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Abstract 
Getting sufficient amounts of physical activity are widely understood to improve general health and 

wellbeing. Understanding the patterns in sport-behaviour and its connection to land-use elements 

are vital for promoting physical activity and meeting global health goals set by the World Health 

Organisation. Collecting and analysing data on physical activity can help this understanding. 

Nowadays, nearly everyone collects spatial data in the form of GNSS tracks through their smart-

devices. This data can be used to detect physical activities. However, raw spatial data lacks context 

and requires analysis, which can be time-consuming. For this purpose, various machine learning 

models were trained in this research that can automatically classify sport activities performed in 

GNSS tracks. Pre-labelled GNSS-tracks were used to train and test the models. Land-use data that 

corresponded with the GNSS tracks was also used to find out to what extend it could influence the 

models’ classification accuracy. The model trained with the support vector machines’ algorithm 

achieved the highest classification accuracy with a classification accuracy of 82.6%. Adding land-use 

data to the model also significantly increased its classification accuracy (+5.6%). Using land-use data 

in other machine learning algorithms also significantly improved their models’ performance. 

However, in these models, not all land-use features were found to have a positive influence on the 

models’ performance. 
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1. Introduction 
Using the public space as a place for sports and exercise has been growing in popularity in recent 

years, and many community policies are aimed at improving public space as a place for people to 

exercise (Chacón-Borrego, Corral-Perniá, Martínez- Martínez & Casteñeda-Vázquez, 2018). This trend 

can also be observed in the use of fitness related applications, that record mainly cardiovascular 

endurance-based sport activities in the public space, e.g., running and cycling (Janssen et al., 2017). 

Location data on sport activities in the public space can improve the understanding of human sports 

behaviour and the interaction with space. However, the problem with raw location data is the lack of 

context. The kind of activity that is performed in a certain location data log can be detected by 

manually analysing the data, but this is certainly a time-costly process. In this research, machine 

learning algorithms will be used to solve this problem and automatically detect and categorise the 

sport activity performed in certain GNSS tracks in combination with land-use data that corresponds 

with the GNSS tracks. The aim is to review the potential of using land-use data as a supplement to 

GNSS data in machine learning models that classify sport activities performed in the GNSS data. 

1.1 Practical relevance 
Getting sufficient amounts of physical activity are widely understood and acknowledged to significantly 

increase health benefits and mitigate health risks. On the contrary, inactive lifestyles can cause severe 

health problems (Mardini et al. 2021). According to the WHO, one out of four adults globally do not 

meet physical activity recommendations. There is, however, a plan called the Global Action Plan on 

Physical Activity 2018-2030 (GAPPA) by the WHO which aims to improve physical activity by 2030 

(World Health Organization, 2019). Physical activity is not only linked to sport activities but can also be 

linked to travel behaviour. For example, people that walk, bike, or use public transportation 

accumulate more physical activity then people taking the car and are more likely to meet health 

recommendations (Ellis et al., 2014).  

To meet the goals in the GAPPA, an accurate estimation of physical activity type, duration and intensity 

are needed. This can increase the understanding of the link between physical exercise and health 

(Mardini et al. 2021) and the link between physical activity behaviour and the built environment (Ellis 

et al., 2014).  

The ability to detect the sport activity in GNSS-tracks is not only useful for addressing the goals of 

GAPPA. It could be used for identifying training patterns and preventing injury (Rossi et al., 2018). 

Smartphones could use the classification to automatically adjust mobile phone settings. The 

information could also be of value for effective advertisement and consumers could also be interested 

in learning about their sports patterns (Martin et al., 2017). The classification of activities could also 

be used in map-matching since different activities are performed on different network segments. 

Finally, the information could be used for managing infrastructure as well as to plan and design future 

facilities (Shafique & Hato, 2016). 

1.2 Scientific relevance 
Recently, machine learning algorithms in combination with Global Navigational Satellite System (GNSS) 

data have been used to identify physical mobility (Wu, Yang & Jing, 2016). However, most of this 

research focusses on automatically recognising modes of transport and very little research has been 

done on machine learning methods to identify sport activities. Besides, most of the research that is 

done uses data from sensors in the classification process (Wu, Yang & Jing, 2016). Little research has 

been done on using land-use data as supplementary data in classification problems. This master thesis 

will focus on building a machine learning model with GNSS and land-use features and assessing the 



6 
 

influence of the land-use features on the classification of specific sport activities exerted in GNSS track 

data. 

1.3 Research objective 
As stated before, the aim of the research is to review the potential of using land-use features for 

training machine learning models that can classify sport activities exerted in GNSS data. To give a good 

analysis on the potential of using land-use features in machine learning models, this research strives 

to find the machine learning algorithms and hyperparameters that produce the highest classification 

accuracy. The research also strives to extract as much relevant information as possible from the raw 

GNSS and land-use data to train and test the machine learning models.  

1.3.1 Main question 

• To what extent do land-use features improve the machine learning models’ ability to correctly 

classify the kind of outdoor sport practices in GNSS-tracks? 

1.3.2 Sub-questions 
1) What is machine learning? 

2) What is the state of the art in outdoor sports detection in GNSS-data based tracks using 

machine learning? 

3) What features need to be extracted from the GNSS- and land-use data to detect the kind of 

outdoor sport practiced in the recorded tracks? 

4) What machine learning algorithms would be suitable for outdoor sport activity detection in 

GNSS- and land-use data? 

5) How can we validate the machine learning models for detecting the kind of outdoor sport 

practiced in recorded GNSS-data? 

6) To what extent are machine learning models able to classify the kind of outdoor sport practices 

in pre-recorded GNSS-data based tracks using related land-use features? 

1.3.3 Out of the scope for this research 
It is also important to note what is out of the scope for this research. This research will not be about 

creating a model with the highest classification accuracy but is rather research on which methodology 

could be used to increase the classification accuracy using land-use data. It is also not the goal to be 

able to do real time or ‘on-the-fly’ predictions. It is not in the scope of this project to find the starting 

and ending point for each activity, as this will make the research drastically more difficult. Finally, it is 

not in the scope of this project to go in depth into the machine learning algorithms. Basic knowledge 

and techniques will be described, but R will be used to do the statistical analysis. 

1.3.4 Outline of the research 
This thesis consists of 7 chapters in total, of which this introduction is the first one. The other chapters 

are: 

Chapter 2: The theoretical framework, which consist of an in-depth literature review to acquire an 

understanding of the state-of-the art research and methods in the field. General concepts that are 

reviewed is human activity recognition (HAR), fitness activity trackers, GNSS technology, research using 

GNSS, research using machine learning techniques and the machine learning techniques themselves. 

Chapter 3: The methodology, which consist of a detailed description of how the research was 

conducted to ensure quality and reproducibility. The data is described, both GNSS- as land-use data, 

how the features for the machine learning models are calculated and finally which machine learning 

methods are used. 
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Chapter 4: Results, which consist of an evaluation of the data and features, an evaluation of the 

machine learning models and an evaluation on how (land-use) features influence the models’ 

performances. 

Chapter 5: Discussion, which consist of a deeper analysis of the results, that compares the results of 

the different models, tries to interpret performances, find general trends, and analyse the importance 

of (land-use) features.  

Chapter 6: Conclusion, which answers the main question of this thesis. 

Chapter 7: Reflection and recommendation: which reflects on the shortcomings of the research, and 

which provides recommendations and suggestions for future work. 
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2. Literature review 
This literature review will give an insight into the key concepts and the state-of -the art research and 

technologies regarding sport activity classification using GNSS and land-use data. These key concepts 

are used for answering the questions ‘What is machine learning?’ and  ‘What is the state of the art in 

outdoor sports detection in GNSS-data based tracks using machine learning?’. 

Firstly, the line of research regarding human activity recognition (HAR) will be discussed briefly in 

paragraph 2.1. Since the focus of this research is sports activities, paragraph 2.2 will go into 

technologies that can record these sport activities. The advances in- and popularity of wearable 

fitness activity trackers will be discussed, then how the location technology works (using GNSS 

sensors) and what advances are made in mobile phone GNSS technology. Paragraph 2.3 will review 

the advanced made in GNSS based classification research, firstly in general, and secondly specifically 

using machine learning technologies. Then, in the final paragraph (2.4) a general overview will be 

presented on state-of-the art machine learning technologies.  

2.1 Human Activity Recognition (HAR) 
Automatic classification of activities is nothing new. For years, researchers have been using various 

sensors to learn about Human Activity Recognition (HAR). HAR is a line of research that is focussed on 

automatically recognising human activities. Some of the main application of the information gained by 

HAR are crowd surveillance, healthcare support, population security and lifestyle and behaviour 

tracking. HAR often requires dedicated hardware, sophisticated engineering and statistical- and 

computational techniques. Another characteristic of HAR is that it usually consists of five steps, namely 

sensing, pre-processing, feature extraction, training, and classification (Ferrari, Mucucci, Mobilio & 

Nopoletano, 2021). Previous studies have attempted to survey the current status of the HAR field, 

however, these studies vary greatly in the type of activities categorised and experimental setups used. 

This makes comparing these studies hard to compare (Shoaib, Bosch, Incel & Scholten, 2015). 

Therefore, this thesis will focus more on the HAR studies that are closely related to this study, like 

research on sport-activities and research done using mobile device data. 

2.2 Fitness activity trackers 
Nowadays, smartphones are equipped with various sensors that can be used for sensing and data 

collection. Sensors included in smartphones that can sense activity are e.g., an accelerometer, a 

gyroscope, a magnetometer, a microphone, and a GPS/GNSS-chipset (Shoaib et al., 2015). In 2021, 

smartphone ownership is estimated at around 6.4 billion people worldwide, making up for about 

82.5% of the global population (Statista, 2021a). These developments bring forth a large source of data 

which can be useful for analysis and innovations in different fields. According to a survey by Carto 

(2017), 94% of the participating medium and large organisations collects location data. Already 54% of 

the participating organisations used to collect location data through mobile devices and applications. 

This is the second most popular way of collecting location data after website and web-based 

applications (57%). Accurate estimations of physical activity can be achieved through mobility 

research. Rapid advancements have been made in tracking technology in recent years. (Ferri, 2016). 

Another development regarding smartphone data collection is the rising popularity of fitness 

applications and mobile fitness trackers.  

In Europe and the US, the use of health-related applications and the use of electronic devices for 

monitoring health has grown extensively. These apps could be used to provide support or monitor 

those users that don’t have access to any professional trainers or coaches (Janssen et al., 2017). Since 

most people have a smartphone, and apps are often free of charge or relatively cheap, the apps are 

accessible to nearly anyone. The use of sports apps is mainly related to individual recreational sports, 
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such as walking, running, cycling and fitness (Janssen et al., 2020). 26.5% of US adults used a health 

and fitness related application at least once a month in 2020 compared to 19.2% of all US adults in 

2018 (Statista, 2021b). There is no significant relation between app users and their gender or 

education. The most popular sport that is monitored is running. Currently almost 10% of the EU-28 

population and over 10% of the US population partake in recreational running. This is in line with the 

rise in popularity of other recreational, unorganized, and lighter forms of sports with a health-related 

focus (Janssen et al., 2017).  

According to a survey conducted by Pew Research Center in 2019, about 21% of all adults in the US say 

they regularly wear and use smart watches or other wearable fitness trackers. People using fitness 

trackers are also found to be more willing to share data of the devices with health researchers. 53% of 

users find this acceptable, while among non-users this is only 38% (Vogel, 2020). 

2.2.1 GNSS technologies 
These fitness tracking apps for smartphones and other wearable devices use a variety of sensors to 

collect data. This study will only use the data acquired via the GPS/GNSS-chipset and will therefore be 

the focus in this theoretical framework.  

The GPS/GNSS-chipset in a mobile device acquires data global navigational satellite system (GNSS). 

The first GNSS with global coverage was the Global Positioning System (GPS), that was launched in 

1978 by the U.S. Department of Defense. It is the worlds most utilized satellite navigation system and 

the terms GPS and GNSS are often used interchangeably. Therefore, GPS has become a synecdoche for 

GNSS’s (Frousiakis, 2018). The GPS system calculates the location of the GPS receiver based on the 

emission of synchronized radio signals by multiple satellites that orbit around the earth. The satellites 

are equipped with atomic clocks that emits the time and position of the satellite to the receiver with 

great precision. The time difference between the emitted signals of the various satellites allows the 

receiver to calculate its distance from the satellite using trilateration. To calculate it’s 2D position, 

three satellite measurements are required. For a 3D position, four satellite signals are required (Schutz 

& Chambaz, 1997).  

