 Global Position System (GPS) data 

Integrating of all different data sets implies a transformation into a coordinate system of a higher order. 

Therefore, the national reference system of The Netherlands, Amersfoort RD New, and the vertical 

datum, NAP (Normaal Amsterdams Peil), were used as they were deemed the best fit for the study 

area. Reference points were obtained with GPS fast static surveys in each sample area (AB1, AB2, 

C1). The post-processed coordinates are listed in Annex D. 

4.2.3 Topographical Surface data 

There are three main reasons why the topographic data of the site surface will be relevant for this 

project. One is the georeferencing of the GPR data to integrate them into a horizontal and vertical 

reference system. Secondly, there is the topographic correction of the GPR data needed. And lastly, 

the data will supplement the analysis in the GIS. 

An Unmanned Aerial Vehicle (UAV) was utilised for the data collection. The aerial images were 

processed by the software Pix4Dmapper by applying photogrammetric methodologies. The resulting 

data sets (3D point cloud, mesh, ortho-photo, etc.) can be used for further examination and will 

enhance, together with the other collected data, the overall interpretation. 
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4.2.4 Historical Data 

There are additional historical data sources next to the documents of the foundation. A query in the 

archives of the municipality The Hague (Gemeentearchief) resulted in the finding of detailed layout 

plans of the cemetery dating 1990. They are documenting the locations of the single grave with 

individual numbering, which corresponds to the index numbers in the database of the Jewish foundation 

(Annex E, Figure 34, Table 11). 

 

Aerial observations by the British Royal Air Force occurred in the region during the second world war 

monitoring the activities of the occupying German forces. This imagery reveals significant actions in the 

cemetery (Annex F, Figure 35). An overlay with the present situation gives valuable information about 

the actual layout. Frequent aerial imaging flights by the Dutch government document the topographical 

and topological developments in the post-war era. A review of public and commercial archives led to 

the imagery that will complement the collection to fill the gap until the cemetery’s restoration (Table 2). 

 

Year Description Size (pixel) Data format 

1983 1983KAARTBLAD30_057, 's-Gravenhage 11375x11862 TIFF 

1982 1982_3105_DEN HAAG_3303, 's-Gravenhage 9394x11345 JP2 

1976 1976KAARTBLAD30_088, 's-Gravenhage 8775x9560 TIFF 

1971 1971KAARTBLAD30_092, 's-Gravenhage 8462x9231 TIFF 

1966 1966KAARTBLAD30_089, 's-Gravenhage 8400x9114 TIFF 

1954 1954KAARTBLAD30_124, 's-Gravenhage 8371x8349 TIFF 

1945 106G-4570_3043, 's-Gravenhage 9394x11345 JP2 

1945 526_01_5043, 's-Gravenhage 6644x6570 JP2 
Table 2: Historical aerial imagery properties (Dotka). 

4.3 Research Software 
Several software packages are utilised to perform this research. One milestone to fulfil is the integration 

of the different data sets in a GIS, namely ArcGIS Pro (Version 2.9.0). Once achieved, the processing 

tools in a GIS will be explored to interpret the data by detecting unmarked grave locations. The focus is 

set on the deep learning functionality in ArcGIS Pro to train and apply a CNN model for the automated 

3D data classification. This functionality uses the PointCNN algorithm presented in section 3.2.1. 

 

Before this stage, several pre-processing procedures are necessary for individual data sets. 

In preparing the GPR data for the import into the GIS, processes like filter, adjustments, and corrections 

are applied in the software EKKO_Project (Version 6). The program facilitates the export of 3D point 

cloud data in different formats (e.g., ASCII, CSV, LAS). Furthermore, it also provides tools for anomaly 

detection and interpretation. Those insights are used for verification of the results produced in the GIS. 

The UAV raster data set will be processed by the application Pix4D_mapper (Version 4.5.6) using the 

Dense Image Matching (DIM) method. The gained 3D-point clouds for each sample area (AB1 and 

AB2) give details of the surface properties like undulations, colours, and elevation. An open-source tool, 

Cloud Compare (Version 2.12), was used to extract topographic data for further processing purposes. 

The details of the entire workflow are presented in section 4.4 and in Figure 14 
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4.4 Project Workflow 

 

 
Figure 14: Detailed workflow diagram starting from the data collection until the interpretation and evaluation in a GIS. (Author). 

 

4.5 Semiautomated point cloud classification by CNN model 
Several prerequisites and processes must be set up and undertaken before applying a model to a data 

set. Those phases can be structured into the following sequence: 
 

1. Assessment of the provided training data to their quality. If necessary, manual data labelling 

and cleaning (e.g., noise filtering) need to be commenced. 

2. Preparation of the point cloud data generates the data that will serve to train and validate the 

CNN model. Various parameters are defined that impact the subsequent training step at this 

stage. 

3. Train and validate the point cloud classification model by implementing the PointCNN 

architecture as a deep learning framework. 

4. Classifying a point cloud using the trained PointCNN model. 

 

Each phase for this project is elaborated on in the following sub-sections. 
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4.5.1 Assessment and labelling of GPR point cloud 

A general rule states that the quality of a CNN model strongly depends on the quality of its training data. 

Therefore, for automated classification, it is necessary that the features of interest are clearly 

identifiable, free from artefacts (e.g., signal noise, random errors, etc.) and correctly labelled. 

The designated data set is the representation of the sample area AB1, which is available in a 

rectangular-shaped block (Length / Width / Depth – 10,5m / 10m / 1,7m) containing 23.053.608 points 

(Annex G). Next to the location information, each point inherits a value between 0-138, representing its 

intensity. 

 

A pre-labelled data set is necessary to obtain a CNN model for automated point cloud classification as 

training and validating input. For this purpose, the data set was classified into three categories using 

the GIS predefined classes of the LAS-Format 1.4 of the ASPRS (ASPRS, 2002). 

The classification assignment for the project purpose and the applied selection criteria are listed in 

Table 3 below. 

 

Class 

# 

Classification 

LAS-Format 1.4 
Project Classification Selection criteria 

Intensity values/ 

Depth (m) 

0 
Created, Never 

Classified 

Natural soil layer and 

changes of the 

sediment properties 

(e.g., clay layer) 

Subsurface area with low-

intensity values assigned in 

the first layer and all other 

data below burial depth. 

0 – 30 / 

0 - 1m 

0 – 138 / 

1 - 1.73m 

1 Unclassified Burial locations 

Subsurface area with high-

intensity values in burial 

depth. 

15 – 138 / 

0.2 - 1m 

2 Ground Gravestone 

Surface and near 

subsurface area with 

distinctive intensity values 

assigned. 

5 – 15 / 

0 – 0.2m 

Table 3: Classification assignment and selection criteria for point cloud labelling. (Author) 

 
The manual labelling process was undertaken in ArcGIS Pro using the profile tool that enables the user 

to create vertical slices of the point cloud. For the sample area AB1, 4cm thick slices were assessed to 

define the desired classes. According to information received by the management of the cemetery, the 

standard burial depth is about 110cm. Consequently, the buried coffins are occupying areas between 

ca. 0.6 and 1.1m depth. Considering this, only points with significant intensity values located in this 

vertical range were selected and classified as a burial location (class #1). 

 

The quantitative distribution of manually classified points in AB1 resulted in the following numbers: 

 

• Class 0: 21.502.219 points (93,27%) 

• Class 1:   1.304.629 points   (5,66%) 

• Class 2:      246.760 points   (1,07%) 

 

Figure 15 demonstrates the differences of the B-scan radargrams and the vertical sections of the 3D 

point cloud that is colourised by the intensity values. Also, the manual classification process is displayed 

by the points selected as burial locations (highlighted by blue colour). 

The successive Figure 16 points at the location of the demonstrated scan line #32 of sample area AB1. 