Other GNSS constellations work in a similar manner. There are four global GNSS constellations. Russia’s 

GNSS is called GLONASS and was designed in the 1970’s as Russia’s military positioning system. China’s 

GNSS is called BeiDou and has been operational since 2000 and is on the rise to overtake GPS in terms 

of commercial global usage. Finally, the EU’s GNSS is called Galileo and has global coverage since 2020 

(Frousiakis, 2018). The signals of satellites from multiple GNSS constellations can be combined to 

increase the accuracy. This is especially beneficial in areas where the satellite signals are blocked, like 

urban areas and parts close to the earth’s magnetic equator (Li et al., 2015). In the past few decades, 

remarkable advances have been made in GNSS technology and the systems are changed to have a 

higher level of interoperability and consistency with other systems. This enables the use of multiple 

constellations, not only for high-grade receivers, but also for low-cost handheld receivers like 

smartphones (Paziewski, 2020). 

2.2.2 GNSS systems in mobile devices 
The GNSS constellations that are used for location services in the smartphone are dependent on the 

GNSS-chipsets that is used when manufacturing the phone. Most phones use multi-GNSS, but the 

chipsets used can vary from phone to phone (GalileoGNSS, 2017). Since not all devices are using the 

same GNSS constellations, and chip quality varies in smartphones, there can be significant 

performance differences in terms of accuracy per smartphone (Paziewski, Fortunato, Mazzoni & 
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Odolinski, 2021). For example, the first phone using the 

Galileo system was launched in late 2016 (GalileoGNSS, 

2016) and in September 2017, the first phone was 

launched using a dual frequency GNSS chipset i.e., using 

multiple frequencies that are emitted by the GNSS 

satellites (Paziewski, 2020). Figure 2.1 shows an example of 

which satellites and constellations GNSS-chipsets can use. 

In the chipset of a OnePlus 3T from 2016. 

There are a few problems when using mobile phones for 

HAR. Mobile phones are considered resource-limited 

devices, as they don’t always possess enough battery 

resources to be able to continuously run activity 

recognition systems. However, advancements are being 

made in battery power and HAR capabilities. HAR can also 

be done ‘offline’, meaning that the pre-processing and 

classification is being done on a server instead of on the 

resources of the device (Shoaib et al., 2015). In this case, 

the data-collection still needs to be done locally on the 

smartphone. Another problem that occurs due to the 

battery limitations of smart devices is the duty cycling 

mode. Duty cycling is a mode which is active in most smart-

devices and make for a discontinuous manner of location 

collection to prevent battery drainage. When the smart-

devices location services are not being used, it will stop 

with continuous data collection and go into a battery 

friendlier mode. Only in the latest android versions, duty 

cycling can be switched off (Paziewski, 2020). 

2.3 Research using GNSS 
Traditionally, movement patterns of people were researched using surveys. However, self-reporting 

surveys had several shortcomings. Quite often, respondents overlooked short trips and activities. The 

trips were sometimes reported out of sequence and the departure and arrival times were mostly very 

approximate. Besides this, surveying was very time-consuming (Shafique & Hato, 2016). Another 

reason why GNSS has drawn the attention of researchers is the low-response and high incompletion 

rates of travel surveys (Lee & Kwan, 2018). The advantage of GNSS as opposed to surveys is the high 

accuracy.  

GNSS devices generally produces data that includes ID, longitude, latitude, timestamp, horizontal 

dilution of precision, vertical dilution of precision, the number of satellites in view, altitude, heading 

and instantaneous speed (Allahbakhshi, Conrow, Naimi & Weibel, 2020). There are also disadvantages 

of GNSS-data as opposed to traditional surveying methods. First, GNSS data is raw data. Given the 

amount of data GNSS provides, it would be extremely time-consuming to manually interpret all the 

data. Additional data-analysis, mathematical models or surveying is needed to determine the mode of 

transport used or the type of activity done during the collection of the GNSS data (Shafique & Hato, 

2016) and when modal or activity changes occur in the track. Besides this, GNSS-data is less accurate 

in places where signal detection is less, like indoors, tunnels or urban areas with a lot of high-rise 

buildings (Ellis et al., 2014).  

Figure 2.1 Satellites and Constellation snapshot 
by the OnePlus 3T from 2016 



11 
 

2.3.1 Past research on Human Activity Recognition using machine learning 
Past research on detecting sports activities have been using various methods, like PCA analysis (Ross, 

Dowling, Troje, Fischer & Graham, 2018), machine learning techniques (Ferri, 2016; Ouchi & Doi, 2012) 

and deep learning techniques (Clouthier, Ross & Graham, 2020) to classify sport activities.  

Research on HAR is mostly focussed on finding methods that bring the highest accuracy in correctly 

detecting the travel mode or activity done in the GPS track. Several factors influence the detection 

accuracy. Firstly, the variables used in the application, secondly, the algorithm used in the application 

and thirdly, the training and testing data used in the application.  

To achieve the optimal detection accuracy, studies have used various variables that can be derived 

from GPS data. These variables mostly include average speed, average acceleration, trip distance and 

duration (Wu, Yang & Jing, 2016). Another common variable additionally used is average heading 

change (Shafique & Hato, 2016; Fang et al., 2018; Wu, Yang & Jing, 2016). Some studies will not use 

the average speed, but the 95th percentile or 75th percentile of speed and acceleration instead to 

exclude random errors. (Xiao, Cheng & Zhang, 2019; Xiao, Juan & Zhang, 2015; Zong et al., 2017; Zong 

et al., 2015). These studies also include the standard deviation of speed and the standard deviation of 

acceleration as an extra variable as well as the low-speed point rate (the total time that the GPS is 

stationary or very slowly moving). Lee & Kwan (2018) use intervals two different kinds of speed 

variables, instantaneous level, and interval level. Finally, Ellis et al. (2014) uses more variables like 

average number of satellites used and average signal-to-noise ratio.  

Besides variables that are constructed from GPS-data, there can also be variables that are constructed 

from other data sources. Accelerometers are found in most modern smartphones and can detect 

acceleration along three axes with respect to the gravitational force (Shafique & Hato, 2016). Lee & 

Kwan (2018) use accelerometer data for identifying indoor activities, where GPS signal is less accurate. 

This increased their accuracy from 75% with only GPS-data to about 95% with GPS- and accelerometer 

data. Furthermore, accelerometer data is often used as complementary data to GPS data and leads to 

higher classification accuracy (Feng & Timmerman, 2013; Martin et al., 2017; Tamura et al., 2018; 

Allahbakhshi, Conrow, Naimi & Weibel, 2020; Mardini et al., 2021; Ellis et al, 2014). In some cases, 

spatial context data is used to further improve results. Allahbakhsi et al. (2020) and Zong et al. (2017) 

use map matching techniques to match GPS-tracks to networks and improve spatial accuracy. Shafique 

& Hato (2016) used spatial data to add variables to the data like proximity to bus stations, proximity 

to rail line trajectories and zip codes. Finally, Fang et al., (2018) use network data to process the data 

and assign missing values to points that deviate too much from the road network. 

Most papers will use a few different machine learning algorithms, to find the one that will give the 

most accurate classifications. Commonly used algorithms include k-nearest neighbour (kNN), support-

vector machines (SVM), Bayesian networks (BN), decision trees (DT), Gaussian process qualifiers (GPC), 

random forest (RF) and artificial neural networks (ANN). Figure 2.2 shows the frequency of methods 

used in HAR of 13 different papers. The methods that used the RF algorithm were in general the most 

successful and could be considered the superior algorithm for this purpose (Ferri, 2016; Ellis et al., 

2014; Lee & Kwan, 2018; Martin et al., 2017; Feng & Timmerman, 2015). Xiao, Cheng and Zhang (2019) 

found that GPC was the most suitable for their case, closely followed by ANN. While another paper by 

Xiao, Juan & Zhang (2015) found BN to be the most suitable for their research. Finally, Li et al. (2020) 

found that ANN was the most accurate algorithm. All studies give a classification accuracy per 

algorithm, but since the studies vary in focus and methods, the classification accuracies are not suitable 

for comparison. All papers in this literature review, its variables used and its classification accuracies 

per algorithm can be found in appendix A. In this literature review most of these papers focus on 

transportation mode classification and not sport-activity classification. Sport-classification using GNSS 
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data is less extensively researched. Classifying sport-activities might find different success rates with 

different algorithms.  

Figure 2.2 Frequency of methods used for classification from 13 studies 

 

 

2.4 Machine learning techniques 
Research in HAR and travel mode detection often uses machine learning techniques to automatically 

categorize its activity with high accuracy. To use machine learning and understand the outcomes of 

this research, it is important to understand what machine learning is, how it works, and how a high 

accuracy of classification can be achieved.  

The field of machine learning is always trying to make computer programs that can improve with 

experience. The name ‘machine learning’ refers to the idea that combining computer algorithms and 

large amounts of data can make the machine (the computer) learn. By using iterative processes and 

training data, the machine can improve itself in the given task. For example, the goal is to automatically 

separate spam-mail from regular e-mail. It is hard to precisely tell the computer when something is 

considered spam, but it is easy to collect thousands of examples of spam messages and regular e-mails 

and let the computer learn itself. The machine can be trained by using data that has already been 

classified, so it can recognise patterns and attributes to classify upon. The model can then be used to 

classify new data, based on what it learned from the training data (Alpaydin, 2014a). Other examples 

of machine learning applications are detecting fraudulent credit card transactions, autonomous vehicle 

driving and information filtering systems that learn users’ reading preferences (Mitchell, 1997). 

Machine learning can also be applied to visual recognition, speech recognition and robotics. 

Recognizing faces is an everyday task for people, but it is an unconscious process causing people to be 

unable to explain the process to a computer. The machine learning model can recognize patterns in 

data and is therefore able to classify the data accordingly (Alpaydin, 2014a). There are two ways of 

classifying data using machine learning. One is supervised learning, in which the input and the output 

are provided by the supervisor. The other one is unsupervised learning, where no output is given for 

the input data and the machines job is to find data-clusters themselves (Alpaydin, 2014a). 

There is a broad selection of different machine learning algorithms to choose from (Figure 2.3) that 

can be classified in three main categories (Chaurasia & Reddy, 2021). In conventional methods (or 

traditional machine learning) the features are hand-crafted by the user and fed to the algorithm, which 
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in turn does the classification and delivers the output. In deep learning the features are not crafted by 

hand, but rather, the algorithm learns to identify features (Ferrari et al., 2021). The last category are 

hybrid algorithms, which make use of a combination of both hand-crafted and computer identified 

features (Chaurasia & Reddy, 2021).  

Figure 2.3 Activity Recognition Classification based on machine learning (Chaurasia & Reddy, 2021) 

 

The advantage of using conventional methods and using hand-crafted features is the features 

calculation simplicity and low computational complexity. Disadvantages are the high dependency on 

the knowledge of the person selecting the features. Data needs to be investigated beforehand, and 

even then, it is still not always clear what features are likely to work best (Ferrari et al., 2021). However, 

after the model is trained, conventional models can also give quite a good indication of what the 

importance of each feature is in the classification process. This is different for deep learning models, 

as the computer crafted parameters are hard to interpret. Deep learning eliminates this problem, but 

deep learning also has its inherent disadvantages. Deep learning, on the contrary, requires high-end 

machines with large computing power. Deep learning algorithms take a large amount of data and many 

parameters to train. It can take up to weeks to train an algorithm, compared to a few hours at 

maximum for traditional machine learning algorithm (Mahapatra, 2018). Due to the amount of time, 

processing power and data required the deep learning algorithms will not be useful for this research. 

Besides deep learning there are many conventional machine learning techniques, in this paper there 

will be a focus on a few of the most popular and successful algorithms in HAR. These are, SVM, Random 

Forest and MLP.  
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The support vector machines algorithm (SVM) makes use of the quality of lines and hyperplanes to 

separate data classes. In many cases, data is not easily separable by a line or a hyperplane. The SVM 

therefore uses ‘kernels’ to transform the data-dimensions without affecting the features. In essence 

the SVM algorithm only handles binary classifications, but multiclass classifications can be achieved 

through a variety of methods (Noble, 2006). 

The random forest algorithm (RF) is based on the principle of decision trees. However, decision trees 

are not very suited for classifying complex datasets. The random forest is a tree-based method, that 

builds multiple trees with random features and randomly selected feature values. The outcome of the 

multiple random trees will be used to determine the most likely class for each instance (Ho, 1995). 

The multilayer perceptron algorithm (MLP) is a part of the broader tree of artificial neural networks 

(ANN). MLP’s can be defined as a network in which input, and output is connected through nodes with 

high computational powers. The idea is that the network simulates the processing patterns in the 

brain. ANN’s are ‘trained’ to produce a usable input-output relationship. In the training phase, 

parameters in the network are finetuned to realise the best input-output relation (Liao & Wen, 2007). 

This is called ‘supervised’ learning. 