The orthomosaic of the area is overlayed with the gridlines (red) of the GPR survey (Figure 12). The 

explored vertical cross section is highlighted yellow where no crossing of any gravestones on the 

surface is visible. 
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Figure 15: TOP - 2D-Radargram (B-scan) of GPR data line #32. MIDDLE: - Visualisation of vertical profile slice (4cm thickness) of the point 
cloud in ArcGIS Pro coloured based on the assigned intensity values. BOTTOM: - Manually selected (blue highlighted) points classified as 
class #1 - burial locations (Table 3). The displayed cross section shows burial with no gravestone present (Author). 

 

 
Figure 16: Orthomosaic of area AB1 with overlayed GPR grid and highlighted line #32 (Author). 

 

The imbalance of the class proportions is not favourable for the subsequent training phase and will be 

discussed in section 5.3 . A common approach to resolving this issue is introducing more classes to the 

data set. Unfortunately, the content of the subsurface data set does not provide many additional options 

(e.g., confining layers) to reduce the volume of the class #0. 
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Another issue discovered during the labelling process is that the selection of the burial locations was 

complex in areas where gravestones and other objects caused signal disturbances (Annex H). 

4.5.2 Prepare point cloud training data 

After the manual labelling process, the data set met the qualitative standards to create a CNN model. 

For this process, a training and validation part is necessary. According to Viswambharan and Singh, 

partitioning the sample area AB1 with the proportion 2/3 and 1/3 was done parallel to the x-axis, 

ensuring a distribution of the different scenarios (marked, unmarked graves and undisturbed soil) 

(Figure 17) (Viswambharan and Singh, 2020). 

 

 
Figure 17: Isometric view on sample area AB1 with the partition of training data (red) and validation 
data (blue) (Author). 

 

Before the training phase can be initiated several parameter settings will need to be defined for the 

input data. The dimensions of the sample blocks and their maximum number of contained points need 

to be defined.  

 

The cubical subdivision, block, will be applied over the entire data set, each representing a single 

sample. That is the smallest entity that can be fed to the learning algorithm. The block size with the 

resulting volume describes the room of content (points) that can be addressed in this entity. In addition, 

it does consequently set the total number of samples (blocks) over the data set. Previous research 

suggests choosing a block size that sufficiently captures parts of the objects of classification and their 

surrounding context. That means it is only necessary to capture object feature characteristics by one 

block for identification. It is therefore not needed to envelop an object in its entirety. So, the burials 

require a certain proportion of applicable points in the block to get identified and classified. 

 

The maximum point number is a threshold for computational reasons. If exceeded, a subdivision into 

smaller blocks in this area ensures the usage of all the available data for the training. 

 

The preparation process results in a Hierarchical Data Format (HDF5-format) designed to support large, 

heterogeneous, and complex data sets (Group, 2015). The block size and the max. point number set 

the properties of the HDF5-tiles that will be applied to the training and validation data set. 
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In this project, the main features of interest, burial locations, are not distinctive in their feature 

appearance in shape or dimension. Therefore, multiple scenarios are created by applying various pre-

set parameters. The employed values are listed in Table 4. For every prepared data set, the number of 

Blocks and their encased points is visualised in two bar charts, separately for the training and validation 

data sets. The diagrams are in Annex J. 

 

# prep. 
Data 

Class Codes 
of Interest 

Block Size 
(cm) 

Block 
Point 
Limit 

Output file (pcdt-format) 

1 1, 2 50 8192 trainingdataAB1_50_8192 

2 1;2 30 12000 trainingdataAB1_30_12000 

3 1 20 1000 trainingdataAB1_20_1000 

4 1 50 20000 trainingdataAB1_50_20000_1 

5 1 100 10000 trainingdataAB1_100_10000_1 
Table 4: Parameter settings of the training data preparation (Author). 

4.6 Train model for point cloud classification 
The PointCNN learning framework will be employed on the prepared point cloud data set during this 

phase. Next to the standard input parameter (e.g., input point cloud and model output location), several 

additional variables can be used to influence the training result. The selection of the attribute(-s) 

assigned to each point strongly affects the training results. The Intensity attribute is selected in this 

research as it is born from the signal value of the GPR measurement. Other possible options (e.g., 

Return number, Number of returns, RGB values, etc.) are not possible to use. That is due to the unique 

properties of the sub-surface data and the difference in their acquisition compared with the standard 

task of using data obtained by LIDAR sensors. 

 

Another practical parameter is the minimum threshold of points present in one block. The number allows 

ignoring blocks with a low amount of information included. As a result, those blocks will be neglected 

for the training and accelerate the overall process. About the different input training sets with their block 

sizes and maximum point numbers, the were multiple training sessions with various minimum point 

number values. Their influence is described in the following section 5.1. Considering the quadratic block 

shape of the data set (area AB1) and the equal density of points within, this parameter is expected not 

significantly to impact the results. 

 

As a default, the PointCNN framework will assign equal weights to each class when commencing the 

model training. However, the weights are allocated by designating one or multiple class codes with a 

higher-grade priority. The remaining classes are declared as Background Class Code. For example, in 

the project case, the class of interest is Class # 1 – Unclassified. Therefore, the weight is solely set in 

this while the other two classes are not considered separately. Two training sessions also involved 

Class #2 – Ground to detect the gravestones. The results are discussed in the next section, 5.3. 

 

Two more vital parameters to mention are the Number of Epochs and the Batch size. The number of 

epochs defines how often the learning algorithm will go through the total training data set. 

The size of the batches, on the other hand, determines the number of samples (blocks) the training 

data set is divided. At the end of each batch (group of blocks), the predictions are compared to the 

reference variables and an error is calculated. That error is the base for improving the algorithm and 

updating the model. The division can be done in one or multiple batches. (Brownlee, 2018). A general 

rule states that a smaller batch size achieves the best training stability but at a higher cost of 

computational power as a trade-off due to the high number of iterations for each epoch. Former 

experiments obtained the best results with a batch size of 32 or smaller. The batch size is a tuning 

factor between the stability of the learning process and the pace of the learning procedure (Brownlee, 
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2020). During this research, batch sizes 2 and 4 are used for the training. Any attempt to raise the 

number significantly (e.g., 32 and higher) overburdened the applied hardware components. The cause 

is that a smaller batch size makes it more feasible to fit one batch of training data in a memory (8.0GB 

of GPU memory available). A remark needs be made that the used samples (blocks) are containing 

already a large amount of data (points) what makes a group (batch) considerably hard to process at 

once. A comparison of the two different sizes and their impact are listed in Table 6 and Chapter 5.1. 

Other options are possible to control the training process (e.g., Class remapping, pre-trained model 

refinement, learning rate, etc.). But since they are not relevant to the purpose of this project, they will 

not be described in detail. 

 

During and after the training, several statistical values monitor and evaluate the process on its efficiency 

and quality (Figure 18). 

 

 
Figure 18: Training settings overview and epoch parameter (Author). 

 

As displayed in the figure above, seven values are listed for each epoch in a model training session. 

Whereas the time amount mirrors the duration for each epoch, the remaining variables indicate the 

model development’s dynamic progress. 

A description of the parameters is given below: 

 

• Training Loss 

The general rule applies for loss-values, “The lower the better.”. The value reflects how well the 

model learned during this epoch. It also shows if a model can learn on the given training data 

set. A model that is unable to learn or needs more training data is considered an underfitting 

model (Figure 19). 

• Validation Loss 

The validation is here on how good the model applies to other data. For example, a model with 

an excellent (low) training loss, but a high or unstable validation loss is a well-trained model 

that is not useful for other data sets. Such a constellation results in an overfitting model (Figure 

19). 
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Figure 19: Training- and Validation-Loss curve obtained by a 
training session (Author). 

• Accuracy 

Accuracy refers to the relationship between the correct predicted points and the total amount 

of assessed points. The value is read as a percentage indicator (Korstanje, 2021). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

It is essential to acknowledge that this metric is only valuable if all classes are equally 

distributed. The higher an imbalance appears, the less representation on the model 

performance on the minor classes occur. The training set for this project is highly imbalanced 

(see 4.5.1). Therefore, this value is interpreted carefully. 

• Precision  

This metric connects to the positive predictions of the model. It determines the fraction of the 

correct positive predictions (True Positives [TP]) within the total amount of positive predictions 

(True Positives [TP] and False Positives [FP]). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

The resulting fraction allows discovering how precise the model detects the True Positives. A 

noisy or unprecise model might make many positive predictions, but the selection method also 

includes many positives that are negatives in the real world. On the other hand, a precise model 

also referred to as a ‘pure model’, can only make true positive predictions. But it does not mean 

that it can find all of them on a data set. (Korstanje, 2021). 

• Recall 

Like the Precision parameter, the Recall variable considers the TP cases. But with the 

difference, it sees them relative to the actual total number of positive entities in the training set. 

The number of False Negatives (FN) is introduced to the equation. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

A higher value implies that the model can find all positive entities in the data with the possibility 

of a few FP included. On the other hand, a low Recall number proves that the model cannot 

select the majority or none of the positive entities. 
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• F1-Score 

The F1-Score defines the ‘harmonic mean’ of the Precision and the Recall value. So by that 

description, it is the average of both values with an equal allocation of their weights. 

 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Aiming for a high F1-Score, the two input values must be high. An average score means that 

one of the variables contains a low number. If both, Precision and Recall, are at a low level, the 

logical consequence will be a low F1-Score. 

 

All the described parameters provide valuable information on the training progress and the performance 

of the created model. One important part is that those numbers are based on the results of all classes 

of the input data and therefore provide only an overall (average) overview of the model calculated during 

this epoch. A more detailed list of the model performance on every class for every epoch is provided 

after the entire training process (Table 5). 

This list allows a model validation in reference to the classes of interest. 

 

EPOCH 
CLASS 
CODE 

CLASS 
DESCRIPTION 

PRECISION RECALL F1_SCORE 

0 0 background 1 0.951248 0.973581 

0 1 Unclassified 0 0 0 

1 0 background 0.988735 0.976999 0.982705 

1 1 Unclassified 0.376601 0.594365 0.423036 

2 0 background 0.991951 0.968170 0.979473 

2 1 Unclassified 0.281337 0.602922 0.343744 

3 0 background 0.984933 0.976880 0.980685 

3 1 Unclassified 0.419117 0.584009 0.441467 

4 0 background 0.977365 0.986359 0.981627 

4 1 Unclassified 0.537314 0.558298 0.503505 

5 0 background 0.987388 0.980115 0.983618 

5 1 Unclassified 0.418363 0.621385 0.458401 

6 0 background 0.982251 0.986159 0.984024 

6 1 Unclassified 0.488741 0.600064 0.491868 

7 0 background 0.982359 0.986390 0.984195 

7 1 Unclassified 0.495740 0.605361 0.497486 

Table 5: List displaying the training performance parameter for each epoch (8) and classes (2) (Author). 

 

Based on the values it is possible to choose an individual model from a specific epoch where the class 

of interest is detected the best. All training sessions in this project are focused on achieving a high 

Recall value (default software setting). Therefore, their values are usually higher compared to the 

Precision value. 

4.7 Evaluation and testing of the classification model 
A comparison evaluates the created model with the reference data set from sample area AB2. Those 

reference data are generated by filtering and labelling the raw data points in the software Cloud 

Compare by applying intensity- and elevation- filters. Due to time restrictions, this method has been 

chosen instead of the manual labelling process as applied on area AB1. As a result, the reference class 

will have a to some extent different quality than the training data. However, it is sufficient to compare 

the various models and their results. 
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Next to the visual evaluation (Figure 20), a geoprocessing tool in ArcGIS Pro allows to assess the 

created model by re-classifying the reference data set and compare it to the ground truth. The same 

method has been used in the validation process during the training session. As a result, the parameters 

Precision, Recall and F1-Score indicate the model’s performance. Furthermore, a confusion matrix 

(Figure 21) provides an overview of the distribution of TP, FP, TN, and FN predictions. 

 

 
Figure 20: Visual evaluation of one model output (orange points) compared to the reference point cloud (black points). LEFT – Location 
of assessed part patch 1 (red frame) in sample area AB2. CENTER – Orthogonal view on the reference points (black) and the predicted 
(red) points. RIGHT - Oblique view on the reference points (black) without and with the predicted points (red) (Author). 

 

 
Figure 21: LEFT – Schematic structure of confusion matrix (Draelos, 2019). RIGHT – Confusion matrix of model A displaying the TPs and 
FPs between classes #0, #1, and #2 (see 5.3) (Author). 

 

Confusion matrices employ the prediction of a model to a reference test dataset. On the one hand, it 

serves to highlight the strengths and weaknesses of a model, and on the other hand, it can help to 

compare multiple models with each other. Based on this outcome, the user can choose the best model 

that predicts the class of interest. 
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5 Results 
This chapter presents the results of the project. The first part is dedicated to the deep learning approach 

via the PointCNN framework applied on the ground surface data from the sample area AB1. Then, 

based on the achieved parameters, an evaluation and comparison of the produced models are held. A 

visual comparison of the sample area AB2 and quantitative analysis via confusion matrices will assess 

the achieved models. 

 

The subsequent parts present the data derived from the UAV imagery and the collection of historical 

data in the form of multiple areal images overlayed to the subsurface data. 

5.1 Created classification models and validation parameters 
Nine different classification models were created out of the five prepared training data sets (Table 6: 

Training settings and resulting validation parameters for nine models (A-J) obtained from sample area 

AB1 (Author).Table 6). Those are analysed by comparing the overall model’s validation parameters and 

the performance on detecting the classification #1 – unassigned – burial location. 

The parameters reveal a significant difference between the overall model validation and the numbers 

refer to the detection on class #1. This situation is caused by the imbalance between the training and 

validation data set classes. However, by comparing the values directly, a difference in the Precision 

(P), Recall (R), and F1-Score (F1) numbers allow the conclusion that there is a strong dependency on 

the prepared input data (e.g., block size) and the setup (e.g., batch size) of the training session itself. 

 

Session A marked the start of the training. There the default settings of the ArcGIS deep learning 

package have been used. While the overall model values seem to be average compared to the other 

models, it can be said that the overall quality of the model is sufficient as (P) and (R) both exceed a 

threshold of 60%. Furthermore, predicting the class of interest in the data set is one of the best models 

with (P) and (R) around 65%. 

Significant settings for session A are the block size of 50cm, a maximal point number of 8.192 and an 

equal weighting on all classes. The default setup of 25 epochs resulted in a processing duration of 23,5 

hours. However, the subsequent models were trained using eight epochs for efficiency reasons. 

 

Training sessions B and C derive the weakest values of all models. The relatively high Training Loss 

(in B - 0,1454), the far below average (P) value (in C – 0.1804), and the corresponding other numbers 

are making those two models the least suitable to apply. 

Equal parameters of the two sets are the block size of 30cm and a maximum point number of 12.000. 

The differences are in the weighting of the classes for the training process. While session B uses an 

even distribution (equal to session A), the setting in session C concentrates on class #1. Therefore, it 

is surprising that the validation parameters of the class code appear to be the weakest. 

In addition, the sizes of the batches differ between the sets (B=2 and C=4). This change decreases 

processing time due to the maximum usage of the available computational power. 

 

The following two models, D and E, are almost equal in their process settings, with the only difference 

in the batch sizes (D=2 and E=4). On one side there was again a reduction (ca. 30%) of the training 

time. However, this temporal gain is traded in exchange for the model’s quality. While model D got the 

best overall validation values (except the training loss) of all the nine models, doubling the batch size 

in the training process for model E causes a quality loss of the values below the average. The same 

effect occurs correspondingly to the validation parameters of class #1. However, both models do not 

perform well in detecting the burial locations. 