Above was a very brief description of the algorithms used in this research. A more detailed description 

of the machine learning algorithms and the application of the algorithms for this research can be found 

in the methodology chapter. 
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3. Methodology 
To answer the main question of this research, all sub-questions must be answered as well. In the 

theoretical framework, some sub-questions have been answered regarding the state-of-the-art 

research in sport activity recognition (sub-question 1) and machine learning techniques (sub-question 

2). Other sub-questions, like sub-question 3, 4 and 5, have been discussed in the theoretic framework, 

but are not yet answered. This is done in this methodology chapter. 

Sub-question 3 is about what features need to be constructed from the raw-GNSS data and land-use 

data to classify the sports activities performed. To know what variables are extracted from the GNSS 

data, it is required to discuss the data and data structure that are used in this research and how it is 

obtained. This is discussed in the paragraph 3.1. Then it is discussed how the extracted data is to 

calculate features that are used in the machine learning models. This is discussed in paragraph 3.2. 

Sub-question 4 is about what machine learning methods are most suitable for this research. This is 

discussed in paragraph 3.3.  This paragraph also goes in depth on how the machine learning method is 

executed and with which hyperparameters. The kind of statistical output the various machine learning 

techniques produces are also discussed. Later in the same paragraph sub-question 5, which is about 

how the machine learning model is validated and tweaked in this research, is also answered. 

Figure 3.1 displays a schematic overview of the process that will be described in this chapter. First, 

data from Strava and OpenStreetMap (OSM) is required. Then, features will be calculated using the 

Strava data. Land-use data is queried from the OpenStreetMap database using the coordinates of the 

Strava tracks. Additional features are calculated based on the Strava data and the queried data. This 

data is saved in a tabular format and used for training and testing the machine learning models. These 

models will be able to classify the data that is given to the model. 

Figure 3.1 Schematic overview of the classification process 

 

3.1 Data overview 
To create the features that are used in the machine learning models, two types of data are collected. 

Firstly, the GNSS tracks forms the main supplier of the data for the creation of features. Secondly, land-

use data is used as additional data related to the GNSS data to create more location specific features. 

3.1.1 GPX data 
As discussed in the theoretical framework, machine learning models often require large amounts of 

data to deliver reliable results. Large datasets exist with GNSS data, however, these datasets are not 

publicly available (Carto, 2017). Another requirement for the dataset is that the data is already labelled 

with its corresponding sports activity. Each track should also contain only one type of activity from the 
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beginning until the end. Finally, the data-point interval must be consistent, so there are no large gaps 

in data recordings. To eliminate the problem of phones in ‘duty cycle’ mode (Paziewski, 2020), the 

activity must be actively recorded by some application on the smartphone or smart device.  

The data that is used for this research is self-recorded and labelled by athletes of all skill levels in a 

fitness application called Strava. As of March 2021, Strava has over 76 million users and over 1.1 billion 

registered GPS-segments (Curry, 2021). In the app, it is mandatory to select the type of activity that is 

about to be performed. All the activities are saved to a personal profile. All users can extract their 

activities in GPS Exchange Format (GPX) at once in a comprehensive ZIP archive format. The activities 

can also be downloaded from other users’ profiles using an integrated download button from Strava 

or additional browser plug-ins.  

The GPX file contains data about the date, track name and activity type. Per observation it contains 

data about the longitude, latitude, elevation, and a timestamp. This data is used as testing and training 

data for the algorithms. The data is suitable for machine learning, as all GPS-segments contain labels 

on the activity that is performed, and because the segments have a clear beginning and ending of the 

activity. In Figure 3.2, a small fragment of a downloaded GPX track is shown. ‘name’ refers to the name 

given to the activity by the user. ‘type’ is the type of activity selected by the user. ‘trkpt’, ‘ele’ and 

‘time’ are the location, elevation, and timestamp respectively. In Strava, number 9 refers to running. 

In figure 3.3, the Strava interface is shown of the GPX track from figure 3.2. 

Figure 3.2 Raw data of a Strava GPX track in GML format 
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Figure 3.3 Strava interface of an activity 

 

The data that is collected features a collection of 8 sports that can be recorded on Strava. These will 

be biking, running, walking, hiking, ice-skating, inline-skating, kayaking/canoeing, and swimming. The 

data is collected from a random sample in order to get a diverse set of 

training data, including various athletes of all skill levels.  

To collect all the data, a script is written to automatically extract random 

GPX tracks from Strava. This script ‘scrapes’ tracks from the website. After 

running the scraper, some activities still require manual searching, as 

these activity types are uncommon and are hardly found using the scripts 

random search approach. Figure 3.4 shows the data collection using the 

random search approach of the Strava scraper. Strava does however have 

groups for athletes to join in which specific activities are recorded. For 

this research, data was collected from these groups for ice-skating, inline-

skating, kayaking/canoeing, and swimming. This does however mean that 

not all data is collected completely random, as the Strava groups are often geographically centred 

around one place and athletes might have personal connections. Still, widespread coverage is reached. 

Figure 3.5 shows the geographical distribution of the activities. 

Figure 3.4 Strava scrapers' data 
collection 
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Figure 3.5 Geographic distribution of the Strava tracks 

 

While scraping and downloading public personal information is not illegal, it is sometimes considered 

unethical to do so. Richards & King (2014) theorize that while people (voluntarily) create data 

throughout the day and companies, governments or other institutions and legally allowed to use this 

data, it can be done in an unethical way. Richards & King argue that people are unaware of the 

sensitivity, magnitude, and characteristics of the data they create, and the user’s big data should 

therefore also take responsibility in protecting the privacy of people. The data should therefore be pre-

processed in a way that makes reverse engineering the data near impossible. In this research, the same 

is done. The data is made anonymous in the data processing phase. This is done by removing the title 

and date from the track. The Strava-id is replaced by a newly generated primary key. After pre-

processing, the tabular data also doesn’t contain any spatial data anymore. The tracks used in this 

research are deleted after the research is performed, as due to the characteristics of GNSS-data, 

anonymity can otherwise not be guaranteed. 

In total, 1397 tracks were collected and used for this research. The aim is to collect around 250 tracks 

for each sport activity. However, some activity types were very time costly to find and due to time 

restrictions, the research is conducted with less than 250 tracks for some activity types. Table 3.1 

shows the number of tracks used per activity type.  

Table 3.1 Tracks used per activity type 

Activity type Total tracks 

Running 242 

Cycling 252 

Walking 249 

Hiking 157 

Ice-Skating 85 

Inline-Skating 158 

Kayaking/Canoeing 113 

Swimming 141 
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The Strava raw data is written in the Geographic Markup Language (GML) and saved in a GPX file 

format, this is converted to tabular data in order to be used in the machine learning algorithms. To 

extract the variables, a Python library is utilized called GpxPy. This is a GPX file parser that can parse 

information from GPX and XML documents (Krajina, 2021). These values are saved using a Python 

script. This script is also used to calculate the features and save them as tabular data in a Comma 

Separated Value (CSV) file data format. After feature extraction phase, each track is a row in the tabular 

data file containing continuous values for all features. 

Usually, raw GPS data requires data smoothing techniques to decrease the impact of random errors. 

Popular statistical smoothing techniques include, among others, the Kalman filter, least squares spline 

approximation and kernel-based smoothing (Jun, Guensler & Ogle, 2005). It is very likely that Strava 

incorporates some smoothing technique in their application. Unfortunately, information on what 

techniques are used in the application is not publicly available. Considering the data used, no additional 

smoothing of the data deemed necessary. 

3.1.2 Land use data 
In this research, land use data is used to improve the machine learning model’s accuracy by providing 

information on the relationship between the GPX tracks and the nearby spatial elements. To provide 

these spatial elements, Open Street Map (OSM) is used. OSM is an open collaborative mapping project, 

which offers free editable geographical data of the world (OpenStreetMap, n.d.). 

The land-use data used in this research is the proximity of the GPX track to waterways, foot-paths and 

cycle-paths. Waterways include all rivers, canals, streams, and such, as well as bays, oceans, and seas. 

It also includes man made water features like swimming pools and ice-rinks. Foot-paths include all 

features intended exclusively for walking or running, like sidewalks, pedestrian zones, tartan surfaces 

or unpaved paths. Cycle paths include all features that allow cycling, like smaller roads, painted bicycle 

infrastructure on the road or sidewalk and exclusive bike paths (Appendix C). The land-use categories 

are expected to correspond with certain sport activities that will be categorized in this research (Figure 

3.6). Where walking, running, and hiking are done in the proximity of foot-paths, cycling is done in the 

proximity of cycling-paths and swimming, ice-skating, and kayaking/canoeing is done in the proximity 

of waterways. Inline skating can be performed in the proximity of both foot- and cycling-paths. 

Figure 3.6 Expected corresponding land-use types per activity 

 

For querying the data, the Overpass API is used. This is a read-only application programming interface 

(API) that acts as a database over the web. Queries can be sent to the client via the API and returns 

the queried results. It can deliver roughly 10 million elements in minutes by selecting them based on 

criteria like object type and proximity (OSM Wiki, 2021). A query is written that will obtain all nodes of 

waterways, cycle-paths and foot-paths in the proximity of 50 meters from the track’s GPS points. The 

keys and values used in the query can be found in Appendix C. The query is written in the OverpassQL 

and is tested in the Overpass Turbo web tool. The land-use data is saved using the Overpass API. This 



20 
 

is integrated in a python script using the OverPy library and sends queries to the overpass server in 

order to obtain data points from OSM (PhiBo, 2021). In Overpass API, a linestring geometry can be 

queried by providing the code with the longitude and latitude of the all the points in the sequence. 

However, providing the API with all datapoints for all tracks puts a large burden on the server and can 

take a long time to process. Using all points from the tracks even causes server overloads. To mitigate 

this problem, the number of points in the track is reduced. 

To compose a line with a similar curve, but with fewer points, the Ramer-Douglas-Peucker (RDP) 

algorithms is used. The algorithm constructs lines between sets of points. If the intermediate points 

between these points are within a given tolerance (ε) from the line, the intermediate points are 

removed, and the constructed line becomes the new line segment (Karthaus, 2012). The epsilon is a 

distance defined in degree, minute, and second. In Figure 3.7 an example is given of a simplified track. 

This track is a recording of a bicycle delivery service employee. Even though the track has a high 

curvature, the RPD algorithm successfully decreases the number of points with 98.6% from 8023 to 

109 (epsilon: 0.001). The higher the tolerance, the more simplified the track will become. The tolerance 

used in the example is for demonstration purposes. The tolerance that is used in this research is 

obtained through trial and error and is found to be 0.0001. It is important to note that the ideal 

tolerance was obtained by using a track that is close to the latitude of Greenwich. The tolerance unit 

is in degree, minute, and seconds, so the tolerance in meters will be bigger at higher latitudes and 

smaller at lower latitudes. The coordinates of the RDP simplified track are used to query all waterways, 

foot-paths and cycle-paths in a proximity of 50 meters from the track. To not overload the Overpass 

server and to keep the runtime manageable, not every single point in the GPX track is used. Instead, 

20 evenly distributed points are taken from each track and used to calculate the distances between 

them and the queried nodes from OSM. The queried results are used to calculate land use features. 

This process is described in the next paragraph. 

 

Figure 3.7 GPX track before (left) and after (right) applicating the RDP algorithm 
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3.2 Feature calculation 
The selection of the features that are used in the machine learning algorithms highly influence the 

success of the model. In the theoretical framework, a survey is done on past HAR research and the 

features that are used (appendix A). Based on popular features in past research, features used for this 

research are selected. Table 3.1 gives an overview of the features used in this research and how they 

are constructed and using what data. To calculate the values of the features, temporary lists (or 

dynamic arrays) are made in a python script. The section below describes all the temporary lists that 

are made and how they are calculated. 

Using gpxpy, certain lists of variables are extracted from the raw GPX data files. These values include 𝑡 

for datetime, which is a list of times of all observations in a file in the format ‘year, month, day, hour, 

minute, second’. It includes the variables 𝑙𝑎𝑡⃗⃗⃗⃗ ⃗⃗  and 𝑙𝑜𝑛⃗⃗⃗⃗⃗⃗⃗, which is a list of latitude and longitude values 

respectively for every observation in a file in radians. And lastly it includes the variable 𝑒 for elevation, 

which is a list of elevation values of all observations in a file in meters. From these lists of variables, all 

other variables are calculated using the formulas described below. In these formulas, subscript ‘i’ refers 

to the ith observation from the corresponding list. ‘n’ refers to the number of observations in the list. 

3.2.1 Time-delta 

∆𝑡⃗⃗⃗⃗⃗ is the time-delta variable, which is a list of time between one observation and the observation 

before. It is calculated in seconds  

(1) ∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 

Where 𝑡 is the datetime list. 