One unique characteristic of the input data is that the block size of 20cm is the smallest tested during 

this project. Subsequently, the maximum number of contained points is the lowest, with 1000 points per 

block. This dimensional property can be the reason for the light performance on the class prediction. 

Whereas the background class #0 is not dependable on the size of the blocks because it does not 
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include any features and is therefore considered as ‘white noise’ around the elements of interest. The 

characteristics of the buried features need to be enclosed by one box and its number of containing 

points. In this case, it appears that the smaller block sizes (20cm and 30cm) are already close or below 

the threshold of enclosing the distinctive features of a buried object. Therefore, models B, C, D, and E 

are less efficient on the class #1 prediction. 

 

The models F and G analysis is challenging due to their controversial outcome. Both are based on the 

same training input data (block size = 100cm; max. points no. = 10.000) and training setup (min.  

points no. = 8000, epochs = 8). With the only difference in the size of the batches (F=2 and G=4). The 

results vary in their quality, especially in the class validation parameters. While both models can achieve 

the best values for the class #1 Recall variable (ca. 70%), model F’s Precision value differs significantly 

from model G (0.3901 vs 0.528). The same phenomenon is present when comparing the overall model 

validation parameter. The model with the bigger batch size is reaching better results in the direct 

comparison. This observation contradicts the prior conclusion made in this project with models D and 

E. On the other side, it aligns with various research in the area of CNNs. The influence of the batch size 

parameter has been tested multiple times in the field of image recognition. The result is that the 

accuracy increased with the number of training samples (batches) (Radiuk, 2017; Takase, 2021). 

Confirming additional training sessions during this project could not be performed due to mentioned 

computational limitations. 

 

Lastly, the models H and J will be examined. Again, the only difference between them is the size of the 

batches (H=2 and J=4). The quality gain caused by this increment is also apparent. Furthermore, both 

models perform well according to the validation parameters. The input data settings are 50cm of block 

size and a maximum point number of 20.000 per block. The latter value is the highest of all the training 

data in this research and therefore can be one reason for the good results. Another aspect of this can 

be that the block size is suitable for discovering the features of interest.  

Like for all models, it would need additional sessions with varying parameters (e.g., number of epochs, 

max. number of points/block, batch size, etc.) to corroborate the findings and refine one of the models 

to the most fitting for classifying the subsurface features of interest. 

 

The loss curves visualising the training process for each session are presented in (Annex K, Figure 39). 
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Training Classification Model 

Training 
Session 

input # 
prep. 
Data 

Block size 
(cm) 

min. 
Point/Block 

Training 
data 

blocks 

Validation 
data 

blocks 

Iterations 
per 

epoch 

Class 
Code of 
Interest 

Backgrd 
Class 
code 

Class 
Descr. 

Model 
Selection 
Criteria 

Epochs 
(E) 

batch 
size 

duration 
(hrs) 

A 1 50 4000 5498 4634 2742 NA NA 0;1;2 Recall 25 2 23.5 

B 2 30 10000 3968 3789 1946 NA NA 0;1;2 Recall 8 2 9.8 

C 2 30 10000 3968 3789 952 1 0 0;1 Recall 8 4 6.3 

D 3 20 500 3778 4378 1884 1 0 0;1 Recall 8 2 8.3 

E 3 20 500 3778 4378 945 1 0 0;1 Recall 8 4 5.8 

F 5 100 8000 5333 3613 2665 1 0 0;1 Recall 8 2 9.5 

G 5 1000 8000 5333 3613 1333 1 0 0;1 Recall 8 4 6.2 

H 4 50 5000 4885 3968 2435 1 0 0;1 Recall 8 2 9.3 

J 4 50 5000 4885 3968 1218 1 0 0;1 Recall 8 4 5.5 

 

  Overall Model Validation Parameter Class Code 1 Validation Parameter 

Training 
Session 

min. 
Training 

Loss 
E 

min. 
Valid. 
Loss 

E 
max. 

Precision 
E 

max. 
Recall  

E 
max. F1-

Score 
E 

max. 
Precision 

E 
max. 
Recall  

E 
max. F1-

Score 
E 

A 0.038 6 0.1256 23 0.7155 4 0.7196 18 0.6744 14 0.6748 8 0.6512 4 0.5373 24 

B 0.1454 5 0.1754 6 0.5592 4 0.5835 8 0.5706 6 0.5373 5 0.6213 6 0.5035 5 

C 0.0495 8 0.1379 8 0.8076 5 0.5932 8 0.6231 8 0.1804 8 0.6059 5 0.2567 8 

D 0.0831 3 0.0661 8 0.8538 6 0.8147 5 0.8109 8 0.5373 5 0.6213 6 0.5035 5 

E 0.115 6 0.122 8 0.8085 5 0.7371 7 0.7178 7 0.4975 7 0.6244 5 0.4539 7 

F 0.0594 8 0.0715 7 0.8378 8 0.6959 8 0.7289 8 0.3901 3 0.7004 2 0.464 8 

G 0.0515 6 0.0751 8 0.833 3 0.7567 7 0.7629 7 0.528 7 0.6961 3 0.5377 7 

H 0.0351 8 0.0675 7 0.8386 8 0.787 8 0.7916 8 0.5504 3 0.6601 2 0.5278 8 

J 0.0571 6 0.1074 6 0.8406 6 0.7886 8 0.7576 7 0.5984 8 0.675 6 0.5131 7 

Table 6: Training settings and resulting validation parameters for nine models (A-J) obtained from sample area AB1 (Author). 
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5.2 Visual evaluation of the classification models 
As described in section 4.7, a visual evaluation of the nine obtained models helps to envision the 

performance of predicting the features representing burial locations. As reference serves the sample 

area AB2, which was labelled via intensity thresholds. 

 

Next to the entire sample area AB2, the patch P1 (red bounding box Annex B, Figure 20) was selected 

in the reference dataset to make a visual comparison. The assessed cluster represents the anomalies 

caused by a smaller burial location that is marked with a gravestone.  

The image below displays the visualisation of AB2 by multiple horizontal time slices in the software 

EKKO_Project (Figure 22). Another overview of the model performance on the entire area AB2 is 

presented in Figure 23 and Figure 24 with the reference point cloud (black colour) presented on the 

beginning. 

 

The figures, Figure 25 and Figure 26, provide two separate perspectives (orthogonal and oblique view) 

on the sample patch P1. The top row shows again the reference points (black colour) based on the 

intensity classification. The images are the predictions made by the nine individual models 

(Model A – J). 

 

The visual inspection provides insights where the predictions correspond to the ground truth (True 

Positives) and where a mismatch (False Positives). 

 

 
Figure 22: Seven horizontal time slices of area AB2 demonstrating the interptretation option in the GPR processeing software 
EKKO_Project. The slice width and depth are indicated in the top part of the strips. Areas between the survey lines are the results of an 
interpolation process performed in EKKO_Project. The colourisation is based on the signal intensity values (Author). 
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Figure 23: Visual evaluation of the sample area AB2 with the reference data (black) representing class #1 and the corresponding model predictions (coloured) (Image 1 of 2) (Author). 
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Figure 24: Visual evaluation of the sample area AB2 with the reference data (black) representing class #1 and the corresponding model predictions (coloured) (Image 2 of 2) (Author). 
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Figure 25: Orthogonal view on the visual evaluation patch P1 in sample area AB2 displaying the reference data set (black) and the model 
prediction (individual colour) of points class #1 representing the underneath located burial (coffin) (Author).   
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Figure 26: Oblique view on the visual evaluation patch P1 in sample area AB2 displaying the reference data set (black) and the model 
prediction (individual colour) of points class #1 representing the underneath located burial (coffin) (Author).   
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5.3 Quantitative evaluation of the classification models 
For a number-based classification assessment, each model is evaluated via an independent data set. 