3.2.2 Distance 

𝑑 is the distance variable, which is a list of distance between one observation and the observation 

before in meters. In Strava, only the horizontal distance is calculated, not considering elevation gain 

(Strava Support, 2021). Therefore, this research does the same. There are many ways to calculate the 

distance between coordinates. The Geopy module in python uses the geodesic distance to calculate 

the distance (Geopy, 2018) and is also used in this research. It makes use of the Haversine formula, 

which works as follows (MTL, n.d.): 

 

(2) 𝑑𝑖 = 𝑅 ∗ 𝑐𝑖  

Where 𝑑 is the distance in m, R is the radius of the earth in m, 𝑐 is the central angle between two points 

on a sphere in radials. 

(3) 𝑅 = 6,373 ∗ 106 

 

(4) 𝑐𝑖 = 2 ∗  𝑎𝑡𝑎𝑛2(√𝑎𝑖 , √1 − 𝑎𝑖) 

Where atan2 is a function that takes arguments y and x and computes the arc tangent of the ratio x/y. 

Haversine’s formula uses √𝑎 and √1 − 𝑎 as arguments. 

 

(5) 𝑎𝑖 =  sin(
𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡𝑖−1

2
)2 + cos(𝑙𝑎𝑡𝑖−1) ∗ cos (𝑙𝑎𝑡𝑖) ∗ sin (

𝑙𝑜𝑛𝑖 − 𝑙𝑜𝑛𝑖−1

2
)2 
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Where 𝑙𝑎𝑡⃗⃗⃗⃗ ⃗⃗  and 𝑙𝑜𝑛⃗⃗⃗⃗⃗⃗⃗ are the latitude and longitude in radians. 

3.2.3 Elevation change 

∆𝑒⃗⃗⃗⃗⃗ is the elevation change, which is a list of elevation changes in the GPX at each observation and the 

observations before in meters. For calculating this value, 25 observations before are used instead of 

the last observation. Then the change between these observations is divided by 25 to estimate the 

elevation difference between one observation and the last. This is done to improve estimation 

accuracy, as the elevation change is only measured with increments of 0.1 meters. Due to these large 

increments, the total elevation change can appear much larger than is the case. The results from the 

calculations done in this research are compared to the estimations of Strava and were found to be 

sufficiently comparable as opposed to calculating one observation at a time. Note that due to this, 

∆𝑒1, ∆𝑒2. . . ∆𝑒25 = 0. 

(6)∆𝑒 =  
𝑒𝑖 − 𝑒𝑖−25

25
 

Where 𝑒 is the elevation in m. 

3.2.4 Velocity 
�⃗� is the velocity variable, which is a list of velocities at each observation in the GPX file in meter per 

second. Note that for the first observation 𝑣1 = 0. 

 

(7) 𝑣𝑖 =
𝑑𝑖

∆𝑡𝑖
 

Where 𝑑 is the distance in m, and ∆𝑡⃗⃗⃗⃗⃗ is the time-delta in s. 

3.2.5 Acceleration 
�⃗� is the acceleration variable, which is a list of accelerations at each observation in the GPX file in meter 

per second squared. Note that for the first and second observation 𝑎1 = 0, 𝑎2 = 0. 

(8) 𝑎𝑖 =  
𝑣𝑖 − 𝑣𝑖−1

∆𝑡𝑖
 

Where �⃗� is the velocity in m/s, and ∆𝑡⃗⃗⃗⃗⃗ is the time-delta in s. 

3.2.6 Relative bearing 

𝜃 is the relative bearing variable, which is a list of relative bearings between each observation and the 

observation before in degrees. The average bearing change is calculated regardless of the direction of 

the bearing change. Therefore, the absolute number of bearing change will be saved to the bearing 

change list. Note that for the first observation 𝜃1 = 0. 

(9) 𝜃𝑖 = |𝑎𝑡𝑎𝑛2(𝑦𝑖 , 𝑥𝑖) ∗  
180

𝜋
| 

Where atan2 is a function that takes arguments �⃗� and �⃗� and computes the arc tangent of the ratio x/y. 

(10) 𝑦𝑖 = sin(𝑙𝑜𝑛𝑖 − 𝑙𝑜𝑛𝑖−1) ∗ cos (𝑙𝑎𝑡𝑖) 

(11) 𝑥𝑖 = cos(𝑙𝑎𝑡𝑖−1) ∗ sin(𝑙𝑎𝑡𝑖) − sin(𝑙𝑎𝑡𝑖−1) ∗ cos (𝑙𝑎𝑡𝑖 ∗ cos (𝑙𝑜𝑛𝑖 − 𝑙𝑜𝑛𝑖−1) 
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Where 𝑙𝑎𝑡⃗⃗⃗⃗ ⃗⃗  and 𝑙𝑜𝑛⃗⃗⃗⃗⃗⃗⃗ are the latitude list and longitude list of observations in radians. 

3.2.7 Proximity to water, cycle-path, and footpath 

𝑃𝑤𝑎𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑃𝑐𝑦𝑐𝑙𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑎𝑛𝑑𝑃𝑓𝑜𝑜𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ are the variables for the distance of every 100th observation in the GPX 

track to the closest waterway (for 𝑃𝑤𝑎𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), cycle-path (for 𝑃𝑐𝑦𝑐𝑙𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) and footpath (for 𝑃𝑓𝑜𝑜𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) in 

meters. Proximity is chosen as a variable, as it describes the relationship between the points and the 

proximity best. It provides more detailed information then making proximity classes or even deciding 

on a binary classification for being close to the land-use feature or not. Only 20 points are selected for 

each track, so the influence of each point on the track has a large influence on the feature values. Only 

20 evenly distributed points are taken from the track to decrease the processing power needed as 

opposed to taking every single point of the track. This does however mean that the lists for these 

variables contain far less values than all the other lists mentioned above. Therefore, instead of using 

‘i’ to refer to the elements in the list, ‘j’ will be used. Similarly, the number of spatial elements found 

have no relation to the number of values in the original track, therefore, ‘k’ is used to refer to the list 

of spatial elements. For notational convenience, calculating the distance is written as a function 

distance (). This function is identical to how the variable 𝑑 is calculated. 

 

(12) 𝑃𝑤𝑎𝑡𝑒𝑟𝑗 = min
𝑘

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑖𝑚𝑝𝑇𝑟𝑎𝑐𝑘𝑗, 𝑤𝑎𝑡𝑒𝑟𝑤𝑎𝑦𝑘)) 

(13) 𝑃𝑐𝑦𝑐𝑙𝑒𝑗 = min
𝑘

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑖𝑚𝑝𝑇𝑟𝑎𝑐𝑘𝑗, 𝑐𝑦𝑐𝑙𝑒𝑝𝑎𝑡ℎ𝑘)) 

(14) 𝑃𝑓𝑜𝑜𝑡𝑗 = min
𝑘

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑖𝑚𝑝𝑇𝑟𝑎𝑐𝑘𝑗, 𝑓𝑜𝑜𝑡𝑝𝑎𝑡ℎ𝑘)) 

 

Where 𝑆𝑖𝑚𝑝𝑇𝑟𝑎𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ refers to the lists of longitudes and latitudes of 20 evenly distributed points in 

radians on the original track and 𝑤𝑎𝑡𝑒𝑟𝑤𝑎𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑐𝑦𝑐𝑙𝑒𝑝𝑎𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and 𝑓𝑜𝑜𝑡𝑝𝑎𝑡ℎ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   refer to the lists of longitudes 

and latitudes of the spatial elements that are within a 10 meter buffer of the RDP simplified track. 

A drawback of only selecting features that are within a buffer, is that the outcome might not reflect 

the real-life situation. For example, a waterway could be 100m from the track, but never be identified, 

as it is outside of the buffer range. If there are no waterways, foot paths or cycle paths in the proximity 

in the entire track, a missing data value is assigned that can be easily identified. In this case, 10,000 is 

assigned as the identifier for all missing values as this will be more than all other values that are within 

the buffer range. Later in the pre-processing phase, this value is changed to suit the range of the data 

values per feature (Machine Learning Knowledge, 2018). 

3.2.8 Feature list 
Table 3.1 contains a list of the features used in the machine learning model, a description of the feature 

and the formula used to calculate the feature for each track. The features are based on the features 

used in past HAR research which can be found in appendix A. Most of the features selected for this 

research are based on features selected by Ferri (2016). This research has similarities in the data used 

and classification methods used. Besides these, some more features are added, including the 95th 

percentile speed, 95th percentile acceleration and heading change as in Xiao, Cheng & Zhang (2019). 

Using only the 95th percentile of speed and acceleration helps remove the biggest outliers in the data, 

assuming some GPS measurement inaccuracies. The low-speed point is set at everything lower or 

equal to 0.5 km/h.  
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All these features are calculated using a python script and added to a CSV file. Besides the features in 

table 3.1 that are used to train and test the model, the CSV file also contains a column ‘type of activity 

performed’ in the corresponding track, so that supervised learning can be applied to the machine 

learning model. Other columns that can be found in the CSV file but are not used for the machine 

learning models are a unique ID for every track and an average ∆𝑡 and are therefore not mentioned in 

table 3.1. 

Table 3.2 Features used for the machine learning model 

Features Description Formula 

Total distance Total distance of the route (m) 
𝐿 =  ∑ 𝑑𝑖

𝑛

𝑖=1

 

 

Total time Total time of the track excluding the 
low-speed point rate time (seconds) 

𝑡𝑡𝑜𝑡= ∆𝑡𝑛 − ∆𝑡1 

Low-speed point 
rate per second 

Total time spent stationary or 
without any significant movement 
per second (points/second). 
Stationary of without any significant 
movement is 0.5 km/h or 0.14 m/s or 
slower. 

𝑈𝑝𝑑𝑎𝑡𝑒 ∆𝑡⃗⃗⃗⃗⃗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∆𝑡𝑖

≔ 0 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖 > 0.14 

𝑣𝑙𝑜𝑤−𝑠𝑝𝑒𝑒𝑑 =  ∑ ∆𝑡𝑖

𝑛

𝑖=1

  

 

𝑣𝑙𝑜𝑤−𝑠𝑝𝑒𝑒𝑑/𝑠 =  
𝑣𝑙𝑜𝑤−𝑠𝑝𝑒𝑒𝑑

𝑡𝑡𝑜𝑡
 

Average speed Average speed of the track (m/s) 
�̅� =

1

𝑛
∑ 𝑣𝑖

𝑛

𝑖=1

 

Average 
acceleration 

Average acceleration of the track 
(m/s2) �̅� =

1

𝑛
∑ 𝑎𝑖

𝑛

𝑖=1

 

95th percentile of 
speed 

The average speed in the 95th 
percentile (km/h) 

𝑆𝑜𝑟𝑡(�⃗�) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑣1 ≤ 𝑣2 ≤ 𝑣3 
𝑣95𝑡ℎ =  𝑣𝑖 → [𝑖] = 𝑛 ∗ 0.95 

 

95th percentile of 
acceleration 

The average acceleration in the 95th 
percentile (m/s2) 

𝑆𝑜𝑟𝑡(�⃗�)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎1 ≤ 𝑎2 ≤ 𝑎3 
𝑎95𝑡ℎ =  𝑎𝑖 → [𝑖] = 𝑛 ∗ 0.95 

 

Elevation gain Total elevation gain (m) 𝑈𝑝𝑑𝑎𝑡𝑒(∆𝑒⃗⃗⃗⃗⃗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∆𝑒𝑖 < 0 ∶= 0 

𝐸𝑔𝑎𝑖𝑛 = ∑ ∆𝑒𝑖

𝑛

𝑖=1

 

Elevation loss Total elevation loss (m) 𝑈𝑝𝑑𝑎𝑡𝑒(∆𝑒⃗⃗⃗⃗⃗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∆𝑒𝑖 > 0 ∶= 0 

𝐸𝑙𝑜𝑠𝑠 = ∑ ∆𝑒𝑖

𝑛

𝑖=1

 

Elevation gains 
relative 

Average elevation gains per km 
travelled (m/km) 

𝑈𝑝𝑑𝑎𝑡𝑒(∆𝑒⃗⃗⃗⃗⃗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∆𝑒𝑖 < 0 ∶= 0 

𝐸𝑔𝑎𝑖𝑛 =
1

1000𝐿
∑ ∆𝑒𝑖

𝑛

𝑖=1

 

Elevation loss 
relative 

Average elevation loss per km 
travelled (m/km) 

𝑈𝑝𝑑𝑎𝑡𝑒(∆𝑒⃗⃗⃗⃗⃗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∆𝑒𝑖 > 0 ∶= 0 

𝐸𝑙𝑜𝑠𝑠 =
1

1000𝐿
∑ ∆𝑒𝑖

𝑛

𝑖=1
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Data filtering, editing and normalization 
When all features are calculated, some data filtering, editing and normalization is needed to deliver 

the best results from the machine learning model. Not all data is suitable for building the model. First, 

the track should be at least 2 minutes in length, as this is suggested by Martin et al. (2017). If a track is 

only 2 minutes long, the data will only have about 120 datapoints and is therefore sensitive to outliers. 