The applied GIS software package (ArcGIS Pro Version 2.9) enables the analysis of each model based 

on the classified sample area AB2. Such as, in the validation process during the training session, the 

parameters Precision, Recall and F1-Score provide valuable information. In addition, a confusion matrix 

quantifies the amount of correct and false predictions. For example, in Figure 21, the resulting confusion 

matrix of model A displays the distribution of TPs and FPs between the three classes #0-Never 

Classified, #1-Unassigned, and #2-Ground. While the first two classes share the predictions, the class 

#2-Ground does not get any detections. The cause is that the class represents the gravestones and is 

greatly underrepresented in the data blocks of AB1 and AB2. The validation of training session A 

already revealed a disregard of the class. The same results apply to model B. For this reason, the class 

is ignored for all subsequent models. 

 

The evaluation parameters and confusion matrices values are listed below in Table 7 and Table 8. The 

graphs of the confusion matrices from model B – J are in Annex L, Figure 40. 

 

Evaluation Parameters 

Model 
Class 
Code 

Class Name Precision Recall F1-Score 

A 0 Never Classified 0.9507 0.9833 0.9667 

A 1 Unclassified 0.7263 0.4646 0.5667 

A 2 Ground NA NA NA 

B 0 Never Classified 0.9638 0.9900 0.9768 

B 1 Unclassified 0.8539 0.6102 0.7118 

B 2 Ground NA NA NA 

C 0 background 0.9571 1.0000 0.9781 

C 1 Unclassified 0.9992 0.5302 0.6928 

D 0 background 0.9463 0.9894 0.9674 

D 1 Unclassified 0.7873 0.4110 0.5401 

E 0 background 0.9550 0.9967 0.9754 

E 1 Unclassified 0.9368 0.5078 0.6586 

F 0 background 0.9431 0.9984 0.9700 

F 1 Unclassified 0.9571 0.3675 0.5311 

G 0 background 0.9509 0.9932 0.9716 

G 1 Unclassified 0.8667 0.4615 0.6023 

H 0 background 0.9558 0.9962 0.9756 

H 1 Unclassified 0.9291 0.5169 0.6642 

J 0 background 0.9715 0.9845 0.9780 

J 1 Unclassified 0.8108 0.6973 0.7498 
Table 7: Evaluation parameters for each class prediction for the nine models A – J (Author). 
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Confusion Matrices Evaluation Models A - J 

  
MODEL TRUE PREDICTED COUNT 

  
MODEL TRUE PREDICTED COUNT 

  

                      

  A 0 0 1684753   E 0 0 1707752   

  A 0 1 28598   E 0 1 5599   

  A 0 2 0   E 1 0 80391   

  A 1 0 87454   E 1 1 82938   

  A 1 1 75875             

  A 1 2 0   F 0 0 1710661   

  A 2 0 0   F 0 1 2690   

  A 2 1 0   F 1 0 103300   

  A 2 2 0   F 1 1 60029   

                      

  B 0 0 1696296   G 0 0 1701760   

  B 0 1 17055   G 0 1 11591   

  B 0 2 0   G 1 0 87956   

  B 1 0 63658   G 1 1 75373   

  B 1 1 99671             

  B 1 2 0   H 0 0 1706906   

  B 2 0 0   H 0 1 6445   

  B 2 1 0   H 1 0 78911   

  B 2 2 0   H 1 1 84418   

                      

  C 0 0 1713279   J 0 0 1686769   

  C 0 1 72   J 0 1 26582   

  C 1 0 76725   J 1 0 49440   

  C 1 1 86604   J 1 1 113889   

                      

  D 0 0 1695216             

  D 0 1 18135             

  D 1 0 96193             

  D 1 1 67136             

                      
Table 8: Confusion matrices based on the model evaluation on data set AB2 (Author). 

 

Both the parameter values and the confusion matrices give insights into the various performances of 

the models on predicting class #1. While the Precision is almost always higher than 80%, the Recall 

varies between 37% and 70%. There are corroborating and contradicting outcomes in the validation 

parameter obtained by the model training sessions. While there is the confirmation that model J is 

classifying the burial locations well, model H is deriving lower Recall results than it was expected 

(66% validation vs 52% evaluation). The opposite applies to the two models B and C. The first results 

after the validation step were expecting a weak outcome for the followed evaluation part. However, the 

application on the reference set created above average numbers with a high Precision value in model C. 
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5.4 Topographical data 
Section 4.2.3 describes the acquisition and the analysis of the photogrammetric data (336 aerial 

images). As a result of this process, the following two products got embedded in the GIS environment. 
 

1. Topographic surface data as 3D point cloud format 

For both sample areas (AB1 and AB2), a dense 3D-point cloud was created via DIM. Each site 

contains six tie points (individual markers) surveyed via GPS measurements. The resulting 

processing parameters and error deviations are in Table 9. 

 

Area Points pts/m3 
RMS (X) 

cm 
RMS (Y) 

cm 
RMS (Z) 

cm 

AB1 7817127 80505 1,9 1,7 1,1 

AB2 8596573 60299 3,6 2,6 2,5 
Table 9: Characteristics of the resulting point cloud from photogrammetric process areas 
AB1 and AB2 (Author). 

 

2. Orthomosaic 

As a ‘side product’ of the photogrammetric processing, orthographic imagery was obtained for 

the sample areas and the cemetery in total. As a result, the sample areas could achieve an 

average ground resolution of 0,4cm/pixel and 4,6cm/pixel for the site’s overview (Annex B). 

5.5 Historical aerial data 
Section 4.2.4 elaborates the characteristics of the various historical data sets collected during this 

research. Even though the aerial images taken in 1945 are the oldest data found, they are suitable for 

being georeferenced in a GIS. Also, they provide the most valuable information due to their high spatial 

resolution. The cause for this is the low altitude during the image capturing. Figure 27 provides a line-

up of the two available data from 1945 and the orthomosaic raster created from the survey dated 2021. 
 

 
Figure 27: A cut-out from aerial images displaying the research area, including the two sample areas (blue frames). TOP LEFT – 18.03.1945 
(DotKa, 2022); TOP RIGHT – 01.03.1945 (DotKa, 2022); and BOTTOM LEFT – 28.10.2021 (Author).  
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6 Discussion 
This research project aims to extract information from GPR survey data to detect unmarked burial 

locations at the Jewish cemetery in The Hague. The data processing was held in a GIS environment 

where the possibilities of automated data classification via a CNN got explored. The outcomes got 

combined with other information to assist the interpretation and detection. 

This section first refers to the prior set research objectives and discusses the implementation of the 

used methodology and the derived results. Subsequently, the usability will be reviewed by highlighting 

the differences between the research approach and the existing established workflow. Lastly, the 

caveats will be addressed that were encountered during this project. 

6.1 Implementation of the methodology 
The established workflow of this project enables the remote detection of burial locations that are not 

identifiable on the surface area. Moreover, the CNN based classification of the GPR data sets in within 

a GIS is the first attempt to utilize such a technique on data sets of this make. The evaluation of the 

individual results showed that multiple variables are influencing the outcome. However, the produced 

models and their predictions demonstrate the potential of processing large numbers (areas) of point 

data as a part of an automated workflow. This standard workflow, starting from the data acquisition until 

the analysis, still needs to be refined to overcome a series of regular processing (e.g., filtering, 

transformation, etc.) steps and software specific issues. 

One crucial fact to consider is that for the PointCNN training data, both types of burial locations (marked 

and unmarked) have been considered for classification. It is expected that a partition of those two 

groups would result in a low number of data representing the unmarked burials and so not be suitable 

for the training purpose. An example of this effect is presented by the failed detection of the point data 

representing the gravestones. 

 

The GIS provides the necessary 3D environment to thoroughly inspect the classified point clouds (Figure 

23 to Figure 26). In addition, the GIS forms a platform that enables the compilation of multiple data sets 

of various formats. For example, several raster data sets like aerial imagery and layout plans have been 

superimposed with the classification results (Annex M, Figure 41). 

 

6.2 Usability of methodology 
The system promoted in this research project is an attempt to employ the advantages of the deep 

learning technology together with the capabilities of a Geographic Information System to analyse data 

obtained by a GPR survey. 