Often tracks of 2 minutes or shorter are recorded by mistake or are short because of GPS problems. 

Second, duplicate tracks will be removed. Duplicate tracks can occur when athletes are tagged in the 

segments of other athletes, when the Strava scraper happened to randomly load the same track twice, 

or when one athlete shared their activity in multiple groups.  

After filtering the data, some features are edited. In the last paragraph, the calculation of average 

proximity to water, foot-paths and cycle-paths are covered. When the proximity of water, foot-path 

or cycle-paths are not inside the buffer range, a value of 10,000 is gives to the track as an identifier of 

a missing value. Since the machine learning algorithm only handles features with continuous data, the 

missing value is required to be a number (Machine Learning Knowledge, 2018). However, the value of 

10,000 is large compared to most other values and causes some problems when the data is normalized. 

Therefore, the assigned value should be closer to the maximum values of the proximities within the 

buffer range. A boxplot maximum of these values is used to replace the assigned values of 10,000. For 

this research, this is 1346.74 meters for waterways, 386.44 meters for footpaths and 1340.35 meters 

for cycle-paths. 

When using machine learning models, it is important to normalise the data. Otherwise, the dimensions 

of the data can vary greatly, affecting the algorithms capabilities to efficiently classify data. A usual 

range for normalisation is considered to be either 0 to 1 or -1 to 1 (Kumar, 2024). Since the data in this 

research does not have any negative values, all values are normalised to be between 0 and 1. 

3.3 Machine learning algorithms 
In this paragraph, the machine learning algorithms that are used in this research are discussed. Then 

the usage of the algorithms in R are discussed. Finally, the calibration of the models is discussed and 

what output it delivers. 

Maximum 
Elevation 

Maximum elevation of the track (m) 𝑒𝑚𝑎𝑥 = max 𝑒 

Minimum 
Elevation 

Minimum elevation of the track (m) 𝑒𝑚𝑖𝑛 = min 𝑒 

Heading change 
relative 

Average heading change per km 
travelled (degrees/km) �̅� =

1

𝑛
∑ 𝜃𝑖

𝑛

𝑖=1

 

Average distance 
to water 

The average distance from a point in 
the route to the closest waterway 𝑃𝑤𝑎𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑛
∑ 𝑃𝑤𝑎𝑡𝑒𝑟𝑗

𝑛

𝑗=1

 

Average distance 
to cycle path 

The average distance from a point in 
the route to the closest cycle path 𝑃𝑐𝑦𝑐𝑙𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

𝑛
∑ 𝑃𝑐𝑦𝑐𝑙𝑒𝑗

𝑛

𝑗=1

 

Average distance 
to foot path 

The average distance from a point in 
the route to the closest foot path 𝑃𝑓𝑜𝑜𝑡̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑛
∑ 𝑃𝑓𝑜𝑜𝑡𝑗

𝑛

𝑗=1
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There are many different machine learning algorithms that can be used for the application, literature 

on the mode and activity detection showed that not all algorithms are evenly suitable for the situation. 

Therefore, only the most suitable algorithms are used. From the literature review it became apparent 

that the random forest (RF) algorithm was the superior one for multi-class classification problems 

(Ferri, 2016; Ellis et al., 2014; Lee & Kwan, 2018; Martin et al., 2017; Feng & Timmerman, 2015). Other 

algorithms used in past research that yielded promising results were Support Vector Machines (SVM) 

and Artificial Neural Networks (ANN) in the form of Multilayer Perceptron (MLP) (Xiao, Cheng and 

Zhang, 2019; Li et al., 2020). For that reason, this research focusses on comparing the results of these 

three algorithms. 

The machine learning models are programmed, trained, validated, tested, and calibrated using the R 

programming language. R is a software environment that is used for statistical computing. R has 

various packages dedicated to specific machine learning techniques that can be downloaded.  

3.3. 1 Testing, training, and validation 
The ideal ratio of training data to testing data is 90% to 10%. However, the overall increase of accuracy 

between a 50% to 50% ratio and a 90% to 10% ratio is only about 0,5% (Shafique & Hato, 2016). But 

besides accuracy, there are other reasons to consider which ratio to use. The ratio also determines 

method of cross validation (CV). Using a 50% to 50% ratio, only a 2-fold cross validation is possible, 

where a 90% to 10% ratio allows for 10-fold cross validation. Cross validation splits the data in training- 

and testing-data, and changes the samples that are used for training and testing each fold, until all 

data is used for testing the model. The accuracy of the model is then calculated by averaging each 

iteration’s accuracy measurement (Yang et al., 2021; Wu, Yang & Jing, 2016). A higher number of folds 

generally leads to a lower prediction error (Olsen, 2021). Therefore, in this research, a ratio of 90% 

training data and 10% testing data is used. 

To evaluate the models, the F1-score is calculated for each class. The F1 score measures the fit of a 

model on a particular dataset and is calculated using the precision and recall of the model. The 

precision is the number of true positives, divided by the total number of positives. In other words, the 

number of times the prediction was right, divided by all predictions done on data belonging to that 

class. The recall is the number of true positives, divided by the amount true positives and false 

negatives. In other words, the number of times the prediction was right, divided by all data that was 

predicted to be in the corresponding class. F1-scores are typically used for binary classifications but 

can also be used for multi-class classification. In this case, a one-vs.-all approach is taken to find out 

the F-scores for each activity type in the models. The F1-score is a value between 0 and 1, in which 1 

is a perfect fit. The F-score gives is more robust, compared to accuracy, as it also considers the 

unbalanced distribution of class sizes (Wood, n.d.). 

(15) 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where P is the precision, TP is the number of true positives and FP is the number of false positives. 

(16) 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where R is the recall, TP is the number of true positives and FN is the amount of false negatives 

(17) 𝐹 =  
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

Where F is the F1-score, P is the precision and R is the Recall 
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3.3.2 Support Vector Machine (SVM) 
A Support Vector Machine (SVM) is a supervised machine learning algorithm that uses a line, plane, or 

hyperplane through a dataset to separate it into clusters. The algorithms make use of support vectors, 

these are points of data that influence the position and orientation of the line or hyperplane. The 

support vectors that are used are the data points on the edge or within the soft margin. The soft margin 

is the margin from the line or hyperplane in which the number of observations compared to the 

number of misclassifications is the highest. Of course, not all datasets can be easily separated using a 

line, plane, or hyperplane. To be able to do this, the SVM uses so called ‘kernel’ functions. These 

functions can add additional dimensions to the data, to be able to separate the clusters. In essence, 

using the kernel functions in SVM is a mathematical trick that allows SVM to perform ‘multi-

dimensional’ classification on a set of one-dimensional data (Noble, 2006). Figure 3.8 shows data that 

cannot be easily separated by a line, but after transforming it using a kernel function, the clusters are 

separable by hyperplanes (Bedell, 2018). SVM’s are often used in HAR (Ferrari et al., 2021). Support 

Vector Machines are used for classifying two classes. In the case of multiclass classification, a one 

against one or a one against rest approach needs to be taken. This means that the data is partitioned 

into subsets with each containing two classes. In one against one this is one class versus another class, 

while in the one against rest approach this is one class versus the rest of the classes. The binary 

classification is solved for each subset and using majority voting, the classification is assigned to each 

data point (Baeldung, 2021). 

Figure 3.8 Using a kernel operation to make clusters separable (Bedell, 2018) 

 

 

In R, the SVM model can be built using a library called ‘e1071’. In this library, the SVM model can make 

use of four different kernel type. These are: (1) ‘linear’, (2) ‘polynomial’, (3) ‘radial basis’ and (4) 

‘sigmoid’ kernels. In the training phase, the different types of kernels are tested to see which one is 

best suited to this specific problem (RDocumentation, 2021a). Cost and gamma hyperparameters are 

used to finetune the model. In which cost is the cost of a constraint validation, and the gamma 

parameter influences the influence of the selected support vectors. A high cost usually means less 

support vectors are selected, and a low gamma makes the influence of the selected support vectors 

high (Scikit-Learn, n.d.). The library also has an argument for cross validation. As stated before, 10-fold 

cross validation is used for this model with 10% testing- and 90% training-data. 
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3.3.3 Random Forest (RF) 
The Random Forest is based on the tree-based algorithm of Decision Trees (DT’s) (Martin et al., 2017). 

A decision tree has a lot of resemblance to flow charts. DT’s split data into groups, based on certain 

variable thresholds into groups. These groups can then be split into more groups based on other 

thresholds of different variables until a leaf node is reached in which the classification is decided. DTs 

are simple to implement, interpret and require low computational power. This simplicity also causes 

the algorithm to be less suited for more complex datasets and highly susceptible to change when the 

thresholds are changed (Kingsford & Salzberg, 2008). 

The Random Forest (RF) is a machine learning algorithm that uses an ensemble learning method. This 

means that the algorithm generates many classifications and then aggregates them to come with a 

final classification. To get these classifications, multiple DTs are generated. These DTs are generated 

by randomly selecting data samples and a feature subset on which a ‘random’ DT is generated. This 

process is called ‘Bagging’ (a combination of bootstrapping and aggregating). The data that was is not 

sampled for building the DTs are called the out-of-bag samples. All of these ‘random’ DTs generate 

their own classification based on the training data. The test data is classified based upon the most 

common classification among all the random DT’s (Figure 3.9) (Ali, Khan, Ahmad & Maqsood, 2012). 

The RF is generally able to achieve high performance with high-dimensional data by increasing the 

number of DT’s (Ferrari et al., 2021). 

Figure 3.9 Schematic representation of RF algorithm 

 

In R, the RF model is built using a library called ‘randomForest’. It uses Breiman’s implementation of 

the RF algorithm (Breiman, 2001). There are various hyperparameters that can be tweaked that will 

influence the accuracy of the model. Three of these hyperparameters will be tweaked in this research. 

First of which is the number of trees. A higher number of trees usually makes for a better classification. 

This can be in the range of thousands of trees. However, using to many trees can also cause overfitting 

of the model. Second, the number of random features used for each decision tree (Towards Data 

Science, 2020). The number of variables that will be randomly sampled is said to yield the best result 

when it is around the square-root of the number of features used in classification problems (Breiman, 
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2002).  To find the best value, a grid analysis can be performed. A value that is too small will reduce 

the variance, but increase the bias, while a value that is too high will do the opposite. A high value also 

decreases the training speed (Towards Data Science, 2020). Finally, the maximum number of terminal 

nodes. This parameter is not prone to overfitting, but a higher number does not necessarily make a 

better model. Testing various values can decide the best value to use (Scornet, 2017). The RF model 

output includes an out-of-bag error rate, the confusion matrix, and the classification accuracy. The RF 

model’s is validated using out-of-bag samples, therefore, the model does not split its data into 

subsamples of test- and training data. The validation of the accuracy is done by running the model 10-

fold and taking the average accuracy, instead of doing a 10-fold cross validation as is done in the SVM 

and MLP models. 

3.3.4 Multilayer Perceptron (MLP) 
Artificial Neural Networks (ANN) often simply called Neural Networks are a collection of machine 

learning algorithms that are based on the biological neural networks of brains. Brains have neurons, a 

lot of them, that interact with each other. In real life, neurons transmit chemicals (neurotransmitters) 

to the next group of neurons to send messages to each other. In the same way, the ANN’s uses 

‘neurons’ that can influence one another by sending messages that are influenced by set weights to 

find patterns in data on which it can classify (Alpaydin, 2014b; Noriega, 2005). There are many ANN’s, 

but the most classic example of ANN is the Multilayer Perceptron (MLP) algorithm. The input data is 

given in the form of hand-crafted features, the data will feed through one or more sets of neurons 

called the ‘hidden layers’ and will produce an output classification (Figure 3.10). The data feeds 

forward through the neurons and are influenced by the weights (parameters) given to the connections. 

The parameters are assigned to minimize the cost function, which means finding the right parameters 

to minimize the error of a line or hyperplane that categorize the data. After feeding the data forward, 

the model evaluates the predicted values to the actual values. The difference between this is displayed 

in an error term, and this error term will be backwards propagated from the output node, through the 

hidden layer to the input node. This is done so the model knows how to adjust the weights to decrease 

the error term, and thus achieve higher accuracy (Noriega, 2005). 

Figure 3.10 Neurons and layers of a MLP (Rodriguez, 2020) 
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Other popular algorithms are deep learning based Convolutional Neural Network (CNN) and Recurrent 

Neural Networks (RNN). CNNs were designed for automatic image recognition and RNN’s are mostly 

designed to work with sequence prediction problems (Brownlee, 2019). Although very popular ANN’s, 

they will not be discussed here, as they are not as relevant for the field of HAR. 

In R, the MLP model is built using a library called ‘RSNNS’. RSNNS is an R library based on the Stuttgart 

Neural Network Simulator, which used to be a neural networks simulator for the University of 

Stuttgart. By default, it uses error backpropagation to train the model (Zell, 1998). Hyperparameters 

are set for the MLP are the number of hidden layers and the number of neurons per hidden layer and 

the number of iterations for learning (RDocumentation, 2021b). This model uses two hidden layers, as 

two layers are also capable of solving non-linear categorization problems. The number of neurons per 

layer are an important hyperparameter, too few neurons causes underfitting, while too many causes 

overfitting (Gad, 2018). The ideal number of neurons per hidden layer can be found using a formula 

defined by Stathakis (2009). The formula is: 

(18) ℎ𝑛 =  2√(𝑚 + 2)𝑁 

Where ℎ𝑛is the number of neurons per hidden layer, 𝑚 is the number of output neurons and 𝑁 is the 

number of samples. 

The number of iterations for learning is another important hyperparameter. Too little will cause a poor 

model performance, while too many will cause overfitting. Trial and error will be used to find the value 

that trains the best model. The starting weights of the MLP model are randomized, and the update 

function follows the topological order. The model is validated using 10-fold cross validation with 10% 

testing- and 90% training-data. 

3.5 Workflow 
Figure 3.11 gives a conceptual overview of the steps taken to build the various machine learning 

sport activity classification models with the GNSS and land-use data. 
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Figure 3.11 Conceptual model for machine learning model building 
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4. Results 
Three machine learning methods are tested in this research. Each model is trained using specific 

parameter values. These values are obtained by a combination of trial and error, hyperparameter 

analyses and recommendations from previous research. For each machine learning method, two 

models were trained and tested. One with all features that are discussed in the methodology 

chapter, and one without the land-use specific features. Each model yields at least a confusion 

matrix, a classification accuracy for each model, and a precision, recall and F1-score for each class in 

the models. The upcoming chapter discusses the results from the models, as well as some specific 

hyperparameters for each machine learning method. The strong points, weak points, and overall 

suitability for all models regarding the classification task at hand will be discussed. Finally, a leave-

one-out accuracy analysis is performed for each machine learning method to gain a deeper 

understanding on the influenced of the features that are used. 

4.1 Data overview 
After filtering and editing, 1397 GNSS tracks are left. Each track has 17 different features, of which 14 

are calculated using the GNSS data and 3 are calculated using OSM land-use data. Table 4.1 shows the 

values of the ‘average distance to water’ for all the different sport activities. In Figure 3.6, the expected 

relationship between land-use type and sport activity is displayed. Comparing this to the output it 

becomes apparent that sports associated with foot-paths, like walking, running, hiking, and inline-

skating, are nearer to this land-use type than average, while all others, except kayaking, are further 

from the average. Sports related to water, like Ice-skating, kayaking, and swimming are also closer to 

water-features than average. All other sports are further from the average. Finally, sports expected to 

be related to cycle-paths, like cycling or inline-skating were further away from the average, while 

sports like kayaking, ice-skating, and swimming were closer to the cycle-paths than average. While this 

is not in line with the expectations, the outcome can still positively influence the accuracy of the 

machine learning algorithm. Therefore, it is still used as a feature for some of the models. An overview 

of all the histograms, related to the features can be found in Appendix D.  

Table 4.1 Overview of the average values for the land-use features per activity type 

Track type Average 
distance to foot-
path (m) 

Average 
distance to 
cycle-path (m) 

Average distance to 
water (m) 

Running 145 638 619 

Cycling 185 712 818 

Walking 156 716 701 

Hiking 116 529 598 

Ice-Skating 188 548 574 

Inline-Skating 119 552 606 

Kayaking 153 132 214 

Swimming 211 191 285 

All tracks 158 552 596 
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4.2 Support Vector Machines 
The machine learning models for support vector machines (SVM) are trained and tested using the 

statistical computing programming language ‘R’. Multiple kernels are tested to find the kernel that 

yields the highest classification accuracy. The possible kernels are ‘linear’, ‘polynomial’, ‘radial basis’ 

and ‘sigmoid’. The radial basis kernel function yielded the best results in the 10-fold cross validated 

models with an accuracy of 0.75 and thus is used for these models. The linear function was a little less 

accurate with 0.73. The polynomial- and sigmoid-functions were not suitable for the model as they 

yielded an accuracy of 0.54 and 0.53 respectively. For the final models, the radial basis function has 

been used. Since this research deals with a classification problem in which the classes are factors, a c-

classification type is used. 

The models’ cost and gamma hyperparameters are established by using a tuning function in R, in which 

every gamma value between 0 and 0.5 is tested with increments of 0.01 and every cost value is tested 

from 1 to 10 with increments of 1. The best hyperparameters for this model are a gamma value of 0.05 

and a cost value of 7. 

The support vector model was 10-fold cross validated and has a classification accuracy of 0.826. Which 

means that it was able to predict the right class in 82.6% of the cases. It was built using 1013 support 

vectors. The confusion matrix of the model can be found in table 4.2. The highest F1-score is achieved 

in the swimming category with 0.92. The lowest F1-score is found in the inline-skate category with 

0.76. GNSS tracks of inline-skating were most often confused with cycling (in 9% of the cases), while at 

the same time running (8%) and cycling tracks (8%) were mostly misclassified as inline-skating. Other 

notable misclassifications are kayaking being classified as walking in 11% of the cases. Walking is 

confused with hiking in 17% of the cases and in 8% of the cases vice versa. 

Table 4.2 Confusion matrix of the SVM model 

Prediction C
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R
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a
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F1
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Running 207 10 6 3 9 13 9 1 0.80 0.86 0.83 

Cycling 2 225 2 0 4 13 0 0 0.91 0.89 0.90 

Walking 19 2 207 27 3 6 12 8 0.73 0.83 0.78 

Hiking 2 1 20 122 0 1 0 0 0.84 0.78 0.81 

Ice-skating 0 2 1 0 60 3 0 0 0.91 0.71 0.79 

Inline-skating 5 12 1 1 8 114 0 0 0.81 0.72 0.76 

Kayaking 6 0 4 4 1 7 89 2 0.79 0.79 0.79 

Swimming 1 0 8 0 0 1 3 130 0.91 0.92 0.92 

Total 242 252 249 157 85 158 113 141    

 

Another model was ran without the land use features. The gamma and cost values were tuned for the 

model and were 0.05 and 6 respectively. It was built using 1024 support vectors. The 10-fold cross 

validated model achieved an accuracy of 77.0%. The confusion matrix of the model can be found in 

table 4.3. Once again, the highest F-1 score is achieved in the swimming category. However, the lowest 
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F-1 score in this model is in the category of ice-skating, as opposed to inline-skating in the model using 

land-use features. The F-1 score dropped from 0.79 to 0.50. Ice-skating tracks are mostly confused 

with inline-skating tracks. In 27% of the cases, ice-skating tracks are predicted to be inline-skating 

tracks when land-use data is left out, as opposed to 9% when land-use data is used. 

 

Table 4.3 Confusion matrix of the SVM model without land use features 
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Running 197 9 6 2 9 13 15 0 0.78 0.81 0.80 

Cycling 3 215 1 1 15 17 0 0 0.85 0.85 0.85 

Walking 23 2 211 33 5 10 15 10 0.68 0.85 0.76 

Hiking 1 0 14 115 0 2 3 1 0.85 0.73 0.78 

Ice-skating 0 1 0 0 31 7 0 0 0.79 0.36 0.50 

Inline-skating 6 22 2 0 23 105 2 0 0.66 0.66 0.66 

Kayaking 11 1 3 6 2 4 76 4 0.71 0.67 0.69 

Swimming 1 2 12 0 0 0 2 126 0.88 0.89 0.89 

Total 242 252 249 157 85 158 113 141    

 

To gain insight in the effect of each feature for the accuracy of the model, a 10-fold cross-validated 

leave-one-out accuracy analysis was done. In which each time, one feature was left out and the 

accuracy loss was calculated. Figure 4.1 shows that the low-speed point per second was the most 

influential variable to the overall accuracy. Leaving out elevation loss didn’t influence the accuracy of 

the model up to three decimal places. The features of interest for this research are the land-use 

features. The ‘average distance to foot-path’ was the most influential for the SVM model with an 

accuracy loss of 1.5%. Followed by ‘average distance to waterway’ with 1.0% and ‘average distance to 

cycle-path’ with 0.9%. 
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Figure 4.1 Leave-one-out-accuracy loss in SVM model per variable 

 

4.3 Random Forest 
The random forest (RF) models were built using the ‘random forest’ and ‘caret’ packages is R. Random 

Forest works different for different purposes, but for this research, the model will be built for the 

purpose of classification. To build the most accurate model, the hyperparameters used for building the 

random forest need to be tuned. One of the most important hyperparameters is the number of 

decision trees built per random forest. The more trees, the more robust the model will be. However, 

more trees cause larger computational time and can cause overfitting. By comparing the number of 

trees and the out-of-bag (OOB) error rate, the optimal number of trees can be found. After about 200 

trees, the OOB error rate stabilises, and the model doesn’t improve much (Appendix E). Therefore 200 

trees will be used, to prevent overfitting. Another important feature to use is the number of random 

features to consider at each split. By testing and cross-validating the accuracy of each model using a 

grid search method, it was determined that using 7 random features is the best parameter value to 

use for the model (Appendix F). Finally, the maximum number of terminal nodes in the decision trees 

need to be determined. Testing and cross-validating determined that 70 is the best parameter value 

to use for this model (Appendix G). 

The random forest model is verified by using the out-of-bag error rate instead of splitting the data for 

a 10-fold cross-validation, like how it is done in SVM- and MLP-models. The model is trained 10-fold 

using different bootstrapped data and the accuracy is calculated by averaging the 10 models.  The 

average accuracy was 74.6%. A confusion matrix of one of the models can be found in table 4.4. 

Swimming is the class with the highest F1-score, with a value of 0.91. Inline-skating has the lowest F1-

score, with a value of 0.60. Some notable outcomes are the difference in precision and recall in ice-

skating, where it yields the second highest overall precision (0.92), but the lowest overall recall (0.53). 

This means that in 47% of the cases ice-skating tracks were predicted to be some other sport activity, 

while only in 8% of the cases, another sport activity was incorrectly classified as ice-skating. Another 
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notable outcome is that hiking and walking are often confused, where about 12% of walking tracks are 

identified as hiking tracks, and about 27% of hiking tracks are identified as walking tracks. Also 20% of 

ice-skating tracks were identified as inline-skating tracks but was not misclassified the other way 

around. Instead, inline-skating is often confused with running (18%) and cycling (28%). Finally, the last 

combination of categories with more than 10% misclassification is kayaking with walking with 19%. 

 

Table 4.4 Confusion matrix of the RF model 
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Running 194 6 10 4 9 19 12 1 0.76 0.80 0.78 

Cycling 3 205 0 2 6 28 0 0 0.84 0.81 0.83 

Walking 18 2 200 42 3 4 22 10 0.66 0.80 0.73 

Hiking 5 1 29 107 0 3 4 3 0.70 0.68 0.69 

Ice-Skating 0 3 0 0 45 0 1 0 0.92 0.53 0.67 

Inline-Skating 16 35 7 0 17 101 0 1 0.57 0.64 0.60 

Kayaking 5 0 0 2 5 1 73 2 0.83 0.65 0.73 

Swimming 1 0 3 0 0 2 1 124 0.95 0.88 0.91 

Total 242 252 249 157 85 158 113 141    

 

Other models were ran in 10-fold without the land-use features, this average accuracy of these models 

was 73.9%. This is 0.7% lower than the model that uses all the features. The confusion matrix of this 

model can be found in table 4.5. The notable outcomes described in the model containing all features 

remain similar in this model. The most notable change is, while all the values of precision, recall and 

F1-score are dropping, the precision of walking increased by a value of 0.01. 

Table 4.5 Confusion matrix of the RF model without land-use features 
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Running 193 5 10 3 7 14 18 0 0.77 0.80 0.78 

Cycling 5 206 0 2 7 29 1 0 0.82 0.82 0.82 

Walking 21 1 198 38 5 7 24 10 0.65 0.80 0.72 

Hiking 4 0 30 111 0 2 3 3 0.73 0.71 0.72 

Ice-Skating 0 4 0 0 45 1 0 0 0.90 0.53 0.67 

Inline-Skating 12 35 6 0 19 97 7 1 0.55 0.61 0.58 

Kayaking 6 0 1 3 2 6 59 3 0.74 0.52 0.61 

Swimming 1 1 4 0 0 2 1 124 0.93 0.88 0.91 
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Total 242 252 249 157 85 158 113 141    

 

Finally, a leave-one-out accuracy analysis was performed for the model. Figure 4.2 shows that leaving 

out the ‘95th percentile of speed’ causes the biggest loss in accuracy by far with a 3.4% loss. Leaving 

out the features ‘total time’, ‘average distance to cycle-path’, and ‘elevation loss’ even caused the 

model to increase in accuracy. For the last of which it caused an accuracy increase of 0.4%. Leaving out 

the other land-use features did cause a loss in accuracy. ‘Average minimum distance to waterway’ 

caused a 0.7% loss, and ‘average minimum distance to foot-path’ caused a 0.3% loss. 