Due to their unique format, the GPR data will always have to undergo post-processing steps after the 

collection in a specialised software package. For interpretation purposes, the tool used in this project, 

EKKO_Project, allows the analysis of vertical and horizontal data slices (Figure 22, Figure 28). 

 

 
Figure 28: Vertical Line (B-scan) view in EKKO_Project ject software tool on scan line #19 of area AB2. The unmarked burial locations are 
the hyperbolas reaching their angular point in a depth range 0.4 - 0.8m below the surface. At the distance mark of 16m, the signal 
disturbances are notably caused by the only burial marked with a gravestone (Author). 
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While the above-displayed example is relatively simple to analyse by selecting the hyperbolas 

representing the reflection of the coffins, it requires expert knowledge to interpret B-scans where 

multiple signals interfere with each other (Annex C). Combining the B- and C-Scans enables only 

experienced users to analyse the GPR data sufficiently. For detecting unmarked burial locations, a 

trained examiner is necessary. 

 

Section 3.3 describes attempts to use deep learning frameworks to facilitate the manual selection 

process in the different scan layers. Most research projects focus on recognising infrastructure features 

in urban areas by applying a CNN model on the GPR data in a raster format. Promising results were 

achieved by Kim et al. on objects with regular feature properties (e.g. maintenance holes) (Kim et al., 

2021). 

 

Previous studies looked at the segmentation of 3D-point clouds via CNN frameworks. However, all 

those studies based on LIDAR point clouds as input data, which are different from GPR data. On the 

contrary, the employment of PointCNN on a point cloud data set describing a volumetric sub-surface 

area hasn’t been part of any study yet. 

 

The results of this research show that a suitable classification model can correctly extract the buried 

objects of interest. Based on the variables influencing the classification outcome, the argument can be 

made that a model’s effectiveness is strongly locally dependent on the training area and its features. 

Consequently, it is not appropriate for application in other locations and therefore of limited usability. 

On the other hand, a well-defined model can process extensive areas after being trained on one or two 

sample patches. In the research area of the Jewish cemetery in The Hague, it would be helpful to apply 

a model on a data set of the entire site as a primary filter of burial locations. Furthermore, it is suggested 

to explore the possibilities to separate this intermediate product once more into a group of marked and 

unmarked burial locations. An additional CNN model could be used for the detection and classification 

of point clusters, or a clustering algorithm could serve this task. 

. 

Regardless of the potential of automated point cloud classification, the evaluation of the model results 

confirmed that human validation is still necessary to verify if a prediction is mirroring the truth. 

Concerning the useability of the used method, it is required to establish a standard workflow as it is 

recommended in the prior section. Also, some technical issues will have to be resolved in this process. 

 

Without a doubt, the advantage of combining the GPR data with other data sets and the visualisation 

options of the GIS platform is evident. Moreover, this domain also allows less experienced users to read 

parts of the GPR data and make conclusions with the help of the supporting data sets. 

6.3 Research Limitations 
Various types of problems emerged during this research project. While most of the issues could be 

resolved, some of the obstacles were unviable to overcome and led to compromises and amendments 

of the initial project’s workflow. 

 

One major problem was the blocked export functionality of the GPR data as a standard 3D point cloud 

format from the EKKO_Project software for further processing in ArcGIS Pro. The option to export the 

data was not given due to missing GPS data. Such data need to be assigned to the single GPR traces. 

An RTK-GPS antenna attached to the GPR sensor system usually collects the position and elevation 

information simultaneously during the survey. The individual character and the system's particular GPS 

data format made them impossible to reproduce for an assignment later. An alternative approach was 

the manual orientation of the GPR survey grids to the national system (RD New).  In addition, a 

topographic correction was applied for each grid line based on the corresponding topographical profile, 

which was gained from the photogrammetric DSM. But even with the complete post-processed, spatial 
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transformed (3 parameters) and topographical corrected data existing in the EKKO_Project software 

environment, it was impossible to transfer those data into another system. A final attempt was made by 

vertically adjusting the single top traces in a large CSV- file. The software manufacturer extracted the 

file on request. Unfortunately, the manual adjustment did not produce a satisfactory result (Figure 29), 

and this method was also neglected. 

 

 
Figure 29: Result of manual vertical adjustment of single top traces, displaying the first layer of points 
representing the surface top with multiple misalignments visible between the scan lines (Author). 

 
This issue resulted in using a data set represented in a local coordinate system without topographical 

information. 

 

Before this data set could be imported into ArcGIS Pro, several processing steps were taken in Cloud 

Compare and EditPad Light V8 software packages. 

Two potential solutions are suggested to avoid this rather cumbersome post-processing workflow for 

transformation steps. First, the simultaneous GPS data recording at the GPR survey would resolve 

most issues. Unfortunately, such equipment was not available at the time of the data collection. An 

alternative can be the development of an integrated data workflow via Feature Manipulation Engine 

(FME) to automize the transformation process into a standard data format. This option is also favourable 

as the engine is designed to manage large spatial data. 

 

As already mentioned, high demand for computational power was experienced. In addition, the manual 

labelling of the training point cloud claimed a large part of the graphical capacities for displaying and 

selecting subsets of the 3D-point cloud in the profile view. Consequently, the already labour-intensive 

progress was delayed in execution by the extensive loading times. 

The training procedure for each model was so computationally intensive that a migration of the project 

and the assigned files to a computer with higher performance was necessary. Still, the average duration 

for training and validation was circa 14 hours for 8 epochs. Therefore, to create and refine the models 

via PointCNN, it is recommended to use an arrangement of multiple graphic cards with high 

specifications. The same suggestion applies to the subsequent classification process. 

 

Both above-stated issues stressed the project`s time limitation, so the development of solutions had to 

be discarded to fulfil the primary goal of the research. However, such development will be part of further 

research. 

 

One fundamental issue of the applied method was the fact that no verified reference data were available 

to train and validate the classification models. While it is relatively simple to create such a reference on 

surface data where the objects features are distinctive, it is more complex to do this on sub-surface 

data. The manual labelling of the data set from area AB1 was challenging as influenced by subjective 

selection processes that can’t get reproduced. Consequently, there is an uncertainty assigned to the 

training data and to the resulting models. 
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7 Conclusion 

7.1 Research questions 
In section 2.2 are four research sub-questions formulated that will be individually answered in this 

chapter before the gained insights will be used to respond to the central question of this thesis. 

 

SQ1: What GPR data representation format is (3D point cloud, raster, voxel) is suitable for an 

interpretation in a GIS? 

 

This question was made before the GPR data collection for this project and before integrating a GIS. 

The focus of this research was the process and assessment of GPR data in the data format of a 3D-

point cloud. The volumetric representation by single points was created by interpolating the single GPR 

scan lines for each surveyed grid (sample area). 

This format has a significant advantage in the volumetric three-dimensional representation of the sub-

surface data. In particular, it is possible to segment the parts of interest and visualize them due to the 

achieved classification. Furthermore, a sufficient resolution (density) of the point cloud enables the 

display of characteristic object features. Those characteristics are beneficial for the model training 

process. However, the feature properties of burial objects (coffins) in this project were not of regular 

three-dimensional shape and so not potentially useful as a classification criterion. 

The benefit of the high-resolution 3-dimensional environment comes with a cost of computational power 

and data accessibility. Throughout the project, the experience was made that the display of the point 

clouds in their total density prevents seamless navigation and decreases the overall experience of the 

visual analysis. Therefore, all 3D data sets were transferred from an external server location to the local 

data storage of the processing unit. 

Even it has not been tested in this project, former research demonstrated that the integration of GPR 

data in a raster format is feasible and does provide valuable information when combined with 

supplementing data sets (e.g., vector data) (Cazzaniga et al., 2013; Tabarro et al., 2017). 