Figure 4.2 Leave-one-out accuracy loss in RF model per variable 

 

4.4 Multilayer Perceptron 
The multilayer perceptron (MLP) models were built using the RSNSS package in R. The learning function 

used to train the model is the standard backpropagation, as discussed in the methodology chapter. 

The hyperparameters of the model were tuned to achieve the highest accuracy. The maximum number 

of iterations was tested through trial-and-error and was set to be 1000 iterations, as this value trained 

the model with the highest accuracy. The number of nodes in the hidden layer was set to 13. This value 

was calculated using the formula of Stathakis (2008) as described in the methodology chapter.  

The model was 10-fold cross validated and has an accuracy of 69.4%. The confusion matrix can be 

found in table 4.6 and contains all the test data that was used during the 10-fold cross validation 

process. Swimming is the category with the highest F1-score with 0.79, while inline-skating is the one 

with the lowest with 0.49. The outcomes are similar to those of the SVM and random forest, where 

walking and hiking are often confused. Walking was misclassified as hiking in 13% of the time and 22% 

vice versa. Ice-skating is often classified as inline-skating, while inline-skating is confused with running 

(18%) and cycling (16%). Also, kayaking is misclassified as walking in 10% of the cases. In the MLP, as 

opposed to the other models, swimming is more often confused with walking (in 11% of cases). This 

was 7% in SVM and 6% in RF. 
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Table 4.6 Confusion matrix of the MLP model 
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Running 165 1 21 6 2 12 8 2 0.75 0.75 0.75 

Cycling 8 178 3 4 7 19 2 7 0.77 0.78 0.78 

Walking 8 1 159 34 1 0 5 17 0.71 0.66 0.68 

Hiking 3 1 27 102 0 4 0 6 0.69 0.65 0.67 

Ice-Skating 5 5 1 0 44 9 7 3 0.61 0.93 0.74 

Inline-Skating 10 43 6 3 13 61 4 1 0.45 0.54 0.49 

Kayaking 17 1 17 4 4 5 49 4 0.47 0.62 0.54 

Swimming 1 0 6 2 0 1 3 113 0.87 0.73 0.79 

Total 217 230 240 155 71 111 78 153    

 

The model was also ran without using the land-use features. The model reached an accuracy of 67.2%, 

which is 2.2% lower than the MLP model using all features. The confusion matrix can be found in table 

4.7. Unlike in the SVM and RF models without land-use features, not all F1-scores were lower 

compared to the same model with all features. Running and hiking improved the F1-score with 0.01. 

Most other F1-scores did not change or dropped 0.02, while the F1-score of ice-skating dropped with 

0.32 from 0.74 to 0.42. Both the precision and recall dropped significantly. Ice-skating was more often 

confused with cycling and inline-skating, while at the same time, inline-skating was classified as ice-

skating more often. 

Table 4.7 Confusion matrix of the MLP model without land-use features 
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Running 185 4 6 1 9 14 24 0 0.76 0.76 0.76 

Cycling 5 204 1 0 21 37 2 0 0.81 0.76 0.78 

Walking 18 5 183 40 3 8 17 18 0.73 0.63 0.68 

Hiking 7 1 29 110 1 2 5 8 0.69 0.67 0.68 

Ice-Skating 1 8 0 0 30 18 1 0 0.35 0.52 0.42 

Inline-Skating 11 25 3 3 18 65 7 0 0.41 0.49 0.44 

Kayaking 15 2 7 4 3 8 55 4 0.48 0.56 0.52 

Swimming 1 3 21 1 1 6 3 110 0.79 0.75 0.77 

Total 243 252 250 159 86 158 114 140    
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A 10-fold cross-validated leave-one-out accuracy analysis was performed for the model. Figure 4.3 

shows that leaving out average speed will cause the biggest loss in accuracy with 2.0%. Just like in the 

SVM and RF models, the ‘95th percentile of speed’ and the ‘low speed point per second’ are amongst 

the features that result in the biggest loss of accuracy when left out. Leaving out the land-use features 

‘average minimum distance to foot-path’ and ‘average minimum distance to cycle-path’ will cause a 

loss of accuracy of 0.5% and 0.3% respectively. ‘Average minimum distance to waterway’ caused an 

increase in accuracy of 0.2%, while this is not the case in the other models. 

Figure 4.3 Leave-one-out accuracy loss in MLP model per variable 
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5. Discussion 
In the discussion, the results of all the individual models are placed side by side to reflect on the 

performances, general trends, and the influence of land use features. 

5.1 Model’s performance 
For this research 6 machine learning models were trained and validated to gain an insight in what the 

influence is of incorporating land-use data in automatic activity type classification models based on 

machine learning algorithms. Differences were found in the classification accuracy between the 

different machine learning algorithms. The models with the highest classification accuracy were the 

support vector machine models, in which both the model with all features and the model with no land-

use features outperformed the other models (Table 5.1). The random forest was the second-best 

machine learning algorithms for building the classification models. The multilayer perceptron models 

had the lowest classification accuracy. This is not in line with past research on human activity 

recognition, in which random forest models often had the highest accuracy (Ellis et al., 2014; Martin 

et al., 2017; Feng & Timmerman, 2015, Ferri, 2016). This can be due to other research using more- 

and/or different features. 

Table 5.1 Classification accuracies per machine learning model 

 

 

 

 

 

 

 

 

 

 

5.2 General trends 
A trend among all three of the machine learning algorithms is that leaving out the land-use features 

from the model caused the models to have a lower overall accuracy. This drop in accuracy was 

generally reflected throughout every category. The SVM algorithm improved the most when adding 

land-use features. Its accuracy increased with 5.6%. For the MLP algorithm it increased with 2.2% and 

for the RF this was only 0.7%. 

Machine 
learning 
model 

Classification 
accuracy 

 All 
features 

No land-
use 
features 

Support 
Vector 
Machines 

82.6% 77.0% 

Random 
Forest 

74.6% 73.9% 

Multilayer 
Perceptron 

69.4% 67.2% 
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General trends among all models were the 

misclassification of specific classes. One of these trends is 

the confusion between hiking and walking. This can be 

caused the similarity of the activity. Generally, hikes are 

considered to be longer and harder walks, but the 

distinction between the two is somewhat subjectivity. One 

might consider the performed activity a walk, and labels it 

accordingly, while someone else considers the same 

activity a hike. However, since walking and hiking achieved 

an F1-score between 0.67 and 0.81 in all models, people 

do tend to make a distinction between the two activity 

types based on some characteristics. Unfortunately, due to 

nature of the machine learning algorithms, it is hard to tell 

what these distinctive characteristics are. Adding land-use 

features to the models caused the confusion between 

hiking and walking to go down in all cases, even though it 

was expected that both activities would be performed on 

the same land-use type, namely foot-paths. Figure 5.1 

shows the distribution of values for all land-use features 

for walking and hiking. When comparing walking with 

hiking, it becomes clear that there are differences in the 

distribution of values between walking and hiking. This is 

probably what caused the model to get a higher 

classification accuracy regarding walking and hiking. 

 Another general trend is that in all models except for one, the inline-skating was the category with the 

lowest F1-score. Going as low as a score of 0.44. Unlike the case with hiking and walking, inline-skating 

was often confused with more activities than just one. It was often confused with running, cycling, 

walking, and ice-skating. Adding land-use features to the models increased the F1-score of inline-

skating in all three cases. In the support vector machines model it even increased the inline-skating’s 

F1-score from 0.66 to 0.76. In this case, the precision increased from 0.66 to 0.91 as cycling and ice-

skating tracks’ classification accuracy increased significantly. It seems like the land-use features gives 

more context to the activities, but again, it is hard to know exactly why this is the case. 

The improvements in F1-scores per machine learning model when adding land-use features seem to 

be very dependent on the algorithm used (table 5.2). Kayaking’s F1-score improved greatly in the SVM 

and RF models, while in the MLP it only improved with 0.02. Ice-skating improved greatly in the SVM 

and MLP models, while it did not improve in the RF model. 

Table 5.2 F1 scores for all classes per model 

 Support Vector Machines Random Forest Multilayer Perceptron 
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Running 0.83 0.80 0.03 0.78 0.78 0.00 0.75 0.76 -0.01 

Cycling 0.90 0.85 0.05 0.83 0.82 0.01 0.78 0.78 0.00 

Figure 5.1 Histograms of walking and hiking for the 
land-use features 
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Walking 0.78 0.76 0.02 0.73 0.72 0.01 0.68 0.68 0.00 

Hiking 0.81 0.78 0.03 0.69 0.72 -0.03 0.67 0.68 -0.01 

Ice-skating 0.79 0.66 0.13 0.67 0.67 0.00 0.74 0.42 0.32 

Inline-
skating 

0.76 0.66 0.10 0.60 0.58 0.02 0.49 0.44 0.05 

Kayaking 0.79 0.69 0.10 0.73 0.61 0.12 0.54 0.52 0.02 

Swimming 0.92 0.81 0.03 0.91 0.91 0.00 0.79 0.77 0.02 

 

5.3 Leave-one-out analysis 
The leave-one-out analysis for the different models gave mixed results. Two features were always 

among the top 3 features that caused the biggest loss in accuracy. These were the ‘low speed point 

per second’ and the ‘95th percentile of speed’. ‘Elevation loss’ was the only feature that never caused 

any loss of accuracy when left out. The land use features performed well in the SVM model, with a 

0.9%, 1.0%, and 1.4% increase (table 5.3). When leaving out all land-use features, the model’s accuracy 

drops by 5.6%, meaning that the land-use features also interact with- and positively influence each 

other in the SVM model. In the RF model and MLP model, not all land-use features caused a loss of 

accuracy when left out. Leaving out the ‘average minimum distance to water’ caused the RF model to 

increase it’s accuracy by 0.1%. Leaving out the ‘average minimum distance to waterway’ caused the 

MLP model to increase it’s accuracy by 0.2%. This shows that the land-use features picked for this 

research don’t work well for all models and it can vary per algorithm that is used.  

Table 5.3 Accuracy loss when leaving out land-use features 

 Accuracy loss 

 Average distance to 
waterway 

Average distance to 
foot-path 

Average distance to 
cycle-path 

Support Vector 
Machines 

1% 1.5% 0.9% 

Random Forest 0.7% 0.3% -0.1% 

Multilayer-Perceptron -0.2% 0.5% 0.3% 

 

6. Conclusion 
The research questions and their related sub-questions are answered in this research. This last 

chapter go over all of the questions and the answers that were found, starting with all of the sub-

questions. The first sub-question was: 

What is machine learning? 

Machine learning is a method of data analysis that combines computer algorithms and large amounts 

of data to make models that can train itself and learn through iterative processes. It can be used for 

various tasks like classification tasks, visual recognition, speech recognition and robotics. There is a 

broad selection of algorithms that can be used, which can be split into conventional methods and in 

deep learning based methods. Besides this, it can also be split in supervised- and unsupervised learning 

algorithms. For this research, conventional and supervised machine learning algorithms are further 

explored. 

What is the state of the art in outdoor sports detection in GNSS-data based tracks using machine 

learning? 
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Automatic classification of human activity (HAR) is a widely researched field. In this field, a wide variety 

of methods are being used, utilizing various sensors to collect data. However, data collection using 

GNSS-sensors has drawn attention of researchers in recent years. HAR studies using data collected by 

GNSS-data are often accompanied by data acquired by other sensors, like accelerometers, gyroscopes, 

magnetometers and microphones. Most papers that used machine learning algorithms used multiple 

machine learning algorithms to find which algorithms yielded the best results. The ‘support vector 

machines’-, ‘random forest’-, and ‘multilayer perceptron’-algorithms yielded the best results in the 

papers discussed in this research. 

What features need to be extracted from the GNSS- and land-use data to detect the kind of outdoor 

sport practiced in the recorded tracks? 

Nearly all studies extracted features like ‘average speed’, ‘average acceleration’, ‘trip distance’ and 

‘duration’ from the GNSS tracks. Other commonly used variables were ‘average heading change’ and 

‘low-speed points’. Some studies also used additional features like ‘95th percentile of speed’ or ‘95th 

percentile of acceleration’. All of the variables above were used in this study in addition to variables 

concerning elevation. Finally, studies used variables like the ‘average number of satellites used’ and 

‘average signal-to-noise ratio’, however, the data used in this research did not contain this information 

and these features were therefore not used. 