Not investigated was exploring the GPR data in a voxel format. The main reason is that a transfer from 

point data into voxel data would lead to a decrease of the level of detail caused by the size dependent 

resolution of the voxels. 

 

SQ2: Can the generated deep learning results (e.g., pattern/value detection and extraction) enhance 

the interpretation of GPR subsurface data to detect unmarked burials? 

 

As a general answer, it does facilitate the interpretation process, but does not replace the necessary 

human interaction involvement. The assessed CNN models in this project derived results considering 

the point's spatial position and intensity value. The visual evaluation mirrored the patterns visible in the 

B- and C-scans of the GPR data. By applying the model as a ‘first filter’, it focuses on data that are 

considered objects of interest. As mentioned in 6.2, the recommendation is to refine the selection by 

additional filtering or classification methods. 
 

A final answer to this question is that the deep learning approach does enhance the interpretation 

process in terms of quantity and, to a certain extent, quality. Large data sets can be automatic 

processed and relevant data extracted. The extraction does represent the ground truth to a specific 

deviation depending on the model’s effectiveness. Considering this, a model verification by an expert 

in the field of GPR is necessary. 
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SQ3: How can topographical survey data be beneficial for the interpretation process of subsurface 

data? 

 

Considering that no topographic correction could be applied in the GPR-data processing (see 6.3), this 

question will not be answered in the intended completeness. Due to missing survey data and an 

unsuccessful attempt to introduce those missing information from a secondary data source, it was 

impossible to adapt the GPR data block to the topographical properties of the surveyed terrain. This 

circumstance created a missed opportunity to join the GPR with the UAV point clouds. It is anticipated 

that this would enrich the data by adding more attributes like elevation and colour values, which could 

boost the options for the deep learning method. In addition, the surface data could help to distinct the 

classification of marked and unmarked burial locations in a unified data set. 

Nevertheless, the option of detecting the gravestones on the surface data sourced from the 

photogrammetric method is there. An individual process of those data followed by the overlay with the 

results of the sub-surface data assessment would advance the detection of the non-marked burial 

locations. The data for this individual process could either be the 3D-point cloud or the raster data 

(orthomosaic) from the surface. The development of this process is a recommendation for further 

studies. 

The topographic data gathered and processed in this project were integrated into the GIS an 

complemented the data collection. A separate classification to foster the interpretation progress can be 

part of continuing research in this field. 

 

SQ4: To what extent do historical data sets of the research area support data interpretation of GPR 

data to detect unmarked graves? 

 

Multiple historical data sets were collected for the research area. Different formats like raster or tables 

provide information of the cemetery covering up to 250 years. 

For the integration into the GIS, eight historical aerial images (1945 – 1983) were overlayed with the 

GPR and UAV data. The followed assessment showed that the images captured by Dutch authorities 

in their frequent observation flights are less valuable due to their lower spatial resolution. That is a result 

of the altitude at which the images were captured. Remarkable is the resolution of the two oldest images 

that the British RAF sources from 1945. Caused by the lower flight attitude, details of the site are high 

enough to recognize visible single gravestones and disturbing activities that occurred during wartime. 

Both insights are beneficial when examining survey data of the entire cemetery together with the 

archived register lists from the Foundation of the Jewish Cemetery in The Hague. This list of buried 

persons and the corresponding layout plan can be linked with the survey data sets and enable the 

mapping of persons to a spatial location in the cemetery. The fact that there was no systematic order 

(e.g., chronological) the burials were placed is preventing an assignment of an unmarked burial location 

to a person in the register.  

For this research, only the foundation's general layout plan (Annex M, Figure 41) was embedded in the 

GIS to corroborate the survey data processing results. The integration of the list containing the register 

of the cemetery’s occupation and their linked detail plans, including the gravestone numbering (Annex 

E), has not been done because of their lack of accessibility in digital format. 

However, it can be concluded that considering all historical information and the survey results enhances 

detecting the unmarked burial locations. 
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Leaving to answer the central question of this research project: 

 

“To what level is the classification via deep learning and visual interpretation of Ground Penetrating 

Radar data possible in a GIS?” 

 

The Ground Penetrating Radar sub-surface data were successfully integrated into a GIS. The data, 

represented in a 3D-point cloud data format, were utilized to create, and apply multiple classification 

models based on a Convolutional Neural Network framework. Based on the results, it can be concluded 

that deep learning models can achieve a classification on volumetric point cloud data. However, the 

model's efficiency and usability depend on the input training data quality and quantity. Furthermore, a 

quantitative evaluation confirmed that a fully automated classification process is not feasible yet, and 

therefore human interaction is still necessary to assess the predictions. However, the potential of the 

automated classification of sub-surface point cloud data is evident (e.g., pattern detection) and requires 

more research for further development. 

 

The visual interpretation of the GPR data in the form of a 3D-point cloud in a GIS environment is 

certainly simplified compared with a conventional software package displaying the data in B-and C-

scans. However, multiple perspectives and advanced 3D navigation possibilities facilitate data 

exploration and object recognition. Moreover, it is the functionality of combining the classified point 

clouds with other spatial and non-spatial data that upgrades the level of information for an efficient 

interpretation process. 
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7.2 Conclusion 
This research project investigated the possibility of detecting unmarked burial locations based on 

ground penetrating radar data that are integrated into a geographic information system and processed 

via a deep learning framework. Additional data sets of the research area complement the results to 

enhance the exploitation. The research area was the Jewish Cemetery in The Hague, where marked 

and unmarked gravesites are present. Two representative sample areas were selected and surveyed 

by multiple sensors, including GPR and aerial imaging. 

 

The GPR survey data had to be processed in a sensor-oriented software tool before integrating a GIS 

as a 3D-point cloud. Classifying those subsurface data by a deep learning method was the primary 

objective. That goal was accomplished with the PointCNN module, which functionality is based on a 

convolutional neural network algorithm. Several classification models have been trained, applied, and 

evaluated. The evaluation was done in a visual and in a quantifying approach. Both methods confirmed 

that patterns of point clusters are recognizable. Based on the cemetery’s arrangement and layout plan, 

those clusters could be assigned to potential burial locations that are not indicated on the surface. 

 

The study also revealed that the classifying models' effectiveness depends on the input data and the 

settings of their training process. An improvement of the model’s performance could be achieved by 

refining the training parameter values (block size, epochs, weighted classes, etc.). A manual labelling 

process via cross-sections created the reference data for the training and validation purpose. This 

selection process will need to be critically reviewed as it influences the model's outcome and, therefore, 

the overall methodology's usability. 

 

As a reflection, the 3D-point cloud integration in a GIS and the automated classification via PointCNN 

could be successfully applied. But at that stage, no significant benefit was noticeable when comparing 

the applied method with the conventional approach by interpreting B- and C-scans of the GPR data. 

A change occurs when the advantages of the GIS are unfolded. For example, supplementing data sets 

from secondary sources and the three-dimensional visualisation of the data provide additional insights 

that enable user interpretation even without expert knowledge. 

 

Historical aerial imagery was also introduced and overlayed with the obtained GPR data sets. Even 

when not all images appeared to be of additional value, there were some photographs documenting 

major impacts in the graveyard's infrastructure that is not visible in the present status of the site. 

 

Altogether, the main conclusion can be drawn that this research project confirmed that GPR-data in the 

form of a 3D-point cloud could be integrated into a GIS and classified by a deep learning framework. 

The automated classification supports the detection of underground patterns indicating the location of 

unmarked burials. However, the promoted method is too complex for the application in smaller areas 

and does not gain advantages compared to the conventional analysis of GPR data. But the created 

models help to classify large amounts of point cloud data and facilitate the detection process. For large 

scale areas, like the research area, it will achieve a major benefit for the progress in processing time 

and interpretation results. 

 

The GIS establishes a platform to integrate different data of the cemetery and so complies with various 

information in a multi-perspective environment that supports the detection of the unmarked graves. 