What machine learning algorithms would be suitable for outdoor sport activity detection in GNSS- and 

land-use data? 

Three algorithms were selected as being the most suitable algorithms for this purpose, based on the 

classification accuracies that were reached in previous research. First, the support vector machines-

algorithms makes use of lines and hyperplanes to separate multidimensional data in order to classify 

them. Second, the random forest-algorithm uses multiple decision trees and bootstrapped data to 

classify the data. The outcomes of the individual decision trees will be used for a classification through 

a majority voting. Finally, the multilayer perceptron-algorithm creates a network in which input and 

output is connected through layers of so called ‘hidden-layers’. These nodes are trained to produce 

usable input-output relationships which can be used to classify the inputs. 

How can we validate the machine learning models for detecting the kind of outdoor sport practiced in 

recorded GNSS-data? 

The support vector machines- and multilayer perceptron-models are validated through 10-fold cross 

validation. 90% of data is used for training and 10% for testing. Each iteration uses different data for 

training and testing until the models are run in 10-fold and all data has been used for both testing and 

training. The average accuracy of the 10 models is then taken. The random forest-models bootstrap 

data for building decision trees. All data that is not bootstrapped is used for testing and will result in 

an out-of-bag (OOB) accuracy. Validation is done by running the model in 10-fold with different 

bootstrapped data and averaging their accuracies. 

To what extent are machine learning models able to classify the kind of outdoor sport practices in pre-

recorded GNSS-data based tracks using related land-use features? 

The best models for classifying activity types in pre-recorded GNSS-data tracks were built using the 

support vector machines-algorithm. The model with land-used features reached an accuracy of 82.6%, 

while the model without land-use features reached an accuracy of 77.0%. The random forest-algorithm 

with land-use features reached an accuracy of 74.6% and the multilayer perceptron-algorithm with 

land-use features reached an accuracy of 69.4%. 
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The main question for this thesis was the following: 

To what extent do land-use features improve the machine learning models’ ability to correctly classify 

the kind of outdoor sport practices in GNSS-tracks? 

This research has shown that using land-use features related to GNSS tracks as additional data for 

machine learning models improves the machine learning models’ classification accuracy. Validating 

the models has verified that, in the cases of support vector machines-, random forest-, and multilayer 

perceptron algorithms, the chosen land-use features significantly improve the models’ accuracy. The 

largest improvements were found in the SVM model, followed by the MLP and RF models. The SVM 

model was found to be the most accurate model and the model with the most potential for improving 

its accuracy using land-use features. Even though the land-use features data values did not always 

reflect the hypothesis, the various algorithms have still found useful patterns from which different 

classes could be distinguished. However, in some cases, individual land-use features caused a loss in 

classification accuracy. Not all land-use features are providing the same effect to the models’ accuracy 

and careful evaluation is still required to achieve a higher classification accuracy. This thesis has proven 

that it is possible to significantly increase a machine learning models’ classification accuracy for 

classifying sport activities using land-use features related to GNSS-tracks. Machine learning algorithms 

can find patterns in data that are hard to find and therefore there is a lot of potential for experimenting 

with land-use features related to GNSS-tracks to achieve higher classification accuracies. 

7. Reflection and recommendations 
This thesis has explored the opportunities of using land-use data for activity type classification in GNSS-

tracks. As the author was new to a lot of the subjects discussed and the methods used, some 

unforeseen obstacles have occurred which might have influenced the outcome. The following 

paragraphs will discuss some of these shortcomings and will provide some recommendations and 

suggestions for future work related to this research. 

The data collection proved to be more difficult than expected, especially in specific classes, like ice-

skating or kayaking. Classes like cycling and running were rather easy to find, however, the Strava 

website’s rate limit made the collection of these tracks a slow and tedious process. Due to time-

constraints, the research was conducted with less tracks than originally anticipated. Using more tracks 

would have been beneficial to training and testing the model. Another limitation of the data that was 

collected is that it was self-labelled. Some tracks have been removed as they were identified as being 

misclassified by the user, but identifying misclassification can be hard and the chances are high that 

there were still misclassified tracks among the data. Machine learning algorithms are not able to 

identify these misclassified tracks and will therefore train the model to with an incorrect input-output 

relationship. Besides obvious misclassifications, there is also the problem of subjectivity, as discussed 

earlier in the case of walking versus hiking. Another problem with the data is that it all comes from one 

source. This source already pre-processed the data in some way. The models that were built during 

this research only validated the classification of this specific pre-processed version of GNSS-tracks, so 

it is not possible to say how well the model will perform when GNSS-tracks from different sources are 

being classified. 

Then there are some shortcomings regarding the land-use features. OpenStreetMap land-use data was 

used to calculate these features. However, when querying these features, it is not possible to query 

the full line-segment or polygon from OSM. Instead, the nodes are queried. These nodes occur at every 

bend of a line-segment or at every corner of a polygon. In practice, this means that even if someone 

was inside the polygon or on the line-segment, the closest node to that point is queried, giving a 
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distorted image of the reality. For example, if a user is swimming in the sea, the distance of the water 

will be calculated as the closest node separating the mainland and the sea. Another limitation is that 

only nodes within 50 meters from the GNSS-tracks were queried, due to server limitations on the side 

of OSM. If this research were to be applied to a bigger scale, it is recommended to make a mirror server 

of the OSM server.  

There are also some shortcomings in the tracks that were used to query the nodes. First, a python 

module was used for applying the Ramer-Douglas-Peucker algorithm. This algorithm uses the epsilon 

parameter as a parameter for the simplification threshold. The epsilon is in degrees minutes seconds. 

Consequentially, the actual threshold in meters varies with the latitude that the track is recorded on 

and can also vary based on cardinal directions. Second, due to limited processing power, only 20 points 

per track were used, which means that the average distance from a land-use element is based on only 

a small portion of the whole track. 

Future researchers on this subject are recommended to take this reflection into consideration to work 

on these shortcomings in future work. Besides working on these shortcomings, future research is also 

needed to get a better insight into what land-use features could be used for the purpose of reaching a 

greater classification accuracy. More GNSS features can be extracted in combination with land-use 

features to research the potential classification accuracy when optimizing both types of features.  

Finally, future research is needed to see if these models can be combined with automatic detection of 

activity type change, so the model can be deployed on raw-GPS tracks with no clear-beginning and 

endpoint. 
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9. Appendices 

Appendix A: Table of literature of HAR using GNSS for literature review 
Refere
nce 

Type of 
activities 

Devices 
used for 
data 
collectio
n 

Features Classification 
algorithms 

Accuracy 

Shafiqu
e & 
Hato, 
2016 

Walk, bicycle, 
car, bus, train, 
subway 

GNSS, 
accelero
meters, 
gyrosco
pe 

Pitch, roll, maximum average 
resultant acceleration, 
maximum resultant 
acceleration, skewness, 
kurtosis, resultant acceleration 

RF 99.8% 

Xiao, 
Cheng 
& 
Zhang, 
2019 

Subway, walk, 
bicycle, e-
bicycle, bus, car 

GNSS Minimum duration, maximum 
duration, maximum speed of 
points, maximum distance 
from the start point of the 
segment to the nearest 
entrance/exit, maximum 
distance from the end point of 
the segment to the nearest 
entrance/exit, maximum 
distance of the segment to the 
nearest subway line 

SVM 89.16% 

MNL 82.10% 

BN 90.40% 

ANN 93.40% 

GPC 93.82% 

Xiao, 
Juan & 
Zhang, 
2015 

Walk, bike, e-
bike, car, bus 

GNSS Average speed, 95% percentile 
speed, average absolute 
acceleration, and travel 
distance 

SVM 92.32% 

MNL 84.32% 

ANN 91.95% 

BN 94.74% 

Zong et 
al., 
2017 

Walk, bike, 
subway, bus, car 

GNSS Average speed, maximum 
speed, 75th percentile of 
speed, acceleration, 75th 
percentile of acceleration, 
travel time, standard deviation 
of speed 

GIS 
algorithms 
and 
multinomial 
logit model. 

 

86% 
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Zong et 
al,. 
2015 

Walk, bike, 
subway, bus, car 

GNSS Average speed, maximum 
speed, 75th percentile of 
speed, acceleration, 75th 
percentile of acceleration, 
travel time, trip distance, 
standard deviation of speed 

SVM 92.2% 

Lee & 
Kwan, 
2018 

Running, 
walking, sitting, 
standing, in-
vehicle, biking 

GNSS, 
Acceler
ometer 

Average velocity, average 
acceleration, max velocity, 
max acceleration, change rate 
of velocity 

GIS 
algorithms 

Ranging 
from 
69.98% 
to 
98.25% 

Ellis et 
al., 
2014 

Bike, bus, car, 
sit, stand, walk 

GNSS, 
accelero
meter 

49 different features kNN 86.2% 

Naïve Bayes 74.2% 

SVM 87.7% 

Decision tree 83.6% 

RF 89.8% 

Feng & 
Timme
rman, 
2013 

Walking, cycling, 
running, 
motorcycle, bus, 
car, metro, tram 

GNSS, 
accelero
meter 

Average speed, maximum 
speed, non-moving time 
duration, average value, and 
standard deviation of the 
three-axis acceleration change 

BBN 96% 

Martin 
et al., 
2017 

Walk, bike, car, 
bus, rail 

GNSS, 
accelero
meter 

Mean change in acceleration, 
80th percentile speed, variance 
change in acceleration, 
variance change in speed, 
maximum speed, mean speed, 
mean change in speed, 80th 
percentile in speed, variance 
speed, median speed, 
maximum speed, mean speed 

kNN 94% 

RF 97% 

Allahba
khshi, 
Conro
w 
Naimi 
& 
Weibel
, 2020 

Cycle, lie, non-
level walk, run, 
sit, stand, walk 

GNSS, 
accelero
meter 

85 features RF Ranging 
from 
81% tot 
99% 

Feng & 
Timme

Paid work, daily 
shopping, non-
daily shopping, 

GNSS, 
prompt

Features on spatial location, 
aggregate timing, and duration 
information 

BN 46.2% 

DT 69.8% 
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rman, 
2015 

help 
parents/childre
n, recreational, 
social, voluntary 
work, service, 
leisure, picking-
up people, study 

ed recall 
data 

RF 96.8% 

Ferri, 
2016 

Mountain 
biking, cycling, 
sailing, 
kayaking, 
mountaineering, 
hiking, running, 
trail running, 
trail biking, 
motorcycling 

GNSS 2-dimensional length, 3-
dimensional length, moving 
time, stopped time, moving 
distance, stopped distance, 
maximum speed, average 
speed, uphill meters, downhill 
meters, maximum elevation, 
minimum elevation 

J48 62.8% 

JRip 60.9% 

Logist 56.9% 

NB 45.5% 

IBK 56.4% 

RF 67.7% 

Bagging 66.9% 

PART 61.0% 

Booster 67.1% 

SVM 54.1% 

LB 61.1% 

MDA 50.8% 

Li et 
al., 
2020 

Walk, bike, 
drive, train 

GNSS Speed, acceleration, bearing 
rate, jerk 

ANN ≈ 60% 

SVM ≈ 65% 

RF ≈ 75% 

Mixed 
methods 

87.6% 

 

Appendix B: Software, programming languages and extensions used during the 

research 
Software Programming Language Extensions/Libraries 

Spyder Python GpxPy, OS, CSV, math, numPy, time, OverPy, Geopy, 
Rpy2, rdp 

R Studio R e1071, randomForest, RSNNS 

Overpass API Overpass QL  

GPXSee GML  

Strava GML  

 

Appendix C: Keys and values used for querying land-use data from OSM 
Land-use type Key Value 

Waterway Waterway All values 

Water All values 

Leisure Water_park 

Leisure Swimming_pool 
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Leisure Ice_rink 

Landcover Water 

Sport Swimming 

Place Ocean 

Place  Sea 

Natural Bay 

Natural Coastline 

Natural Water 

Foot-path Highway Footway 

Highway Path 

Foot Yes 

Foot Designated 

Foot Private 

Foot Official 

Footway All values 

Route Foot 

Construction Footway 

Surface Tartan 

Cycle-path Highway Cycleway 

Cycleway Lane 

Cycleway Track 

Cycleway Opposite 

Cycleway Crossing 

Cycleway Oppostie_lane 

Cycle_network All values 

Route Bicycle 

Bicycle Yes 

Bicycle Designated 

Bicycle_road All values 
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Appendix D: Histograms for all classes per feature 
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Appendix E: Error rates and the number of trees produced per activity type in random 

forest
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Appendix F: OOB accuracy per number of variables in each tree for random forest

 

Appendix G: OOB accuracy per number of nodes in each tree random forest

 