Finally, the options for conveying the achieved information via a GIS need to be remarked. The collected 

data and gained knowledge can be presented and distributed to all stakeholders in a clear and 

interactive format.   
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7.3 Recommendations for future research 
The benefits mentioned earlier of processing and utilizing GPR data in a GIS make it worth investing 

more research on this topic. 

A first approach should be the seamless progress of data integration into the GIS starting from the 

survey with coupled sensors over to an automated post-processing pipeline and standardized transfer 

processes. 

 

The deep learning method can be further explored by 1.) creating and refining classification models 

based on high-quality reference data; 2.) creating a repository of various classification models and 

assessing their efficiency on multiple scenarios, and 3.) creating an arrangement of CNN models and 

other tools (e.g., cluster data algorithm) for process automatization. These components would enable 

developing a system that ties on the prior mentioned integration part. That would build a complete 

workflow. 

 

Future studies should also look at the options to embed and process different data sets into the GIS. 

For example, existing vector data (e.g., infrastructure records) or other databases with a non-spatial 

character can complement the current information. Additional information can also be acquired by 

adding and assessing the 2D GPR data (B- and C-scans) in the same environment. Another CNN 

framework could be applied and inserted in the workflow for this raster assessment. 
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Figure 30: Photocopy of a historic map dating 1832 displaying the dune area between The Hague and the village of Scheveningen 
(Enthoven, Drs. Francine Puttmann et al., 1992). The red frame indicates the site of the Jewish Cemetery. 



Annex B  50 

 

Annex B 
 

 
Figure 31: Position and dimension of the two sample areas AB1 and AB2. Note that the detail image of AB2 is rotated 90 counter-
clockwise. The red boundary box representing the patch P1 for the visual evaluation. (Author). 
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Figure 32: Scan lines (B-scans) Line 0 – Line 11 of sample area AB2 (Author). 
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Figure 33: Scan lines (B-scans) Line 12 – Line 23 of sample area AB2 (Author). 
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Area Point x[m] y[m] h[m] sx[m] sy[m] sh[m] sxy[m] sxh[m] syh[m] 

A
rea_

A
B

1
 

100 80282.3842 456196.1483 4.0245 0.0029 0.0023 0.0045 0.0020 -0.0028 -0.0021 

101 80273.7286 456191.1479 3.9852 0.0014 0.0019 0.0035 0.0003 -0.0011 0.0008 

102 80268.1572 456200.6133 3.7707 0.0013 0.0015 0.0033 -0.0004 -0.0010 -0.0005 

103 80276.7459 456205.6745 3.3751 0.0010 0.0014 0.0028 -0.0005 -0.0005 0.0001 

900 80277.6219 456196.4266 3.8787 0.0011 0.0013 0.0027 -0.0004 -0.0006 0.0007 

901 80273.2244 456203.3122 3.7669 0.0010 0.0013 0.0027 -0.0004 -0.0005 0.0007 

A
rea_

A
B

2
 

200 80226.7645 456269.3332 4.0703 0.0012 0.0016 0.0034 -0.0002 0.0008 0.0008 

201 80221.5137 456266.4332 4.0371 0.0012 0.0015 0.0031 -0.0004 0.0010 -0.0005 

202 80211.6147 456283.8473 3.8383 0.0013 0.0017 0.0040 -0.0004 0.0003 -0.0006 

203 80216.8955 456286.6781 3.9195 0.0012 0.0014 0.0033 -0.0003 0.0004 -0.0011 

902 80217.8814 456282.6776 4.0570 0.0012 0.0014 0.0034 -0.0003 -0.0005 -0.0012 

903 80220.2043 456274.2509 4.1795 0.0013 0.0017 0.0036 0.0004 0.0008 -0.0007 

A
rea_C

1
 

300 80254.1353 456127.1661 5.6973 0.5483 0.6233 0.9820 0.2215 -0.2913 -0.2933 

301 80264.9224 456132.3085 4.3525 0.6791 0.9037 1.5354 0.2768 -0.3939 0.4200 

302 80267.6698 456127.0079 4.8365 0.5939 0.7133 1.1035 0.3694 -0.3508 -0.5270 

303 80256.6536 456123.6056 4.5727 0.5838 0.6483 1.0004 0.2699 -0.3733 -0.4328 

303 80260.2056 456131.7564 5.0291 0.0163 0.0258 0.0513 0.0096 -0.0205 0.0188 
Table 10: Coordinates of reference points with error residuals (reference system RD new [Hz] and NAP [V] (Author) 
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Figure 34: Coversheet (left) and example of detail layout plan (plattegrond) of the cemetery with individual gravestone numbers for 
each plan number (Author) 

 

  

Naam Overlijdensdatum Zerknummer     formulier 

( Cohen Joel van de 
Rool)          3138 

( ) Boas 1729.07.22 2/48 dr v Chaim Boas vr v Aberle Segal   398 

( ) Hamel 1818.09.11   dr v Fei[ ] vr v ( ) Hamel  2849 

( ) Levi     dr v Jokef Levi   2860 

( ) de Pinto 1818.07.05 7/45 dr v Ml.A. de Pinto      

( ) Dula( ) 1885.02.18 23/7 
dr v Mordechai 
Dula(  ) vr v Samuel Prins   

( )  1780.04.09   
kind (meisje) v 
Abraham zn v Hirts    1311 

( ) Hes 1779.02.12   kind v Ruben Hes    1246 

( ) Perets 1815.12.31   zn v Natan Perets    2650 

( ) Fresko 1804.06.28   1e dr v Jona Fresko  schoonzn v Natte Pos  2311 

( )eile Levi 1789.03.23   kind v Zanwil  zn v Jakob Levi  1641 

[ ] Suasso 1770.02.21 7/165 
(zn? v) Mozes Israel 
Suasso     5072 

[ ]       Bakker   48 

[ ] Abendana 1729   dr v [ ] Abendana    4757 

[ ] Parde     dr v [ ] Parde    3471 

[ ] Ephratty 1772.05.02   
dr v Aaron Israel 
Ephratty    4979 

[ ] Kuit     dr v Aaron Kuit    3070 

[ ] Cohen 1770.02.09   dr v Aaron  zn v Mozes Cohen  954 

[ ] Prins 1797.12.01   dr v Aaron  zn v Wolf Prins  1995 

Table 11: Extraction (20 entries) of the database of the cemetery register with names (Naam), date of death (Overlijdensdatum), 
Gravestonenumber (Zerknummer), parents, church register number (formulier) (Francine Puttmann). 



Annex F  55 

 

Annex F 

 

 
Figure 35: Aerial imagery of the R.A.F. dated from 07/04/1945 covering the area of interest with a blow-up of the cemetery 
(haagsgemeentearchief). 
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Figure 36: Block-shaped point cloud area AB1 with attribute based colouring depending on the assigned intesity 
value. TOP to BOTTOM – with orthomosic superimposed; point cloud displaying all three classes; point cloud 
displaying the classes #1 and #2; point cloud displaying class #1 (Author).  
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Figure 37: Three profile views showing the variety of the underground properties of the sample area AB1. In the top window the 
disturbances caused by the gravestones (light green square shapes at the surface) are prominent. The centre image displays the 
difference between burial locations marked and unmarked by a gravestone. The bottom image is a slice of undisturbed soil property 
where intensity values mark natural sediment changes (Author). 
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Training data #1 

 
Training data #2 

 
Training data #3 
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Training data #4 

 
Training data #5 
 
Figure 38: Histograms displaying the Block and Point-distribution of the different training- (left) and validation- (right) data sets 
(Author). 
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Figure 39: Loss graphs of the nine model training sessions (A – J) (Author).  
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Annex L 

 
Figure 40: Confusion matrices by model evaluation on area AB2 (Model B – J) (Author). 
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Figure 41: Classified point cloud of area AB2 superimposed with historical aerial imagery (TOP) (DotKa, 2022) and 
layout plans (BOTTON) (Enthoven, drs. Francine Puttmann et al., 1992). 

 


